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Abstract

Cathodic Protection is a method applied to many steel structures like
ships, bridges, buildings, and pipelines to protect them from corrosion.
It protects these structures from corrosion by applying a current to them,
when the currents reach a certain threshold the structures are no longer
protected. Voltages are then measured in the structures. Being able to
predict these voltages is therefore deemed vital in preventing corrosion
and subsequent damages on these structures.

This work focuses on voltage predictions in cathodic protected steel
gas pipelines. The pipelines are held by a transmission system opera-
tor in The Netherlands called Coteq. Coteq has constructed a dataset
containing yearly voltage measurements of the pipelines and a dataset
containing the ground these pipelines lay in.

We applied Chebyshev imputation to account for the missing values
in the voltage dataset, a sliding window technique, and three Machine
Learning models to do the voltage predictions. The applied models are:
k Nearest Neighbors , Multiple Linear Regression, and Learning Vector
Quantization. The models were trained on a one-step scenario and then
applied in a multi-step set-up by reusing the on-step predictions in the
sliding window to do the longterm predictions.

We show that the one-step predictions are accurate for the tested
models (classification rate of 96% for the best performing model), but
improvements can still be made in the longterm situation.
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Chapter 1

Introduction

In 1959 on of the worlds largest natural gas deposit was found in Slochteren,
The Netherlands [1]. It was discovered by the “Nederlandse Aardolie Maatschap-
pij” (NAM) which translates to the Dutch Oil Company. This company was
founded by Shell and Esso in 1947 [2] in order to find natural energy resources
in the Dutch soil. The discovery of the natural gas deposit was kept with a
low profile at first because Dutch law at that time [3] did not give ownership
of a naturally occurring resource to its discoverer, instead, it gave ownership
to the state. After a follow up exploratory drilling near Delfzijl showed the
size of the natural gas deposit, the NAM filed for the drilling rights with the
Dutch Government for the Groningen area [1].

Then in 1962, the Dutch government passed the natural gas bill [4]. It
created a partnership between the Dutch state, Shell, and Esso. The Dutch
state would get a share of 50%, Shell and Esso would both get a share of 25%.
The bill also founded the “Nederlandse Gasuni” (the Dutch union for natural
gas). This union would be responsible for distributing the natural gas from
the Slochteren field across The Netherlands. At that time there were local
gas companies [4] producing and distributing light gas distilled from coal.
These companies would now distribute the Slochteren gas with their existing
distribution network rather than produce their own.

In less than ten years most Dutch households would be connected with
the gas network. The Netherlands would cook and be warmed by the natu-
ral gas from Slochteren for the foreseeable future [4, 5]. The natural gas from
Slochteren brought economic prosperity to The Netherlands in the second
part of the 20th century. However, there was also a downside, so much so
that an economic term is named after it: ‘Dutch disease’ [4]. This term is used
when a nation’s products become expensive due to a strong currency, which
is fueled by a newly discovered natural resource. Because of the strong cur-
rency, export prices to rise, expensive exports causes the nation’s production
to decrease and unemployment rates to rise.

Currently, 80 percent of the natural gas from the Slochteren field is thought
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% | Type Example
30 | Aging Oxidation
21 | Excavation damage
16 | Soil movement
12 | Construction errors
11 | Unknown causes
5 | Point frictions Tree roots
5 | Other causes

Table 1.1: Causes of damages on gas pipelines in The Netherlands [8]

to be extracted, and at the current rate of extraction, it is predicted that the gas
will last for at least another ten years. The population of The Netherlands is
profiting from the gas. However, the ‘Mijnwet” gave 50% ownership of the
natural gas to the state. This meant that half of the revenues went to The
Netherlands as a whole and not to directly to the regionals living near the
gas field. Furthermore, due to the extraction of the gas from the lower lay-
ers of the Earth, the upper layers start to shift with earthquakes as a result.
Because earthquakes are not common in The Netherlands, structures are not
built to withstand their impact. This causes the houses of the residents di-
rectly above and near the gas field to show signs of damages and sometimes
become uninhabitable. [6]

For these reasons the people of Groningen started to oppose the extrac-
tion of the gas from the Slochteren field. Multiple protest groups have been
formed over the years and not without success. As of 2017, the extraction of
the natural gas will be limited over time. There have been made promises by
the Dutch government to reimburse the owners of damaged homes. How-
ever, a robust framework is still to be implemented.

The earthquakes are not the only incentive for The Netherlands to stop
extracting the gas. The Dutch government signed the Paris Agreement in
2015. The Paris Agreement is a climate accord in which 196 nations made
promises to reduce their carbon emissions in order to slow the rising global
temperature. One of the promises The Netherlands made was to reduce the
carbon emissions. The Dutch government has stated that it wants to reduce
the dependency on gas and start using other forms of energy instead. [7]

For these reasons, The Netherlands is moving away from fossil fuels and
transitioning to sustainable energy sources like wind and solar power. The
transition to ‘green’ energy will take time. The energy infrastructure needs to
be able to handle a more significant dependency on electricity and facilities
need to be built to produce the electricity. During this time the current gas
infrastructure will still be in use.

Coteq is one of these TSOs. It is located in and around Almelo city. The
area Coteq is active in is presented in the figure 1.1 below. In 2015 Coteq had
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around 140 thousand gas connections [8]. With this number of connections, it
is one of the smaller TSOs in The Netherlands. Furthermore, Coteq is part of
an umbrella cooperation called Cogas. Cogasis active in multiple TSO related
industries like glass fiber and energy production.

Hardenberg

Tubbergen

[ ]

Oldenzaal

Hof van Twente

Dinkelland

e GAS e CAI, Gas Electricity, CAI Gas

Figure 1.1: The areas of The Netherlands Coteq is active in.

For multiple tech-related solutions, Coteq has employed a 3rd party soft-
ware development company, ValueA. ValueA facilitates Coteq with multiple
software solutions, for example, dashboards to see energy consumptions in
certain neighborhoods, communication software, and hardware consulting.

In recent years Machine Learning, a subfield of Computer Science, has
made some incremental advancements, This provides us with the ability to,
either through simple statistics or more elaborate algorithms, gain knowledge
from any data. At the start of the winter in 2017, Coteq and ValueA had multi-
ple datasets on which they wanted to perform an analysis. The University of
Groningen was contacted to collaborate on a Machine Learning project with
these datasets. This collaboration request resulted eventually in this Master
thesis project.

The project is to predict voltages based on measurements done on gas
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pipelines to be able to prevent corrosion. The reasoning behind this project
is that pipelines in the ground are protected from corrosion by applying a
current to them. This current is measured regarding voltages on multiple
parts of the pipeline. These voltages change over time due to a multitude
of factors. When the voltages rise above a certain threshold, the pipelines
are no longer protected, and specific actions need to be taken. Based on the
measurements dataset it might be possible to make a voltage prediction in
the pipelines for the coming years. Is it possible to find a Machine Learning
model, that is capable of predicting the voltages accurately for the coming
years?

1.1 Related work

As mentioned before TSOs in general, and thus Coteq, invest primarily in
maintaining their pipeline infrastructures. Furthermore, they are searching
for new techniques to make their infrastructure more durable or gain new
insights. One way of doing this is by formulating research projects and pro-
viding datasets for them. Based on the measurement dataset and the project
description we decided to make time series predictions on the voltage mea-
surements extracted from the pipelines.

Recent advances in time series predictions have shown promising results
and are being employed for a great multitude of applications. Especially
Neural Networks have made incremental steps forward in the past few years
[9, 10], but also non-linear models [11]. In order to perform the predictions,
we applied a Machine Learning model, known as Learning Vector Quantiza-
tion. Time series prediction with this type of model has been made in the past,
but the literature on this topic is scarce. There is, however, a paper by Ham-
mer et al. [12], where the authors lay out a method for predictions with the
LVQ model on time series extracted from the Lorenz system, which describes
atmospheric pressures based on a differential equation [13].

Learning Vector Quantization is a form of prototype-based learning which
has been used to make short and long-term predictions on time series. The
authors of [14] used two techniques to predict the conversion rate at the end
of the day from the dollar to the rupee. Another example of this is a paper by
Poulos et al. [15], where prototype-based learning was used to classify sta-
tionary from non-stationary time series. Another example is the work done
by de Lautour et al. , where an autoregressive model with a Learning Vector
Quantization model was used to predict the structural integrity of a bookcase
[16].

Multiple other Machine Learning techniques have been applied to predict
some form of deterioration of pipelines in recent the years. An example of a
statistical approach to this problems is a paper by Pesinis et al. [17] where
a parametric hybrid empirical and nonlinear quantile regression was used
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to predict the metal loss in onshore gas pipelines. Work by Qiu et al. ex-
ploited a nonlinear regression model to predict the condition of the coating
of pipelines [18]. The problem can also be described as predicting the moment
of failure of a pipeline. This method was applied by Meyer and Ruth, where
a logistic regression model was used to predict a corrosion leak[19]. Further-
more, a Neural Network was exploited to classify the condition of offshore
oil pipelines in Qatar by El-Abbasy et al. [20]. Sewer pipelines pose similar
problems to that of gas and oil pipelines. Dulcy et al. [21] estimated sewer
deterioration by applying a Markovian model.
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1.2 Project Pipeline and Thesis Structure

In this section the overall structure of the performed research and thesis will
be described.

Figure 1.2 shows a schematic
representation of the project. It
starts with three different datasets.

The datasets contained the voltage Data sets
recordings done by Coteq on the gas

pipelines. The Pipelines dataset con- Voltages |Pipelines Ground
tained the geographical locations of Areas
the pipelines and their length, size, R H R
and other detailed information on

the pipelines. The Ground Areas Preprocessing | |Intersecting
dataset carried information on the

ground the pipelines were buried in. R f—J
It contained for example informa-

tion on the water level and acidity of Combinin
the soil as well as soil type and sta- 9
bility and its geographical location. |
The Voltage data contained hu- Y
man errors and needed to be trans- Param Sweep Models
formed before it could be given
to the applied Machine Learning i
model. These methods are de- —
scribed in the chapter 3 and gener- Validating Models

alized in the schema as ‘Preprocess-
ing’. The data from the pipelines
and the ground was intersected to Figure 1.2: Project pipeline
determine what pipelines lay in

what ground, some other problems

with this data needed attention and the performed methods on these datasets
to achieve the intersections are described in more detail in section 3.6.

After preprocessing and intersection, the data were combined to form a
single dataset containing all the voltages and ground information of all the
pipelines surveyed by Coteq. With this dataset, a parameter sweep was per-
formed on the Machine Learning models. A total of three different models
were tested, the LVQ model already mentioned in chapter 1, and two other
models that were used as a comparative baseline to evaluate the performance
of the LVQ model. These models are described in detail in chapter 4.

The pipeline ends with validation of the models. This is where the mod-
els are introduced to new information it has not seen during the parameter
sweep. The parameter sweep is to ensure the model was not overfitted on the
presented data during the selection of an optimal model. section 4.4 gives a
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more detailed report on the need for validation.

The next chapter will give some background information on Cathodic Pro-
tection, and the method applied to protect the pipelines. Chapter 3, will give
a detailed account of the dataset and what methods were used to preprocess
the dataset. In chapter 4, Modeling and Validation, the models and validation
methods applied to the dataset will be addressed. Then the implementation,
in chapter 5, will describe choices made on the models and the software writ-
ten for this project. Then we will show our results in chapter 7 and present
a discussion of the work done in chapter 8. Chapter 9 will recap the most
significant findings in this project.



Chapter 2

Cathodic Protection

The dataset was partly obtained from voltage changes in buried steel pipelines.
These pipelines carry currents making them cathode in order to protect them
from corrosion. This method is called Cathodic Protection. In this chapter
the history, fundamentals, and application of Cathodic Protection will be ad-
dressed. We will look at the background of this method section 2.1 followed
by the electrochemical process, section 2.2, and the type of Cathodic Protec-
tion, and coating that is applied to the pipelines by Coteq will be addressed
section 2.3. This chapter is concluded with section 2.5 where the monitoring
method utilized by Coteq to record the voltages are described.

2.1 Background

When steel pipelines are buried in the ground they get exposed to a multitude
of damaging factors. The main causes for damages are shown in table 1.1 in
chapter 1. Other causes can be for example aggressive soil conditions, mi-
croorganisms, and stray currents e.g. from railway tracks. The main way
of protecting the pipelines from these hostile factors is by applying a coat-
ing to it. However, even this coating gets damaged over time. To ensure
the pipelines stay protected, cathodic protection can be employed. Cathodic
protection is, as indicated by recent research a promising method to protect
metal pipelines [22-24].

As early as 1824 Sir Humphrey Davy [25] reported that by connecting cop-
per to one of the lesser galvanic metals, zinc, and iron, it could be protected
against corrosion. About one hundred years later in the 1920’s the method
was applied for the first time on buried pipelines transporting gases and oil.
Since then Cathodic Protection became a widely used method for protecting
pipelines, metal structures, and ships.



CHAPTER 2. CATHODIC PROTECTION 10

2.2 Electrochemical process

Cathodic protection is defined as a reduction or elimination of corrosion by
making the metal a cathode [26]. This can be achieved by attaching a sacrifi-
cial metal (anode) or by impressing a current. By doing so, an electrochemical
process is started. Cathodic polarization can then be used to influence the cor-
roding processes. The processes described here is based on work by M. Kutz
in [26].

With the Wagner Traud mixed potential theory [27, 28] the principle of
Cathodic Protection can be explained. As a simple example of the process,
iron (Fe) is placed in an aerated neutral electrolyte. The corrosion reactions
that occur are as follows:

Fe — Fe? +2¢, 2.1)

0, +2H,0+4e — 40H". (2.2)

Corrosion processes are divided into two or more oxidation and reduction
partial reactions. The oxidation reaction for the example is shown in eq. (2.1)
and the reduction reaction in eq. (2.2). During this reaction, none of the partial
reaction no net accumulation of electric charge should occur. This ensures
that an equilibrium state between the partial reactions can be reached. Here
the total rate of oxidation equals the total rate of reduction. In fig. 2.1 the
relationship between the two partial reactions is shown in an Evens diagram.

In fig. 2.1 the potential of the equilibrium state is indicated as Eo,, and the
current as I.orr. At the equilibrium state, the total rate of oxidation is equal
to the total rate of reduction. Here the oxidation reaction supplies the exact
amount of electrons the reduction reaction needs to occur.

The reversible potential for iron is indicated as E,;r.. Here the iron is
in its equilibrium state, and it does not corrode. The difference between the
corrosion potential and the reversible potential is the driving factor for the
corrosion to occur. When the system is polarized by applying a current from
ILeorr to I/, , with a known current Lapp, the effects of the corrosion current is
decreased. The corrosion processes can be halted entirely when the corrosion
current is brought back to the metal its reversible potential (E.; re)-

An example of this is shown in fig. 2.2. Here iron is shown corroding in
an acidic environment. The current needed to halt the corrosion processes is
shown as iprotection



CHAPTER 2. CATHODIC PROTECTION

A ‘lenusiod

11

E eq,.0»

Current Densitv. A/ cm?

Figure 2.1: Evens diagram for Fe system in a neutral environment. This image was

adapted from [26]

A ‘[enusiod

"""""""""""""""""""""""""" P A Fe

\ 4

io (FE/FBH) i i io (H+ /H2) i icorr i iProtection

Current Densitv. A/ cm?

Figure 2.2: Evens diagram for Fe system in an acidic environment. This image was

adapted from [26]
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2.3 Types of Cathodic Protection

Surface

. Power
Copper wire - +
source
Surface
Steel Current flow Stoel Current flow
ee ee
<€ --- Anode pipe <€ --- Anode
(a) System with a passive anode. (b) System with an active anode.

Figure 2.3: Schematic side view of the two types of cathodic protection. These figures
were adapted from [26]

Cathodic protection can be divided in generally two groups: Sacrificial
anode and impressed current. As discussed in the previous section 2.2, the
corrosion processes can be halted by introducing an outside current to the sys-
tem. This can be achieved in two ways. The first way is to use an anode. The
anode is a piece of metal that is less noble than the to be protected cathode in
the galvanic series. The anode is more electronegative than the pipeline, caus-
ing a current to flow. The corrosion then happens on the anode, and the cath-
ode stays intact. This method generally has low maintenance because there
are no moving or electronic circuits involved. This is schematically shown in
fig. 2.3a.

In fig. 2.4 two examples are given where sacrificial anodes are employed.
In fig. 2.4a it is visible that multiple anodes are needed to cover the entire
structure. The range an anode covers is a limiting factor when using passive
cathodic protection. Another disadvantage of passive cathodic protection is
the pacification of an anode. This is depicted in fig. 2.4b where an anode is
placed on the hull of a ship and is corroding instead of the ships hull. How-
ever when the anode is pacified the anode either needs to be replaced, or the
ships hull will start to corrode.

The second method of cathodic protection is with an impressed current.
This is schematically shown in fig. 2.3b. Here the current is added to the sys-
tem by a rectifier. The external current is used to polarize the steel pipeline ca-
thodically. In theory, the pipeline is protected by current impressed cathodic
protection, and it can be used for bare pipelines or partially coated pipelines.
However, there are multiple drawbacks to be taken into consideration. This
method has more maintenance than the sacrificial anode system because it
has a multitude of electronic circuits, the amount of current impressed needs
to be monitored, and the system is vulnerable to power outages [26]. The
voltage needed in the pipelines at any point needs to be —850 mV to be fully
protected from corrosion [26, 29, 30].
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(a) Cathodic protection with multiple (b) Cathodic protection with a sacrificial
sacrificial anodes on a steel structure. anode on the hull of a ship. Image by
Image by Wikipedia user Chetan and Wikipedia user Zwergelstern and shared
shared under the Attribution-ShareAlike under the Attribution-ShareAlike 3.0 Un-
2.5 Generic license. This image was not ported license. This image was not al-
altered in any way. tered in any way.

Figure 2.4: Examples of cathodic protection with a sacrificial anode.

24 Coating

Cathodic protection is always applied as a secondary method of protection.
The first method is usually a coating applied to the metal structure. When
the coating breaks or fails the cathodic protection ensures the structure stays
free from corrosion. Multiple materials can be used as a coating, tar and as-
phalt enamels, mastics, waxes, polyvinyl chloride, polyethylene tapes, ther-
mosetting epoxy resins, and epoxy coating [30]. Coatings are exposed to the
same dangers as the pipelines themselves. These dangers are shown in ta-
ble 1.1. The pipelines used by Coteq are coated with to different types of
coating. Older pipes were coated with tar and newer pipes with Poly Vinyl
Chloride. The type of coating might influence the voltage measurement and
in section 3.6 we will further address the implementation of this data.

When too much current is applied to the pipelines, the electrochemical
process causes hydrogen to form on the surface of the pipelines. The hydro-
gen then forms bubbles between the coating and the pipeline. Eventually,
this bubble bursts, damaging the coating [29]. Another concern is a process
called Hydrogen Embrittlement, damaging the metal of the pipelines them
selfs [30].

2.5 Monitoring

In order to keep track of the effectiveness of the cathodic protection with an
impressed current, frequent measurements of the potentials, voltages, or cor-


https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/2.5/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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rosion are needed. There are several measuring techniques. Here we will
only describe the method employed in the field by the company Coteqi.e., po-
tential measurements with a reference electrode. The records of this method
resulted in the obtained dataset. Other monitoring methods like CIPS, DCVG,
IR Coupons and corrosion rate measurements are described in [26] for the in-
terested reader.

A potential measurement with a copper-copper sulfate (Cu/CuS04) rev-
erence electrode was carried out on average every year since the 1980s. The
copper-copper sulfate electrode is the most commonly used reference elec-
trode for soil environments and cathodic protection [30].

=T

(a) Cathodic protection rectifier asused in (b) Cathodic protection measure point in
the field to impress current into the sys- Leeds, England. Image by Wikipedia
tem. Image by Wikipedia user Cafe Ner- user Mtaylor848 and shared under the
vosa and shared under the Attribution- Attribution-ShareAlike 3.0 Unported li-
ShareAlike 3.0 Unported license. Thisim- cense. This image was not altered in any
age was not altered in any way. way.

Figure 2.5: Monitoring attributes for cathodic protection

The measurement is carried out by bringing the reference electrode in con-
tact with a surfacing part of the pipeline. In fig. 4.1c a measurement point is
shown where a wire from the pipeline is surfaced explicitly for measurement
purposes. The reference electrode is placed in contact with the ground. In or-
der to ensure good contact, the ground should be dampened. The potential
measurement can now be carried out [29].

When the potential of the pipeline is measured, there is always a measure-
ment error. This error is caused by the resistance R of the ground. Due to the
direction of the current, this leads to a (I x R) loss of potential measured in
the pipelines and thus to an unknown error. The I in I X R is the amount
of impressed current at the rectifier, shown in fig. 4.1a. This loss of potential
can, however, be estimated. According to Klink BV [29] there are multiple
complicated methods for determining this loss, but it is sufficient to turn the
rectifier off and on in a small time interval (seconds). The idea behind turning
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the rectifier on and off is shown in fig. 2.6.

Time

Depolarization

A ‘[enusiod

\ 4

Figure 2.6: This diagram shows the depolarization of pipelines over time in a current
impressed cathodic protected system. The I x R drop is indicated and happens right
after impressing current into the system is stopped.

In fig. 2.6 the depolarization of current impressed metal is schematically
shown. When the rectifier is turned off the ground depolarizes followed by
the metal of the pipeline. When the potential of the pipeline is measured
right after the rectifier is turned off it may be assumed that the true potential
is measured [29]. The Figure shows the full depolarization of the metal in a
4 to 24 hour period. After this period the current is impressed again, and the
metal starts to polarize again.

One of the complications of using the measure points, shown in fig. 4.1c,
is that older concrete measure points offer the ideal habitation spot for ants.
The old concrete measure points are relatively short and have enough room
for ants to create their nests in them. These ants excrete acid and cause ox-
idation of the electronic contacts in the measuring point, ultimately causing
outages of the cathodic protected system. Newer measure points are made of
synthetic material and are raised higher above the ground than the old short
concrete measure points, making them immune [29]. A comment, attached
to the measurements, often described ant nests being present in the measure
points which may have influenced the obtained dataset. This will be further
addressed in section 3.2.



Chapter 3

Data and Processing

“The goal is to turn data into information, and information into insight” -
Carly Fiorina, former executive, president, and chair of Hewlett-Packard Co.
As Carly Fiorina stated, data alone is not enough. A big part of any scientific
project is concerned with turning data into something useful. In order to pre-
dict measurements for the measurement points, meaningful data needs to be
used. We decided to not only use the voltage measurements but data about
the pipelines in the ground as well. This chapter will layout what data was
used and how it was obtained to ultimately form the dataset that was used to
solve the problem.

3.1 Voltage measurements

To shortly recap the previous chapter when employing cathodic protection on
buried pipelines, a small current is impressed in to the ground. This current
polarizes the pipelines and protects them from corrosion, see chapter 2. The
potential in the pipelines can be measured and should be below —850mV/, sec-
tion 2.3, for them to be completely protected. However too much impressed
current causes the potential of the pipelines to be too low and can cause hy-
drogen embrittlement, section 2.4. Not only hydrogen embrittlement but also
Dutch regulations limit the amount of current impressed into the ground.
The potential of the pipelines can be measured. This is done by the method
described in section 2.5. The first measurement was performed at the third
of November 1987, from then on the potential of the pipelines was measured
once every year until the last recorded measurement at the first of Septem-
ber ! 2016. In figure 3.1 two examples of measurements are shown. In the
figures, a line connects the observed data points, but the data seems to fluctu-
ate greatly. The observed fluctuation might be small errors in the measuring
process. However, the true distribution behind the data depends on many

ICoincidently the authors birthday.

16
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factors: stray currents coating, the weather, the soil, etc. The observations
shown have a span of twenty years, but there were only sixteen measure-

ments performed.
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ber 477 measure point number 1225.

Figure 3.1: Two examples of measurements from different measure points. Potentials
were measured versus a Cu/CuSOy electrode. Both of these measurements span a
period of twenty years but have sixteen measurements.

3.2 Missing Data

The voltage measurements are done at designated measuring points. A pipeline
can have multiple of the points. Usually, the measurements are conducted
once per year at every measure point. The measurements started as early as
1987 up-until 2016. This means there should be 39 measurements per mea-
suring point. However, this is not the case as is shown in fig. 3.2. In this
figure, the number of measure points is shown that have a certain number of
measurements i.e., recordings.

Figure 3.2 shows a fast drop in measurement points after the 20 measure-
ments mark. At 26 measurements the drop stagnates, and the maximum
number of measurements is reached at 37 measurements. This means that
none of the measuring points have the maximum number of 39 measure-
ments.

As mentioned in section 2.5 the measurements were taken by surveying
the pipelines and recording the observations. The measurements started in
1987 and in that time measurements were recorded merely with pen and
paper. Later these observations were stored in a database, and the previ-
ous measurement typed over from the paper records and inserted into the
database. This practice introduced human errors into the data. A simple
analysis of the observations shows this. The lowest observed potential in
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Figure 3.2: The number of measurements performed on the measure points, e.g. each
measure point has at least one measurement but not all have measure point have 30
measurements. As the number of measurements increases the number of measure
points containing that number of measurements decreases with a substantial drop at
the 20 measurements mark.

the dataset was —11320000mV. Although possible, the rest of the data had
values between 0 and —1600 mV thus —11320000mV seems excessive. These
observations were therefore completely removed.

On the other side of the spectrum, 129 observations had a recorded value
of 0mV. This is also not an impossible value since the difference in potential
versus an Cu /CuSo2 electrode was measured and the potential of a pipe seg-
ment can very well be the same as that of the electrode. However, twenty of
these measurements had a comment stating “Unreachable’, “Need repair” or
another reason indicating something was either wrong with the measurement
point or with the recording equipment. It is plausible that at these moments
a O0mV was recorded. We decided to remove the measurements with a com-
ment stating something was wrong.

3.3 Chebyshev Polynomials

As discussed in section 3.2, the obtained data from the measure points showed
a high frequency of missing data combined with inconsistent times of mea-
suring and notation errors. In order to extract consistent time series data from
these inconsistent measurements, a form of interpolation was applied to ex-
tract evenly spaced time intervals from the dataset. Melchert et al. used a
similar method on different datasets in [31, 32]. Here the authors apply a first
order Chebyshev polynomial approximation of functional data on example
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datasets. The method presented here is based on this approach. For a more
detailed description of Chebyshev polynomials, we refer to [33].

We assume the discrete time data obtained from the measure points result
from sampling an unknown function f(¢). The time intervals were scaled to
t € [-1...1], and with this, the observations are denoted as

xi,]' = fl(t]) (31)

According to the authors of [31], the function f (¢) can be expressed as a weighted
sum of a set of suitable basis functions g ()

£ =Y cult). (32)
k=0

If k is limited to an appropriate number of coefficients n the approximation of
f is obtained. The authors note that limiting the number of coefficients gives
in general an approximation of f.

filt) = kz (). (33)
=0

As basis functions Chebyshev polynomials were used. The first order Cheby-
shev polynomials are defined as follows:

Tu(x) = cos (n Cos_l(x)> , xe€[-1,1], n=012---. (34)

From this we can derive,

Tu(cos 0) = cos(nf), 0€[0,7], n=0,12---. (3.5)

By using the above equation, the recursive definition can be stated as

To(x) =1; Ti(x) = x; Tu(x) =2xTy—1 — Ty—2(x). (3.6)

In fig. 3.3 the first six polynomials are plotted to show the increasing com-
plexity as n increases.

The coefficients c;, k of the approximation can then be found by minimiz-
ing an error function like the square error: e = 2?:1 (fi(t) — ﬁ(tj))z or the
maximum deviation error: e = max;_1...q4(fi(t;) — ﬁ-(t]-))z. However as men-
tioned in [31, 33] the properties of the limited Chebyshev series can be ex-
ploited to obtain the coefficients more efficiently.
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Figure 3.3: The first 6 first order Chebyshev polynomials. The progression of the
polynomials complexity as # increases from 0 to 5 is clearly visible.
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Here t; are so-called sampling points that represent the roots of the Cheby-
shev polynomial of degree (1 + 1) [31]. The real values for f(#;) will in most
cases be unknown. However, by applying a linear interpolation between two
known points, we can get an approximation of the real sample. According to
the author of [31] this is justified since if the number of samples brings enough
density to the time series the real point will most likely lay close to the approx-
imated point. Furthermore, there are more complicated methods to predict
these samples [31, 34] but for our purposes, linear interpolation reduces the
complexity of the overall model and is therefore deemed sufficient.

3.4 Sliding Window

As mentioned in chapter 1, we implemented a classification model to predict
the voltages from a known history of voltages. In section 3.1 these measure-
ments are discussed and in section 3.3 the recorded measurements were in-
terpolated to form consistent time series. In order to feed these time series
to the classification models, a fixed number of features needs to be extracted.
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One way of obtaining a fixed number of features is to find the coefficients by
for example a Fourier transform or another appropriate method and use the
coefficients as features to classify a time series. However, our objective is to
make predictions based on the recorded measurements. In order to achieve
this, a sliding window was applied to the time series.

A sliding window is a widely used practice to express a time series or
signal in smaller parts with a fixed size. We define a time series by: Y = {Y; :
t € T} where T the set of integers from 1 to the width of Y notated as Y. Here
S is a subset of Y with a fixed width: S“. The size of the window determines
the number of subsets that can be extracted from a series: T¥ — S + 1. The
table below gives an example of a sliding window where S¥ = 3 and Y¥ = 9.

Y [

1 4 5 6 7 8 9 ]
St 1
[

2
2
2
[

— W W W[ W
—_ R e
— U1 Ul Gl —

]
8 1
8 9 ]

]
6
6
6
[

NN N

Table 3.1: Example of a Sliding window with s = 3 and S; the i window of Y.

The window gives a sub-history of the data. From the window, the last
element is taken as a label. The label is needed for training and testing the
classification models. When we feed a model the first window S;, minus its
label, from the example the excepted answer will be 3.

Instead of trying to predict the next value, we can also try to predict the
change from the last known value to the label. This can be done by taking the
gradient AY' /At from the last known value to the next value. The gradient
can then be taken as the label. The next value can then still be determined by
adding the gradient to the Y value at time-step t.

The elements of the sliding window can now be used as the features in a
feature vector X with a label y to train and test the classification models.

3.5 Binning

The labels extracted with the sliding window from the voltage recordings are
continues values. However, in order to classify a feature vector based on its
label, the class needs a discreet index. This can be achieved by a practice
called binning.

Binning is generalizing a range of continues values to a discreet index. We
took the maximum value of the voltage recordings and the minimum values
seen in the recordings. A number of bins were chosen, and the range between
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the maximum value and minimum values was divided by the number of bins.
This resulted in a subrange per bin. When a label fell in a particular bin range,
it was given that bin’s index. The indexed values where then used as labels
during classification.

When the real values are needed after binning in a later prediction step, an
approximation of the real value can be achieved by taking the average value
of a bin’s real value range. When the number of bins is chosen large enough,
this will result in a reasonable approximation of the actual value. However,
some expected error, depending on the bin size, is always included.

3.6 Static Data

The steel pipelines were buried in the ground, the locations of the pipelines
and the measure points were recorded in the obtained dataset as a “geom” ob-
ject. A geom object is a geometrical object containing coordinates of the actual
location of the pipelines. The given dataset also contained a sub-dataset with
areas describing the soil compositions and the soil’s features. In the figure
below the four examples are plotted of the cathodic protected areas.

The data consisted of 24 cathodic protected areas. Each of these areas have
one anode point where some current is pushed into the ground. The current
is then propagated through the ground and led back to the anode through
the steel gas pipes completing the electric system.

The pipes spread from the anode and branch off from each-other, creat-
ing a tree like structure. To prevent cycles in this system some pipes are con-
nected by a plastic sub-pipe. The pipes are divided into segments, usually
where a pipe branches into two pipelines, two new segments form. A pipe
can only be part of one segment but a segment can consist of multiple pipes.
In between the segments measuring points are placed to measure the cur-
rent and difference in voltages in the segment. The voltages recorded from
these measure points are the measurements used in the rest of this project.
The number of segments and measuring points differ per area, the number
of measure points per area and their statistics is presented in appendix A

The static features extracted from the geological location of the pipes. The
ground itself and the features of the pipes were extracted from three different
datasets. The identity numbers of the pipes were known and the identity
numbers of the measure points. With this the pipes were intersected with the
ground areas they lie in as well as some information of the pipes themselves,
like pipe length, construction year, and coating.

The ground types, the pipes lie in, were stored with only a geographical
location. The geographical system used to store the coordinates were differ-
ent from the one the pipes were stored in. After transforming both systems
to the same geographical system, we intersected the pipes with the ground
areas. These ground areas had different features: acidity, water level, sta-
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Figure 3.4: Four examples of cathodic protection areas with a top down view. The
different colors indicate the pipelines that lead current to the same measure point.

bility, and ground type. These features are generalized to a small number
of categories. The full list of the features and their categories are shown in
appendix B.

A pipeline can be in multiple ground areas and can thus have multiple
ground area features. We represented this by taking the length a pipeline that
isin a ground area and saving that length as a feature. For example a pipeline
is in two ground areas, the first area has high acidity and the pipeline runs
for 100 meters in this area. The second area has low acidity and the pipeline
runs for 50 meters through this area. The partial feature vector for the acidity
part will then look as shown in the table below:

# Feature.. Acidpgy Acidy, Feature..
1 100m 50m

Table 3.2: Example of a feature vector with the extracted data.
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This approach is applied for all the pipelines and all the ground areas and
their categories. This resulted in feature vectors with 22 of these static fea-
tures. Features were extracted from the pipes them-selfs too, here the coating
is noteworthy since there were two types of coatings, one of plastic and one
of tar. This feature was registered as the percentage of meters a pipe segment
was coated with a plastic coating. The remainder of the pipeline was thus
coated with tar. We assumed that all pipelines had either one coating or the
other.



Chapter 4

Models and Validation

In this chapter, the applied classification models and their validation will be
discussed. Section 4.1 will discuss the popular Nearest Neighbor method.
Then we will continue with multiple regression in section 4.2. These methods
form the baseline for prediction of the voltages in the pipelines. In section 4.3
Learning Vector Quantization, the focus model of this study, is reviewed.
This chapter concludes with section 4.4 where we lay out the validation of
these models.

4.1 Nearest Neighbors

Nearest Neighbors (NN ) is, since its introduction in 1967 by Cover and Heart
[35], often used as a baseline in classification problems because of its simplic-
ity and high applicability on a broad set of classification problems.

Let D = {Xj,...,x,} be a dataset with n data points of which the labels
are known. According to the Nearest Neighbor rule, we can classify a test
point X by letting ¥’ € D" denote a prototype nearest to ¥ and assigning it the
prototype’s known label. In other words: “If it looks like a duck, swims like a
duck, and quacks like a duck, then it probably is a duck.” Nearest neighbors
will, however, lead in most cases to a suboptimal error rate greater than the
possible minimum, the Bayes rate, but it will never be greater than twice this
rate [36].

Nearest Neighbor performs better when the size of the dataset is large.
This can be expressed in probabilities. Let 8’ be the known label of a prototype
and w; the label of a test point. The label 6’ connected to a prototype can
be seen as a random variable. Then 6’ = wj; is the a posteriori probability
P(w;|X"). When the dataset is large and thus the number of data points is large
then P(w;|X") ~ P(w;|X) is a reasonable assumption because X will generally
be close to x'.

A logical extension of Nearest Neighbors is k Nearest Neighbors (KNN ).
This algorithm classifies a test point x by taking the k nearest data points and

25
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assigning it the label of the majority represented prototype labels (fig. 4.1).
For a majority vote on the label to be reached k is in most cases chosen to be
an odd number to avoid ties [37].

An exciting property of Nearest Neighbors and k Nearest Neighbors is
their variable window sizes. The algorithms evaluate an area around an un-
known test point. If the region of this test point has a high density the chance
there are k data points nearby will be substantial, the classification, therefore,
will be based on this small local area. When the data is more sparse in this re-
gion, the area will automatically increase because points will be further away.

The resulting classification will, therefore, be based on a larger area.

(a) Data point to
be classified in a 2

dimensional input
space.

(b) Classification
with k = 1 (Also
called Nearest
Neighbors ), here
the test point will by
assigned the label
"

. .
0 .
--------

(c) Classification
with k = 3, here the
test point will by as-
signed the label ‘—’
because the majority
of the data points
have this label.

Figure 4.1: KNN with different values for k in a binary classification problem. The
circle is to show which data points are actually closest to the test point. The size of
the search area is defined by the k' furthest point.

A practical issue with k Nearest Neighbors is that the distance between
the test point and the data points is usually calculated with the Euclidean
distance measure. The issue arises when assessing classification problems
with a large number of features.

Take as an example a 20-dimensional space where only two dimensions
are relevant for the classification task at hand. When classifying the test point,
the two relevant features might be close together but there is an equal chance
the other 18 features are far away from each other. This results in a misleading
similarity metric. This issue is also referred to as the ‘curse of dimensionality’
[38].
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4.2  Multiple Regression

‘Multiple regression analysis is one of the most widely used of all statistical
methods.” [39] Here we will describe the basics of this method, because of the
popularity of this method there is a wide range of literature available for a
more detailed view on this and adjacent methods, we refer to [39].

Multiple Regression is a form of linear regression where the variable y de-
pends on multiple independent variables x¢, x1, - - - , x; where d is the number
of independent variables and also the number of dimensions in the dataset.
Here x; is the i observation and y; is a known continues value belonging to
this observation. The different observations (¥1, X2, - - - , X,;) are here notated
as the matrix X with the observations on its rows and the dimensions on its
columns. The linear model is expressed as,

Vi =Po+B1Xi1+ PoXio+ -+ PaXig+ €, 4.1)

which can be expressed as a sum,

d
vi=)_ PBiXix+e, withX;o=1 (4.2)
k=0

When there is one feature, d = 1, the equation in 4.2 is reduced to the
simple linear regression model with one variable:

vi = Bo+ B1Xi1 +€i, (4.3)

Here € are the residuals and are independent normal distributed random vari-
ables with (e) = 0. Since € is expected to be 0, () can be written as,

(y) = Bo+ B1X1+ PoXo+ -+ BuXy (4.4)

The equation in 4.2 is often written in its matrix form. In order to express
eq. (4.2) in matrix form, the following matrices and vectors are defined:

Y1 1 X1 X -0 X4
. Y2 1 Xo1 Xop -0 Xoy
y=1.1|, 45) X=1. . ) ., 46
Yn 1 Xn,l Xn,2 T Xn,d
B1 €1
. B2 . €
p=1|.|, (47 é=|. (4.8)

,Bd €n
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With these definitions, we can write the multiple regression model as follows
(where a resemblance can be noticed with eq. (4.3))

7=XB+E. (4.9)

The expected value (€) = 0 and the variance-covariance matrix for € is de-
fined by,

o> 0 0
0 0’2 Ce 0

aZ@=\. . .| =7"L (4.10)
0 0 o?

Where I is the identity matrix. Because the expected value of € = 0, the
expected value for the i is

() = XB. (4.11)

And the covariance-variance matrix for i is the same as that of €. To estimate
the regression coefficients  the least squares method is applied,

i=1
Q=Y (vi—Bo—P1Xi1 — P2 Xio — - — BaXia)*. (4.12)

The least squares estimators are the values that makeup B and minimize Q
(and consequently €). Let b be the vector of the least squares estimated coef-
ficients:

b= . (4.13)

Then the least squares normal equations of eq. (4.9), with (€) = 0, can be
written as

X'Xb=X"7. (4.14)

Then b can be isolated and expressed as
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h=(X'X)"'x"7. (4.15)

While the inverse of X ' X is here simple denoted as (X' X)~! in reality
this can be a computationally expensive operation [39]. Furthermore, invert-
ibility of X' X is not always guaranteed. Searching for b in this way can
thus be costly and time consuming. b can also be determined by minimiz-
ing eq. (4.12) with for example a gradient descent approach.

4.3 Learning Vector Quantization

Learning Vector Quantization (LVQ) was introduced in 1986 by Kohonen [40]
and it is akin to the Self Organizing Map (SOM) [41]. It is a prototype-based
supervised classification algorithm. Prototype-based tells us the algorithm
employs prototypes. In LVQ, one or more prototypes represent a class in
the dataset, and thus a class label is associated with each prototype. Two or
more prototypes are allowed to have the same label, but each class needs to
be represented by at least one prototype.

Supervised classification is one of the most common forms in machine
learning [42]. It is the practice of giving a sample to a learner and knowing
the associated class beforehand. The learner will give an answer based on
the sample and the current state of its model. Then with this answer and the
beforehand known answer an appropriate action is taken to alter the model.
The goal is to find a model which will label any sample from the dataset with
the correct label.

In order to determine to what class a sample belongs i.e., to classify, LVQ
combines the prototypes with a distance measure. The prototypes of LVQ
are associated with a class and live in the feature space such that a distance
can be determined between the prototype and a sample. This distance can
be interpreted as a similarity i.e., a smaller distance means two points are
more similar whereas a larger distance means two points are less similar. The
distance from the sample is calculated to all the prototypes in the model, and
the sample is assigned the label of the prototype with the smallest distance
between it and the sample.

The classification scheme that is employed by LVQ is closely related to
the intuitive KNN section 4.1 classifier. However, the locations of the proto-
types in LVQ are not known by forehand. Whereas in KNN each data point
in the known data can be seen as a prototype. LVQ needs to be trained, which
is the process of moving the prototypes around in the feature space to find
some optimal location for the prototypes. When LVQ is trained, it does not
need the entire dataset to classify a novel sample, and it only needs its proto-
types. This also means it needs less computational effort than the KNN clas-
sifier. A potential drawback, however, is when new data is introduced, LVQ
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needs to be retrained, a new optimal location needs to be found for its proto-
types, where KNN has no training phase and can be used instantly. Despite
this, LVQ classification does scale better than KNN because the number of
prototypes is generally less. Classification only depends on the prototypes.
Because of this fast nature, LVQ is well suited for situations where there is
limited computing power or speed is an issue e.g. as web-service.

In other popular classifiers like the Support Vector Machine (SVM) [43],
Multi-Layer Perceptron (MLP) [44, 45], and the more complex Deep Learn-
ing architectures (DL) [46, 47] it is hard to explain or justify certain classifi-
cations due to the black box nature of these methods. However, in LVQ it is
intuitively clear and often visually explainable why a prototype represents a
sub-fold of the data and consequentially why a sample is classified as a partic-
ular class. Because of this intuitiveness, the LVQ algorithm has gained some
attraction in the scientific world, [48-50].

Due to these aforementioned features the LVQ model becomes an attrac-
tive classifier for real world applications as well. For example in image anal-
ysis [51-53], the medical field [54-57], the industrial field [58-61], and in the
financial sector [62], to name a few.

In the following sections, we will discuss the different extensions on the
LVQ model.

43.1 Learning Vector Quantization 1 and 2.1

In section 4.3, early versions of LVQ are described. Here the basicidea of LVQ
will be introduced as well as the shared terminology between the different
variations of the algorithm. Let us start by defining a dataset of the size N

D={(X,y)|¥cR%y; € {1,---,C}}V,. (4.16)

Here X is a data point and y is its associated label, with y in the set C
of mutually exclusive classes. The number of features (dimensions) of the
dataset is denoted by 4. With this dataset, we can define the set of prototypes
(W) of size P that live in the same space as the data points.

W = {(@j,c(w)) =y;) € R? x {1,---,C}_;. (4.17)

The prototypes are associated with a class, the function c(@) returns the
classlabel of a prototype. The number of prototypes must be equal to or larger
than the number of classes such that every class is represented by at least one
prototype. In the original paper [40], Kohonen refers to W as the cookbook.

The LVQ algorithm has two distinct phases, a classification phase which
is generally the same for all variations of the algorithm. A novel data point
X is assigned a label by the classifier through finding the nearest prototype.
Finding the nearest prototype is done with an appropriate distance measure.
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When the nearest prototype is found, its label is assigned to the data point.
This practice creates so-called receptive fields in the data that are subsets of
the input space. These fields have the prototypes as their centers if one proto-
type per class is used. The chosen distance measure defines the sizes, shapes,
and boundaries of these fields. A popular distance measure is the Euclidean
distance measure, which is a special case of the general Minkowski distance.
The distance measure is not necessarily a global choice, different classes or
prototypes can have different distance measures depending on what works
well with the dataset.

Before classification can take place, the model needs to be optimized, the
so-called training phase. Generally, in the training phase, the prototypes are
moved around in the input space until they converge on some optimal local
position. The end position of the prototypes depends on their initial state, the
distance measure, the update step, and the data itself. The number of proto-
types is a hyperparameter and must be determined before training. There
have been many variations of LVQ); here we will describe two early versions
by Kohonen. The first version (LVQ 1) and an improved version (LVQ 2.1).
The latter was later improved and extended further by others to finally be-
come the version used in this study. These versions will also be described in
their sections. Below the LVQ1 algorithm is shown.

Algorithm 1: The LVQ 1 algorithm

Data: D, W, «, maxIteration

Result: W
1 initialize each @ appropriately;
2 while Current iteration < maxIteration do
3 Select a training sample X; at random;

4 | Find the nearest prototype wj to X;;
5 | if c(wy) =y, then

6 ‘ w]<—w]+oc(3‘c’i—w1);

7 else

8 ‘ w]<—w]—oc(5c}—w]);

9 end
10 end

Here « is an appropriate learning rate and can be static or annealed over
time [63]. The winning prototype w; is updated towards the data point if
the labels are the same and repelled from the data point if the labels differ.
This process is meant to move the prototypes to the general class regions they
represent.

LVQ2.1isan updated version of LVQ1 and was devised to more efficiently
approximate the Bayesian decision boundaries. It does this by selecting two
winning prototypes w; and wg nearest to a training sample. The two near-
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est prototypes are updated if they have different class labels, and the closest
prototype has the same label as the training sample X:

wy — wy + Dé(f ZU]), (418)

wg). (4.19)

wg +— wg — a(X —
Additionally an active window is defined. This active window has a prede-

fined width through the hyperparameter w. The training sample is required
to fall in this window and is defined by

(d(X,w;) d(X,w)) 1w
min <d(5c’,wj)' i w) > s, withs = Tre (4.20)

The window is introduced to ensure convergence, however especially in un-
balanced datasets, and divergence can still be a problem [63].

43.2 Generalized Learning Vector Quantization

In 1996 Sato and Yamada introduced Generalized Learning Vector Quanti-
zation (GLVQ) [64]. It is based on LVQ 2.1 (subsection 4.3.1), but unlike its
predecessor, it minimizes a cost function to ensure the prototypes continue
approximating the class distributions, [64]. Like LVQ 2.1 GLVQ selects two
‘winning’ prototypes, @y, Wk that are nearest to a labeled sample X¥. Here @,
is the nearest prototype with the same label as X and @ the nearest prototype
with a different label. Sato and Yamada described GLVQ in terms of gradient
descent, the approach here and later extensions on GLVQ will also be de-
scribed in terms of gradient descent. The squared Euclidean distances from
X to w; and W are denoted as d; and dx. With these distances, the authors
define a relative distance y,

o dy—dk
u(x) = 4 T e (4.21)

Here —1 < u(X) < 1, if u(X) is smaller than 0 X is classified correct and
incorrect when it yields a value larger than 0. Thus when all samples are
correctly classified it results in only negative values. With this the authors of
[64] define an energy function that should be minimized:

N
E=) ®(u)). (4.22)

The function, ® (), is monotonically increasing and N represents the total
number of samples. In the GLVQ paper, Sato and Yamada use the squared
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Euclidian distance to derive the learning rules. With the learning rules
and wx are updated to minimize E. The squared Euclidean distance can be
written in vector notation as

di(%, ;) = (X — @) " (¥ — @), withi = ], K, (4.23)

with ¥ the data-point and @; one of the winning prototypes. In this derivation,
the squared Euclidean distance is applied as a global distance, but it is also
possible for the prototypes or classes to have an individual distance measure
associated with them. The prototypes are updated with a gradient descent
method

L JE . .

Aw; = —aa—wi ,withi =], K, (4.24)
with & as an appropriate learning rate. The learning rate can either be fixed
or changed over time. Then from egs. (4.23) and (4.24) the update rules for
the prototypes are derived to be

. 0P dx R,

Awy = — (X — , 4.25
wy +“ay (d] +dK)2 (x w]) ( )
S od dy .

A =—0— (X = . 4.26
wk D‘a‘u (d] +dK)2 (X wK) ( )

In eq. (4.25) and eq. (4.26) we can see prototype wj is updated towards the
data-point and prototype Wk is updated away from the data-point minimiz-
ing the energy function. 0® /0y acts like an active region around the decision
boundaries because the samples around the decision boundaries carry the
most information [63]. The authors state in the original GLVQ paper that ®
should be monotonically increasing and use the logistic function: 1/ (1 + e~ #),
with 0@ /oy = ® (1 — ). Here t denotes the training time. 0P /dyu has a sin-
gle peak at y = 0, this peak becomes narrower as t increases, shown in fig. 4.2.
This increases the relative update step size to the prototypes for samples near
the decision boundaries over t while decreasing them for samples far away
from the decision boundaries.

4.3.3 Relevance Learning in LVQ

In the previous sections, LVQ1, LVQ2.1, and GLVQ were discussed. These
methods all make use of a predefined distance measure, usually the Euclidean
distance or the squared Euclidean distance (as in (GLVQ, subsection 4.3.2).
In these distance measures, the features (dimensions) of the dataset are all
treated the same. However, in many datasets, there are statistical regularities
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Figure 4.2: The monotonically increasing function ® acting as the active region over
the training time t, with ® =1/ (1 + e #!) and 9@ /0y = @ (1 — P)

that can be learned. For example, some features might be correlated or scaled
differently or some dimensions might not be essential for classification at all.
The distance measure can be altered by weighting the features to try and
overcome the aforementioned difficulties. The weights applied to the dimen-
sions can be learned during the LVQ training phase. The first approach to this
method was applied by Bojer et al. [65]. The authors used an adaptive weight
vector combined with the squared Euclidean distance to scale the features:

N (z,@) = Y Al(x —w')2. (4.27)

Here x' and A’ denotes the i" element of that vector. The A is defined by:
A e R", AT > 0, Y Al = 1. The weight vector A is also known as the rele-
vance vector because the weights of the features can be seen as its relevance.
The algorithm is therefore appropriately called Relevance LVQ (RLVQ). Later
GLVQ was extended by relevance learning by Hammer and Villmann [66]. In
this approach it is possible to use a local relevance vector per class or proto-
type, like a different distance measure per class or prototype in GLVQ, subsec-
tion 4.3.2), in the prototype per class variant the squared Euclidean distance
is notated as
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,@j) = Y A —w))?. (4.28)
i=1

-

d*(

L

The index j denotes the index of the prototype. This distance measure al-
lows for local relevance learning. According to Schneider [63] it is an efficient
approach to increase the classification performance of LVQ and it improves
on interpretability (which was already a benefit of LVQ through its proto-
types, section 4.3) of the resulting model, since the relevances can be used to
explain or describe underlying structures in the data. This extension of GLVQ
is known as Relevance GLVQ or RGLVQ in short.

4.3.4 Matrix Learning in LVQ

Extending on the idea from the previous subsection 4.3.3, of using a relevance
vector A to alter the distance measure, matrix LVQ applies a matrix in its dis-
tance measure with adaptive relevances. The general distance which is the
same as the squared Euclidean distance of eq. (4.23) when A is the identity
matrix I, often seen for this practice is the following quadratic form,

dMNX, @) = (X — @) " A(X — D). (4.29)

This distance resembles the well known Mahalanobis [67] distance where
A is replaced by the inverse of the covariance matrix X. The relevance matrix
Aisad x d matrix. The matrix accounts for the relevances of the features, like
the relevance vector, on the diagonal. However, it also keeps the correlations
between features on its off-diagonals. In order for the distance measure to
produce meaningful distances the A has to be symmetric and positive defi-
nite. This can be achieved by using a second matrix () such that

A=0"0. (4.30)

Unlike A, Q) can be a rectangular m X n matrix, aslong as m < n. However
in this thesis () was taken to be a square matrix, i.e., m = n. The distance
substituted with () when combining eq. (4.29) and eq. (4.30) now reads,

X, @) = (X — @) QT QX — D). (4.31)

Q) can be adapted in the training phase of for example LVQ1. For a de-
scription of this method and other implementations of matrix learning in
LVQ, we refer to [63]. Here we will continue by describing the natural exten-
sion to GLVQ with the adaptive relevance matrix A and coinciding distance
measure, called Generalized Matrix LVQ.
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43.5 Generalized Matrix Learning Vector Quantization

Generalized Matrix Learning Vector Quantization (GMLVQ) as proposed by
Schneider et al. [68] uses the matrix A instead of a vector (as in RGLVQ [66])
to map the relevances and the combinations of the relevances between fea-
tures. This matrix is then adapted during the training phase to optimize clas-
sification results. As stated in subsection 4.3.3, in order to gain a meaningful
distance measure, A has to be semi positive-definite and can be obtained by
searching for the matrix Q) such that A = Q' Q. Like RGLVQ, GMLVQ is an
extension on GLVQ which minimizes an energy function. The energy func-
tion of GMLVQ is defined by the authors of [68] as

E—

dj‘—dl‘g
A= . A=y
O(u™(x;)) , with (x)_dj‘—i—dﬁ.

M-

Il
—

(4.32)

Here d;\ and d% denote the squared distance. the distance is influenced
by the relevance matrix A as in eq. (4.29) and here shown to find the distances
for the two winning prototypes w; and wg. This distance is then defined by,

dr = (¥ — @) " A(X — @;), withi = ], K. (4.33)
Where @ is the closest prototype with the same label as ¥ and @ is the closest
prototype with a different label as ¥. Based on the energy function in eq. (4.32)
and this distance measure eq. (4.33) the new update rules for the two winning
prototypes w; and wg are derived to

od

A) = @w%?)) Uit (%) A (X — @), (4.34)
ADg = —aq ‘2)(5(;/‘(3?)) u® (%) A (¥ — @y). (4.35)

In these update rules a; is an independent learning rate for the prototypes.
pit(¥) and pg (¥) can be derived to

G (4.36)
I (dp +dp)?
444
() = —— (4.37)

(dp +dg)*
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From the update rules in eq. (4.34) and eq. (4.35), the update rule for the
matrix ) is derived to
0o

Ay, = — wza(ﬂ"(f))

(uf(f) (Gen = wp )= = @))])) (4.38)

where «a; is an independent learning rate from the learning rate a; used in
the update rules for the prototypes. After each update A needs to be nor-
malized (as with Ain RGLVQ) to prevent the matrix from degenerating, this
can be done by dividing all elements of A by ), Ay, and thus enforcing
Y Amm = 1[69]. This is a generalization for a simple diagonal metric of the
normalization in GRLVQ where },, A, = 1 is enforced. [63]

4.3.6 Localized Generalized Matrix Learning Vector Quantization

The Localized GMLVQ (LGMLVQ) works with a more complex model using
local matrices either attached to each prototype or in a class-wise manner. It
was introduced along with GMLVQ by Schneider et al. in [68]. It is a natural
extension on GMLVQ and reminds of the proposed use of a different distance
measure per class or per prototype in GLVQ in subsection 4.3.2. In LGMLVQ
the localized distance measures are however optimized and acquired during
the training phase, not chosen beforehand. The update rules for the closest
prototypes with the same and different labels are derived from the global
matrix implementation in eq. (4.38) for a local matrix per prototype,

o (4.39)
H () (o — w010) [ (% = )],

o,
AQK,lm—+“2$(V (X))

(4.40)
R (%) (o — wim) [0k (¥ = BK))1 )

Here (); denotes the matrix for the winning prototype and Qg the matrix for

the losing prototype. Each prototype w; has one matrix A; where A; = QiTQi

to preserve positive semi-definitiveness of A. If this scheme is employed with
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a class-wise matrix, the matrices are considered the same for all prototypes
associated with the same class.

In the results section, we only show results from the LGMLVQ method
because there was a sizable difference in error rates between LGMLVQ and
other LVQ variants.

4.4 Model Validation

Model validation is one of the most essential parts of comparing and testing
machine learning models. The methods described in this section are based
on the work by Alpaydin and Ethem in chapter 19 of [70].

When validating models, we are concerned with two questions:

1. How can we ensure the expected error of a machine learning model will
hold up in a real world application?

2. When comparing multiple learning algorithms, how can we determine
if one performs better than the other on a given dataset? Even when
these algorithms are different. In our case, how can we compare LVQ
section 4.3 with KNN section 4.1 and Multiple Regression section 4.2.

By only looking at the training error of a learning algorithm we cannot
compare results because by definition the training errors are always smaller
than the error obtained from unseen samples[70]. This holds for the same
algorithm with different parameters and different algorithms.

¢ Randomization: the order in which different runs are performed should
be at random. This ensures the results to be independent. In a real-
world application, it is not known what the order of given samples will
be. In order to simulate this randomization is enforced.

* Replication: implies that the results of an experiment can be replicated.
This is done by running the same experiment on different configura-
tions of the dataset. By taking the average and variance over the results
of the performed experiments, an accidental good or bad result can be
identified.

¢ Blocking: is applied to regulate variances that might occur during the
resampling of the dataset. If different learning algorithms are trained on
the same dataset but on different samples sets of this dataset, the sets
should be the same for the tested algorithms to exclude a ‘bad’ batch
due to the sampling. This can (unfairly) influence the results of a sin-
gle learning algorithm. In statistics, when two populations are used,
blocking is also known as pairing.
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In order to ensure the criteria as mentioned earlier, we divided the datasets
into three different subsets: train, validation, and test. The train set will be
used to train the learning algorithms, and the validation set will be employed
after training to validate the results. This process can be repeated for the
different algorithms and different parameters for these algorithms. When a
learning algorithm is chosen with the best validation result for this dataset,
it should be tested once more against the test set. The test set is indepen-
dent of the train and validation sets and is utilized only once. This is done to
replicate a real-world situation where new data points are introduced to the
learning algorithm. The test error should then be considered as the final. Af-
ter this error is obtained a learning algorithm should not be altered anymore
to improve the test error [70].

441 K-fold Cross Validation

In K-fold cross validation the dataset X is randomly divided into K — 1 equal
sized parts. Then one partis applied for validation and K — 1 parts are applied
for training. This is called a fold. The process is repeated until all parts are
used once for validating. This is visualized in table 4.1. K-fold cross validation
has two problems. One, the validations set is in most cases smaller than the
training set. Two, the different sets overlap by K — 2 parts.

An extreme variant of K-fold is leave-one-out, where one data point is
applied as validation, and the rest of the data points is applied for training.
This is often employed when there is little data available because it makes
the validation set as small as it can be. When leave-one-out is applied on a
bigger data, set the compute time grows with the size of the dataset because
of the many folds generated [70]. However K-fold cross validation does lend
itself to parallelization because the learner can be trained and validated on
the different folds concurrently.

Table 4.1: K-fold cross validation shown for K = 4, Here the data is divided into four
equal parts and one part is employed for validation in every fold. The T stands for
a train part and the V for a validation part. After the folds are created they can be
used to validate the effectiveness of a model.

\Partl Part, Parts Party

Fold, | V T T T
Foldy | T 1% T T
Foldy | T T 1% T
Foldy | T T T 1%

The dataset consists of multiple measure points in 24 different areas con-
taining two types of data namely static features and a sliding window. When
applying k-fold cross validation the dataset is split into multiple parts. How-
ever, simply splitting the dataset into parts would break the temporal order of
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the data. Because we chose to use one model for all the 24 areas, the data from
the measure points were combined. Then when splitting the data for cross-
validation, it was ensured that the different splits contained the full data from
the measure points, i.e., split one contained data from measure point one and
two, then split two can contain data from measure point three, four and so
on. This also means that the test set contained only measure points the mod-
els have never seen before.

442 Performance Measures

When validating a model, it is important to be able to measure the perfor-
mance of that model. For two-class problems, there are many performance
measures available [70]. However, in this study, we are only considered with
multi-class problems. We will mainly look at the error rates of the model, i.e.,
the number of wrongly classified data points divided by all the data points.

Furthermore, we will look at the confusion matrix of the models. The
confusion matrix of a model is a matrix of the size d x d where d is the number
of features (dimensions) in the dataset. The columns of this matrix represent
the classified labels of the model on a test set. The rows of the matrix represent
the true labels of this test set. When a data point is classified 1 is added to
the matrix on the true label row and the classified label column. Eventually,
the classification rate (1 — error rate) can then be calculated by summing the
diagonal of the matrix and dividing this by the sum of the whole matrix.

The confusion gives insight into the number of classes the model is off to
the real label and this the interclass errors. Because binning is used and the
label represents a range of continues values, the confusion matrix gives us
an approximation of the actual error made by the model. However, when the
number of bins is sufficiently large, the error made because of the binning will
go to zero. Moreover, because we are predicting a real value, a small distance
to the real label is less of an error to make than a considerable distance to
the real label. For example, when the model classifies a data point to have
label three but the actual label is four, the model was wrong, but it was less
wrong than if it would have classified the data point as label one. This is,
of course, due to the ordering of the labels. Furthermore, because the labels
are representations of voltages, we can give an average approximation of the
amount of volts the model is wrong.
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Implementation

This chapter will describe and explain the choices made during the imple-
mentation of the system. We will elaborate on the used toolkits, the con-
figuration of the toolkits, programming languages, the configuration of the
performed experiments, and implementation choices of the models. First, we
will elaborate on what programming languages and toolkits were used. Then
we will continue with some choices made during the implementation of the
LVQ system. This chapter will conclude with a layout of the performed ex-
periments.

5.1 Toolkits and Languages

The project was written in the programming language Python with the SKLEARN
kit [71], SciPy [72], and NumPy [73]. This is a library that gives basic func-
tionality for multiple Machine Learning algorithms and models. For the LVQ
model, specifically, the library by Jensen was utilized [74]. This library has
multiple implementations available for the different versions of the LVQ algo-
rithm. We used the default parameters of this library unless stated otherwise

for this project. The library by Jensen is based on a MatLab (programming
language) implementation by Biehl et al. [75].

The datasets were stored in a Postgresql database, which is an open-source
relational database. To communicate with the database a library called Pan-
das was used [76]. This library allows for simple connection with multiple
types of databases and gives a way of storing the data in the software itself
through its very useful data-frames, which can be best described as data ta-
bles.

The Cross Validation, as mentioned in section 4.4, lends itself naturally
very well for parallelization. We achieved parallelization for this CPU and
time-consuming method with the IPython library [77] which lends some tools
for this task that are not native to the Python programming language.

41
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The code base for this project is stored in a Git repository. Git is a ver-
sion management application and widely used in the software industry. The
repository can be found on the GitHub website through the following link in
the footnote'.

5.2 Monotonic Function in LVQ

In order to optimize a LVQ model, an appropriate function for ® must be
chosen. @ was discussed in subsection 4.3.2 and should be a monotonically
increasing function. Sato and Yamada used the logistic function in the GLVQ
paper [64]. We also applied the logistic function but with a slightly different
partial as presented in the original paper,

B 1

 14e B
0P BePH
o (1+ebr)*

(5.1)

(5.2)

Here f is a constant and was set to 2 and is not dependent on the time unlike
the variable ¢ in the paper by Sato and Yamada.

5.3 Optimization for LVQ

In subsection 4.3.2 it was mentioned that GLVQ, and extensions thereof, are
described in terms of gradient descent. A gradient descent is an optimization
technique that is often seen in Machine Learning. Especially in Neural Net-
works where generally some cost function needs minimizing. The idea be-
hind gradient descent is to find the derivative of the function that needs to be
minimized and follow the slope of that function to a local or global minimum
by adjusting its parameters in that direction. This is done with a predeter-
mined step size schema.

The stochastic gradient descent, an on-line variant, is particularly popu-
lar in Machine Learning as described in [78]. However, these methods have
some drawbacks, namely the necessary parameter tuning, in particular the
step size. The step size is problem dependent and often needs to be searched
for by means of cross-validation. This is expensive in terms of time and com-
puting power. Multiple methods have been proposed in the past to automate
finding the step size, e.g. Shaul et al. [79].

We applied an optimization method called Limited Memory Broyden-
Fletcher-Goldfarb-Shanno (LM-BFGS) [80]. This method uses a line-search
and the Hessian matrix to find a local optimum of a function. Furthermore,

Thttps://github.com/jellevanwezel/Final ThesisProject
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it does not need a predetermined step size, avoiding this problem altogether.
Furthermore this method was already implemented in the applied toolkit.



Chapter 6

Experiments

The experiments are divided into two scenarios. The first scenario consists
of a one-step prediction. Here the sliding window addressed in section 3.4 is
applied to provide the feature vector, and the classifier is tasked with finding
the next bin, section 3.5, the next point is in. This way a prediction is made
based on a one-time step.

The second scenario is the longterm prediction scenario. Here a one-step
prediction is carried out by the classifier and this prediction is then used as
the new value in the window. Consequently, the last value in the window is
removed from it, making the window act as a queue. With the new window,
the next prediction is carried out, and the process is repeated until a sufficient
number of predictions is performed. It should be noted that if there is an
error in any prediction in the second scenario, prediction following this first
prediction might suffer from it. The static features, the features associated
with the pipeline and the soil they lay in, are assumed not to change over
the years, hence the name. These features are therefore reused at every time
step. This method is based on an approach described by Takens [81] and by
Bontempi et al. [82]. We predict ten years since most time series hold about
20 years, 3.1 and we need to keep space for the window.

For cross-validation purposes section 4.4 the data was split into two sets,
80% validation and 20% test. The data was split per measuring point in such
a way that every Cathodic Protected area contributed at least one measuring
point for the test set. The one-step scenario was carried out on the validation
set to optimize the parameters of the models and then tested on the test set.
The longterm scenario was optimized as the one step scenarioi.e., the models
from the one step scenarios were used, and then the longterm method was
applied the test set. The optimization itself was performed with 10 fold cross-
validation.

As mentioned above the models were optimized for the one step sce-
nario. Model optimization is done through cross-validation on the models
with combinations of parameters. This practice results in a model, optimized

44



CHAPTER 6. EXPERIMENTS 45

with the found parameters that are deemed to work best for a certain dataset.
We will now address these parameters for the models and methods that formed
the dataset.

The dataset was dependent on the size of the sliding window, the number
of coefficients used by the Chebyshev interpolation and the type of label. As
mentioned in chapter 3 the label can be chosen to represent the real next value
in the sliding window or the gradient to the real next value. The window size
was taken to be in the range from 1 to 9. The Chebyshev coefficients were
cross-validated separately by looking at the error made by their approxima-
tion for the different number of coefficients. The range taken for this is from
1 to 50 coefficients.

The first coefficient in the Chebyshev method represents a constant height
of the approximated function. If this coefficient is removed, we obtain a func-
tion centered around zero. This can be desirable if we are interested in only
the slopes of the time series. We optimized the models with and without the
first Chebyshev coefficient.

The binning, addressed in 3.5, was chosen to be 20, uniformly distributed
over the data. Since most points are present in the center of the data, the
points falling outside a 1 to 13 range were taken to fall in bin 13, since there
were no to little data points found above bin number 13.

For Learning Vector Quantization only one parameter was optimized dur-
ing cross-validation, namely the number of prototypes per class. We took a
range of 1 to 15 prototypes per class and will look what model performs best.
Standard k Nearest Neighbors is depended on the number of k. We searched
in a range from 1 to 20 neighbors. As with LVQ, one could use different dis-
tance measures for KNN . However, we applied the Euclidean distance. For
Multiple Linear Regression, no additional parameters were searched for.



Chapter 7

Results

In this chapter the results obtained from the models described in chapter 4
and results from the Chebyshev interpolation described in section 3.3 are pre-
sented. We will start by looking at the number of coefficients used for the
Chebyshev interpolation, then the number of prototypes will be briefly dis-
cussed. Finally, we will review the model’s performances in two scenarios.

The scenarios are a one-step scenario and a longterm scenario, as described
in chapter 6. The models were cross-validated and optimized based on their
one step performance. Then the longterm approach was applied based on the
best-deemed models in the one step scenario.

7.1 Chebishev Cross Validation

As described in chapter 3, the Chebyshev interpolation depends on the num-
ber of coefficients to approximate a function. When the number of coefficients
is infinite, the original function can be expressed with this method. How-
ever, an infinite number of coefficients makes our overall model too complex.
Therefore an appropriate number of coefficients is sought by means of leave-
one-out cross-validation. Where one data-point was removed from a time
series then to be approximated by the Chebyshev fit, repeated for all data
points.

We chose to run this experiment from 1 to 50 coefficients. The number of
coefficients can, however, be taken much higher, taking a higher number of
coefficients, however, consumes more time and CPU power since this method
is applied with a recursive algorithm (section 3.3). It also introduces overfit-
ting of the underlying the function, causing the error after 50 coefficients not
to go down.

We chose to run this experiment from 1 to 50 coefficients. The number of
coefficients can, however, be taken much higher, taking a higher number of
coefficients, however, consumes more time and CPU power since this method
is applied with a recursive algorithm (section 3.3). It also introduces overfit-
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Figure 7.1: The leave one out cross-validation error versus the number of coefficients
for the Chebyshev imputation method. The error is the average over 10 runs.

ting of the underlying the function, causing the error after 50 coefficients not
to go down.

7.2 Parameter Sweep

On the obtained time series a parameter sweep was conducted for the four
applied models. It differed per model what parameters worked well. A table
with all the results can be found online in the projects GitHub repository '.
Here we will show the best results from the parameter sweep and their error
rates.

Model ‘ Window Size Coefficients First Coefficient Label ‘ Error rate

LGMLVQ 8 10 Yes Real | 0.04
KNN 3 10 Yes Real | 0.12
MLR 9 9 Yes Real | 0.03

Table 7.1: Resulting parameters and error rates on the validation set from the applied
10 fold cross validation.

The k for k Nearest Neighbors for the results in table 7.1 had a value of
2. Furthermore, both KNN and MLR performed better without the so-called
static features. It should also be noted that an error on validation of 0.12 by
the KNN model stands out since only a window size of 3 was utilized. Addi-
tionally, it stands out that all models performed best with the first Chebyshev
coefficient and the real binned data point instead of the gradient.

As mentioned in chapter 6, the number of prototypes per class for LVQ
was optimized. The parameter sweep was performed on a one prototype per

Thttps://github.com/jellevanwezel/Final ThesisProject
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class model, and then the found parameters were used to find an appropriate
number of prototypes. This will be addressed separately in the next section.

7.3 Number of Prototypes for LVQ

With the parameters mentioned in the previous section, the LVQ model was
further optimized by finding an appropriate number of prototypes per class.
The number of prototypes is ranged between 1 and 15. Fifteen was chosen as
the upper boundary because a large number of prototypes per class makes
the model more complex.

There are two dips observable in fig. 7.2, One at one prototype and one
around eight prototypes. We chose to use these two values because the aver-
age error of the two models was low. Furthermore, applying one prototype
will result in a simple LVQ model where only one prototype represents ev-
ery class. However, the standard deviation for the one prototype variant is
relatively high. The eight prototype has a higher average error but a smaller
standard deviation, however. Additionally, the data, in general, might be
better approximated by multiple prototypes per class.

0.1+

123 45 6 78 9101112131415
Prototypes per class

Figure 7.2: The error rates for LGMLVQ with the number of prototypes per class.
This is the average error over the 10-fold cross-validation runs, with the standard
deviation in the error bars.

Looking at the relevances in fig. 7.3, There is a clear distinction visible be-
tween the static features and the features extracted from the sliding window.
The barrier between these two feature types is marked by the transition from
blue to yellow (at the 10th feature mark). Furthermore, the most relevant fea-
tures are the features in the sliding window representing the closest year to
the actual label. After this first year a drop-off is visible in relevances. What
stands out is that the last year is a dark blue column and thus not deemed rel-
evant. Still this model performed better than a model using a 8 year window
during the cross-validation. The relevances for the sliding window is most
pronounced in the center of the data. The relevances in the outer regions are



CHAPTER 7. RESULTS 49

13
12
11
10
9
3 8
27
= 6
© 5
4
3
2
1
5 10 15 20 25 30
Features

Figure 7.3: The relevances for the LVQ model with 1 prototype. The colors are scaled
from 0 (dark blue) to 0.3 (yellow). However, yellow means 0.3 and up to 1.

less pronounced, this is most likely caused by the lack of data points in these
regions.

Further analyzing the prototypes is done by examining the eigenvectors
and eigenvalues of the matrix A applied in the distance measure. Presented in
fig. 7.4 is the difference of the two largest eigenvalues of a prototype’s matrix.
For the one prototype per class, it is observable that the difference for the
classes in the ‘center” of the data is larger than on the edges. This can be
explained by the smaller amount of data points in these regions causing the
prototypes for these classes to be undertrained.

In the eight prototypes per class figure, the two prototypes with matrices
containing the most significant difference in eigenvalues are shown. It stands
out that one prototype is sufficient, at least for the classes in the center of
the data to be described by one prototype. This also explains the low error
rate for the one prototype variant. However, the remaining seven prototype
might be helpful in describing the decision boundaries more carefully finding
a balance between under and overfitting.
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Figure 7.4: The eigenvalues of the relevance matrix A = QT Q) for a one prototype
per class run and an eight prototypes per class run. The eigenvalues of the two most
prominent eigenvectors per w and corresponding A were taken to show the differ-
ence between them per class and prototypes.

7.4 Validation

The cross-validation in section 7.3 resulted in 2 LVQ models, one with 1 pro-
totype per class and one uses 8 prototypes per class. Here the confusion ma-
trices are presented to be able to compare the four models better.

From fig. 7.5 it can be observed that MLR performs best since most clas-
sifications happen on the diagonal of the confusion matrix. KNN shows the
worst performance of the four models and both LVQ models perform about
the same. The LVQ model with 8 prototypes does, however, make some mis-
takes where it misclassifies points as class 9. The 1 prototype variant makes
similar mistakes for class 5.

It should be noted that if the classifier is off by one bin, it is still close to the
actual value. A misclassification by missing the bin by one is less of an error
than missing it by, for example, five bins. All models perform well in that
sense since they all are almost one bin of when misclassifying a data point.
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Figure 7.5: The confusion matrices for the different models during the cross valida-
tion. These are the means over the 10 folds in the validation set.
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7.5 Test

In this section, the results of the test set are presented. The error rates for all
four models were higher than the errors in the validation stage, but this is to
be expected [70]. The same patterns seen in the validation stage are observed,
MLR performs best almost never leaving the diagonal and KNN performs
worst but stays close to the diagonal meaning the predictions are not far off.
However, in the longterm scenario, this might eventually become a problem
since the next prediction is based on the previous one.

LGMLVQ1 | LGMLVQ 8 | KNN | MLR
008 | 008 [ 012 | 0.03

Table 7.2: Error rates for the four models on the test set.
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Figure 7.6: The confusion matrices for the different models on the test dataset, this
dataset contained approximately 20% of the data, with 83 measure points.

7.6 Longterm results

In this section, the results for the longterm scenario are presented. As de-
scribed in chapter 6, the test set contains multiple time series for which the
labels are known. The predictions are started by taking the first window of
the time series and predicting the next 10 points based on that. The first pre-
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diction is the same as that in the one step scenario. The errors seem to all
get higher after the first prediction and then stabilize except for the MLR that
seems to keep increasing.

KNN and LVQ with 8 prototypes seem to perform best in this scenario
resulting in the smallest bin difference. The 8 prototype LVQ seems to have
a small edge on the KNN model since its average bin difference is overall
slightly lower.
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Figure 7.7: The longterm results for the four different models. In the above figures
the means and standard deviation per time step over the test set are shown. The error
indicates the number of bins the classifier was wrong i.e., the distance to the real bin.
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Discussion

In this chapter, we will discuss our data, method and results. Steel pipelines
are protected from corrosion by a method called Cathodic Protection. This
method applies a current to the pipelines making them cathode. The pipelines
should carry a voltage of -850 mV for them to be fully protected from corro-
sion. Coteq, alocal Transmission Systems Operator (TSO) in The Netherlands
obtained a dataset containing measurements of these voltages. With this in-
formation and secondary data from other sources, it should be possible to
optimize a Machine Learning model in order to predict the voltages in the
pipelines for the coming years. Predictions of the voltages can then help pre-
vent problems stemming from the subsequent corrosion.

Our research partially answered the posed question in the sense that the
applied Learning Vector Quantization model was capable of making accurate
predictions in the one-step scenario, but a significant error was introduced
after this first time-step in the multi-step scenario. Learning Vector Quanti-
zation was however not the only model suffering from this problem since all
tested methods showed a significant drop off in performance in the longterm
scenario.

We applied a Learning Vector Quantization model to see if this model
would be capable of making the predictions as mentioned earlier. The main
reason for choosing this model was because a similar approach on a different
dataset by Hammer et al. [12] showed promise. Furthermore, other research
on this approach is scarce and therefore interesting to investigate.

It was surprising to see how well the KNN model performed in the one-
step scenario, compared to the more complex LVQ model. Especially because
KNN operated on a relatively small window and without the use of the static
feature data. This suggests two things. Namely, the problem posed in the
one-step scenario is not a hard problem since it can be solved, to a certain
degree, with a relatively simple model, and the static features did not con-
tribute much to the predictions. The excellent performance of the MLR in the
one-step scenario contributes to this thought.
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The performance of KNN in the one-step scenario was based on the two
nearest neighbors, resulting in a local classification. The LVQ models were
tested with a 1 prototype per class model and an 8 prototype per class model.
The 1 prototype and 8 prototypes performed about the same in the one-step
scenario. However, in the longterm prediction scenario, the 8 prototype LVQ
model and the KNN model both performed slightly better than the 1 proto-
type LVQ model. This suggests the solution to the overall problem posed in
the longterm scenario, benefits from a more local based classification.

The 8 prototype per class LVQ model slightly outperformed the KNN
model in the longterm scenario. The 1 prototype per class LVQ model tries to
classify a novel data point on this one prototype resulting in a rather global
classification, the reason it still performed only slightly worse than the KNN
and the 8 prototype LVQ might be because of the local distance measure it
optimizes, resulting in semi-local classification with only the one prototype.
The 8 prototype LVQ benefits as well from this same feature, where it opti-
mizes a distance measure for each of its prototypes, only classification is more
local because it employs multiple prototypes resulting in a kind of hybrid be-
tween KNN and the 1 prototype LVQ, resulting in the best performance of
the tested models in the longterm scenario.

Multiple Linear Regression performed well in the one step scenario but
fell off in the multi-step scenario. This is likely due to the method with which
the regression is performed. The regression fits a hyperplane on the data and
does not have any curvatures but does have an angle. This angle is then rein-
serted in the window for the next classification which yields a worse result
because of it.

In order to be able to compare MLR to LVQ and KNN, the result of MLR
needed to be binned, because MLR itself yields a continues value while LVQ
and KNN yield discreet values. This caused the result of every MLR time
step to be generalized to a specific bin, then the middle value of the bin was
inserted back into the window, introducing an error in the prediction. How-
ever, this mid value was also inserted into the window of the other tested
methods, but their performance was impacted less. Still, it would be interest-
ing to see what MLR is capable of when the real values were used and binned
only after all classification steps are performed.

The longterm results for MLR, however, seem to show a wave-like pattern,
this pattern can be seen in all the figures in the longterm scenario results. The
pattern can be explained by the waves in the data itself and the classifiers not
following this wave precisely causing them to be closer at one time-step and
further away at another.

The dataset of the voltage measurement consisted of incomplete and in-
consistent time series. To amend this problem, we applied Chebyshev in-
terpolation to gain consistent evenly spaced data points. In order to vali-
date the method itself cross-validation was used to determine the number
of Chebyshev coefficients. Even though the fit this method provided was
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deemed sufficient for this work, other methods might have yielded better re-
sults, e.g. Fourier based or simple linear interpolation. Furthermore, the mea-
sure points in the dataset had about 20 measurements each, with one mea-
surement per year. This means contained contained a history of 20 years. To
be able to do long-term predictions based on only 20 years becomes difficult
at some point because there is not enough history to test and train on.



Chapter 9

Conclusions

The ability to predict voltage in Cathodic Protected steel pipelines can help
prevent corrosion of these pipelines. In this study, we showed that predicting
these voltages is possible in a short-term scenario. All four of the tested mod-
els performed well, where the worst model (KNN) had a classification rate of
88% in this scenario and the best model had a classification rate of 97% (MLR).
The LVQ model performed slightly worse than the MLR with a classification
rate of 96%.

Non of the models was able to transfer these good classification results
from the one-step scenario to the longterm scenario. However, in this sce-
nario, the LVQ model using 8 prototypes per class performed best. This model
had a worst case error of three bins as shown in section 7.6, the model can,
however, still be used by Coteq and ValueA to predict the voltages in the
pipelines, given it has the mentioned error margin.

Future work on this study might include different types of interpolation
and different models. As addressed in the introduction 1.1, LSTM-Neural-
Networks have made some significant developments in recent years and might
fit well on the problem posed here. However, these networks, as well as other
deep learning methods, tend to become overly complex. Another way of pre-
dicting the voltages can also come through an auto-correlation approach or a
nonlinear regression.

As mentioned in chapter 8 the dataset contained a relatively short period
of time the measurement were performed in. It would be interesting to be able
to do the predictions, with the in this thesis applied approach, on a dataset
stretching over a longer period of time. This would allow more data to be
extracted from the dataset and for new patterns to be learned by the used
models, which in turn might lead to better long-term results.
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Appendix A

Cathodic Protection Areas

# Name P uM) o(M)
1 Deurningen 25 1824 6.27
2 Denekamp 2 2 16 5
3 Almelo Castello 17 15.06 8.23
4  Almelo Tusveld 90 14.24 8.66
5 Almelo Windmolenbroek | 6 21.17 1.86
6 Wierden 53 1596 7.97
7 Vriezenveen 18 17.56 8.65
8 Almelo Ten Cate 38 20.53 1255
9 Enter 11 1591 84
10 Tubbergen 44 2155 6.22
11 Rossum 25 23 5.78
12 Markelo 20 1935 5.09
13  De Krim 13 2492 1.33
14 Oldenzaal 46 9.59 6.92
15 Hardenberg 33 1948 64
16 Almelo De Pook 52 1517 6.7
17 Vroomshoop 41 2283 4.66
18 Denekamp 2 2 13 8
19 Goor 6 2083 1.67
20 Almelo Windmolenbroek | 8 17.63 3.04
21 Denekamp 24 13.63 6.35
22 Hengelvelde 22 1818 9.02
23 Delden 15 19.2 5.41
24 Slagharen 6 23 2.83

Table A.1: Here P denotes the number of measure points and M the number of mea-
surements recorded for P.
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Appendix B

Static Features

Acid Ground Water Stability
High Deepest Stable
Water Deep Reasonably Stable
Low Water Unstable
High Water
Highest
Ground Type Pipe
Sand Coating
Sand and Loam | Length
Sand and Clay | Construction Year

Sand and Peat
Peat

Loam

Water

Table B.1: Features for the static ground dataset
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