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ABSTRACT

After years of advancements in Cloud Computing, including a signifi-
cant increase in the number of Cloud service providers within a short
period of time, application developers and enterprises have been left
with a wide range of choice to fill their need for cloud services. There-
fore, with this wide range of choices, one may find themselves mak-
ing a choice of using a service that is cheaper on paper but ends up
costing them more in the long run.

In this project, a system is designed and implemented to cover one of
the major concerns to application owners, which is the utilisation of
the resources one is paying for. Resource utilisation can be one of the
biggest costs to the owner of an application given that it can cost them
one of two ways; by the loss of users if the application crashes due to
lack of enough resources. And secondly, if the user has to over pay
for resources that aren’t being used by the application. The system
developed uses the MAPE-K automation strategy proposed by IBM.
It monitors the user’s application and then analyses the application’s
usage statistics through the provisioning API and thereafter predicts
what it’s usage is going to be in the next time window. From that pre-
diction, it makes an adaptation plan if necessary by selecting a more
suitable topology to handle the predicted load and finally redeploys
the application with the more adequate topology. The final system’s
functionalities are first tested by means of a simple voting application
and then evaluated using a larger web shop application. Both of these
applications use the microservices architecture style and the results
of the testing and evaluation are presented.
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INTRODUCTION

After years of advancement in Cloud Computing, including a signifi-
cant increase in the number of Cloud service providers within a short
period of time, application developers and enterprises have been left
with a wide range of choice to fill their need for cloud services. There-
fore, with this wide range of choices, one may find themselves mak-
ing a choice of using a service that is cheaper on paper but ends up
costing them more in the long run.

Optimisation is the minimisation of allocated resources conditional
to keeping the quality of a service at an acceptable level [33]. If the
use of the resources one is paying cheaply for isn’t optimised, it will
end up costing them in the long run mainly in one of two ways, that
is either by affecting the performance of their web application or over
provisioning certain services in the application that may not require
or ever make use of the resources. In the end, this unsustainable mis-
use of resources could cost the company or the owner of the applica-
tion dearly.

1.1 PROBLEM STATEMENT

One argument for the use of Cloud Computing(CC) from an enter-
prise perspective is it makes it easier for enterprises to scale their
services, which are increasingly reliant on accurate information ac-
cording to client demand [7]. Given this aspect, we can then go fur-
ther and conclude that the optimal scaling of their services would be
important to them because they would want to get the best utilisa-
tion of these services in order to get the most value from their money
especially, for example; A start up with a limited budget that would
go with the cloud computing option as the cheaper and more flexible
option. In order to achieve the optimal utilisation of resources pro-
vided by CC services, the enterprise has to have a way to monitor
and analyse how their services use the allocated resources and then
make changes if necessary.

In the work by Andrikopoulos [4], a CBA Lifecycle is proposed,
which can be viewed as a set of MAPE-K loops [23] shifting between
the defined architectural models (alpha-topologies). These shifts are
caused by controllers that provide coordination across the different
stages of the lifecycle. The lifecycle defined opens up an opportunity
to develop a system with respect to of the proposed application lifecy-
cle. Such a system can first seek out an optimal set of topologies that
best suit certain usage scenarios and then switch among the topolo-



1.2 PROJECT DETAILS

gies created during these periods in order to optimise the cost of the
application on the cloud.

1.2 PROJECT DETAILS

Projects like [15, 16, 22] to mention but a few have been taken on to
work on the optimisation of system resources with different architec-
tural structures and using different approaches to implement their au-
tomation systems. However, many of these mentioned projects tackle
one or two areas. The system developed in this project tries to build
upon some of these solutions developed in order to fulfil the func-
tionality of the system to be developed.

In this project, I design and develop a system, which uses MAPE-K
loops introduced and explained in Chapter 2 to perform the optimi-
sation of a cloud-based application with a microservice style archi-
tecture [27] that it is managing. This strategy ensures the coverage of
some of the less talked about areas like the implementation of a plan
component that can be an important decision in the redeployment of
an application. This project will also cover the aspect of the cost of the
redeployment of an application in its new topology both monetary
and in terms of application performance and hence try and improve
decision making in the automation/ optimisation of the application
being managed.

The system developed in this project is meant to realise the pro-
posal previously mentioned [4] through the implementation of the
back end functionalities by the use of the aforementioned MAPE-K
loops. MAPE-K stands for Monitor, Analyse, Plan and Execute by us-
ing Knowledge about the system’s configuration and/ or including
other information like the historical data. For the implementation of
this system, these steps in the loop are developed as separate compo-
nents, which interact with one another in order to complete the loop.
This system’s loop is run on top of a containerised application and
uses the available APIs from the containerisation technology to mon-
itor and record statistics of each of the services deployed in the par-
ticular containers. These statistics are the starting point at which the
cloud application can be monitored and then optimised by switching
between the available topologies provided by the owner of the appli-
cation (System user) to provision for the services in need or to remove
unnecessary resources. A switch occurs if the application topology
doesn’t meet the service level objectives specified by the owner of the
application and it is either under using or over using the resources
provided to it hence costing the application owner either financially
or in terms having their application have poor performance.
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1.3 DOCUMENT ANALYSIS.

In this report, the following chapter Chapter 2 starts off by providing
some background knowledge required for the reader to be able to
follow the project by introducing some of the fundamental concepts
that make up the project and therefore, providing some insight into
the research topic. After this, some of the related work in the field
is presented in the following sub chapter and therefore concluding
Chapter 2.

In Chapter 3, the important design documentation of the system is

presented, starting with the system requirements extracted from the
functionalities expected from the system. These requirements start
with those extracted for the system as a whole and then go ahead
and cover the individual components of the system.
After this, some of the use cases are presented and finally, the chapter
is concluded by presenting the system’s architecture by way of the
full view of the system and an activity diagram showing how some
of the components typically interact.

Chapter 4, provides the implementation details of the system by
first looking at some of the technologies incorporated into the system
to help it accomplish the different tasks involved in the MAPE-K pro-
cess. Finally, the chapter proceeds to provide the details of each of the
MAPE-K components by showing their relation to one another and
provides descriptions of the interactions and functionalities of these
components.

In Chapter 5 we look at the testing phase of the system, and to
do so, the application to be deployed in order to test this system
on is introduced with reasons behind the choice to use it to test the
system. Then, the different tests cases involved in order to confirm
the functionality of the components of the system are presented with
their results and the particular tests run.

Chapter 6 presents the Evaluation stage of the system this will first
take us back to the requirements realised for the system from which
what was fulfilled and what wasn’t will be presented and finally, a
case study (e-commerce web application) for testing the system on a
usable application, which could be a possible source of income for a
company or individual shall be presented to close the chapter off.

Finally, in Chapter 7, I start off by taking a look back at where I
started, review what could have been done differently and present
what was unable to be accomplished for this project and why. This
chapter is then closed off with a proposal of some of the future work
that can be done in terms of both the system as is and in the field of
Autonomous Application Topology Redistribution.

3



BACKGROUND AND RELATED WORK

In this chapter, a review of the literature relevant to the development
process of this application and other relevant terms to help with fur-
ther understanding of this project are to be presented. Furthermore,
we take a look at some of the related work in the field and close of
the chapter on that note.

2.1 BACKGROUND

This section covers some background knowledge into the work done
in the research areas related to this work, including terms constantly
used throughout this report, which help to drive this project.

2.1.1  Topologies

An application topology, as defined in [5] is a labelled graph with a
set of nodes, edges, labels and, source and target functions. In terms
of the application to be developed, one could look at it as the dif-
ferent options for the deployment of one’s application based on its
architecture and the resources one requires to deploy the application
on. [5] introduces and explains in full detail the concept an applica-
tion’s topology.

A Topology can viewed as a p-Topology, split into a-Topology, and
v-Topology, concepts explained in [5]. The focus of this section will
be on making clear what the o-Topology, y-Topology and the Viable
topologies are as these very relevant concepts for this system’s devel-
opment.

2.1.1.1  a-Topology and y-Topology

As can be seen from an example in [5], a type graph for a viable ap-
plication topology can be referred to as a p-Topology and therefore,
the o-Topology is the application specific subgraph of the p-Topology,
which refers to the general application architectural setup and there-
fore making the y-Topology the reusable non-application specific sub-
graph.

The target functionality of the system being developed is to au-
tomatically switch between viable topologies provided by the user.
Therefore, with the knowledge of the a-Topology and the y-Topology,
it is possible to come up with various topologies for the application
managed by the system. And finally, the knowledge of the a-Topology
and y-Topology is also vital in order to understand what the de-
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veloped system should be able to expect and use in terms of input
(topologies) from the user, and therefore know what kind of results
the system should be to come up with to complete that topology se-
lection and switching functionality.

2.1.1.2  Viable Topologies

Knowing about the o-Topology and y-Topology, it becomes clearer
as to what the term viable topologies refers to. In the context of this
project, they are the different suitable topology options that are avail-
able to the automation system being developed in order for it to
be able to select the best and cheapest topology option, which fol-
lows the set Service Level agreements and therefore is the best option
for the particular application usage scenario. The concept of viable
topologies is important for the development process of this automa-
tion project because the application that the system will be run on
should have a number of viable topologies defined, which will be the
topologies the system switches between to optimise the resource us-
age of the application. The creation of the viable topologies for the
distribution of an application is out of the scope of this project how-
ever, there are a number of works available to help with the process.
[8] for example provides a solution to help developers ensure porta-
bility of their applications and [16] presents a solution, which enables
the automatic derivation of provisioning plans from the needs of the
user among other papers in the field.

2.1.2 Auto-scaling (Autonomous Computing)

Different researchers have delved into a number of projects using
different strategies to try and solve a variety of problems in the field
of automation and autoscaling of application resources in particular.
These different projects range from: The monitoring of different metrics
of the applications in question, for example, looking into whether it’s
more advisable to monitor the lower level metrics like the memory,
CPU usage or even the network statistics or the higher level metrics
like the response times of the system being optimised. To the type
of analysis strategies used to determine whether to scale up or down for
example the use of a predictive methods (see [26]), reactive or rule
based approaches (see [1]) or hybrid methods using both reactive
and predictive approaches. These different projects and automation
strategies are discussed in a survey [32], which helped provide an
insight into the different options available to help with the completion
of the particular components of the developed system. The strategies
selected for this project will be looked at in a later chapter.
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2.1.3 Control Loops (MAPE-K)

Throughout the various papers discussed in the survey [32] in the
previous section, it is noticeable that the MAPE control loop strategy
is currently a commonly used automation strategy, which involves
the use four main procedures that make up this strategy. These are
Monitor, Analyse, Plan and Execute. The MAPE automation strategy
[23] used for this project is complimented with a Knowledge base,
which all the MAPE components interact with, in order for the system
to make informed optimisation decisions. These MAPE control loops
and partly the knowledge base are the core driver of the system being
developed as they are what makes up the functionality of the system,
as will seen in a later chapter.

2.1.4 Microservices Architecture

Microservices as discussed by Martin Fowler. [27] describes an ar-
chitecture style of building systems into a suite of smaller services
each running on their own. These may be written in different pro-
gramming languages and use different data storages. The microser-
vice architecture is the architecture style focus for the applications
this project’s system is developed for and will be able to perform
its optimisation services on. The isolated services in this architecture
style make it possible for the developed system to be able to individ-
ually run its loops on each service and therefore in the end perform
the full assessment of the whole system, therefore performing opti-
misation more efficiently and its because of this characteristic that
the microservice style architecture was selected for this project. Addi-
tionally, the microservice style architecture is also well supported by
most of the containerisation engines. This is an advantage in the case
of this project since the popularity of containers among cloud devel-
opers recently has increased and therefore we were able to easily find
a number of test applications that have the microservice architecture
style and were deployed in a containerisation technology most signif-
icantly, the one selected for this project (Docker), which is introduced
and shown later in a following chapter.

2.1.5 Fuzzy logic

Fuzzy logic is a concept that has been used to help machines loosely
translate human terms like high and low into concrete values that
they can use to assess a certain situation. The paper [39] points out
that the fuzzy logic concept stems from the Computing with Words
methodology, which all started from [38]. Fuzzy logic helps in sim-
plifying the decision process of complex systems and therefore, it
presented as a compelling option for the implementation of part of

6
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the analysis phase of the MAPE loop, where it would help decide
whether the application being managed by the autonomous system
to be developed required a switch in topology or not. The decision to
use fuzzy logic was further enforced by [15], where they used fuzzy
logic to help optimise the scaling mechanism of a cloud service.

2.2 RELATED WORK

As mentioned previously, a number of projects have been undertaken
in order to tackle various problems in the field of self-adaptive sys-
tems. A lot of the projects in the field of automation have more specif-
ically covered particular domains similar to robotics and smart house
systems. Even though these also have helped provide me some un-
derstanding from the work done there, my focus is in the cloud com-
puting domain where there are a number of techniques that have
been employed to perform the task of automation among the vari-
ous projects that have been undertaken. Many of these works look to
tackle, solve or answer particular questions in the field of cloud com-
puting. These different solutions for the particular problems proved
to be an important resource because by looking through and com-
bining these works, I was able to tailor a solution for the various
components in the MAPE-K loop.

Some projects looked into the different ways to most effectively esti-
mate the required resources to be made available. For example, [1, 2,
10] all implement Rule-based approaches, which is an approach of re-
source estimation where; if, and else rules are used in order to trigger
a particular resource provisioning function. Additionally, work done
in [14, 17, 37] provides predictive solutions to the resource estimation
problem done in the analysis component of the system to be devel-
oped. They perform the predictions by monitoring and using either
lower or higher level metrics of the managed application of which
the lower level metrics would represent the CPU, network memory
and so on whereas the higher level metrics would represent a metric
like the response time of the application [32]. This range of solutions,
which includes others helped with the decision to use a predictive
(regression) solution for the analysis component of the system with a
combination of a fuzzy logic solution introduced in the previous sec-
tion and used by [15].

One of the major problems associated with the auto scaling of an ap-
plication is the problem of oscillation, where the auto scaler in this
case would switch to a new viable topology and within a short time
switch that topology again [32]. The solution of the use of dynamic
parameters as seen for example in [24] helped provide inspiration to
use a solution for the planner where the switch of a topology is only
authorised when the time after the last switch is double the time it
takes for the change (redeployment) to be executed and hence miti-
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gating the oscillation problem. Finally, the work done in [5] provides
insight into the selection of a topology among the available alterna-
tive topologies provided and with this information among others, the
implementation of the planning component was made possible.



SPECIFICATION AND DESIGN

In this chapter, I present the requirements specification and design of
the project in two sections. In the first section, some of the most im-
portant functional requirements of the full system are presented with
a few non-functional requirements and then, the functional require-
ments of the individual components of the system are presented. Af-
ter this, some of the use cases of the system as a whole are presented
in the following section including some design patterns. Finally, the
logical view of the system is presented under two view points, one
showing the activities performed by the components and the other
providing a higher level view of the whole system.

3.1 REQUIREMENTS SPECIFICATION

Some of the requirements presented in [19] provided a template upon
which to start writing my system’s main functional requirements, as
they cover the functional and non-functional aspects to enable the
dynamic (re-)distribution of applications in the cloud, which is the
aim of my system. However, during the development of the system,
a few other functional requirements were realised and added to the
list for both the system and its individual components.

3.1.1  System’s Functional requirements
FR1 The System should be able to connect to or interact with a con-
tainerisation engine.

FR2 The System should have access to the containerisation engine’s
APL

FR3 The System should sort the services of the application being
managed into a list.

FR4 The System should have access to the alternative viable topolo-
gies.

FR5 The System should be able to Monitor data from the managed
Application.

FR6 The System should be able to Analyse the data from the man-
aged Application

FR7 The System should be able to make a Plan using the data from
the analysis of the managed Application.



FR8

FRog

FR1o0

FR11

3.1.2

NFR1

NFR2

NFR3

NFR4

NFRs

3.1.3

3.1 REQUIREMENTS SPECIFICATION

The System should be able to Execute the plan made for the
managed Application

The System should create Monitors for each of the services in
the managed Application.

The System should create Analysers for each of the services of
the managed Application.

The System should have access to the Service Level Agreements

(SLAs) or Service Level Objectives (SLOs) set by the user.

System’s Non-Functional requirements

The System shall monitor statistics in real time.

The System shall be able to make a topology change decision
before the time window is finished.

The System shall have the capacity to store data for at least a
day’s recorded metrics.

The System shall conform to the security parameters set by the
application it is managing.

The System shall be keep the data recorded about other appli-
cation usage private.

Component Requirements

3.1.3.1 Monitor Component

FR1.1

FR1.2

FR1.3

FR1.4

FR1.5

FR1.6

The Monitor component should create sensors for each of the
containers of the service it is monitoring.

The Monitor component should log statistics for each of the
containers of the service being monitored.

The Monitor component should set the sensors to monitor dif-
ferent application metrics.

The Sensor(s) should check that the metric values recorded are
within the SLOs.

The Monitor component should notify the analysis whenever a
new statistic is recorded.

The Monitor component should notify the analysis whenever
a metric out of scope of the set SLA/ SLO is recorded by the
sensor(s).

10
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FR1.7 The Monitor component should save the monitored statistics to
the knowledge base.

FR1.8 The Monitor component should continuously monitor the ser-
vice until the point that it is no longer available.

3.1.3.2 Analysis Component

FR2.1 The Analysis Component should receive notifications from the
Monitor component of new statistics.

FR2.2 The Analysis Component should perform data analysis in time
windows defined by the user.

FR2.3 The Analysis Component should retrieve a batch of statistics in
a given time window for analysis from the knowledge base.

FR2.4 The Analysis Component should perform a set of analysis tac-
tics on the statistics gathered from the knowledge base.

FR2.5 The Analysis Component should provide a visual representa-
tion of the analysed data.

FR2.6 The Analysis Component should perform a prediction of data
points for the next time window.

FR2.7 The Analysis Component should make an estimation of the re-
sources that need to be added, removed or kept as is for each of
the services.

FR2.8 The Analysis Component should make an aggregation of the
results from the various analysers.

FR2.9 The Analysis Component should create a topology suggestion
using the estimated resources based on the topology running
and the aggregated results.

FR2.10 The Analysis Component should notify the plan component of
the new topology suggestion.

FR2.11 The Analysis Component should save the results from the anal-
ysis to the knowledge base.

FR2.12 The Analysis Component should save the topology suggestion
to the knowledge base.
3.1.3.3 Plan Component

FR3.1 The Plan Component should be able to receive notifications
from the Analysis Component.

FR3.2 The Plan Component should have access to the list of alternative
viable application topologies.

11



FR3.3

FR3.4

FR3.5

FR3.6

FR3.7

FR3.8

FR3.9

FR3.10

3.1 REQUIREMENTS SPECIFICATION

The Plan Component should have access to the recommenda-
tion(Adaptation request) from the Analysis Component.

The Plan Component should ensure enough time (set by user)
has passed since last topology (re-)distribution.

The Plan Component should retrieve the latest suggested topol-
ogy by the Analysis component.

The Plan Component should make a comparison between the
suggested topology from the Analysis Component to the alter-
native viable application topologies.

The Plan Component should retrieve the alternative viable topol-
ogy closest in similarity to the suggested topology.

The Plan Component should have access to a record of the cur-
rently running or deployed topology.

The Plan Component should notify the Execution component
when a change is confirmed.

The Plan Component should store the new topology for the (re-
)distribution to the Knowledge Base

3.1.3.4 Execution Component

FR4.1

FR4.2

FR4.3

FR4.4

FR4.5

FR4.6

FR4.7

FR4.8

The Execution component should be able to receive notifications
from the Plan component.

The Execution component should create an Effector, whose job
it is to perform the execution actions.

The Execution component should have access to the alternative
topologies available.

The Execution component should have access to the containeri-
sation APL

The Execution component should be able to run the commands
necessary to make the topology change requested by the plan
component.

The Execution component should confirm when the change has
been made successfully

The Execution component should record or save the time of the
latest change of topology.

The Execution component should record the time it took to
make the change and update it in the knowledge base

12



FR4.9

FR4.10

FR4.11

3.1 REQUIREMENTS SPECIFICATION

The Execution component should be able to reset the MAPE-K
loop to start working on the newly redistributed topology.

The Execution component should update the currently running
topology.

The Execution component should save the new topology change
to the knowledge base.

3.1.3.5 Knowledge Base Component

FR5.1

FR5.2

FR5.3

FR5.4

FRs5.5

FR5.6

FR5.7

FR5.8

FRs5.9

FRs.10

FR5.11

FR5.12

The Knowledge Base Component should provide an access point
for the various components to create the necessary data.

The Knowledge Base Component should provide an access point
for the various components to update the necessary data.

The Knowledge Base Component should provide an access point
for the various components to retrieve the necessary data.

The Knowledge Base Component should provide an access point
for the various components to delete data.

The Knowledge Base Component should contain a record of the
alternative viable topologies.

The Knowledge Base Component should contain a record of the
statistics recorded by the monitor component.

The Knowledge Base Component should contain a record of the
data output by the analysis component.

The Knowledge Base Component should contain a record of the
topology picked by the plan component to be deployed.

The Knowledge Base Component should contain a record of the
successful topology changes made by the execution component
including the time.

The Knowledge Base Component should contain a record of the
service level objectives set by the system user.

The Knowledge Base Component should contain a record of the
other user preferences like the time windows for the analysis
e.t.c.

The Knowledge Base Component should contain a record of the
history of the performance of the various topologies that have
been run before.

13
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In this Section, I present 2 use cases, which are cases under which
the system is expected to behave differently. In the first case, the sys-
tem records normal workloads under which the managed application
should not have any problems dealing with and therefore, there is no
need for a change. In the second use case, the system predicts stress
on some of the services of the managed application or under use of
the resources for the next time window and therefore requests an ap-
propriate change to be made in order for the application to utilise it’s
available resources optimally.

3.2.1  Use Cases

Use Case 1

Normal Managed Application load

Goal:

This use case depicts a situation where the managed
application load is predicted to be within the Service
Level Objectives defined by the application owner.
With this case, the system is expected to keep report-
ing the normal application usage and not make any
changes to the topology

Pre-Condition:

The managed application is running, the system is
deployed on top of it and is monitoring the usage
statistics of the application

Post-Condition:

The System has run an analysis of the statistics and
detected that no changes are required and hence,
there are no changes made and the monitoring and
analysis processes continue.

Primary Actor:

Managed application
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Assumptions: ¢ Alternative Viable topologies are made avail-
able by the application owner.

¢ The Service Level Objectives are defined by the
application owner.

* The application services are running normally

¢ The application traffic is predicted to be on par
with the resources made available to the appli-
cation.

¢ The User has set other parameters like the pre-
ferred time windows for analysis.

Main Success Scenario:

1. The system deploys its MAPE-K control loop on the application ser-
vices.

2. The system gains access to the containerisation APL

3. The monitor functionality records the statistics received from the con-
tainerisation API and reports to the Analysis.

4. The analysis component makes a record of the time of the first notifica-
tion/ statistic from the monitor component.

5. The analysis component compares the current system time with the
recorded time whenever it is notified.

6. After the correct (set by the user) time window has passed, the analy-
sis component makes a record of that last timestamp and performs an
analysis action on the data of the time window.

7. The analysis component makes a prediction of the expected workload in
the next time window and suggests the number of containers required
to be added or removed

8. The number to be added or removed is o0 and therefore no further ac-
tions are required.

9. The analysis component continues to compare the current time to the
last recorded timestamp for the next analysis window
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Extensions (Temporary Spike):

3a The Monitor functionality reports high metrics and shortens the time
window to the analysis.

6a Analysis is performed on the shorter time window and predicts that
increased use was a temporary spike so, no additional resources should
be provisioned.

Table 3.1: Use Case 1
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Use Case 2

High/ Low Managed Application load

Goal:

This use case depicts a situation where the man-
aged application load is predicted to be outside the
Service Level Objectives defined by the application
owner. With this case, the system is expected to
make a change in the topology being used by the
managed application and therefore get the applica-
tion back within the Service Level Objectives set by
the user.

Pre-Condition:

The managed application is running, the system is
deployed on top of it and is monitoring the usage
statistics of the application.

Post-Condition:

The System has run an analysis of the statistics and
predicted values outside the SLOs and therefore a
change in topology is performed and a new topol-
ogy is being used by the managed application.

Primary Actor:

Managed application

Assumptions:

¢ Alternative Viable topologies are made avail-
able by the application owner.

¢ The Service Level Objectives are defined by the
application owner.

¢ The application services are running normally

* The application traffic is predicted to be out-
side the set SLOs within the next time window.

¢ The User has set other parameters like the pre-
ferred time windows for analysis.

Main Success Scenario:
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. The system deploys its MAPE-K control loop on the application ser-

vices.

The system gains access to the containerisation API.

. The monitor functionality records the statistics received from the con-

tainerisation API and reports to the Analysis.

The analysis component makes a record of the time of the first notifica-
tion/ statistic from the monitor component.

. The analysis component compares the current system time with the

recorded time every time it is notified.

After the correct (set by the user) time window has passed, the analy-
sis component makes a record of that last timestamp and performs an
analysis action on the data of the time window.

The analysis component makes a prediction of the expected workload in
the next time window and suggests the number of containers required
to be added or removed

The number to be added or removed is greater or less than o and there-
fore a change in topology is required.

The Analysis component makes an addition and/ or subtraction to the
resources available in the current topology therefore coming up with a
recommendation of a topology like structure for the required resources

The recommendation is saved and the Plan component is notified.
The Plan component checks the time of the last Topology change.

If enough time has passed since the last Topology change, the Plan com-
ponent accesses the alternative topologies in the knowledge base and
selects the one closest to the suggested topology

The Plan component notifies the execution component of the required
change and saves the suggestion.

The Execution component retrieves the selected topology and runs the
required commands to redeploy the application in the new topology.

The Execution component updates the time to redeploy the application.

The execution component updates the last successful redeployment
time and resets the system to run on the new topology.

The loop restarts
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Extensions (Reactive):

3a The Monitor functionality reports high metrics and shortens the time
window to the analysis.

6a Analysis is performed on the shorter more urgent time window.
7a A prediction is made and the prediction is outside the SLO.
10a Plan is notified with an urgency/ priority recommendation.

11a No time check is performed.

Extensions (Oscillation Mitigation):

11a Not enough time passed triggers wait action (Depending on how close
to breaking point system is predicted to be).

Table 3.2: Use Case 2
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Figure 3.1 shows the architectural layout of the system.

[ Docker API

Recorz/ Exequte

statisties

Service

Monitor

'

Planner —— Executer

Sjore tore

Retrieve Retrievj Retrieve

Knowledge

Figure 3.1: System architectural layout view

3.3.1 Activity Diagram

In the Figure 3.2, the activities required to perform the functionalities
in the particular component instances are presented. The monitor and
analysis components have multiple instances and are managed by
the monitor manager or the Analyser manager and therefore these
managers ensure the aggregation of data for the entire application
topology being managed. The details of the manager and individual
components shall be discussed in Chapter 4. At the start of the system,
each of these components are created by their managers and their
activities after that are as follows.

3.3.1.1  Monitor

A monitor component is created for each container in the particular
service being monitored. This component starts off by creating sen-
sors for each of the metrics it is set to monitor from a container and
the monitoring task begins. Every 2 seconds, the Sensors send their
registered metric to the monitor component and these are metrics are
collected to form a statistic. A sensor can also report a metric which
is outside the SLOs and this will cause the component to create a new
more urgent statistic. After the statistic is created it is stored to the

20
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Knowledge base and the Analyser is notified. However, this function-
ality is to be turned off in the current state of the system given that
the focus is currently on a predictive approach rather than a reactive
one.

3.3.1.2 Analyse

An analyser is also created for each of the containers of a service
therefore, the analysers and monitor components have a one to one
relationship. When an analyser is created, it waits for its first notifi-
cation from the monitor it has a relation with and when it receives
it, the analyser takes note of the time in the first statistic the moni-
tor saved. After this point, the time window is checked every time a
notification is received and when enough time has passed, the compo-
nents retrieves the statistics for that window, sets the last timestamp
as the latest time and analyses the data. On the other hand, an analy-
sis is also performed on double time windows to get a clearer analysis
with more data. After the analysis is done, the manager aggregates
the data and notifies the plan if necessary of a necessary change.

3.3.1.3 Plan

The job of the plan component is to select a topology. Once it is noti-
fied by the analysis component, it uses the request from the analysis
to select the topologies better suited to that suggested request and
thereafter, it performs a cost/ price comparison on the relevant vi-
able topologies and selects the cheapest option. Therefore, ensuring
the solution doesn’t under/ over provision and the solution is at a
good cost. It then saves its choice and notifies the execution compo-
nent

3.3.1.4 Execute

The execution component possesses the simplest job and that is to
get the selected solution/ topology and run its configuration script in
order to redeploy the application in the selected topology. After that,
it stores the time taken to redeploy and finally restarts the MAPE loop
on the new topology.

Figure 3.2 shows the flow of events describe in the above sections.

21
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IMPLEMENTATION

In this chapter, the details of the implementation of the system are
presented including a description of the individual components of
the system and how they interact, create and share data. Some of the
technologies that were helpful and necessary in the implementation
of the system’s components including their use to the system are also
presented below.

The code for this project’s implementation can be found in the Github
repository [18]

4.1 TECHNOLOGIES AND THEIR UTILISATION IN THE SYSTEM
4.1.1  Containerisation Technology (Docker)

Containerisation[31] is a lightweight virtualisation technique, and vir-
tualisation is necessary for the deployment of applications on the
cloud. Therefore, when starting the development of this system, I
had to select a containerisation engine where I could access the nec-
essary metrics and upon which to deploy the test cloud applications
given that the aim of the autonomous system would be to manage
the resources of an application on the cloud so, I had to simulate
this environment. There are a few containerisation technologies like
rkt[34] developed by CoreOS, Solaris Containers[29] developed by
Oracle and so on. However, given that I have some past experience
with the Docker Engine, and additionally, the significant number of
applications developed for and deployed with the docker engine, the
decision of what containerisation technology to use went to Docker
Engine 1.13.1.

4.1.1.1  Docker API

While I had used the Docker engine before for the deployment of
a simple application, I had not used it used it extensively whereby
I would require knowledge about the Application Programming In-
terface (API). Therefore, I took a look into this and with the aid of
[11], I found that it has a Software Development Kit(SDK) for Python
and Go, and number of unofficial libraries for a number of program-
ming languages, which opened up my options on the programming
language I could use and enforced my confidence in the containerisa-
tion selection that had been made.
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4.1.1.2  Docker Compose

One additional advantage of the docker engine is its easy compat-
ibility with the microservice architecture[27]. Docker Compose[12],
a tool for running applications with multiple containers provides
this feature when defining the different components in the docker-
compose.yml file during the setup of the application. Given that, a
number of microservice applications have been developed and de-
ployed on docker, which provided me with a number of options both
simple and complex for the testing phase of my system’s components.

4.1.2  Programming Language (Java)

After deciding on the containerisation technology to use, it was time
to move on to the programming language and my extensive knowl-
edge in the Java as compared to other languages was a starting point.
Next on the checklist was the compatibility with Docker and as seen
from [11], there is an official library for Java, which added to my con-
fidence in the choice. Finally, the extensive number of options avail-
able to me in terms of what database to use also pushed my decision
towards the java programming language.

4.1.3  Database (Relational)

In terms of a database, the first options to consider was whether to
use a Relational database or a NoSQL database and I was drawn
towards the use of a relational database because of more previous ex-
perience with relational databases and they would properly structure
and accommodate most of the data that would be passed through and
processed by the system. After this, I had to select an option among
the various relational databases. Given that the relational databases
are quite similar, I selected one I had most recently used, which is the
PostgreSQL database for data storage. PostgreSQL 9.4.19 [30] is an
open source relational database with good performance and is easy
to use.

4.1.4 Fuzzy Logic (jFuzzyLogic)

jFuzzyLogic is an open source Java Library for Fuzzy Logic, which
with the help of the standard for fuzzy control programming in part
7 of the IEC 6113 published by International Electrotechnical Commis-
sion, I was able to learn some the basics of the language to use with
jFuzzyLogic [9]. The Library was created to aid in the programming
of Fuzzy Logic control systems using the standard Fuzzy Control lan-
guage defined in the IEC 61131 and using [9], I was able to get some
understanding of the library and some useful insight on how to use
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it in my project’s development and specifically for the analysis com-
ponent.

4.1.5 Locust 10

[25] is a load testing tool that I selected to simulate loads on the
applications that were to be managed by the developed system. This
testing tool is easy to use and all I had to do was to write a short
test script in python to connect to the web application and run the
necessary tests. The tool provides its API documentation, which was
helpful to use when learning to write the scripts I used to test the
applications. Additionally, the case study application I chose to use
had load tests written for it already, which meant I had 1 less script
to write when performing my testing. Locust also provided a web
interface that shows different metrics for the application being tested
and with this information being made available, I was confident I
would be able to run the appropriate tests on the test applications,
which sealed the choice to use Locust IO.

4.2 APPLICATION COMPONENTS

In this section, I discuss the individual system components of the sys-
tem. Using [21] as a resource during the planning development phase
of this system, I was able to implement the components even if some
of the behaviour templates were not applicable with this system’s do-
main.

Figure A.1 combines all the components discussed below and others
classes excluded this section that help provide the functionality of the
system.

4.2.1 Sensor

The Sensor is one of the most important parts of the system. The Mon-
itor component depends on it for the metrics that are used through-
out the system. Through the sensor manager, the monitor instance
creates sensor threads for each of the metrics that are to be moni-
tored. Sensors are connected to only one container and they report
on the metric that they are assigned by the monitor component. The
sensors are observables in the observer pattern [20], which is also
used by most of the other components in the system. They notify the
monitor component every 2 seconds with a new recorded metric for
that time.

Figure 4.1 shows the relations between the sensor manager, which is
a singleton, the sensors and the monitor component.
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<<Java Class>>

(©sensorManager <<Java Class>>
com.mycompany.aatr2 e Gl @ Monitor
o cSens: HashMap<String ArrayList<Sensor>> ®Sensor com.mycompany.aatr2.monitor
SensorManager() com.mycompany.aatr2.monitor
@ getinstance():SensorManager o sensld: int
° double double,String):Sensor o obs: ArrayList<Observer>
@ addToMap(String,Sensor):void o property: ContextElement
o getC rrayLl o name: String ‘e
@ newSensor2(String,float,float,String):void o cpu: CpuStats A
© getAllSensors():List<Sensor> ance uFmem: Mef'!ﬁ'VSIHtS 0..
@ getSeneor(int):Sensor o contiD: String
0.1 o cpuPerc: double
SENSQAS | . free: double
0.* 7| o dm: DockerManager

of contNm: String
o preCpu: long
o preSystem: long

& Sensor(int,String,double double, String)
@ watchCPU():void

@ getContlD():String

@ watchMemory():void

@ run():void

@ checkThreshold(double, String):void

@ calculateCPU(long.long.long long.int):double
© memoryStat(long,long):double

@ addObserver(Observer):void

@ removeObserver(Observer):void

@ notifyObservers(double):void

@ getID():int

@ sensorContext():String

@ setContext(String,long,long):void

@ getLogValue():double

@ notifyObservers():void

Figure 4.1: Sensor Component Class Diagram

4.2.2  Monitor

A monitor component instance is created through its Singleton Man-
ager (Monitor Manager) and thereafter, the monitor instance creates
its sensors. There can be multiple monitor instances each monitoring
a service (Cluster class), which they are assigned to upon creation.
The Docker Manager Singleton is what connects to the docker API,
makes note of the running containers and creates services by the use
of the names of the images used to create these containers. Once these
are sorted then the individual components are launched. The Monitor
class instance is both an observer and an observable. It observes the
sensors on each of the containers, creates a statistic using the metrics
recorded for the container.

Each container in the service being monitored by a monitor instance
is assigned a statistic log upon the instance’s creation and thereafter,
the statistics recorded for that container are saved in that particular
log. Every after the Monitor instance finishes creating a statistic, it
notifies the Analyser that is registered to the same service it is moni-
toring.
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<<Java Class>>
O Cluster

com.mycompany.aatr2

<<Java Class>>
© statisticsLog

com.mycompany.aatr2 monitor.data

<<Java Class>>
(®DockerManager | -instance

<<Java Class>>
(® ContextElement

com.mycompany.aatr2. monitor

o containers: List<Container> com.mycompany.aatr2 o thresh: Threshold
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"cs ° - /oervices m & ContextElement(double, double, String)
@ CIus(er(S}nng) 7 7 o @ setThreshold(double double):void
@ getContainers():List<Container> - © getThreshold():Threshold
© getServName():String @ getName():String
© addContainer(Container):void o calculateCPU():double
© addStat(String,double,double):void @ getMemoryPerc():double

© setServName(String):void

© getLogs():ArrayList<StatisticsLog>

<<Java Class>>
© getLog(String):StatisticsLog <<Java Class>>

®Monitor ; -
S S service | © exists(Container):boolean ©sensor
i » com.mycompany.aatr2.monitor

FiDint 0 @ getSlo():SLO
Jcoﬁlt: List<Container> @ seiSio(SLO):vokd o sensid it

- © compareCluster(Cluster):boolean o name: String
&"Monitor(int,Cluster) © compare(int):int o cpu: CpuStats
@ initiate():void © wiiteToFile(StatisticsLog):void o mem: MemoryStats
@ update():void o contID: String
© update(String,double):void o cpuPerc: double
© addObserver(Observer):void o free: double
© removeObserver(Observer):void o contNm: String

© notifyObservers(double):void
o startMonitoring(String):void

o preCpu: long
o preSystem: long

© scheduleNotification():void

& Sensor(int,String,double,double, String)
© newStatistic():void <<Java Interface>> watchGPU():void
© getiD()int ©Observer -obs °© =
L . o o | 2% —— o getContiD():String
© notifyObservers():void ) 0. © watchMemory():void
® selObservabIe(O.bservab.le.):vmd o update():void © run():void
© getStats(yAmayList<StatisticsLog> | ™. © update(String,double):void © checkThreshold(double,String):void
o getService():Cluster @ setObservable(Observable):void | @ calculateCPU(long,long,long,long,int):double
OCEEENTRENEE AT | & memoryStat(iong.long):double
@ getSensor(String, String):Sensor © addObserver(Observer):void
monitors | 0. g @ removeObserver(Observer):void
Q @ notifyObservers(double):void
<<Java Interface>> © getiD()int
<<Java Class>> @ Observable © sensorContext():String
(©MonitorManager com mycompany.aatr2 @ setContext(String,long,long):void
ot miycompsiny Set2 mor o  addObserver(Observer):void © getLogValue():double

& MonitorManager() @ removeObserver(Observer):void @ notifyObservers():void

@°getinstance():MonitorManager @ notifyObservers():void

@ newMonitor(Cluster):void @ notifyObservers(double):void

o getMonitors():ArrayList<Monitor> [

@ getMonitor(Cluster):Monitor \jo_1

Figure 4.2: Monitor Component Class Diagram

4.2.3  Analyse

The Analyser component is also assigned to analyse the statistics of a
single service. The Analyser component instances are created through
the Analyse Manager Singleton, which keeps a record of each of the
analysers. Once an analyser instance receives a notification from the
monitor instance, it retrieves the latest statistic log and then checks
the time on that statistic in comparison with the system time. If this
is the first analysis, then it starts the analysis but if not, then it has to
wait for enough time to pass. Once this is true, the component collects
the data for the last time window, and calls the runFullDataAnalysis()
method. This collects all the data received, plots the data from the
previous window and then calls the makePrediction() method. This
also then plots the predicted usage points for every 5 - 10 seconds for
the whole of the next time window. Additionally, it collects the data
points in a list and gets their average and returns that value.

This value is then passed to the diagnose() method, which uses the
fuzzy logic component (jFuzzy Logic) to perform an estimation of
the resources required to fulfil this usage requirement and returns

© setLogs(ArrayList<StatisticsLog>):void -propeny/1 0.1
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this and uses it to create a symptom. A symptom in this case is sim-
ply a store of the number of containers required to fulfil the next
window’s usage requirements. If there is more than one container in
the service, the result of this analysis is stored in a list and when all
the symptoms of every container are available, these results are aver-
aged and therefore a single symptom is produced.

The analyser component is also both an observer and an observable
but however, its observer is the Analyse Manager. The Analyse Man-
ager collects the symptoms of each of the Analyser instances and cre-
ates a new system state, which represents the number of containers to
be added or removed in order to optimise the managed application.
These relationships can be seen in Figure 4.3. The Analyse Manager
is the observable of the Plan manager and so, when a new system
state is created, it sends the notification.

<<Java Interface>>
©Observable

com.mycompany.aatr2

<<Java Class>>
(© AnalyseManager
com.mycompany.aatr2.analyse
S LOGGER: Logger
o lastNotification: long
Fwait: long

4 ®"¥%

<<Java Class>>
® Analyser

com.mycompany.aatr2.analyse

<Fanld: String

o MINUTES_WINDOW: long

o analysisCount: int

Sf LOGGER: Logger

o results: List<Integer>

4 env: StreamExecutionEnvironment

o full_pred_data: TreeMap<Long,Double>

o notificationCount: ArrayList<String>

& AnalyseManager()
@ newAnalyser(Cluster):void

<<Java Class>> .
(®PlanManager | nst

@ getinstance():AnalyseManager
© getAnalysers():ArrayList<Analyser>
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© removeObserver(Observer):void
© notifyObservers():void

@ notifyObservers(double):void

© notified(String):void

o alreadyNotified(String):boolean
© getArs():ArrayList<SystemState>
@ update():void

© update(String,double):void

© setObservable(Observable):void
© newSystemState():void

o statistics():boolean

© checkState(SystemState):void

-systState |0..*

<<Java Class>>
© SystemState
com.mycompany.aatr2.analyse
o current_regs: HashMap<Cluster,Symptom>
o state: boolean

& SystemState()

@ geteurrent_reqs():HashMap<Cluster,Symptom>

@ setcurrent_regs(HashMap<Cluster,Symptom>):void
@ getSymptom(Cluster):Symptom

© addSymptom(Cluster,Symptom):void

o setState():void
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e resultAccum():void
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@ plotData(TreeMap<Long,Double>,String):void

Double>):void
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@ runFullDataAnalysis(HashMap<Til

Double> HashMap<Tir

Double>):void

@ logs():ArrayLi
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Y

ymptom:
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] ymplogs(
@ getLatest():Symptom
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@ gradient(long[],double[]):double[]
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@ checkMinute(long,long,int):boolean

= makePrediction(TreeMap<Timestamp,Double> String):double
@ getMinuteWindow():long

-cluster 0.1

-symplggs netification():void
"2

® Symptom

<<Java Class>>

com.mycompany.aatr2.analyse

<<Java Class>>
O Cluster

com.mycompany.aatr2

o name: String
o event: String
o condition: double

@ getName():String
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-ogs |0..*

<<Java Class>>
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Figure 4.3: Analyse Component Class Diagram
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4.2.4 Plan

The Plan is just one singleton component created at the start of the
system. It is responsible for making the final decision of the topology
to be selected for the application’s redeployment. The process starts
off by the receipt of a notification from the Analyse manager. Once
this happens, the plan manager gets the system state and through
uses it to create a topology recommendation. From this ideal topology,
the plan is able to compare it to the viable topologies that it has access
to.

While comparing the viable topologies to the ideal topology it created,
it awards points to the topologies according to how close the relation
in terms of the number of containers they have. Additionally, while
adding these points to the topologies, the method also eliminates the
viable topologies where the number of containers is less than the ones
in the ideal topology. Once this is done, the topologies with scores
are left in the list and using this and their prices, the plan manager
performs a price comparison among these remaining topologies and
finally selects the most suitable and cheap option. After that, the plan
manager notifies the Execution component, which is its observer.

29



<<Java Interface>>
©Observable

com.mycompany.aatr2

@ addObserver(Observer):void

@ removeObserver(Observer):void
@ notifyObservers():void

@ notifyObservers(double):void

a

®PlanMan,

<<Java Class>>

com.mycompany.aatr2.plan

ager

o setTime: long
S:f LOGGER: Logger

@"PlanManager()

@’ getinstance():PlanManager
@ initiate():void

@ update():void

= getRequest():void

@ update(String,double):void
@ addObserver(Observer):void

@ notifyObservers():void

@ notifyObservers(double):void
@ getNewT():Topology

@ setNewT(Topology):void

@ getSetTime():long

@ processRequest(AdaptationRequest):void
a costAnalysis(HashMap<Topology,Integer>):Topology
@ moreSimilar(double,double):boolean

@ setObservable(Observable):void

@ removeObserver(Observer):void

-inst
0.1

-vt\ 0.1

4.2 APPLICATION COMPONENTS

<<Java Class>>
®ViableTopologies

com.mycompany.aatr2

" ViableTopologies()

@ getinstance():ViableTopologies
o getTops():ArrayList<Topology>

@ addTopology(Topology):void

o defineTestTopologies():void

@ defineDynamicTopologies2():void
a addVMs(Topology):void

& addServices(ArrayList<String>, Topology):void

a makeVM():VirtualMachine
@ randomNumber(int,int):int

@ createServices():ArrayList<String>
o clearTops():void

4.2.5 Execute

<)

dnst

0..1

<<Java Interface>>
©Observer

com.mycompany.aatr2

© update():void
© update(String,double):void
© setObservable(Observable):void

a.

7

<<Java Class>>
(© AdaptationRequest

com.mycompany.aatr2.analyse
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<<Java Class>>

-tops

(©ExecuteManager

-adapts \0..*

<<Java Class>>

©Topology

com.mycompany.aatr2

o services: ArrayList<Cluster>

o id: String

o service_conts: HashMap<String,Double>
o filename: String

o vms: int

o price: double

o VMS: ArrayList<VirtualMachine>

& Topology(ArrayList<Cluster>)

& Topology()

& Topology(String)

& initialize():void

@ getvms():int

@ setVms(int):void

@ setPrice(int):void

& addVM(VirtualMachine):void

a updatePrice():void

© getAdapts():ArrayList<AdaptationRequest>

® pts(ArrayList<A equest>):void
© getld():String

© setld(String):void

@ getVMS():ArrayList<VirtualMachine>

@ setVMS(ArrayList<VirtualMachine>):void

@ getFilename():String

@ setFilename(String):void

© getService_conts():HashMap<String,Double>
@ setService_conts():void

@ setService_conts(HashMap<String,Double>):void
@ addService(String,double):void

@ addService(Cluster):void

@ addSymptom(AdaptationRequest):void

@ getServices():ArrayList<Cluster>

@ setServices(ArrayList<Cluster>):void

@ getSymptoms():ArrayList<AdaptationRequest>
{ quest>):void

@ ArrayList<A

© getlD():String

@ setName(String):void

@ addRequest(AdaptationRequest):void
) quest():A

@ compare(Topology):boolean
© getPrice():double

© toString():String

equest

Figure 4.4: Plan Component Class Diagram

The Execution component receives a notification from the plan man-
ager after which it retrieves the viable topology to be executed. Once
it has the topology’s file information, it used this to find the config
files of the topology and runs the scripts for the redeployment of the
application. Once the redeployment is completed, it updates the time

of redeployment and the loop starts again.

com.mycompany.aatr2.execute j

4nst

0..1



<<Java Interface>>

©Observer
com.mycompany.aatr2

@ update():void

@ update(String,double):void -obs

@ setObservable(Observable):void

b

<<Java Class>>
(© ExecuteManager

com.mycompany.aatr2.execute

@ ExecuteManager()

@ initiate():void

@ newExecutionManager():void
@ update():void

@ executePlan():void

@ update(String,double):void

@°getinstance():ExecuteManager

@ setObservable(Observable):void j

4.2 APPLICATION COMPONENTS

<<Java Interface>>
@ Observable

com.mycompany.aatr2

@ addObserver(Observer):void

@ removeObserver(Observer):void
@ notifyObservers():void

@ notifyObservers(double):void

A

<<Java Class>>
®GPlanManager | -nst

com.mycompany.aatr2.plan jO 1

-inst

0..1

Figure 4.5: Execute Component Class Diagram
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TESTING

During the development of the system, there were a battery of unit
tests run on each of the individual components to ensure their func-
tionality and furthermore their interaction with each other when in-
tegrated in order to ensure that they work together. However, this
chapter presents the more important tests run on the more complete
versions of the system. After implementing three of the major com-
ponents of the system, that is the Sensor, Monitor and the Analysis
components, the more important phase of testing begun and in the
following sections, I present the results of most of these tests and
finally, an evaluation of the results of the System is done in the fol-
lowing chapter.

5.1 TEST SUITE
5.1.1 Test Application

The testing of the system was done using the following application
assembled from Github.

example-voting-app:

After the initial testing of my system’s Monitor and Analysis compo-
nents and confirming that they performed the basic functionality, I
needed to test the more complex features of the Analysis component,
which were the prediction and recommendation functionalities. To
test these, I needed a simpler more basic application where I would
be able to quickly write a testing script for the load simulator applica-
tion I was going to use so, I decided to use the Example Voting App
[13]. It is a simple voting application where a user either votes for
cats or dogs.

The services in this Application, as shown in Figure 5.1, include the
voting-app service, where the users cast their votes, result-app service,
which is where the user views the vote tally percentage, which is re-
trieved from the database, redis service, a queue to handle the votes
coming it, worker service to process the voted and send them to the
final database service db service.
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5.1 TEST SUITE
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voting-app result-app
Python Node.js
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redis db

Redis PostgreSQL
- J .

worker
NET
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Figure 5.1: Architecture of the test application

5.1.2 Load simulator

Locust IO, the Load testing application introduced in Chapter 4 was
used for to load test the test applications. I wrote the test scripts for
the test applications for example the short test script from the load

testing done on the Example Voting App is presented in Listing 5.1.

By running this script, the simulated user initially randomly performs
a vote and then randomly changes the vote every time Locust sends
a request by the simulated user. Listing 5.2 provides the ports where
the simulated users can connect.

from locust import TaskSet, task
import random
class MyTasks(TaskSet):
# vote = null
# vote function
def vote(self, vt):
self.client.post("/", {’vote’: vt})

# initial random vote between cats or dogs
@task (2)
def votecat(self):

self.vote("a")

# change vote task

@task (3)

def votedg(self):
self .vote("b")

Listing 5.1: Example Voting App testing Script
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5.2 SENSOR, MONITOR AND ANALYSIS COMPONENT TESTING.

from locust import HttpLocust
from MyTaskSet import MyTasks
# from MyTaskSet import MyServicesTasks

class MyLocust(HttpLocust):
task_set = MyTasks
min_wait = 10
max_wait = 100
host = "http://localhost:5000"’

# class MyServicesLocust (HttpLocust):
# task_set = MyServicesTasks

# min_wait = 10

# max_wait = 100

# host = "http://localhost:5001"’

Listing 5.2: Locust open ports Script

5.2 SENSOR, MONITOR AND ANALYSIS COMPONENT TESTING.

As seen in the Component diagrams in Chapter 4, these components
work closely together and in order to fully test one of them, I had to
have all of them working. For the testing phase of these components,
I started out by testing the Sensor connection to the Docker API to
see whether the statistics metrics were being accurately monitored by
the sensor and to confirm, I compared them to the container statistics
produced when running the command docker stats in the terminal.
After confirmation of the accuracy of the sensor statistics, I moved
on to the monitoring component. Since there is a monitor instance
for each of the services being monitored, I decided to plot graphs for
each of the statistics for each of the metrics. Therefore creating 2 plots
per container per service. Figure 5.2 shows a sample of the statistics
recorded from testing the example voting application.
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5.2 SENSOR, MONITOR AND ANALYSIS COMPONENT TESTING.

example-voting-app_result Full CPU Data points
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(e) Redis service container CPU stats

Figure 5.2: Plots of the monitored CPU statistics from the containers of the
example voting application.

These figures show a small sample of the testing done on the ap-
plication and after the confirmation of the basic communications be-
tween the Monitor and sensor components, I then moved to the Anal-
ysis Component. From this component, my aim was to see it perform
a prediction of the usage for the next time window (5 minutes) given
the analysis of the already recorded data. To visualise the results of
this functionality, I used the same plotting mechanism implemented
for the statistics and the prediction data can be seen in Figure 5.3,
where the prediction of the CPU data for the next time window is
performed based on the data from the results in Figure 5.2.

00:40 00:45
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5.3 FULL SYSTEM TESTING
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Figure 5.3: Plots of the predicted CPU statistics from the containers of the
example voting application.

5.3 FULL SYSTEM TESTING

After the confirmation of the Monitor and analysis components, the
next step of testing brought us to the version of the system after the
implementation of the fuzzy logic functionality in the Analysis com-
ponent, which is meant to use the predicted data and decide how
many containers need to be added to or removed from the service,
and the Plan component, which works with that data/ recommen-
dation from the Analysis component and proposes the topology that
best suits the recommendation before notifying the execution compo-
nent to change the topology.
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5.3 FULL SYSTEM TESTING

In order to confirm the above, I had to run varying loads through
the application so that the system would respond accordingly. So, the
Locust load simulation tool was used for this purpose and the work-
loads to be tested with are presented in Table 5.2 below. Table 5.1
shows the simulated topology structures of the test application Exam-
ple Voting app introduced in the Test suite section. The table shows
the services in the top row and every other row shows the number
of containers for that service in that topology. These topologies were
used for the purpose of providing the planning component a simpli-
tfied example of different topology structures that it can switch be-
tween. The last 2 columns are based on pricing for the deployment
of Amazon’s General purpose dedicated host virtual machines [3] in
August 2018.

In Table 5.1 and the developed system, the prices used were repre-
sented as; small: mg.10xlarge = 2.42 USD per hour, medium: ms.24xlarge
= 5.069 USD per hour and large: msd.24xlarge = 5.966 USD per hour.
These are the prices for deploying an instance of that size on a single
dedicated host on Amazon EC2 services in the US East (Ohio) region
in August 2018. For all the tests run below, the window between the
data analysis performed was set to 2 minutes.

Topology | Worker | Vote | db | Redis | result | Virtual Machines | total Price (USD)
T1 1 1 1|1 1 1 Small 2.42

T2 2 1 1 |1 1 2 Small 4.84

T3 3 2 1 1 1 1 Medium 5.069

T4 4 3 2 1 1 1 Medium 5.069

Ts 4 4 3 |2 1 2 Medium 10.138

T6 4 4 4 |3 2 2 Medium 10.138

17 4 4 4 |4 3 1 Large 5.966

T8 4 4 4 |4 4 2 Large 11.932

Table 5.1: Topology options for the testing of the application

5.3.1
topology

CONTAINER ID
2985da6d8fed
e42ed53ble8l
fe9f47182e5a

5b34023a2fbc
ccdbald85da4

NAME
example-voting-app_worker_1
example-voting-app_vote_1
redis
example-voting-app_result_1
db

MEM USAGE / LIMIT

27.39MiB / 1.952GiB
30.7MiB / 1.952GiB
1.30IMiB / 1.952GiB
35.37MiB / 1.952GiB
15.09MiB / 1.952GiB

Test Case 1: Upscaling and No system reaction Testing on the lowest

MEM %
1.37%
1.54%
0.07%
1.77%
0.76%

Figure 5.4: Container status before the Load is applied using Locust

For the first test case, I ran the system to test for its ability to request
for a topology with an increased number of resources (containers)
available to the application for the next time window as seen in Ta-
ble 5.2. The starting Topology for this test case was Topology 1 (T1) as
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5.3 FULL SYSTEM TESTING 38

seen in Table 5.1 above and can be seen in Figure 5.4 just before apply-
ing the simulated load on it. The results of this testing are presented
in the table below.

Test | Users | Requests (/s) | average response time | Result Topology
1 3145 16(ms) No Adaptation | T1
2 8 | 102 23(ms) Adaptation T3
3 15 | 140 51(ms) Adaptation T4
4 30 | 149 149(ms) Adaptation T4

Table 5.2: Test case 1 run on the application.

In the tests where a change in the topology was requested (scale
up), for example in Test 4, the recommendation of the new topology
structure was triggered by one of the services (Vote) being predicted
to require a lot more computing power in the next time window and
therefore, the system recommends more containers for the Service.
Figure 5.5 shows the recommendation made for the system when
tests 2 and 3 are run. These recommendations come from the predic-
tion that the system does in relation to the current and previously
recorded statistics, which can also be seen in Figure 5.5.

7 5 A !RECOMMENDED TOPOLOGY!!!
Service: example-voting-app_vote Containers: 2.0 example-voting-app_vote Cont

Service: postgres:9.4 Containers: 1.0 Service: postgres:9.4 Containers: 1.0

Service: example-voting-app_worker Containers: 1.0 Servi ample-voting-app_worker Containers: 1.0
Service: example-voting-app_result Containers: 1.0 i ample-voting-app_result Containers: 1.0
Service: redis:alpine Containers: 1.0 ice: redis:alpine Containers: 1.0

(a) Test 2 (b) Test 3

CONTAINER ID NAME MEM USAGE / LIMIT

eal905cebb2d example-voting-app_worker_1 70.22MiB / 1.952GiB
2c8al159f2098 example-voting-app_vote_1 33.21MiB / 1.952GiB
€340db3d1b80 db 5 12.25MiB / 1.952GiB
2187d5ed7da@ example-voting-app_result_1 35.09MiB / 1.952GiB
c419bef17c8f redis 2.504MiB / 1.952GiB

(c) Test 2 load

CONTAINER ID NAME MEM USAGE / LIMIT

eal905cebb2d example-voting-app_worker_1 70.25MiB / 1.952GiB
2c8al159f2098 example-voting-app_vote_1 33.95MiB / 1.952GiB
€340db3d1b80 db 12.25MiB / 1.952GiB

2187d5ed7da@ example-voting-app_result_1 37.23MiB / 1.952GiB
c419bef17c8f redis 3.879MiB / 1.952GiB

(d) Test 3 load

Figure 5.5: Recommended Topology output for Test Case 1

5.3.2 Test Case 2: Downscaling and Testing with a different topology

This test case was performed to confirm both the system’s Downscal-
ing functionality when a topology that isn’t the base topology (T1) is
used and therefore also verify that it works when the other topology
options have been deployed. The tests run in this test case start with
Topology 3 (T3) with a number of users just above the number of
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users that caused the adaptation switch in the first test case as seen
in Figure 5.6 Test 1 load.

Test | Users | Requests(/s) | average response time | Result Topology

1 10 | 35 9o(ms) Adaptation | T2

2 15 | 50 130(ms) Adaptation | T3

8o | 130 383 (ms) Adaptation | T4

200 | 190 572(ms) Adaptation | T4

Table 5.3: Test case 2 run on the application.

The selections of the next topology to run from the above tests
for the next time window are selected based on the recommended
topology by the system as seen in Figure 5.6 below.

IRECOMMENDED TOPOLOGY!
dockersamples/examplevotingapp._f :before@sha256:i 83b56899ﬁe930c292565951B?'daBAddSSGBﬂ9d97cdb933720be15c757b7463 Containers: 1.0
Serv\ce redis:alpine@sha256:c993dd01624249e9c2b68e86dbf0710a97fb67e78a8d2712ef8ef9917813bd72 Containers: 1

postgres:9.4@sha256:b8391fd5{47258909df96cdc16f52704ceabed714a80e6f1a2445226¢58cd640 Containers: .0
Service: dockersamples/examplevotingapp_worker:latest@sha256:55753a7b7872d3e2ebAa7f146¢53899c41dcbe259d54e24b3da730b9achff50a1 Containers: 3.0
Service: dockersamples/examplevotingapp_vote:before@sha256:8e64b18b2c87de902f2b72321c89b4af4e2b942d76d0b772532ff27ec4c6ebfé Containers: 1.0

(a) Test 1

ECOMMENDED TOPOLOGY!
Service: dockersamples/examplevotingapp_result:before@sha256:83b568996e930c292a6ae51871da84dd6568a19d97cdb933720be15¢757b7463 Containers: 1.0
Service: postgres:9.4@sha256:7430585790921d82a56c4cbe62fdf50f03e00b89d39cbf881afa1ef82eefd61c Containers: 2.0
Service: redis:alpine@sha256:43e4d14fcffa05a5967¢353dd70615641130d6021725dd219f0c6fcbcc6b5076 Containers:
Service: dockersamples/examplevotingapp_worker:latest@sha266:55753a7b7872d3e2ebd7f146c53899¢4 1dcbe269d54e24b3da730bgacbff50a1 Containers: 4.0
Service: dockersamples/examplevotingapp_vote:before@sha256:8e64b18b2c87de9022b72321c89b4af4e2b942d76d0b7 72632ff27ecacBebf6 Containers: 2.0

(b) Test 3

CONTAINER ID NAME MEM USAGE / LIMIT
df842570e3c0 vote_result. 1.nb0tf@sZpgixmsIeb3sdnelby b 21.12MiB / 1.9526iB
elacb088cf51 Vote_vote.2.5z70zdkImt8sedmngxp3ap0v X 61.85MiB / 1.952GiB
c02a4d9ebeaf vote_vote. 1. esdso7tjsquBssdpcl137ncad , 61.92MiB / 1.952GiB
a769845dbf77 vote_db. 1. fbboolnyl3t3fnoz7usz0vghh : 15.76MiB / 1.952GiB
9cbea34lebdd Vote_redis.1.6izkmio9zod4tczflqgctpbaS 5 1.742MiB / 1.952GiB

/

/

/

/

cf576c740Ff6 vote_visualizer.1.kyx7cBuodprs92j2o83zbSjyg 0. 37.48MiB / 1.952GiB
c4257bced112 vote_worker. 1..var6gunbtr48og2jkbvvcksp8 . 81.31MiB / 1.952GiB
Sechc551c3cl vote_worker. 2. i3q2orwinrni6h2momb33t82m b 81.04MiB / 1.952GiB
b3F9d674c9d vote_worker. 3. k5fmo4qlLbb7Lrnvh@1valydtr 2 81.14MiB / 1.952GiB

(c) Test 1 load

CONTAINER ID NAME CPU % MEM USAGE / LIMIT
vote_visualizer.1.jpbndzl54ih9fcjpwi315vacm  0.00% 37.55MiB / 1.952GiB
vote_worker. 3.ykcczqci8uipsudylnrb9dov 68.72% 80.72MiB / 1.952GiB
vote_worker. 1. ebypye7a10j3mtrtgvscue6i3 69.70% 79.84MiB / 1.9526iB
vote_worker. 2. zplak18lpnfvbz70tsxpigeti 77.85% 81.42MiB / 1.952GiB

.9526GiB
.9526GiB
.9526GiB
.952GiB

vote_vote.1.pdjpis6lez8y7smonjghtvozu 3.19% 63.09MiB /
Vote_vote.2.yhvtudk8m2xvvomxSql413cts 0.02% 62.48MiB /
vote_db.1.urttjsdpcldshbeyus7qouvir 33.58% 15.55MiB /
2937e0ccdc01 Vote_redis. 1. 7osh4ribp@kzd8oh18q4dus95 21.41% 1.965MiB /

(d) Test 3 load

1
1
1
1
vote_result. 1.zngyrajv7tksw2jughuxqigdk 0.14% 21.79MiB / 1.9526iB
1
1
1
1

Figure 5.6: Recommended Topology output for Test Case 2



EVALUATION

The objective of this work was to design, develop, and test a system
supporting the lifecycle proposed in [4]. To evaluate the system de-
veloped, I shall present a checklist of requirements that were realised
in Chapter 3 and show the ones fulfilled by the system. Finally, I
shall present a case study application used to perform testing on the
system with a real world usable application. The application is more
significant in terms of the number of services available than in the test
application and therefore, it provides better testing value in relation
to a real world application.

6.1 SYSTEM REQUIREMENTS

In this section, I review the requirements realised by the developed

system using the tables below containing the requirement and whether
it was implemented into the system. The tests run in the 2 test cases

in Chapter 5 prove most of the functional requirements were fulfilled.
However, the requirements in the tables with an Xrepresent the re-
quirements that I was unable to implement into the system. Most

of these unimplemented requirements relate to the database, which

unfortunately was not implemented in the latest state of the system.
Some other requirements related to the sensor component were re-
alised for the implementation of a reactive solution. However, since

this is a predictive solution, these were not incorporated into the sys-
tem’s functionality.

System Functional Requirements

Requirements FR1 FR2 FR3 FR4 FRs5 FR6 FRy FR8 FRg9 FRio FRiz1

Realised v v 4 4 4 v v X v 4 v

Table 6.1: System Functional Requirements evaluation

System Non-Functional Requirements

Requirements NFR1 NFR2 NFR3 NFR4 NFRs5

Realised v v X X X

Table 6.2: System Non-Functional Requirements evaluation



6.2 CASE STUDY

Monitor Component Requirements

Requirements FR1.1 FR1i.2 FR1.3 FR1i4 FR1i5 FR1.6 FR1iy FR18

Realised v v v X v X X v

Table 6.3: Monitor Component Functional Requirements evaluation

Analysis Component Requirements

Requirements FR2.1 FR2.2 FR2.3 FR24 FR2;5 FR2.6 FR27 FR2.8 FR2.9 FR2.10 FR2.11 FR2.12

Realised v v v 4 v 4 v v v 4 X X

Table 6.4: Analysis Component Functional Requirements evaluation

Plan Component Requirements

Requirements FR3.1 FR3.2 FR3.3 FR3.4 FR35 FR3.6 FR3.7 FR3.8 FR3.9 FR3.10

Realised 4 v v '4 4 v v v 4 v

Table 6.5: Plan Component Functional Requirements evaluation

Execution Component Requirements

Requirements FR4.1 FR4.2 FR4.3 FR4.4 FR4.5 FR4.6 FR4.7 FR4.8 FR4.9 FR4.10 FRg.11
Realised v X 4 4 v v v X X v X

Table 6.6: Execution Component Functional Requirements evaluation

6.2 CASE STUDY

After the confirmation of the fulfilment of most of the important Func-
tional requirements of the system that make it do what it is meant to,
we perform a case study on the system using a larger application
with a lot more services than the simple application that was used
for testing.

The application used for this case study is a Sock shop application
from GitHub [35] by developed by Weaveworks [36]. The application
also fulfils the microservice architecture style requirement with ser-
vices like a shopping cart service, an orders service, a catalogue ser-
vice to mention but a few and provides the user side for an online
shop that sells socks with a total of 14 services working together to
complete the full functionality of the application. For this case study,
the application is set up with a base topology setup of 1 container pre
service and the locust load tester is used like in Chapter 5 to apply the
simulated load. The viable topologies are randomly generated by the
code in Listing 6.1, which uses the available service names from the
currently running topology, creates 6 new topologies, adds a random
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6.2 CASE STUDY

number of containers (1-5) to each of the services, assigns a random
number of Virtual machines to the topologies (1-3) with random sizes
and adds the topologies to the list of viable ones.

16
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41
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public void defineDynamicTopologies2() {

ArrayList<String> myservs = createServices();
Topology ti1 = DockerManager. getInstance () .
getCurrentTopology () ;
t1.setFilename ("Current Topology");
if (t1.getVMS().size() < 1) {

t1.addVM(new SmallVM () ) ;

t1.addVM(new SmallVM () ) ;

t1.setFilename ("Current Topology");
}
addTopology (t1);
Topology vtopz = new Topology("top1");
Topology vtop3 = new Topology("top2");
Topology vtop4 = new Topology("top3");
Topology vtops = new Topology("tops");
Topology vtop6 = new Topology("top5");
Topology vtopy = new Topology("top6");

addVMs(vtop2) ;

addVMs(vtop3) ;

addVMs(vtopg) ;

addVMs(vtops) ;

addVMs(vtop6) ;

addVMs(vtop7) ;

addServices (myservs, vtopz2);
addServices (myservs, vtop3);
addServices (myservs, vtop4);
addServices (myservs, vtops);
addServices (myservs, vtop6);
addServices (myservs, vtop7);
addTopology (vtop2) ;
addTopology (vtop3) ;
addTopology (vtop4) ;
addTopology (vtops) ;
addTopology (vtop6) ;
addTopology (vtop7) ;

void addServices (ArrayList<String> s, Topology t) {
int toprand = randomNumber(1, 3);
for (String str : s) {
if (toprand == 1) ({
t.addService(str , randomNumber(1, 3));
} else if (toprand == 2) ({
t.addService(str , randomNumber(2, 4));
} else {
t.addService(str , randomNumber(3, 5));
}
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Listing 6.1: Viable Topology definition code

The results of the tests run on the developed system managing
the test application’s resources are shown in Table 6.7 below. The
system results of the first test run on the application are shown in the
images that follow the table and the results of the rest of the tests can
be found in the appendix. For all the rests run below, the window
between the data analysis performed was set to 2 minutes.

Figure 6.1 bbelow shows the state of the application before any
load is applied to it using the locust load tester.

CONTAINER ID NAME MEM USAGE / LIMIT
547e81bc2de8 docker-compose_carts_1 297.4MiB / 1.952GiB
dd9b46590333 docker-compose_front-end_1 s 41.2MiB / 1.952GiB
a3f56c761899 docker-compose_user-db_1 17.25MiB .952GiB
016992263d37 docker-compose_queue-master_1 340.4MiB .952GiB
e6a2db@f8085 docker-compose_shipping_1 b 279.3MiB .952GiB
596ebaf2e237 docker-compose_rabbitmqg_1 47.77MiB .952GiB
£0d2204688dd docker-compose_carts-db_1 29.52MiB .952GiB
.952GiB
.952GiB
.952GiB

de52290a3b81 docker-compose_edge-router_1 9.957MiB
48e84ee51a69 docker-compose_orders-db_1 30.64MiB
9d697e4dac40 docker-compose_orders_1 295.4MiB
9b750f3f126¢ docker-compose_catalogue_1 2.84MiB / 1.952GiB
eaed5a9cbf58 docker-compose_catalogue-db_1 164.1MiB / 1.952GiB
e2e8335cbbb8 docker-compose_payment_1 . 2.152MiB / 1.952GiB
59fe837f93e6 docker-compose_user_1 b 4.785MiB / 1.952GiB

NNNNNNNN
PRREPRRPRRRPR

Figure 6.1: Weave Sock shop application before load is applied to the appli-

cation.
Test | Users | Requests(/s) | average response time | Result Topology
1 15 | 70 34(ms) Adaptation | Topology 2
2 40 | 210 140 (ms) Adaptation | Topologys, 2Medium VMs
3 300 | 220 1196(ms) Adaptation | N/A

Table 6.7: Test case 2 run on the application.

After running a number of tests on this application, I present the
results of one of the tests below, which was run with the lower load
as seen in the table above. Because one of the services required more
than one container to function optimally, an adaptation was requested.
The number of containers required for the services to function opti-
mally in the next time window using the workload predicted by the
system is presented in Figure 6.2.
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CONTAINER ID
547e81bc2de8
dd9b46590333
a3f56c761899
016992263d37
€6a2db0f8085
596ebaf2e237
f0d2204688dd
de52290a3b81
48e84ee51a69
9d697e4dac49
9b750f3f126¢
eaed5a9cbf58
e2e8335cbbb8
59fe837f93e6

NAME

docker-compose_carts_1
docker-compose_front-end_1
docker-compose_user-db_1
docker-compose_queue-master_1
docker-compose_shipping_1
docker-compose_rabbitmq_1
docker-compose_carts-db_1
docker-compose_edge-router_1
docker-compose_orders-db_1
docker-compose_orders_1
docker-compose_catalogue_1
docker-compose_catalogue-db_1
docker-compose_payment_1
docker-compose_user_1

6.2 CASE STUDY

MEM USAGE / LIMIT

278.2MiB / 1.952GiB
73.31MiB / 1.952GiB
11.14MiB / 1.952GiB
335.5MiB / 1.952GiB
285.8MiB / 1.952GiB
36.45MiB / 1.952GiB
34.42MiB / 1.952GiB
8.629MiB / 1.952GiB
33.14MiB / 1.952GiB
309.9MiB / 1.952GiB
6.074MiB / 1.952GiB
94.06MiB / 1.952GiB
5.512MiB / 1.952GiB
7.414MiB / 1.952GiB
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(a) Load Snapshot

Service: weaveworksdemos/user-db:0.4.0 Containers: 1.0
Service: weaveworksdemos/edge-router:0.1.1 Containers: 1.0
Service: weaveworksdemos/catalogue-db:0.3.0 Containers: 1.0
Service: weaveworksdemos/user:0.4.4 Containers: 1.0

Service: weaveworksdemos/front-end:0.3.12 Containers: 2.0
Service: weaveworksdemos/shipping:0.4.8 Containers: 1.0

Service: weaveworksdemos/catalogue:0.3.5 Containers: 1.0
Service: weaveworksdemos/orders:0.4.7 Containers: 1.0
Service: weaveworksdemos/carts:0.4.8 Containers: 1.0

Service: weaveworksdemos/queue-master:0.3.1 Containers: 1.0
Service: mongo:3.4 Containers: 1.0

Service: weaveworksdemos/payment:0.4.3 Containers: 1.0
Service: rabbitmq:3.6.8 Containers: 1.0

(b) Recommended Topology outlay

Figure 6.2: Analysis done in test T1 on the Cases Study application.

Figure 6.2 shows the topology recommended by the system in
terms of service to container count alongside a snapshot of the re-
source usage at the load mentioned in Table 6.7. These results are
derived from the analysis of the monitored data and a prediction of
the average load of the system for the next time window, which then
is used to estimate the optimal number of containers for the system
in the upcoming time window.
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top3 | 22| 7.489
Service: weaveworksdemos/user-db:0.4.0 Containers: 2.0

Service: weaveworksdemos/edge-router:0.1.1 Containers: 2.0
Service: weaveworksdemos/catalogue-db:0.3.0 Containers: 3.0
Service: weaveworksdemos/user:0.4.4 Containers: 2.0

Service: weaveworksdemos/front-end:0.3.12 Containers: 2.0
Service: weaveworksdemos/shipping:0.4.8 Containers: 2.0
Service: weaveworksdemos/catalogue:0.3.5 Containers: 3.0
Service: weaveworksdemos/orders:0.4.7 Containers: 3.0
Service: weaveworksdemos/carts:0.4.8 Containers: 2.0
Service: weaveworksdemos/queue-master:0.3.1 Containers: 2.0
Service: mongo:3.4 Containers: 3.0

Service: weaveworksdemos/payment:0.4.3 Containers: 2.0
Service: rabbitmq:3.6.8 Containers: 3.0

top2 | 22 | 5.069
Service: weaveworksdemos/user-db:0.4.0 Containers: 3.0

Service: weaveworksdemos/edge-router:0.1.1 Containers: 2.0
Service: weaveworksdemos/catalogue-db:0.3.0 Containers: 3.0
Service: weaveworksdemos/user:0.4.4 Containers: 3.0

Service: weaveworksdemos/front-end:0.3.12 Containers: 2.0
Service: weaveworksdemos/shipping:0.4.8 Containers: 2.0
Service: weaveworksdemos/catalogue:0.3.5 Containers: 2.0
Service: weaveworksdemos/orders:0.4.7 Containers: 2.0
Service: weaveworksdemos/carts:0.4.8 Containers: 2.0

Service: weaveworksdemos/queue-master:0.3.1 Containers: 2.0

Service: mongo:3.4 Containers: 2.0

Service: weaveworksdemos/payment:0.4.3 Containers: 3.0

Service: rabbitmq:3.6.8 Containers: 3.0

Figure 6.3: The best options among the topology options available

After the containers have been suggested, and a current system
state is created, the Planner is notified and it makes a list of the
topologies which best suit the recommended topology by assigning
them scores as seen in Figure 6.3 where the topology is stated and the
score next to it. Additionally, the topologies containing a service with
a number of instances/ containers less than what is recommended is
eliminated from the selection and therefore, no price analysis is done
on that topology.



6.2 CASE STUDY

Service: weaveworksdemos/user-db:0.4.0 | Containers = 3.0
Service: weaveworksdemos/edge-router:0.1.1 | Containers = 2.0
Service: weaveworksdemos/catalogue-db:0.3.0 | Containers = 3.0
Service: weaveworksdemos/user:0.4.4 | Containers = 3.0

Service: weaveworksdemos/front-end:0.3.12 | Containers = 2.0
Service: weaveworksdemos/shipping:0.4.8 | Containers = 2.0
Service: weaveworksdemos/catalogue:0.3.5 | Containers = 2.0
Service: weaveworksdemos/orders:0.4.7 | Containers = 2.0
Service: weaveworksdemos/carts:0.4.8 | Containers = 2.0
Service: weaveworksdemos/queue-master:0.3.1 | Containers = 2.0
Service: mongo:3.4 | Containers = 2.0

Service: weaveworksdemos/payment:0.4.3 | Containers = 3.0

Service: rabbitmq:3.6.8 | Containers = 3.0

Topology to be deployed
Topology top2 | Virtual machines = 1 | Price($) =5.069

Figure 6.4: The topology selected by a combination of points and a low price

Some times, there might be only one topology option available
however, this time there were 2 with the same score but so, the tie
breaker in this case was the cost of the topology. There are other cases
where the a number of topologies are available with lower scores but,
as usual, the cost of the topology is usually the last barrier for a topol-
ogy to cross before being selected by the system.

6.2.1  Cost analysis discussion.

Scenario 1:

When launching an application, one cannot be certain of the way the
application’s usage will turn out in terms of how much load it will
have to deal with and therefore the application owner(s) can end up
paying for extra resources and stick with them until it’s absolutely
necessary for them to scale up because of growth in traffic. However,
the resources constantly being paid for aren’t going to be utilised
optimally and even if there are autoscalers available, they might only
help with the performance of the application and not with how much
the application owner pays for these resources.

With the definition of different topologies, and the use of a system
like the one developed in this project, an application owner can gain
some advantage. By the collection of the data from previous resource
usage, the system can make predictions and estimate the resources
the application will need at certain times in order to function opti-
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mally and therefore, reduce the cost to the owner both in terms of the
resources paid for since they won’t have to pay for unused resources
and in the way of keeping the application performing optimally by
adding resources when it is predicted to bye necessary.
Test 3 shown in Table 6.7 shows a situation where no topology suits
the one recommended by the system as seen in Figure 6.5.

Current Topology Is a bad option

op1 Is a bad option

op2 Is a bad option
op3 Is a bad option

op4 Is a bad option
op5 Is a bad option
op6 Is a bad option
List of options

Figure 6.5: All available topologies labelled as bad topologies hence, no op-
tions.

Given that no topology switch was requested, the application ser-
vice instances started to run out of resources. The simulated rise in
the number of users and requests was gradual and not sudden as
seen in Figure 6.6 so, the developed system caught this trend and
predicted that the current topology was not suitable for the next time
window. However, because there was no suitable topology among the
viable topology options defined, we ended up in a situation that an
application owner would probably be in without the developed sys-
tem to change to a different topology.

The Sock shop application is meant to be a stand in for an e-commerce
website where a user can browse and possibly in the end buy some
socks.

However, after applying the load on the system, the site became inac-
cessible, whereby trying to access the home page took over 2 minutes
and given that the tolerable wait time for a Web user is 2 seconds ac-
cording to [28], the typical user would have already moved on, lead-
ing to a loss of revenue by the application owner. Such high usage
situations on such a Web application may occur during times of prod-
uct promotions or even the launch of new products and it would be
advantageous to have such a system in place to predict and automat-
ically make the adjustments needed in time to prevent a loss in rev-
enue at such an important time. A case may be argued claiming that
one could just scale up at the time of the increased traffic. However,
the resources needed to cover this usage increase could also come at
a higher price than they would have originally paid before the situa-
tion occurred.
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Average Response Time

Number of Users

Figure 6.6: Locust charts showing the change of number of users and aver-
age response times.

In Figure 6.7 below, we notice a significant number of failed re-
quests from some of the more important services like the catalogue,
and orders mainly. These are 2 services that the web application
would get most of its worth from given that the users have to see
the products they are buying and then be able to actually purchase
the products. Having these 2 services down would basically mean
that the web application built and deployed to make money is not
performing its role and therefore making it worthless in this state.

Statistics  Charts  Failures Exceptions Download Data

Median Average [

Name e
requests (ms) ms)  (m

'5”) Max (ms) Content Size # regs/sec
6755 620 1021 8 35687 8688 202
6724 690 1063 € 23020
6715 850 1148
6420 295 1200 1426
6752 720 4 9 2795
640 8 1518
Idetail htmi?id=03fef6ac-1896-4ce8-bd69-b798185c6e0b 75 670 10364

Idetail.tm?id: 200e1502085D 39 630 998 8 10364

670 9 3666 10364

Idetail.htm?ic

[detail.htm?id:

[detail.htmi?ic 0446aec7e
[detail.htm?id: adBe-49df-bbd7-3167f7efb246

Idetail.htm?ic 44-b040-410d-Bead-4de0446aecTe

flogin

Jorders 5694

Total 59306

Figure 6.7: Table of Locust statistics while running a stress test on the Case
study application.

Scenario 2:

Given that the situation from scenario 1 occurs, one may decide to
make use of the more expensive/ safer options in order to make sure

48



63 SYSTEM LIMITATIONS.

to avoid ending up in that situation. For example, if we take a look at
the pricing options of Amazon Web services including; On-demand,
Reserved, Spot pricing and Dedicated Hosts. The On-demand option
having a price disadvantage over the rest. Le: spot (9o percent off On-
demand) , reserved (up to 75 percent off On-demand) and dedicated
hosts (up to 70 percent off On-demand) all having an advantage over
On-demand [3]. It is clear that no matter how much that unfortunate
scenario may have cost the application owner in a short run, the use
of options like reserved instances from amazon web service in a long
run without any assurances that the situation will occur again, can
end up costing the owner a lot more. That is to say, the web appli-
cation might have lost a number of the reoccurring users so, the few
that remain may not bring the the usage experienced in the first sce-
nario and so, it might be a while before that occurs again. Therefore
in conclusion, a system like the one developed in this project would
provide the application owner some security knowing that his appli-
cation is running optimally and he is paying for the optimal amount
of resources required for his application.

63 SYSTEM LIMITATIONS.

This system has been developed to with respect to the solution dis-
cussed in [4]. However, in its current state, it faces some limitations,
which could impede its functionalities and these include:

1- The current inability to work on multiple Virtual Machines:

The sensors deployed on the different containers for a service may
face difficulty in terms of communication if a web application’s ser-
vice is deployed in multiple virtual machine instances. This is because
the system in its current state has no way of communication across
different virtual machine instances.

2- No viable topology problem.

In its current state, the system has no solution to the lack of a vi-
able topology in case they are all unsuitable for the load coming in
the next time window. At the moment, the system will just continue
to run and perform another analysis and in essence rerun the MAPE
loop without it having previously redistributed the application.

3- Single application running in a virtual machine.
In the current state of the system, there can only be a single appli-

cation’s services running in the virtual machine instances. That is to
say, if there is more than one application running on a single virtual
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machine, the system will consider all the containers on the virtual
machine as part of the same application and therefore lead to errors
while performing any analysis.

4- Container upscale restriction.

In the current implementation of the system, the maximum number
of containers that can be recommended has been set to 5 per service.
This restriction was put due to the limitations the computer I was
running the testing on given the fact that it struggled to run a topol-
ogy style where there were more than 20 containers deployed for the
application. This restriction can therefore result in the occurrence of
limitation 2 above.

5- Pricing model.

The pricing model defined in the system for the Virtual Machines
is currently implemented in a static manner and therefore, a change
in the prices of the virtual machine services by the service provider
would lead to inaccurate results from the system.

6- Execution component.

While the execution component class is defined and has some of
its methods implemented, it is currently disconnected from the Plan
component. Therefore, the redeployment of the application in a new
topology is not currently performed by the system and was done
manually during the testing of the system.
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CONCLUSION

7.1 SUMMARY AND DISCUSSION

At the start of this project, we set out to develop a system in rela-
tion to the application topology lifecycle discussed in [4]. The role
of this system was to fulfil part of this lifecycle including the discov-
ery of the services of an application managed by the system, retrieve
viable topologies for the application, monitor and analyse the applica-
tion’s resource usage in the topology currently deployed and finally
to redeploy the application in an alternative topology if necessary by
selecting the most reasonable option after considering the topology’s
suitability for the situation and the cost of the topology compared to
the other options. To perform this automation strategy, we set out to
use the MAPE-K strategy as presented in the application lifecycle and
this involved the monitoring of the statistics through the Docker API
of the docker containers forming the application’s services. Then an
analysis of these statistics are performed where by the use of regres-
sion, a prediction is performed and then by the use of fuzzy logic,
the number of containers suitable for a service’s predicted usage is
retrieved. Finally, by the aggregation of these analysis results, a plan
is formed for what topology should be used in the next redeployment
of the application.

Upon completion of the implementation of the main functionality of
the system, we then first tested it on a small microservice style voting
application, which consisted of 5 services and presented the results of
these tests. Finally, a case study was performed on an e-commerce ap-
plication called the sock shop application, which was much more sig-
nificant in size, that is it consisted of 14 services and also made use of
the microservice architecture style. The results of the case study were
also presented and therefore finalising with a review of the system’s
limitations.

The system however, also has some unresolved issues that came
up during its design and development. One of these issues was re-
acting to the recorded metric data falling outside the service level
agreements. However, the solution selected to be done was a predic-
tive solution due to the fact that not only one part of the managed
application is affected by the change in topology so, the time window
required for a reactive solution might be too small when compared
to the time needed for the redeployment the whole system.

The Implementation of a knowledge base was another part of the
system left out. However, this didn’t affect the system in its current
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state too adversely. This is because the knowledge base would be
more of a necessity when the system requires to store hours or days of
metric data in order to perform an analysis on that data. Additionally,
the knowledge base would also come in handy when there is the need
to store more topologies and in the case of this project, this was not a
major necessity as the aim was to implement the initial functionality
of the system.

7.2 FUTURE WORK

In the field of cloud computing, the proposed life cycle of a cloud-
based application [4] in the form of a system could prove to be a
very useful tool. Therefore, the extension of the system developed
for this project to fulfil the remaining set of MAPE-K loops hence,
giving the system the ability to generate and test topologies until it
finds the optimum solution for the given situation could prove to be
useful both on an enterprise level and research level. Additionally, the
complete system would also be able to work in conjunction with an
IDE to be developed in the manner discussed by the MODAClouds
approach [6] to help in the validation of the proposed lifecycle.
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Figure A.1: Full system components
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