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A B S T R A C T

The last years as more and more reliable cancer data sets become
available and more researchers work on them, the way that a drug is
produced is changing. Knowledge about the mechanisms of a disease
can be acquired from those data sets. Based on a resent analysis of
gene expression data which addressed the prediction of recurrence
risk in patients with clear cell Renal Cell Carci-noma, we study in
more detail the classification problem, whether a sample is healthy or
unhealthy. Using a GMLVQ classifier we observe that even a simple
classifier trained by a significant small number of random genes can
achieve great results in respect of performance. At the end we show
that, even the information to classify a sample as healthy or unhealthy
is spread on many genes, still there is a level of significance between
the genes.





We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [3]
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A C R O N Y M S

GMLVQ General Matrix Learning Vector Quantization

TCGA The Cancer Genome Atlas

ccRCC clear cell Renal Cell Carcinoma

LVQ Learning Vector Quantization

NPC Nearest Prototype Classification

GLVQ Generalized Learning Vector Quantization

AUC Area Under the Curve

lasso least absolute shrinkage and selection operator



1
I N T R O D U C T I O N

The recent years large cancer data sets became available to the public.
These data sets started changing the clinical care, as the sufficient data
mining tools, used by scientists across the globe were able to extract
valuable information.

Usually, gene expression and other significant data were available
only on noisy unreliable platforms and only for small number of sam-
ples. Hence, results noticed from these platforms were not reliable,
usually incomparable, and often not reproducible. As a result of this,
those results are not taken into account to change clinical practices.

However, public data sets such as data sets included in The Cancer
Genome Atlas (TCGA) repository [2], became available. This data sets
include accurate sequence, expression and clinical data on a variety
of cancers and this is transforming the way the drugs are discovered.
Using these data sets, researchers will be first able to find patterns
which can be applied to create a sufficient hypotheses about disease
mechanisms. This way knowledge can be generated before the in-
volvement of the laboratory, while at the same time laboratory tests
will be more purposeful, since there will be priory knowledge.

A recent analysis of gene expression data addressed the predic-
tion of recurrence risk in patients with clear cell Renal Cell Carci-
noma (ccRCC) [5]. This study focused on the data available for tumor
samples. An additional, preliminary analysis of tumor samples vs.
matched healthy control samples showed the surprising result that
a relatively simple classifier achieves nearly perfect separation of the
two classes when applied to a randomly selected subset of, e.g., 80

genes (out of the 20532 genes in the dataset). While this result seems
favorable in view of reliable diagnosis of ccRCC, the finding that ran-
dom subsets of genes are discriminative complicate the search for
genes that are relevant for disease mechanism (and not just correlated
with its presence).

In this project, a more detailed study of the classification problem
"normal cells vs. tumor samples" is to be performed. Generalized Ma-
trix Relevance Learning Vector Quantization (GMLVQ) [7] as a clas-
sification will serve as an example classifier in order to address the
following research questions:

How does the classification accuracy (error rates, AUC of ROC char-
acteristics etc.) depend on the size of the randomly selected subset of
genes? Can a characteristic size of the subset be determined below
which the accuracy deteriorates?
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b) In each of the randomly generated subsets, relevance learning
can be used to identify the genes in the subset which are highly pre-
dictive for the disease status. By performing the training process on
a large number of randomized gene panels, can we identify a reason-
ably small panel of most relevant genes?



2
D ATA A N D M E T H O D S

2.1 data

We used a part of clear cell Renal Cell Carcinoma (ccRCC) data set
from the TCGA [2] repository which contains accurate sequence and
expression of genes. We used this data set to develop and test our
methods that were implemented. In this data set an expression for
20532 genes for 130 patients is included, where half of the patients
are healthy and half of them are not.

As we mentioned before, we tried to find a small subset of the
20532 genes that are significant on classifying whether a patient is
sick or not. For classification tool we used a General Matrix Learning
Vector Quantization (GMLVQ) [7] classifier that we trained it each time
with a subset of genes. At the next section we firstly introduce the
simple Learning Vector Quantization (LVQ) and then we introduce
the GMLVQ.

2.2 learning vector quantization

Kohonen in [4] introduces the supervised classification method LVQ.
Until today the method is widely used and a variety of modifications
of Kohonen’s algorithm have been proposed. The resulted classifier of
this method consists of labeled prototypes which represent the set of
classes, and a distance measure. The prototypes lie at the same space
as the input data and the distance metric can vary between many
different such as: Euclidean, city block etc, according to the needs
of the designer. To classify a new sample that its label is unknown,
the classifier uses a Nearest Prototype Classification (NPC), where the
sample is labeled with the same label as the closest prototype has
(winner-takes-all decision).

LVQ algorithms are used to determine the points where each pro-
totype lies. To decide on these points a training process takes place
and is based on a set of known samples X = {(ξi, yi)|Rn× {1, ..., C}},
called the training set, where Rn is the input data space and {1, ..., C}
is the set of classes.

In every iteration a random sample (ξ, y) (where y is the class of
the sample) of the training set is chosen and the prototype that has
the minimum distance from this sample is updated. If the winning
prototype has the same label with the sample then it will move closer
to the sample, if not it will drift away. The update is done according
to:
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wL = wL + α(ξ − wL), i f (c(wL) = y), (2.1)

wL = wL − α(ξ − wL), i f (c(wL) 6= y), (2.2)

where α is the well-known learning rate.

2.2.1 Generalized LVQ

Generalized Learning Vector Quantization (GLVQ) was proposed by
Sato and Yamada [6]. This algorithm is a modification of LVQ which
is based on an heuristic cost function. Assume that wk and wJ are the
prototypes with the minimum distance from the sample (ξ, y), and
c(wJ) = y and c(wK) 6= y. Then the GLVQ cost function has the form:

EGLVQ =
P

∑
i=1

H(µi), where µi =
dJ(ξi)− dK(ξi)

dJ(ξi) + dK(ξi)
, (2.3)

where dJ(ξi) and dK(ξi) are the distances between the sample and
the correct and incorrect prototype respectively. and factor µ is the
relative difference distance. H is a monotonically increasing function
and the goal of the training procedure is to minimize EGLVQ according
to the model’s parameters. In each time step the closest prototype
that has the same label with the training sample moves towards the
sample and the closest prototype that does not have the same label
moves away from the sample.

2.2.2 Matrix Learning LVQ

The most common LVQ methods are preferred due to their robust-
ness. These methods, although suffer from the "curse" of dimension-
ality. At high dimensional space distance becomes more and more
meaningless and the isotropic clusters that we assume exist in Eu-
clidean space lose their meaning and they become more and more
vague [7]. Because our goal is to use a classifier on high dimensional
data of 20532 genes a more general metric tool would be more useful.

2.2.2.1 Advanced distance measure

A more generalized distance measure has the form:

dΛ(ξ, w) = (ξ − w)TΛ(ξ − w), (2.4)

where Λ is square matrix that can carry information about corre-
lations between features. The above mentioned similarity measure
defines a squared Euclidean distance if and only if is symmetric and
positive definite. If this is the case then Equation 2.4 can be written
as:



2.2 learning vector quantization 5

dΛ(ξ, w) = [(ξ − w)TΩT][Ω(ξ − w)] = [Ω(ξ − w)]2, (2.5)

Finally the method we used is the GMLVQ method that uses this
metric measure.

2.2.2.2 Generalized Matrix Learning Vector Quantization

In order to extend the GLVQ to the GMLVQ we simple replace the
distance in Equation 2.3 by the distance mentioned in Equation 2.4,
hence,

EGMLVQ =
P

∑
i=1

H(µΛ
i ), where µΛ

i =
dΛ

J (ξi)− dΛ
K (ξi)

dΛ
J (ξi) + dΛ

K (ξi)
,

(2.6)

where dΛ
J (ξi) and dΛ

K (ξi) are the distances between the sample and
the correct and incorrect prototype respectively. To form the updates
of the GMLVQ we calculate the derivatives of Equation 2.6 in respect
with wK, wJ , and Ωlm. We can observe the derivatives at the following
equations:

∆wJ = α1 · H′(µΛ(ξ)) · µΛ(ξ) ·Λ · (ξ − wJ), (2.7)

∆wK = α1 · H′(µΛ(ξ)) · µΛ(ξ) ·Λ · (ξ − wK), (2.8)

∆Ωlm = α2 · H′(µΛ(ξ)) · [µΛ
J (ξ) · ((ξm − wJm)(Ω(ξ − wJ))l

−µΛ
K (ξ) · ((ξm − wJm)(Ω(ξ − wK))l].

(2.9)

These updates are the standard Herb terms, where the closest proto-
type with the same label as the sample is pulled closer to the sample
and the closest prototype that does not have the same label is pushed
away from the sample.
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A P P L I C AT I O N S A N D C A S E S T U D I E S

In order to test how the classification accuracy varies on different set
magnitudes we used a GMLVQ classifier. And we tested its perfor-
mance on different set sizes.

Because there are 20532 genes there is a very big number of unique
sets of each magnitude we wanted to test, so we run 200 times 10-fold
cross validation each time on a random set (subset of 20532 genes) of
the specific magnitude that we test each time. So in order to check the
performance of sets that are consisted of 20 genes we run 200 times
10-fold cross validation each time on a random subset of magnitude
20 and at the end we calculate the average performance using the
Area Under the Curve (AUC).

3.1 auc performances

We experimented on 4 different descending set sizes, 80, 20, 12, 5, to
check when the performance of the classification becomes low and
unstable. The performance for each different set size is described be-
low.

3.1.1 Random sets of size 80

We run the 10-fold cross validation for 200 random sets of magni-
tude 80. The average AUC of this run is calculated 0.9926, while the
standard deviation of the AUCs is 0.0046 and the interquartile range
equals 0.0055. In Figure 3.1 we can observe the histogram of the run.

One can notice that the performance is pretty high for every ran-
dom set in fact none of the sets performed lower than 98%. This is a
very stable performance too.

3.1.2 Random sets of size 20

At next we run the 10-fold cross validation for 200 random sets of
magnitude 20. The average AUC of this run is 0.9696, while the
standard deviation of the performance calculated 0.0165 and the in-
terquartile range equals to 0.0262. In Figure 3.2 we can observe the
histogram of the run.

In this experiment the performance is still significantly high and it
is stable too, since none of the sets performances dropped down 92%.
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Figure 3.1: Histogram of AUC for 200 hundred random sets of size 80

Figure 3.2: Histogram of AUC for 200 hundred random sets of size 20

3.1.3 Random sets of size 12

To continue with the search of a break point in performances and
stability we experiment on 200 random sets of size 12. The average
performance of this run is 0.9691, while the standard deviation of the
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performance is 0.207 and the interquartile range calculated 0.0286. In
Figure 3.3 we can observe the histogram of the run.

Figure 3.3: Histogram of AUC for 200 hundred random sets of size 12

Again the average performance remains very high and at the same
time stable but at this point there is a decrease in stability. For the
first time we observe that some performances dropped down from
90% (85%).

3.1.4 Random sets of size 5

Again we run a cross validation for 200 random sets but this time
of magnitude 5. The performance of this run is estimated to 0.9321,
while the standard deviation of the individual performances is 0.0634

and the interquartile range equals to 0, 0639. In Figure 3.4 we can
observe the histogram of the run.

The average performance of this case study is still very high as
the previous ones. We can observe though that there are some perfor-
mances were the AUC dropped down 60%. In fact a random set of
magnitude 5 can not be marked as stable and reliable.

3.2 seeking for significant genes

In the previous section we observed that a rather simple GMLVQ clas-
sifier trained on random sets of genes size 80, 20, 12, 5 is able to solve
our classification problem with high percentage of succession. This
means that the information whether a person is sick or not is spread
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Figure 3.4: Histogram of AUC for 200 hundred random sets of size 5

across the genes. However some subsets of magnitude 5 performed
really worse than others and this probably means that even if the
information is spread, still is not equally spread.

3.2.1 T-test

In order to find significant differences between the healthy and un-
healthy samples, so our classifier can be trained better, we apply a
t-test. Then we train the classifier with the "best" and "worst" genes
as classified by the t-test.

3.2.2 Performances of set size 5

At first the t-test is applied to find the 5 "best" and 5 "worst" genes.

3.2.2.1 The best 5

We train the classifier on the 5 best genes and the AUC is observed in
Figure 3.5. As we can see the AUC calculated equal to 0.99868 which
represents a perfect performance.

In addition in Figure 3.6 we can observe useful information about
the prototypes of the two different classes and information about the
relevance matrix of the GMLVQ.

We can see that the features of the prototypes of the two classes are
almost identical negative to each other. This seems the reason that the
classification is nearly perfect.
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Figure 3.5: AUC when the classifier trained over the best 5 genes

Figure 3.6: Information about prototypes and relevance matrix, when the
classifier trained over the best 5 genes

3.2.2.2 The worst 5

We train the classifier on the 5 best genes and the AUC is observed in
Figure 3.5. As we can see the AUC calculated equal to 0.51886 which
represents a perfect performance.
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Figure 3.7: AUC when the classifier trained over the worst 5 genes

In addition in Figure 3.8 we can observe useful information about
the prototypes of the two different classes and information about the
relevance matrix of the GMLVQ.

We can see these time that there are no trivia differences between
the features of the prototypes of the two classes.

3.2.3 Performances of set size 80

At next we train the classifier with the best 80 and then with the worst
80 genes.

3.2.3.1 The best 80

We train the classifier on the 80 best genes and the AUC is observed in
Figure 3.9. As we can see the AUC calculated equal to 0.99193 which
represents a perfect performance.

In addition in Figure 3.10 we can observe useful information about
the prototypes of the two different classes and information about the
relevance matrix of the GMLVQ.

We can see again here that the features of the prototypes of the two
classes are almost identical negative to each other. This explains the
perfect classification.
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Figure 3.8: Information about prototypes and relevance matrix, when the
classifier trained over the worst 5 genes

Figure 3.9: AUC when the classifier trained over the best 80 genes

3.2.3.2 The worst 80

We train the classifier on the 80 best genes and the AUC is observed
in Figure 3.11. As we can see the AUC calculated equal to 0.53265
which represents a perfect performance.
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Figure 3.10: Information about prototypes and relevance matrix, when the
classifier trained over the best 80 genes

Figure 3.11: AUC when the classifier trained over the worst 80 genes
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In addition in Figure 3.12 we can observe useful information about
the prototypes of the two different classes and information about the
relevance matrix of the GMLVQ.

Figure 3.12: Information about prototypes and relevance matrix, when the
classifier trained over the worst 80 genes

We can see these time that there are no trivia differences between
the features of the prototypes of the two classes.
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S U M M A RY A N D C O N C L U S I O N

For this project we tried to study more detailed on the classification
problem "normal cells vs. tumor" using a data set of TCGA repository.
A GMLVQ classifier used to perform our experiments. We observed
that even when the classifier trained on random sets of 5 genes was
able to distinguish with high performance a healthy and an unhealthy
person.

For this reason we conclude that the information whether someone
is healthy or unhealthy is spread among the genes. However, when
the classifier trained on some random 5 genes its performance was
close to random. Hence, we thought that probably the information
maybe is spread among a big number of genes but not all.

Thus, we applied a t-test on the dataset and trained the classifier
with the best 5 genes that the test resulted and the worst 5. The per-
formance of the best 5 genes was perfect while the performance of
the worst was the random performance. The exact same happened
when we tested the best 80 and worst 80 respectively.

Therefore, even if the information is spread among many genes
there is still a level of significance.

4.1 further research

Further research could be done on this level of significance. Other
methods of feature selection can be used to determine significant
genes and maybe will result to a different selection. Methods such as
least absolute shrinkage and selection operator (lasso) [8] and boosting
[1].
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