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2 Scala Library for guarding assertions in Spark Pipelines

1 Project Description

The main scope of this project is to design and deploy a Scala Library for guarding
assertions in Spark Pipelines. A Spark Pipeline is defined as a sequence of stages, and
each stage is either a Transformer or an Estimator. A Transformer is an abstraction
that includes feature transformers and learned models. Technically, a Transformer
implements a method transform(), which converts one DataFrame into another,
generally by appending one or more columns[2]. An Estimator abstracts the concept
of a learning algorithm or any algorithm that fits or trains on data. Technically, an
Estimator implements a method fit(), which accepts a DataFrame and produces
a Model, which is a Transformer[2]. These stages are run in order and the input
Dataframe is transformed as it passes through each stage.

The main idea of the Project is that the user using the aforementioned Library would
be able to check if the assertions that he or she is interested about are valid or not.
The library would take as input a Dataframe which comes from previous stages of
Spark Pipelines, will examine if the assertions are valid or not. If they are valid it
will return the Dataframe that took as input in order to continue to the next Stages.
If the assertion is not valid then it will throw an exception, reporting the error.

2 Problem Solution

For our implementation of the library we used the Scala programming language
because it is the most suitable with Spark. One of the features the Scala language
provides us with is the concept of implicit classes. By using implicit class we make
the class primary constructor available for implicit conversions when the class is in
scope. An implicit class named DataFrameassertions was defined inside an object
named implicit. Inside the class we defined a number of building blocks and each
of these checks for different kind of assertions. These assertions are:

1. At most n entries which satisfy the expression given by the user.

2. At least n entries which satisfy the expression given by the user.

3. The mean value of a Dataframe column belongs to a range of values that the
User provides.

4. The standard deviation of a Dataframe column belongs to a range of values
that the User provides.
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5. The covariance between two Dataframe columns belongs to a range of values
that the User provides.

6. The correlation between two Dataframe columns belongs to a range of values
that the User provides.

A dataset containing 3229 records was used in order to check the building blocks
that our Library contains and evaluate the results we get. The building blocks are
the following:

1. at_most: The goal of this building block is to examine if there are at most
n records in a Dataframe which satisfy an expression given by the user. This
building block takes as inputs an Integer n and an expression which is of type
String and returns a Dataframe. The Datframe is being filtered with the ex-
pression given by the user and counts the number of entries which satisfy the
expression. The number of counts is stored in a variable named count. If we
count more than n occurrences in the resulting Dataframe, we throw an excep-
tion, otherwise a success message is printed. The code of the implementation
is shown in Listing 1:

1 def at_most( n : Int , expression : String) : DataFrame = {

2 val count = df.filter(expression).count

3 if(count > n) {

4 throw new Exception(s"Assertion error found , count found")

5 }

6 println(s"Success , count found" )

7 return df

8 }

Listing 1: Scala Method

2. at_least: The goal of this building block is to examine if there are at least
n records in a Dataframe which satisffy an expression given by the user. This
building block is almost similar with to previous one and the only thing that
is chaneged is the if statement. The Datframe is being filtered with the ex-
pression given by the user and counts the number of entries which satisfy the
expression. The number of counts is stored in a variable named count. If we
count less than n occurrences in the resulting Dataframe, we throw an excep-
tion, otherwise a success message is printed. The code of the implementation
is shown in Listing 2:

1 def at_least(n : Int , expression : String) : DataFrame = {

2 val count = df.filter(expression).count

3 if(count < n) {

4 throw new Exception(s"Assertion error found , count found")

5 }

6 println(s"Success , count found" )

7 return df

8 }
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Listing 2: Scala Method

3. mean_s: The goal of this building block is to examine if the mean of a
Dataframe column is included into a range of values that the user passes as
input arguments in the building block. This method takes as inputs a column
name: col_name which is of type String, and two Double values which are
named start and end. The Dataframe column is selected and and we cal-
culate the mean value of the selected column. After that we examine if the
mean value belongs to the range of values that the user gave as inputs. If the
mean value belongs to the range of values we print a success message and the
Dataframe is returned. Otherwise an exception is thrown. The code of the
implementation is shown in Listing 3:

1 def mean_s(col_name: String , start : Double , end : Double) : DataFrame = {

2 val mvalue = df.select(mean(df(col_name))).head().getDouble (0)

3 if (mvalue >= start && mvalue <= end) {

4 println(mvalue)

5 return df

6 }

7 throw new Exception(s"Assertion error found , mvalue found")

8 }

Listing 3: Scala Method

4. stddev_s: The goal of this building block is to examine if the standard devi-
ation of a Dataframe column is included into a range of values that the user
passes as input arguments in the building block. This method takes as inputs
a column name: col_name which is of type String, and two Double values
which are named start and end. The Dataframe column is selected and and
we calculate the standard deviation value of the selected column. After that
we examine if the standard deviation value belongs to the range of values that
the user gave as inputs. If the value belongs to the range of values we print
a success message and the Dataframe is returned. Otherwise an exception is
thrown. The code of the implementation is shown in Listing 4:

1 def stddev_s(col_name : String , start : Double , end : Double) : DataFrame =

{

2 val stddev_val = df.select(stddev(df(col_name))).head().getDouble (0)

3 if (stddev_val >= start && stddev_val <= end){

4 println(stddev_val)

5 return df

6 }

7 throw new Exception(s"Assertion error found , stddev_val found")

8 }

Listing 4: Scala Method
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5. cov_s: The goal of this building block is to examine if the covariance between
two Dataframe columns is included into a range of values that the user passes
as input arguments in the building block. This method takes as inputs two
column names: col_name1, col_name2 which are of type String, and two
Double values which are named start and end. The Dataframe columns are
selected and we calculate the covariance value of the selected columns. After
that we examine if the covariance value belongs to the range of values that
the user gave as inputs. If the value belongs to the range of values we print
a success message and the Dataframe is returned. Otherwise an exception is
thrown. The code of the implementation is shown in Listing 5:

1 def cov_s(col_name1 : String , col_name2 : String , start : Double , end :

Double) : DataFrame = {

2 val cov_val = df.select(covar_pop(col_name1 ,col_name2)).head().getDouble (0)

3 if (cov_val >= start && cov_val <= end){

4 println(cov_val)

5 return df

6 }

7 throw new Exception(s"Assertion error found , cov_val found")

8 }

Listing 5: Scala Method

6. corr_s: The goal of this building block is to examine if the correlation between
two Dataframe columns is included into a range of values that the user passes
as input arguments in the building block. This method takes as inputs two
column names: col_name1, col_name2 which are of type String, and two
Double values which are named start and end. The Dataframe columns are
selected and and we calculate the correlation value of the selected columns.
After that we examine if the correlation value belongs to the range of values
that the user gave as inputs. If the value belongs to the range of values we print
a success message and the Dataframe is returned. Otherwise an exception is
thrown. The code of the implementation is shown in Listing 6:

1 def corr_s(col_name1 : String , col_name2 : String , start : Double , end :

Double) : DataFrame = {

2 val cor_val = df.select(corr(col_name1 ,col_name2)).head().getDouble (0)

3 if (cor_val >= start && cor_val <= end){

4 println(cor_val)

5 return df

6 }

7 throw new Exception(s"Assertion error found , cor_val found")

8 }

Listing 6: Scala Method
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3 Starting Procedure

We evaluated our building blocks on a Dataframe with four Columns and 3229
records. We used a data set, containing data about United States cities. These
data are: the name of the city, the population, the longitude and the latitude. In
order to be able to work with the data, we first need to read the data into a Spark
Dataframe, using the command of Listing 7. The Dataframe is stored in a value
called val df .

1 val df = spark.read.option(”header”, ”true”).csv(”/path− to− csv − file/2014uscities.csv”)

Listing 7: Scala Reading the Dataframe

Figure 1: Reading the Dataframe.

When the above step is finished, we have to load our Scala file into Spark using the
command of Listing 8.

1 : load /path/to/scalacode/assertions.scala

Listing 8: Scala Loading our Scala code into Spark.

Figure 2: Loading our Scala code into Spark.

The last step is to import the object named implicits, which was already defined
by loading our scala code, using the command of Listing 9.
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1 import implicits.

Listing 9: Scala Importing the defined object.

Figure 3: Importing the defined object.

4 Evaluation

When the above steps are finished, we are ready to use our Scala code in order to
check possible assertions in Spark Pipelines. In the following images we will look
for possible assertions on our test Dataframe. First we try to examine if there are
at most 5 cities that their population is greater than 3 million. As you can observe
in the following image there are only 2 cities that have a population greater than 3
million.

Figure 4: At most 5 cities with pop > 3000000.

However, if we change the assertion query and search for at most 1 city which has
population greater than 3 million we will get an Exception and the process will be
terminated.

Figure 5: At most 1 city with pop > 3000000.
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We will follow almost the same but a little more complex procedure in order to check
the rest of our building blocks in our code. We will now first filter our Dataframe
in order to find the cities that their population is greater than 2 million, and we will
search in the filtered Dataframe to check if there are at least 3 cities which their
latitude is greater than 30. Finally we will print the Dataframe in order to be sure
that we get the appropriate results as you can see in the image below.

Figure 6: Checking if the filtered Dataframe has at least 3 cities with lat > 30.

The next building block is the mean_s which examines if the mean value of a
Dataframe column belongs to a range of values that the user passes into the method
as input arguments. As it can be seen in the following image the method takes as
input a Column name and two Double values. It is also examines if the assertion is
true on the Dataframe that comes from the previous method which in our case is
the filter method.

Figure 7: Checking if the Column ”pop” of the filtered Dataframe has a mean value
between 3237268.0 and 4237268.0.

The following building block named stddev_s calculates the standard deviation of a
Dataframe column and examines if the standard deviation value belongs to a range
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of values that the user gives as an input. First the Dataframe is being filtered, then
we use the stddev_s method in order to guard our assertion and finally we filter
again the Dataframe with another condition and show it.

Figure 8: Checking if the Column ”pop” of the filtered Dataframe has a standard
deviation value between 2790000 and 2890000.

The following building block of our code named cov_s calculates the covariance
between two Dataframe columns in a Dataframe and examines if the covariance
value belongs to a range of values that the user gives as an input. As it can be
seen in the image below we first filter the Dataframe in order to take only the cities
with pop > 2000000 and lat > 34 and then we examine if the covariance between
the Dataframe columns lon and lat belongs to the range of values that we gave as
inputs. Results can seen in the image below.

Figure 9: Checking if the Columns ”lon” and ”lat” of the filtered Dataframe has a
covariance value between −4.0 and 3.0.

The last building block of our code, named corr_s calculates the correlation between
two Dataframe columns in a Dataframe and examines if the correlation value belongs
to a range of values that the user gives as an input. We filter the Dataframe to find
the cities that their population is greater than 2 million(pop > 2000000) and then
we examine if the correlation value of the Dataframe columns lon and lat belongs
to the range of values that the user gives as inputs. Finaly we print the Dataframe.
The results can seen in the image below.
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Figure 10: Checking if the Columns ”lon” and ”lat” of the filtered Dataframe has a
correlation value between −2.4 and 3.0.

4.1 Spark Cluster Evaluation

So far, we evaluated our results running Spark Standalone, using spark-shell. The
next step was to evaluate that our code works properly also in a cluster. We de-
ployed a local cluster of Spark with four workers and one master on our development
machine, which is a MacBook Air late 2017 a core i5 processor at 1.8Ghz and 8 cores.

4.1.1 Setting up the Cluster

In order to set up the cluster we configured Spark as shown in Listing 10. With this
configuration four workers are started, each having access to two cores and 2Gb of
memory. Listing 10 shows the added parameters in the spark− env.sh file which is
inside the conf directory of Spark.

1 SPARK_WORKER_CORES=2

2 SPARK_WORKER_INSTANCES=4

3 SPARK_WORKER_MEMORY=2g

Listing 10: Spark Cluster Parameters

4.1.2 Starting the Cluster

When these parameters are changed the next step is to start the cluster and com-
municate with the master, using the spark-shell. The commands we used can seen
in Listings 11 and 12.

1 ./sbin/start -all.sh

Listing 11: Spark Cluster starting the workers and the master
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1 ./bin/spark -shell --master spark://"Master IP Adress"

Listing 12: Spark Cluster connecting the Spark-shell with the master

The following image shows the Spark Cluster Web User Interface.

Figure 11: Spark Cluster Web User Interface.

4.1.3 Evaluation on the Cluster

In order to be sure that our assertions library functions well when running on Spark
in Cluster mode, we ran the same evaluation as we did for the Standalone case.

Figure 12: Spark Cluster at most 5 cities with pop > 3000000.

On the images below also we present the Stages for this specific job from the Spark
UI. As it can be seen from the times the stages for the Job run in parallel.

Figure 13: Spark Cluster at most 5 cities with pop > 3000000.
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Figure 14: Spark Cluster at most 5 cities with pop > 3000000.

The next building block that we will test is the mean_s, using the same sequence of
orders as we did in Section 4. Results can be shown in the images below.

Figure 15: Spark Cluster mean value between 3237268.0 and 4237268.0.

Figure 16: Spark Cluster mean value between 3237268.0 and 4237268.0.

5 Parallelization Issue

One of the problems that came up during the deployment of the Project was that
when we run a sequence of orders the Stages for all jobs are not fully parallelized.
This behavior has as a result that the Stages for the previous command should be
finished in order to start the Stages for the following one. For example if we give a
sequence of orders like the following one on Listing 13 we can easily examine that
each of the Stages in the Spark Job run in a sequence and not in parallel.

1 df.at_most (65,"pop >300000").at_least (50,"pop >300000").count

Listing 13: Spark Cluster parallelization issue

11



5.1 Scala Library for guarding assertions in Spark Pipelines

Figure 17: Spark Cluster Jobs times.

In order to solve this problem we tried two approaches that will be discussed in the
following subsections. The first one was to change the Job Scheduling parameter in
Spark from FIFO to FAIR. The second was to try to use Spark Streaming in order
to reduce the batch processing time.

5.1 Changing Job Scheduling

By default, Spark’s scheduler runs jobs in FIFO fashion. Each job is divided into
“stages” (e.g. map and reduce phases), and the first job gets priority on all available
resources while its stages have tasks to launch, then the second job gets priority, etc.
If the jobs at the head of the queue don’t need to use the whole cluster, later jobs can
start to run right away, but if the jobs at the head of the queue are large, then later
jobs may be delayed significantly. In order to change the Spark Job Scheduling from
FIFO to FAIR we have to set up a new Spark Context and define the Spark Scheduler
Mode to FAIR. A Spark Context is the main entry point for Spark functionality.
A Spark Context represents the connection to a Spark cluster, and can be used to
create RDDs, accumulators and broadcast variables on that cluster. Also we have
to create a new Spark Session, which is the entry point to programming Spark with
the Dataset and DataFrame API. The commands to change the Spark Scheduler
mode and creating a new Spark Session can be found in Listings 14 and 15.

1 import org.apache.spark.SparkConf

2 import org.apache.spark.SparkContext

3 val conf = new SparkConf ().setMaster("Master URL").setAppName("app -name")

4 conf.set("spark.scheduler.mode", "FAIR")

5 val sc = new SparkContext(conf)

Listing 14: Spark Cluster changing Scheduler Mode

1 import org.apache.spark.sql.SparkSession

2 val spark1=SparkSession

3 .builder.master("Master URL")

4 .appName("app -name")

5 .config("spark.sql.warehouse.dir", "./spark -warehouse")

6 .getOrCreate ()

Listing 15: Spark Cluster creating a new Spark Session

When the above step is finished we are ready to use our code in the Spark Cluster
with the Scheduler mode set up to FAIR. In order to check if the parallelization
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issue is solved we used the same sequence of orders as we did in the beginning of
this Section. The results can be found in the following images.

Figure 18: Spark Cluster Jobs results.

Figure 19: Spark Cluster Jobs times with scheduler mode set to FAIR.

As it can be examined from the above images the Jobs are not parallelized and we
lead to the conclusion that there is a sequential dependency between the building
blocks, so each of them should be finished and return the Dataframe that checked
for possible assertions and then proceed to the next method. Furthermore Spark
works with Pipelines so operations can not be fully parallelized.

5.2 Using Spark Streaming

Our second approach in order to solve the parallelization problem was to use Spark
Streaming in order to reduce the batch processing time. Spark Streaming is an ex-
tension of the core Spark API that enables scalable, high-throughput, fault-tolerant
stream processing of live data streams. Data can be ingested from many sources
like Kafka, Flume, Kinesis, or TCP sockets, and can be processed using complex
algorithms expressed with high-level functions like map, reduce, join and window.
Finally, processed data can be pushed out to filesystems, databases, and live dash-
boards[1]. As we examined the above solution we find out that there are some serious
limitations with this approach. In addition, there are some Dataset methods that
will not work on streaming Datasets. They are actions that will immediately run
queries and return results, which does not make sense on a streaming Dataset[1].
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These limitations cause some serious problems with our code, because we were able
only to apply some transformations on the Streaming Dataframe, but not calculate
and extract the values that our building blocks need in order to check for asser-
tions on a Streaming Dataframe. When we tried any of these operations like count,
mean, etc we get an analysis exception error that operation ”X” is not a member
of Streaming query. One possible solution to overcome this problem might be to
transform the Streaming Data and then store them and guard for assertions. In
Listing 16 you can find the modified code for the at_most bulding block and in the
images below the results we get and the errors for the Streaming.

1 import org.apache.spark.sql.types._

2 import org.apache.spark.sql.functions._

3 import spark.implicits._

4 import org.apache.spark.sql.DataFrame

5 import org.apache.spark.sql.Row

6 import org.apache.spark.sql.Column

7 import org.apache.spark.sql.types.DoubleType

8 import org.apache.spark.sql.DataFrameStatFunctions

9 import java.sql.Timestamp

10 import org.apache.spark.streaming .{Time , Seconds , StreamingContext}

11 import org.apache.spark.sql.streaming.StreamingQuery

12 import org.apache.spark.sql.streaming.OutputMode

13 import org.apache.spark.sql.streaming.Trigger

14 import org.apache.spark.Accumulator

15

16 object implicits{

17 implicit class DataFrameassertions(df : DataFrame){

18 def at_most( n : Int , expression : String) : DataFrame = {

19 val df=spark.readStream.option("header", "true").schema(mschema).csv("path -to -

csv -folder")

20 val stream = df.filter(expression).groupBy ().count ().writeStream.outputMode("

complete").format("console").start ()

Listing 16: Spark Streaming

On the following image you can see that we get the total number of counts in a new
Dataframe

Figure 20: Spark Streaming total counts.

After that we tried to extract the value and store it to a new variable in order to
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compare it with the value given by the user. The code we added in order to make
that and the error we get can be found on the Listing 17 and the Figure 21.

1 val stream2 = stream.head.getDouble (0)

Listing 17: Spark Streaming

Figure 21: Spark Streaming total counts.

The same behavior is also observed with the rest of our building blocks. We end
up to the conclusion that these necessary operations in order to guard assertions in
Spark Streaming are not supported yet.

6 Discussion

The goal of the project was the deployment of a Scala Library for guarding assertions
in Spark Pipelines. The significance of the Project is that with the code described
above we are able to guard assertions in every possible Dataframe, by passing the
appropriate input arguments into our Scala methods. By this procedure we expect
to help Data Scientists examine possible assertions in Spark Pipelines and extract
knowledge about their point of interest. Of course the aforementioned Research
project is only the begining and a lot of work can be done in order to expand it.
Possible future work can be done in order to add more building blocks in our code
and based on these building blocks deploy a Domain Specific Language(DSL) that
would be responsible for guarding assertions. Also the aforementioned parallelization
problem can be examined in more details in the future.
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