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Abstract

The unceasing increase of e-commerce volumes worldwide has been putting under pressure the sector of

parcel delivery service. Due to a highly competitive market, the different logistic service providers strive

to be efficient in every segment of the logistic chain. Among these segments, the packing of parcels into

containers is a crucial aspect that, if not done properly, may cause additional costs, such as the use of

more resources than the ones actually needed. In this research, we investigate such a packing problem

and model it as a three-dimensional bin packing problem (3D-BPP). The 3D-BPP can be defined as the

placement of a set of different parallelepiped sized items parallel to the bin dimensions that have to be

placed in a minimized number of bins. This problem is a well-known NP-hard problem. We start by

discussing the model proposed by Chen et al. (1995), where items may rotate 360◦ . Next, we develop

mathematical models with flexible item rotations and the possibility to include layers, i.e. shelves, by

adding constraints to the model of Chen et al. (1995). Even though the new models solve different

problems, still their solutions may be used as an indication for the basic model. Our goal is to test

the computational performances of an industrial solver, performing a branch-and-bound procedure, for

several input classes among which also instances generated using real-world data from a Dutch parcel

delivery service provider. Results show that for larger instances we can obtain better results mainly

regarding the computational time, with some of the newly developed models. This can potentially open

opportunities for enhanced automation and improvement in the packing process.
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1 Introduction

The e-commerce in Europe has grown substantially in the last decade. In 2015, the sector

generated a total online revenue of 455.3 billion euros; whereas, in 2016, it was expected to

generate a total of 509.9 billion euros resulting in a 12 percent growth (Ecommerce, 2017).

Inevitably, this market is generating high demand for dedicated parcel delivery service providers

(PDS), causing increasing difficulties in the last mile logistics (Bortfeldt and Wäscher, 2013).

For PDS, to maintain competitiveness, the efficient use of the available capacity is a key

element in such a highly competitive market (Kim et al., 2014). In fact, under-performance

in logistic processes can lead to unnecessary costs and unsatisfied customers (Bortfeldt and

Wäscher, 2013). For example, unused space in containers, mistakes, and damage to transported

goods often occur as a result of poor container loading.

In this research, we explore the problem of loading a set of parcels into (roll-)containers

(Figure 1) with the aim of using as efficiently as possible the available capacity, namely using

the least amount of containers. The problem is inspired by a Dutch PDS internal logistic sys-

tem but is common to every competitor in the sector. The company requested anonymity and,

henceforth, we will refer to it as PDSNL. Earlier internal research at PDSNL indicated that

significant cost savings could be realized if at least, on average, one additional parcel could be

transported per roll-container shipped. In essence, this would result in fewer containers needed

for transporting the same number of parcels, which, in turn, will reduce the number of trailers

needed to transport the containers between depots.

Figure 1: A roll-container

The proposed problem can be linked to the three-dimensional bin packing problem (3D-

BPP), defined as the packing of a set of three-dimensional parallelepiped shaped boxes into

three-dimensional parallelepiped shaped bins with the aim of minimizing the number of used

bins. In Chen et al. (1995) a mathematical model formulation for the classical 3D-BPP was

presented. This model assumes that items may be placed in any direction into the bins, as long

1 INTRODUCTION 1
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as their sides are parallel to the bin’s sides. As the problem is NP-hard (Martello et al., 2000a),

long computational times may be needed for solving to optimality or to find feasible solutions,

even with relatively small instances, which is the main drawback for industrial solvers imple-

mentations. For this reason, several solving techniques have been developed and investigated

with respect to their performance behaviour. Examples of these techniques are; a heuristic

based on Tabu search by Lodi et al. (2002a), the exact algorithm for filling a single bin pre-

sented by Martello et al. (2000a) and a guided local search of Faroe et al. (2003). Some of these

techniques construct solutions by packing the items by layers, namely items are clustered into

different groups, i.e. layers, and then inserted in the bin. Specifically, in a bin, the floor of the

first layer is the base of the bin itself. Whereas the floors of successive above layers start from

the height of the tallest item of the layer below without placing actual physical layers in the bin,

hence not all items will be physically supported. Of course, this would result in approximated

solutions, however, their implementation would still be possible, since unsupported items would

just fall onto below items. Overall, this technique gave positive computational results(Lodi

et al., 2002a). However, none of these papers presented a mathematical model for the 3D-BPP

that includes physical layers when placing the items in bins.

Based on this information, the aim of this study is to research whether the performances of

an industrial solver, performing a branch-and-bound algorithm, can be improved by enhancing

the classical 3D-BPP model of Chen et al. (1995) with constraints related to layers; by doing so,

the solution state space is changed, but the solutions of the enhanced models will be applicable

to the initial model. In this regard, we extend the model of Chen with 4 layered variants and

present in this study four new mathematical models.

Figure 2: Regular packing and layer packing

Let us explain our concept in more detail. In the real world, layers can be defined with shelves

dividing the roll-container into smaller spaces, and they can be placed at any height in the bin,

see Figure 2 for an example. Even though, the problems with and without layers are different

1 INTRODUCTION 2



Master’s Thesis Margot Kho

in essence, for practical implementation, all feasible solutions of the ’layered’ model would be

feasible for the initial model, namely, they would respect the capacity of the bin. However,

the ’layered’ models may potentially be solved in less computational time by the industrial

solver, due to a reduced amount of feasible configurations. If our hypothesis is successful, we

can gain from the new models indications of feasible packing solutions in less time. We do this

by extending the model of Chen et al. (1995) with several constraints that include layers when

placing the parcels into the roll containers and by varying the rotational freedom of the items.

For all models, the bin dimensions are identical. An overview of the four new models and their

restrictions is shown in Figure 3. Finally, we test the models by developing an experimental

framework with instances based on literature and the real-world case of PDSNL and using a

branch-and-bound approach, using CPLEX 12.7, to try to solve them.

Figure 3: The developed models and their restrictions

Based on this, the research question and goal read as follows:

Research question: Is it possible to find an indication of the solution for the 3D-BPP in lower

time with these newly developed models that are an enhancement of the original problem?

Research goal: The aim of this study is to develop four mathematical models for the 3D-BPP

that are restrictions of the classical model in Chen et al. (1995) to find indications of a feasible

solution in lower time.

This research is structured as follows. In Section 2, we review the available literature on the

3D-BPP and related logistic applications. In Section 3, we describe the specific packing problem

arising at PDSNL. In Section 4, we develop the mathematical formulations. In Section 5, we

present the experimental framework and show and discuss the numerical results. Section 6 ends

the research with our conclusions and considerations for future research, and practice-related

challenges and opportunities.

1 INTRODUCTION 3
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2 Literature review

Bin packing problems are among the most treated problems in operations research studies, due

to the large quantity of related industrial applications. In general, the one-dimensional prob-

lem consists of packing a set of weighted items into a set of capacitated bins, with the aim of

reducing the number of bins used. Several variants have been introduced. For example, the

number of available bins can be fixed or can be heterogeneous in terms of costs and size. The

objective function can relate to the minimization of unused space. We refer to Coffman Jr et al.

(2018) and to Dowsland and Dowsland (1992) for an extensive bibliography and classifications.

Among the most challenging variants, the multi-dimensional packing problem has drawn the

attention of many researchers in the last two decades.

The two and three-dimensional packing problems add dimensions to both bins and items,

and their complexity limits the implementation of exact methods even for relatively small-

scale problems (Crainic et al., 2009). In this review, we will focus on contributions on the

three-dimensional case, due to the relevance to the proposed problem; for a survey on the two-

dimensional case, we refer to Lodi et al. (2002b).

In terms of variants, typically items and bins are regular parallelepipeds and any placed

item’s side must be parallel to a bin’s side. Except for the model of Chen et al. (1995), most

papers exclude rotation, namely an item’s edge must always be parallel to the corresponding

bin’s edge. Wu et al. (2010) propose a variant where the objective is to minimize the variable

bin height. With concern to layer packing, to the best of our knowledge, there are no publica-

tions that considered this addition in any mathematical model for the three-dimensional case,

although it has been considered for the two-dimensional case in Lodi et al. (2004). Except for a

few attempts in developing exact methods, see for example Martello et al. (2000b), most papers

presented (meta-)heuristic approaches to solve the problems. Zhao et al. (2016) provide a review

of developed heuristic, among which: Guided local search, Tabu search, Genetic algorithms.

Although it is often argued that the multi-dimensional packing problems are motivated by

industrial applications, scientific papers on real-world examples are lacking. In fact, research

in the area of 3D-BPP is mainly focused on the aforementioned standard problems, whereby

constraints encountered in practice are often neglected or not applied simultaneously (Bortfeldt

and Wäscher, 2013) (Zhao et al., 2016). However, there are some exceptions. In Paquay et al.

(2016) a 3D-BPP mixed integer linear programming formulation is used to optimize the loading

of boxes into containers, considering realistic constraints that are of interest in the field of

air transportation. Specifically, they model the fragility of items, load stability, and weight
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distribution and consider different shapes for the containers. Sciomachen and Tanfani (2003)

and Sciomachen and Tanfani (2007) address the problem of determining stowage plans for

containers within ships. Both papers relate the problem to the 3D-BPP and use the similarity

to build heuristics.

In terms of the application of 3D-BPP to the packing of parcels in the parcel delivery

industry, to date no study is available. This gap should be covered, given the importance of this

field. In fact, web-based purchases are huge in volume and critical processes, such as packing,

should be investigated for improvement.

3 The Problem at PDSNL

At the moment, PDSNL has several depots in the Netherlands where parcels are sorted and

packed. For the final delivery, the depots handle the parcels in two phases. In the evening,

parcels reach the depots for transportation to other depots. Parcels are placed randomly on

a conveyor belt endowed with an OCR scanner that checks the dimensions (length, width and

height) and the postal code of destination for the sorting. The belt routes and shoots the parcels

to the respective packing area, each associated with a range of postal codes. Here, workers place

parcels manually into roll-containers. Next, the roll-containers are loaded into trailers, which

ship them at night to the destination depot. In the morning, at the destination depots, parcels

are again sorted (second phase) and placed in vans for the last mile delivery. An overview of

this process is illustrated in Figure 4.

Our focus is on the first phase, namely the allocation of sorted parcels to roll-containers.

The roll-container used by PDSNL have uniform size (58 x 78 x 178 cm) and can fit on average

30 parcels. The parcels can have any size and shape as long as it is within the physical limits of

the sorting machine. Although the shapes can be as irregular as a bag or any other odd shaped

box/envelop, the OCR scanner detects parallelepiped shapes.

There is no formal policy on how the parcels need to be packed. Therefore, workers pack

the items according to experience or by rule-of-thumb or with a FIFO policy, without any in-

dication of a desired position of the item in the roll-container. Additionally, fatigue and lack of

concentration may lead to a rather random loading, with consequent waste of space. Finally,

since the parcels arrive at random, possibilities for better fit might not be exploited manually.

For example, small parcels may arrive earlier than larger ones. Given the time pressure, the

workers may be forced at some point to place parcels on top of each other, without any sensible

scheme.

Thereby, our goal is to develop a modelling framework to support this packing process. Our

proposal is that workers are guided towards specific packing patterns by a performing math-

3 THE PROBLEM AT PDSNL 6
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Figure 4: Overview of the sorting process

ematical model. The OCR scanner provides input for the model and workers may follow the

pattern supported by a screen, outputting a desirable packing.

In addition, we evaluate a structural extension to the roll-containers in the form of layers

to be placed within at variable heights. On one hand, such layers may be useful to increase

the stability; to drive the packing process to neater patterns, as shown in Figure 2; and to

decrease the computational complexity of the problem. On the other hand, fewer parcels could

be accommodated within.

3 THE PROBLEM AT PDSNL 7
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4 Mathematical models and formulations

In this section, we provide an extensive explanation of the four models. Besides this, prior to

formulating the models, the notations to be used in the formulations are defined.

4.1 Methodology

We develop four mathematical models for the 3D-BPP, considering layers and item rotations.

These models are an extension of the model for the 3D-BPP of Chen et al. (1995). The first

model, model 1, is a 3D layer bin packing model and the orientations of items are fixed and

the layer heights are flexible. The second model, model 2, is an extension of model 1, and it

additionally allows items to rotate 90◦ along the z-axes, allowing the item length to be placed

parallel along the length or width dimension, and the item width placed parallel along the width

or length dimension. Further, the third model allows items to rotate 360◦, also referred to as

free rotation. Model 4 allows items to rotate 360◦, similar to model 3. However, the layer

heights for model 4 are fixed.

Table 1 provides an overview of the features of every model in terms of layer types and item

rotations.

Table 1: Overview of the four developed models

Model Objective Layers Rotations of items

1 Min number of bins Flexible Fixed
2 Min number of bins Flexible 90◦

3 Min number of bins Flexible 360◦

4 Min number of bins Fixed 360◦

Chen Min number of bins None 360◦

4 MATHEMATICAL MODELS AND FORMULATIONS 9
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Notations

Prior to formulate the models, the notations to be used in the formulations are defined as

follows. There are n number of items. The assumption, that there are enough bins available

to place all items, results in n bins. Every item has a height, width and length dimension,

expressed as hi, wi and li, respectively. The bin dimensions are H, W, and L, respectively. In

this study, for every model all bins are identical.

Parameters :

n : Total number of items

i, j, k : Index for an item (i, j, k = 1 . . . n)

wi : Width of item i

hi : Height of item i

li : Length of item i

W : Width of the bin

H : Height of the bin

L : Length of the bin

M : Arbitrarily large number

In addition to the parameters, a list of variables is presented. The Front-Left-Bottom(FLB)

approach is used to indicate the placement of an item, the FLB is expressed with the variables

Xi, Yi, Zi. Figure 5 is provided as a clarification of the FLB approach. The term ”initializes”

is used for both layers and bins. If an item is selected as the leftmost item in a layer, it

determines the height of the layer, and we say that the item initialize the layer; if a layer is

chosen as the bottom layer in a bin, we say the layer initializes the bin. The binary variables

aik, bik, cik, dik, eik, fik indicate the placement of items relatively to each other. For example, if

aik equals 1, item i is placed on the left side of item k.

Figure 5: Visualization of the Front-Left-Bottom coordinates of item i

4 MATHEMATICAL MODELS AND FORMULATIONS 10
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V ariables :

Xi, Yi, Zi : coordinates of the the Front-Left-Bottom corner of item i,

with Xi ≥ 0, Yi ≥ 0, Zi ≥ 0

yi =

1 if item i initializes layer i

0 otherwise

xij =

1 if item j is placed into layer i

0 otherwise
j > i

qk =

1 if layer k initializes bin k

0 otherwise

zki =

1 if layer i is placed to bin k

0 otherwise
i > k

aik =

1 if item i is on the left side of item k

0 otherwise
i ≤ k

bik =

1 if item i is on the right side of item k

0 otherwise
i ≤ k

cik =

1 if item i is behind item k

0 otherwise
i ≤ k

dik =

1 if item i is in front of item k

0 otherwise
i ≤ k

eik =

1 if item i is below item k

0 otherwise
i ≤ k

fik =

1 if item i is above item k

0 otherwise
i ≤ k

i, j, k ∈ {1, . . . , n}

4 MATHEMATICAL MODELS AND FORMULATIONS 11
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The assumptions for all four models are identical, and are mainly based on the early work of

Chen et al. (1995) and Lodi et al. (2004). The list of assumptions is defined as follows:

1. All items are shaped parallelepiped.

2. There are enough bins available to place all items.

3. The item dimensions do not exceed the bin dimensions.

4. All items must be placed.

5. All items must be placed orthogonally within the bin, meaning that the item dimensions

are placed parallel to the bin dimensions.

6. All bins have identical, fixed, dimension.

7. The item and bin dimensions are known upfront.

8. The items are sorted in non-increasing height.

9. The first item placed in a layer is the tallest item in that layer.

10. The bottom layer in each bin is the tallest layer in that bin.

In the parcel delivery service industry items may have different shapes. However, in this study,

the assumption is made that all items are parallelepiped-shaped. Furthermore, it is assumed

that all the items to be packed are sorted and indexed based on their height such that h1 ≥

h2 ≥ ... ≥ hn. If an item is selected as the leftmost item in a layer, it determines the height of

the layer, and we say that the item initializes the layer; if a layer is chosen as the bottom layer

in a bin, we say the layer initialize the bin.

4 MATHEMATICAL MODELS AND FORMULATIONS 12
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4.2 Model 1: Three-dimensional layer bin packing model with fixed item

orientation

This model does not allow any rotations for items. Besides this, the model does include flexible

layers, and the height of every layer depends on the tallest item placed in that layer. Please

note, in the model, the index of item, layer and bin have the same dimension, n. Layer i is the

layer which is initialized by item i; and bin i is the bin initialized by layer i which is initialized by

item i. When the model is solved, not only an optimal solution is found, the decision variables

aik, bik, cik, dik, eik, and fik provide a loading pattern of the items.

The MILP model for three-dimensional layer bin packing model with fixed item orientation

is formulated as follows.

min
n∑

k=1

qk

s.t. Xi + li ≤ Xk + (1− aik) ·M ∀i, k : i < k (ct1)

Xk + lk ≤ Xi + (1− bik) ·M ∀i, k : i < k (ct2)

Yi + wi ≤ Yk + (1− cik) ·M ∀i, k : i < k (ct3)

Yk + wk ≤ Yi + (1− dik) ·M ∀i, k : i < k (ct4)

Zi + hi ≤ Zk + (1− eik) ·M ∀i, k : i < k (ct5)

Zk + hk ≤ Zi + (1− fik) ·M ∀i, k : i < k (ct6)

aik + bik + cik + dik + eik + fik ≥ xji + xjk − 1 ∀i, j, k : i < k (ct7)

j−1∑
i=1

xij + yj = 1 ∀j (ct8)

j∑
i=1

xij = 1 ∀j (ct9)

xjj = yj ∀j (ct10)
n∑

j=i

xij ≤ M ∗ yi ∀i (ct11)

Xi + li ≤ L ∀i (ct12)

Yi + wi ≤ W ∀i (ct13)

Zi + hi ≤ hj + (1− xji) ·M ∀i, j : j ≤ i (ct14)

i−1∑
k=1

zki + qi = yi ∀i (ct15)

n∑
i=k+1

hi · zki ≤ (H − hk) · qk ∀k (ct16)

The model minimizes the number of initial layers, which is, in fact, equivalent to minimize

the number of used bins. Constraints 1-6 ensure that there is no overlap between two items.

Constraint 7 is included to make sure that the overlapping of any two items is only considered

whenever the two items are placed within the same layer. Constraint 8 imposes that an item

is placed exactly once, either by initializing a layer or in a layer initialized by a taller item.
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Constraints 9-10 ensure that layer initializing items are also taken into account when applying

the overlap constraint to the model. Without these constraints, the first item placed in a layer

is not part of the loading pattern. Constraint 11 ensures that when an item is assigned to a

layer, the layer is considered used. Constraints 12-13 impose that if an item is placed in a bin

it has to fit within the bin dimensions. Constraint 14 ensures if an item initializes a layer,

the other items placed in this layer cannot be taller than the initializing item. Constraint 15

guarantees the placement of each used layer in bins and constraint 16 makes sure that placed

layers do not exceed the total bin height. Table 6 gives an overview of the constraints of model

1, we identified three type of constrains; identical constraints, adapted constraints and new

constraints, compared to the classical 3D-BPP of Chen et al. (1995) and the 2D layer BPP of

Lodi et al. (2004). NA in the table means not applicable.

Figure 6: An overview of the composition of every constraint in model 1

4.3 Model 2: Three-dimensional layer bin packing model, items may rotate

90◦

To include the 90◦ rotation of the items in the model, two new binary variables, ldimai and

wdimai, are introduced. These variables indicate whether the length or width of item i is

parallel to either the x- or the y-axis. a in the two binary variables can be 1 or 2, corresponding

to the x- or y-axis, relatively. For example, if ldimai is 1 for a=1, the length of item i is placed

along the x-axis; otherwise it is equal to 0. If ldimai equals 1 for a=2, the length of item i is

placed along the y-axis.

ldimai =

1 if the length of item i is placed along the a-axis

0 otherwise

wdimai =

1 if the width of item i is placed along the a-axis

0 otherwise

i ∈ {1, . . . , n}, a ∈ {1, 2}
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The MILP model for three-dimensional layer bin packing model with 90◦ item orientation is

formulated as follows.

min
n∑

k=1

qk

s.t.

Xi + li · ldim1i + wi · wdim1i ≤ Xk + (1− aik) ·M ∀i, k : i < k (ct1)

Xk + lk · ldim1k + wk · wdim1k ≤ Xi + (1− bik) ·M ∀i, k : i < k (ct2)

Yi + li · ldim2i + wi · wdim2i ≤ Yk + (1− cik) ·M ∀i, k : i < k (ct3)

Yk + lk · ldim2k + wk · wdim2k ≤ Yi + (1− dik) ·M ∀i, k : i < k (ct4)

Zi + hi ≤ Zk + (1− eik) ·M ∀i, k : i < k (ct5)

Zk + hk ≤ Zi + (1− fik) ·M ∀i, k : i < k (ct6)

aik + bik + cik + dik + eik + fik ≥ xji + xjk − 1 ∀i, j, k : i < k (ct7)

j−1∑
i=1

xij + yj = 1 ∀j (ct8)

j∑
i=1

xij = 1 ∀j (ct9)

xjj = yj ∀j (ct10)
n∑

j=i

xij ≤ M ∗ yi ∀i (ct11)

Xi + li · ldim1i + wi · wdim1i ≤ L ∀i (ct12)

Yi + li · ldim2i + wi · wdim2i ≤ W ∀i (ct13)

Zi + hi ≤ hj + (1− xji) ·M ∀i, j : j ≤ i (ct14)

2∑
a=1

ldimai = 1 ∀i (ct15)

2∑
a=1

wdimai = 1 ∀i (ct16)

ldimai + wdimai = 1 ∀a, i (ct17)

i−1∑
k=1

zki + qi = yi ∀i (ct18)

n∑
i=k+1

hi · zki ≤ (H − hk) · qk ∀k (ct19)

Constraints 1-4 are adapted to calculate the coordinate of the Back-Right-Top corner of an item,

which reflects its rotation. This Back-Right-Top corner is a result of the FLB coordinates and

the placement of the item. With this Back-Right-Top corner, the solver knows where the item

ends and a new item can be placed and therefore they also ensure appropriate placement of one

item on the others. Constraints 12 and 13 ensure packed items can fit bins. Constraints 15-17

ensure the feasible ways to rotate items, these constraints are adjustments of the constraints of

the classical model. Table 7 gives an overview of the constraints of model 1, we identified three

type of constrains; identical constraints, adapted constraints and new constraints, compared to
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the classical 3D-BPP of Chen et al. (1995) and the 2D layer BPP of Lodi et al. (2004). NA in

the table means not applicable.

Figure 7: An overview of the composition of every constraint in model 2
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4.4 Model 3: Three-dimensional layer bin packing model, items may rotate

freely

Model 3 is the further extension of models 1 and 2 in Section 4.2 and 4.3. This third model

allows items to rotate 360◦, which leads to six possible ways of items placements. Furthermore,

the layer heights for this model depend on the item dimension placed along the z-axis. With

these new characteristics, the model has fewer restrictions when placing the items. For this

reason, model 3 can be seen as a lower bound for models 1 and 2. Compared to the model of

Chen et al. (1995) it is an upper bound because this model includes flexible layers.

Besides the binary variables ldimai and wdimai introduced in Section 4.3 a new binary variable

hdimai is introduced. hdimai equals 1 if the height of item i is parallel to either the x-, y-, or

z-axis. Consequently, the values of parameter a are extended to equal 1, 2 or 3, corresponding

to the x- y- or z-axis, relatively. Constraints 1-6 are adapted to provide the rotational freedom

and are similar to the corresponding constraints in Chen et al. (1995). The best composition of

every item is selected.
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The MILP model is formulated as follows.

min
n∑

k=1

qk

s.t. Xi + li · ldim1i

+wi · wdim1i + hi · hdim1i ≤ Xk + (1− aik) ·M ∀i, k : i < k (ct1)

Xk + lk · ldim1k

+wk · wdim1k + hi · hdim1k ≤ Xi + (1− bik) ·M ∀i, k : i < k (ct2)

Yi + li · ldim2i

+wi · wdim2i + hi · hdim2i ≤ Yk + (1− cik) ·M ∀i, k : i < k (ct3)

Yk + lk · ldim2k

+wk · wdim2k + hk · hdim2k ≤ Yi + (1− dik) ·M ∀i, k : i < k (ct4)

Zi + +li · ldim3i

+wi · wdim3i + hi · hdim3i ≤ Zk + (1− eik) ·M ∀i, k : i < k (ct5)

Zk + lk · ldim3k

+wk · wdim3k + hk · hdim3k ≤ Zi + (1− fik) ·M ∀i, k : i < k (ct6)

aik + bik + cik + dik + eik + fik ≥ xji + xjk − 1 ∀i, j, k : i < k (ct7)

j−1∑
i=1

xij + yj = 1 ∀j (ct8)

j∑
i=1

xij = 1 ∀j (ct9)

xjj = yj ∀j (ct10)∑n
j=i xij ≤ M ∗ yi ∀i (ct11)

Xi + li · ldim1i+

wi · wdim1i + hi · hdim1i ≤ L ∀i (ct12)

Yi + li · ldim2i+

wi · wdim2i + hi · hdim2i ≤ W ∀i (ct13)

Zi + li · ldim3i+

wi · wdim3i + hi · hdim3i ≤ (lj · ldim3j + wj · wdim3j+

hj · hdim3j) + (1− xji) ·M ∀i, j : j < i (ct14)
3∑

a=1
ldimai = 1 ∀i (ct15)

3∑
a=1

wdimai = 1 ∀i (ct16)

3∑
a=1

hdimai = 1 ∀i (ct17)

ldimai + wdimai + hdimai = 1 ∀a, i (ct18)
i−1∑
k=1

zki + qi = yi ∀i (ct19)

n∑
i=k+1

(li · ldim3i + wi · wdim3i+

hi · hdim3i) · zki ≤ (H − (li · ldim3i+

wi · wdim3i + hi · hdim3i)) · qk ∀i, k (ct20)
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Constraint 1-6 calculate the coordinates of the Back-Right-Top corner and ensures correct over-

lapping with the other items. Constraint 12 and 13 ensure items can fit bins. Constraint 14

guarantees the limitations on the layer height; whenever an item i is placed in a layer initialized

by another item k, the item i cannot be taller than item k. Constraints 15-18 ensure all items

to be placed orthogonally. Constraint 20 is adapted to reflect the fact that the layer height

no longer always depends on the items height only. It ensures that for every item placed in a

bin-filling layer, the dimension placed along the z-axis cannot be taller than the remaining bin

height. Where the remaining bin height is the total bin height minus the height of the layer

already placed in the bin. Table 8 gives an overview of the constraints of model 1, we identified

three type of constrains; identical constraints, adapted constraints and new constraints, com-

pared to the classical 3D-BPP of Chen et al. (1995) and the 2D layer BPP of Lodi et al. (2004).

NA in the table means not applicable.

Figure 8: An overview of the composition of every constraint in model 3
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4.5 Model 4: Three-dimensional fixed layer bin packing model, items may

rotate freely

The fourth model allows items to rotate 360◦, as a result of this, there are six possible positions

for every item. This model differs from the models developed in Section 4.2-4.4 in determining

the layer height. For model 4, the layer height is fixed and pre-set and is the same for every bin.

Lodi et al. (2004) defined two types of layers; bin initializing layers and bin filling layers. Since

model 4 has just one fixed layer that divides the bin in two, every bin contains one layer of

both types. This model is an adjustment of model 3 and therefore its constraints are adjusted

to the new situation. The model can be seen as an upper bound of the original model in Chen

et al. (1995). Compared to Model 3, model 4 has one extra condition, which is one fixed shelf,

splitting the bin in half.

In model 4, two new parameters, H1 and H2, are introduced. The two parameters define the

height of layer 1 and 2 respectively. Of course, on every layer, the items must be placed within

the height dimension of that layer.

4 MATHEMATICAL MODELS AND FORMULATIONS 20



Master’s Thesis Margot Kho

The MILP model is formulated as follows.

min
n∑

k=1

qk

s.t. Xi + li · ldim1i

+wi · wdim1i + hi · hdim1i ≤ Xk + (1− aik) ·M ∀i, k : i < k (ct1)

Xk + lk · ldim1k

+wk · wdim1k + hi · hdim1k ≤ Xi + (1− bik) ·M ∀i, k : i < k (ct2)

Yi + li · ldim2i

+wi · wdim2i + hi · hdim2i ≤ Yk + (1− cik) ·M ∀i, k : i < k (ct3)

Yk + lk · ldim2k

+wk · wdim2k + hk · hdim2k ≤ Yi + (1− dik) ·M ∀i, k : i < k (ct4)

Zi + +li · ldim3i

+wi · wdim3i + hi · hdim3i ≤ Zk + (1− eik) ·M ∀i, k : i < k (ct5)

Zk + lk · ldim3k

+wk · wdim3k + hk · hdim3k ≤ Zi + (1− fik) ·M ∀i, k : i < k (ct6)

aik + bik + cik + dik + eik + fik ≥ xji + xjk − 1 ∀i, j, k : i < k (ct7)
j−1∑
i=1

xij + yj = 1 ∀j (ct8)

j∑
i=1

xij = 1 ∀j (ct9)

xjj = yj ∀j (ct10)
n∑

j=i

xij ≤ M ∗ yi ∀i (ct11)

Xi + li · ldim1i+

wi · wdim1i + hi · hdim1i ≤ L ∀i (ct12)

Yi + li · ldim2i+

wi · wdim2i + hi · hdim2i ≤ W ∀i (ct13)

Zi + li · ldim3i + wi · wdim3i+

hi · hdim3i ≤ H1 + (2− qj − xji) ·M ∀i, j : j ≤ i (ct14)

Zj + lj · ldim3j + wj · wdim3j+

hj · hdim3j ≤ H2 + (2− zki − xij) ·M ∀i, j, k : j ≥ i (ct15)
3∑

a=1
ldimai = 1 ∀i (ct16)

3∑
a=1

wdimai = 1 ∀i (ct17)

3∑
a=1

hdimai = 1 ∀i (ct18)

ldimai + wdimai + hdimai = 1 ∀a, i (ct19)
i−1∑
k=1

zki + qi = yi ∀i (ct20)

qi +
i−1∑
k=1

zik ≤ 2 ∀i (ct21)

n∑
i=k+1

(li · ldim3i + wi · wdim3i+

hi · hdim3i) · zki ≤ (H − (li · ldim3i+

wi · wdim3i + hi · hdim3i)) · qk ∀i, k (ct22)

Constraints 14 and 15 guarantee the requirement that no item dimension placed along the z-

axis can exceed the layer height. If an item is placed in an initializing layer of a bin, the item’s

height has to be less than, or equal to, the layer height H1. If an item is placed in a bin filling
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layer its height has to be less than, or equal to, H2. Besides this, constraint 21 is introduced to

ensure a maximum of two layers within one bin. Table 9 gives an overview of the constraints of

model 1, we identified three type of constrains; identical constraints, adapted constraints and

new constraints, compared to the classical 3D-BPP of Chen et al. (1995) and the 2D layer BPP

of Lodi et al. (2004). NA in the table means not applicable.

Figure 9: An overview of the composition of every constraint in model 4
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5 Numerical experiments

We propose three sets of experiments to test and validate the developed mathematical models.

The first experiment is conducted for a small size dataset for validation purposes; in the second

experiment we generate instances based on literature to test the models; the third experiment

considers real-world instances derived from PDSNL. In this section, we first introduce the

experimental setting; next, we report the results of the three different experiments; and finally,

we provide a conclusion.

5.1 Experiment settings

We test the developed models and the model of Chen et al. (1995)) using IBM ILOG CPLEX

12.7. The optimization software is run on a personal computer, with 2.4 GHz Intel Core i5-

6200U processor and 8GB of RAM. In the experiments, the computational time spent on solving

a model is limited to 3600 seconds. Imposing the time limit is because computational speed

is a crucial aspect in the parcel sorting process, and feasible solutions must be attained in a

reasonable time.

To measure the solution quality, we provide the achieved optimality gap (expressed in per-

centage) for each instance, calculated as the best integer feasible solution minus the best bound,

divided by the best integer feasible solution. CPLEX will terminate with four different possible

outcomes:

1. Optimal solution, the gap is zero

2. Feasible integer solution with a gap greater than zero, CPLEX exceeds the time limit

3. No solution, CPLEX exceeds computer memory

4. No solution, CPLEX exceeds the time limit

Outcomes 3 and 4 are represented in the results tables by ’—’.
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5.2 Experiment 1: a small scale dataset for model validation

To validate the mathematical models, we design a small test dataset with only six items. The

item dimensions are shown in Table ??. The number of bins is equal to the number of items.

Table ?? provides an overview of the outputs of each model from CPLEX. In this section, first

the results of all models are presented. After this, the optimal solution and loading pattern of

model 1 is explained and visualized in more detail.

Table 2: Validation of the models

(a) dimensions of test set

Item h w l

1 6 10 4
2 4 4 8
3 4 6 4
4 4 8 6
5 2 2 4
6 2 4 6

(b) results for test set

Model 1 Model 2 Model 3 Model 4 Model Chen

Time 00.53 00.39 00.71 00.60 00.28
Constraints 439 351 264 411 246
Variables 171 195 225 240 204

Best integer 1 1 1 1 1
Best bound 1 1 1 1 1

Gap 0% 0% 0% 0% 0%

The six items are sorted in non-increasing order of height. The bin dimensions for this

experiment are H, W, D = 10 for all the bins. The solutions of all models equal 1. As

mentioned, as an example we will explain the solution of model 1 in more detail. The optimal

value of objective function of model 1 equals 1, which represents that all items are placed in one

bin (q∗1 = 1). Two layers (y∗1, y
∗
2 = 1) need to be arranged. The bin initializing layer(bottom

layer) is initialized by item 1 and a bin filling layer is initialized by item 2 (z∗12 = 1). Items 4

and 5 are placed in the layer initialized by item 1 (x∗11, x
∗
14, x

∗
15 = 1). Items 3 and 6 are placed in

the layer initialized by item 2 (x∗22, x
∗
23, x

∗
26 = 1). The decision variables aik, bik, cik, dik, eik, fik

define the loading pattern of the bin. For this particular example: a∗14, a
∗
15, a

∗
36, d

∗
23, d

∗
26, f

∗
45 = 1.

The loading pattern per layer is presented in Figure 10a and 10b, respectively. Figure 11 shows

the bird’s-eye view of the layers placed in the bin, separated by the red line(the layer).
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(a) Level 1

(b) Level 2

Figure 11: The bird’s-eye view of the solution of model 1
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5.3 Experiment 2: classical instances

Data generation

In Experiment 2, eleven different classes are considered. A class is a group of items with specific

generated dimensions. In the first group of instances, considering 5 classes, we have identical

bins with dimensions W,H,L = 100 and we have five possible types of items, each with specific

uniform distributions for each dimension as follows:

Type 1: wj ∼ U [1, 12W ];hj ∼ U [23H,H]; dj ∼ U [23L,L]

Type 2: wj ∼ U [23W,W ];hj ∼ U [1, 12H]; dj ∼ U [23L,L]

Type 3: wj ∼ U [23W,W ];hj ∼ U [23H,H]; dj ∼ U [1, 12L]

Type 4: wj ∼ U [1, 12W ];hj ∼ U [1, 12H]; dj ∼ U [1, 12L]

Type 5: wj ∼ U [23W,W ];hj ∼ U [23H,H]; dj ∼ U [23L,L]

The generations of the first five classes are as follows. We consider a type of items at a time,

henceforth a ’reference type’, and for it, we generate 3 instances made of 8, 10 and 30 items.

Each item has a probability of 60% to be generated according to the reference type, and 10%

possibility to be either one of the other four types(Martello et al., 2000a). Hence, in total we

have 3 instances for every class, resulting in 15 instances in total.

For the classes 6-11, the bin dimensions change for every class and all items dimensions

have specific uniform distributions for each dimension. For the classes 6-11 these details are

presented below.

Class 6: wj , hj , lj ∼ U [1, 10];W,H,D = 10

Class 7: wj , hj , lj ∼ U [1, 10];W,H,D = 30

Class 8: wj , hj , lj ∼ U [1, 35];W,H,D = 40

Class 9: wj , hj , lj ∼ U [1, 35];W,H,D = 100

Class 10: wj , hj , lj ∼ U [1, 100];W,H,D = 100

Class 11: wj , hj , lj ∼ U [1, 100];W,H,D = 300

For the classes 6-11, two instances are generated, consisting of 10 and 30 items, respectively.

Resulting in 12 instances in total.
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With concern to the fourth model having one fixed pre-set layer per bin, we test it for two

different pre-set layer heights. Therefore, henceforth, we refer to model 4 as model 4.1 and 4.2,

both with a different fixed layer height. The layer height is a division of the height, with respect

to the whole bin.

The height of the layer is determined based on the item composition in every class and

represents the majority of the generated sizes. Based on this, for the first five classes, the fixed

layer height for model 4.1 and 4.2 was pre-set respectively at 60/40 and 70/30.

Classes 6-11 can be divided into two categories; the first category contains relatively large

items, which may have the same size as the bins (Classes 6, 8 and 10). The second category

contains relatively smaller items, the dimensions may be one-third of the bin dimensions at most

(Classes 7, 9 and 11). The fixed layer height for classes 6, 8 and 10 is based on the experiments

for the classes 1-5. The classes 7, 9 and 11 have a fixed layer height based on the largest item

dimensions. All fixed layer heights are presented in Table 3.

Table 3: Layer heights for model 4.1 & 4.2.

Model 4.1 Model 4.2

Class Layer 1 Layer 2 Layer 1 Layer 2

1 6
10H

4
10H

7
10H

3
10H

2 6
10H

4
10H

7
10H

3
10H

3 6
10H

4
10H

7
10H

3
10H

4 6
10H

4
10H

7
10H

3
10H

5 6
10H

4
10H

7
10H

3
10H

6 1
2H

1
2H

7
10H

3
10H

7 1
2H

1
2H

2
3H

1
3H

8 1
2H

1
2H

7
10H

3
10H

9 1
2H

1
2H

6
10H

4
10H

10 1
2H

1
2H

7
10H

3
10H

11 1
2H

1
2H

2
3H

1
3H
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Results

This section presents all results obtained for all instances. Every table shows which class is

tested, followed by the number of items in the set, the running time CPLEX spent on solving

the model in seconds, the best integer, which is shortened into best int, the best bound and the

optimality gap in percentage found by CPLEX. Also, if no solution is found, this is represented

by ‘—‘, as explained in Section 5.1. Besides a table, a bar chart of the results is provided, which

presents the best bound and the best integer for every class. Here, we will provide all the results

as we see it, whereas the last section of this chapter contains a more in-depth analysis of the

results.
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Results of classes 1-5, 8 items

Table 4 provides an overview of the results. An optimal solution was found for 86.67% of the

classes. Exceptions are the solutions of model 4.2 for class 4 and model 4.1 for classes 2, 3

and 4. The optimal solutions of model 3 and Chen’s model are identical, however, the CPLEX

solver requires significantly more time to solve model 3.

Table 4: Results of classes 1-5 for the input of 8 items

Model 1 Model 2

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 8 0.30 3 3 0 0.72 3 3 0
2 8 0.29 4 4 0 0.23 4 4 0
3 8 0.36 3 3 0 0.28 2 2 0
4 8 0.20 4 4 0 0.18 4 4 0
5 8 0.27 2 2 0 0.27 2 2 0

Model 3 Model 4.1

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 8 2612.23 2 2 0 0.55 3 3 0
2 8 272.27 3 3 0 — — — —
3 8 355.06 2 2 0 — — — —
4 8 513.72 4 4 0 — — — —
5 8 55.58 2 2 0 2.00 2 2 0

Model 4.2 Model Chen

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 8 0.94 4 4 0 0.41 2 2 0
2 8 0.47 3 3 0 0.49 3 3 0
3 8 0.75 3 3 0 0.28 2 2 0
4 8 — — — — 0.21 4 4 0
5 8 0.47 2 2 0 0.19 2 2 0

Figure 12: Visualization of results, classes 1-5, 8 items
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Results of classes 1-5, 10 items

Table 5 gives an overview of the results of the instances with 10 items for classes 1-5. For 76.67%

of the cases, the solver is able to find an optimal solution. Models 1, 2 and Chen’s model are

solved for all classes. The solver found integer solutions of model 3 for input classes 1-4, the

solutions are integer and not optimal since the solver exceeds the time limit and the gap is not

equal to zero. For model 3 with input class 5 the solution is optimal. Furthermore, the solver

found optimal solutions for classes 1-3 of model 4.1 and no solutions for classes 4 and 5. For

model 4.2, the solutions are optimal for classes 1-3 and 5, no solution was found for class 4.

Table 5: Results of classes 1-5 for the input of 10 items

Model 1 Model 2

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 10 0.66 4 4 0 0.57 4 4 0
2 10 0.53 3 3 0 0.23 3 3 0
3 10 0.46 3 3 0 0.45 3 3 0
4 10 0.25 7 7 0 0.57 6 6 0
5 10 0.63 2 2 0 0.61 2 2 0

Model 3 Model 4.1

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 10 3600.27 3 1 66.66 2.02 4 4 0
2 10 3601.26 3 1 66.66 1.10 4 4 0
3 10 3600.24 3 1 66.66 342.42 4 4 0
4 10 3600.39 6 2 66.66 — — — —
5 10 935.19 2 2 0 — — — —

Model 4.2 Model Chen

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 10 3.24 4 4 0 1.33 3 3 0
2 10 2.68 5 5 0 0.75 3 3 0
3 10 29.11 3 3 0 0.72 2 2 0
4 10 — — — — 0.27 6 6 0
5 10 73.69 2 2 0 0.24 2 2 0
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Figure 13: Visualization of results, classes 1-5, 10 items

Results of classes 1-5, 30 items

Table 6 provides an overview of the results for the classes 1-5 for the item sets of 30 items.

For 25% of the item sets, an optimal solution is found. The results for models 1, 2, 4.2 and

Chen’s model are presented per class; for models 3 and 4.1 no solutions are found for any class.

First, for class 1, no optimal solution is found for any model. For model 1, model 2 and Chen’s

model, the time limit was exceeded but the solver presented an integer solution. For this class,

no solution is found for model 4.2. Second, for class 2, an optimal solution is found for model

1 and model 2. For model 4.2 and Chen’s model, the solution is an integer solution. Next, for

class 3, the solver is able to find an optimal solution of model 1, of model 2 and Chen’s model,

the solutions are integer and for model 4.2, no solution is presented. Last, for class 5, the solver

found an optimal solution for model 1, model 2 and Chen’s model. The solution for model 4.2

is integer.
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Table 6: Results of classes 1-5 for the input of 30 items

Model 1 Model 2

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 30 3601.39 7 6 14.29 3607.43 7 5 28.57
2 30 1.36 9 9 0 6.01 9 9 0
3 30 298.17 8 8 0 3604.23 8 5 37.50
4 30 1.15 18 18 0 1.54 18 18 0
5 30 30.40 4 4 0 55.95 4 4 0

Model 3 Model 4.1

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 30 — — — — — — — —
2 30 — — — — — — — —
3 30 — — — — — — — —
4 30 — — — — — — — —
5 30 — — — — — — — —

Model 4.2 Model Chen

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

1 30 — — — — 3600.98 7 5 28.57
2 30 3606.11 12 8 33,33 3601.89 8 5 37.50
3 30 — — — — 3604.28 8 5 37.50
4 30 — — — — 7.03 17 17 0
5 30 3604.93 18 3 83.33 3285.93 4 4 0

Figure 14: Visualization of results, classes 1-5, 30 items
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Results of classes 6-11, 10 items

Table 7 presents the results for classes 6-11 with the input sets of 10 items. The best integers

and the best bounds are represented in Figure 15. For these classes, 63.89% of the founded

solutions is optimal. The similar results for classes 7, 9 and 11 are remarkable. For all models,

except for model 4.1, the solver found an optimal solution. For model 4.1 the exception is the

integer solution for class 11. The solver found optimal solutions for models 1, 2, 4.2 and Chen’s

model for the input classes 6, 8 and 10. The solver found for those three classes of model 3

integer solutions, while for model 4.1 no solution was found for classes 6 and 10 and an integer

solution for class 8.

Table 7: Results of classes 6-11 for the input of 10 items

Model 1 Model 2

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

6 10 0.46 4 4 0 0.57 4 4 0
7 10 0.62 1 1 0 0.22 1 1 0
8 10 0.55 2 2 0 0.35 2 2 0
9 10 0.29 1 1 0 0.19 1 1 0
10 10 0.61 3 3 0 0.33 3 3 0
11 10 0.27 1 1 0 0.19 1 1 0

Model 3 Model 4.1

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

6 10 3600.18 3 1 66.66 — — — —
7 10 0.48 1 1 0 00.48 1 1 0
8 10 3600.17 2 1 50 3670.84 2 1 50
9 10 0.58 1 1 0 00.81 1 1 0
10 10 3600.63 3 1 66.66 — — — —
11 10 0.37 1 1 0 3606.60 3 1 66.66

Model 4.2 Model Chen

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

6 10 00.4 4 4 0 0.28 3 3 0
7 10 00.66 1 1 0 0.19 1 1 0
8 10 2.03 2 2 0 0.73 2 2 0
9 10 00.74 1 1 0 0.30 1 1 0
10 10 31.52 3 3 0 5.84 3 3 0
11 10 91.22 1 1 0 0.41 1 1 0
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Figure 15: Visualization of results, classes 6-11, 10 items

Results of classes 6-11, 30 items

The results for the set of 30 items are presented in Table 8 and visualized in Figure 16. For

38.89% of the cases, the solution is optimal. Model 1 is solved for every class and the solutions

are optimal. For model 2, the solver found an optimal solution for classes 6, 7, 8, 9 and 11, and

for class 10 the solution is integer. For model 3, no solutions are found for classes 6 and 10, for

the remaining classes the presented solutions are integer solutions. For model 4.1 and model

4.2 the solver cannot find an optimal solution. The presented solutions for classes 7, 8, 9 and

11 are integer solution, and for classes 6 and 10, no feasible solution is found. The solutions of

Chen’s model are optimal for classes 7, 9 and 11 and for classes 6, 8 and 10 integers.
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Table 8: Results of classes 6-11 for the input of 30 items

Model 1 Model 2

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

6 30 37.31 7 7 0 69.55 6 6 0
7 30 2.51 1 1 0 3.72 1 1 0
8 30 34.29 4 4 0 63.44 4 4 0
9 30 2.29 1 1 0 3.00 1 1 0
10 30 144.40 7 7 0 3600.79 6 5 16.67
11 30 2.60 1 1 0 2.26 1 1 0

Model 3 Model 4.1

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

6 30 — — — — — — — —
7 30 3602.09 6 1 83.33 3660.06 14 1 92.86
8 30 3602.27 13 1 92.31 3611.42 9 1 88.99
9 30 3601.74 6 1 83.33 3611.42 9 1 88.99
10 30 — — — — — — — —
11 30 3600.47 2 1 50 3605.34 9 1 88.99

Model 4.2 Model Chen

Classes Items Time Best
int

Best
bound

Gap Time Best
int

Best
bound

Gap

6 30 — — — — 3600.71 6 4 33.33
7 30 3603.41 9 1 88.89 1.73 1 1 0
8 30 3605.52 7 2 71.43 3601.05 4 2 50
9 30 3605.61 15 1 93.33 2.00 1 1 0
10 30 — — — — 3605.12 6 4 33.33
11 30 3604.10 15 1 93.33 2.01 1 1 0

Figure 16: Visualization of results, classes 6-11, 30 items
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5.4 Experiment 3: real world dataset

Historical data provided by PDSNL is used as input data for the models. The dataset consists

of all the parcels handled in one specific depot in three days. This comes down to over 119,000

data entries. For each parcel the dataset gives the date and time of entering the sorting process,

its dimensions in millimetres (length, width and height), the lifting conveyor belt on which it

enters the sorting machine as well as its destination chute in the sorting machine together with

its end destination (depot in this case). It is assumed that this dataset can be generalized over

every depot since they all work in the same manner with concern to sorting and all deal with

the parcels in the same way.

The dataset is first sorted based on the destination chute to break down the large dataset

into manageable parts which will serve as samples. From here, faulty data entries are removed.

These are parcels inserted onto the sorting machine but with their dimensions outside the

boundaries of the machine (e.g. too small to measure). After transforming every dimension

from millimetres to centimetres for generalization, samples are taken from chute belts selected at

random and the distributions of their dimensions are drawn. Different distributions are tested

for the input data, and this resulted in a log-normal distribution, which is then used to generate

all the instances. Four instances have been generated in total. The first two contains 10 items

each; and the second two instances contain 30 items each. The size of the bins matches the size

of the roll-containers (58 x 78 x 178). The heights for the layer of models 4.1 and 4.2 are pre-set

as (89, 89 cm) and (118, 60 cm), respectively. The choice is again driven by the dimensions of

the majority of the generated items.

Table 9 presents the results of instance 1 with 10 items. The solver found optimal solutions

for models 1, 2, and Chen et al. (1995)’s model, whereas for model 3, 4.1, and 4.2 no optimal

solution is found, but only the feasible solution with an optimality gap of 50%.
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Table 9: Experiment results for real world dataset of 10 items

Instance 1: 10 items

Model Time Best
bound

Best
integer

Gap Layer
height

1 0.58 2 2 0
2 0.41 2 2 0
3 3600.19 2 1 50

4.1 3601.15 2 1 50 (89, 89 cm)
4.2 3601.98 2 1 50 (118, 60 cm )

Chen 133.63 2 2 0

Instance 2: 10 items

Model Time Best
bound

Best
integer

Gap Layer
height

1 0.43 2 2 0
2 0.73 2 2 0
3 39.7 1 1 0

4.1 3600.36 2 1 50 (89, 89 cm)
4.2 3600.39 2 1 50 (118, 60 cm )

Chen 0.55 1 1 0

Table 10: Experiment results for real world dataset of 30 items

Instance 3: 30 items

Model Time Best
bound

Best
integer

Gap Layer
height

1 4.04 3 3 0
2 3600.97 3 2 33.33
3 3601.54 9 1 88.89

4.1 3601.9 11 1 90.91 (89, 89 cm)
4.2 3602.45 6 2 66.66 (118, 60 cm )

Chen 3608.18 3 1 66.66

Instance 4: 30 items

Model Time Best
bound

Best
integer

Gap Layer
height

1 1.89 6 6 0
2 3601.45 5 3 40
3 — — — —

4.1 3601.56 10 1 90 (89, 89 cm)
4.2 3602.72 6 2 66.66 (118, 60 cm )

Chen 3609.09 5 1 80

Table 9 reports the results for instances 1 and 2. Both instance 1 and 2 contain 10 items,

however, for both instances the items are different. Surprisingly, it is found that the composi-

tion of items affects the performance of model 3. For instance 2, model 3 has found the optimal

solution whereas it could not for instance 1. For the rest of the models, the performance is

similar to that of the first set.
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Table 10 gives the results of instances 3 with 30 items. This is the most interesting experimen-

tation since the number of items is comparable to the fitted amount in real life. It can be seen

that only for model 1 the optimal solution was found, and the solver was for all other models

not able to find a feasible solution, but with a gap to the optimal solution. When looking into

the optimality gap, for model 2 the gap is 33.33%, which is better than the optimality gap of

66.66% for Chen’s model and model 4.2. Models 3 and 4.1 has the poorest optimality gap.

Instance 4 also has 30 items. It is shown in Table 10 that the composition of items does

affect the performance of models when compared to the results of Instance 3. Model 1 is solved

for instance 4; for model 2 the optimality gap increased to 40% from 33.3
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5.5 Analysis of the results

In this study, we test the model of Chen et al. (1995) for all the instances. We noticed a

difference in the solutions of this model. For the relatively smaller instances, with 10 or fewer

items, all the solutions are better or equal to the solutions of other models. Models 1 and 2 are

also solved for these instances and an optimal solution is found. However, the model of Chen

always requires less or an equal number of bins, which was expected since its solutions yield as

a lower bound to the developed models.

For the relatively larger instances, with 30 items, the solver often exceeds the time limit for

most models and an optimal solution is not found. This also applies to the solutions of Chen’s

model, which are often feasible integer solutions instead of optimal solutions and the solver

exceeded the time limit of 3600 seconds. In general, for these instances, the optimal solution of

model 1 is found in relatively shorter time compared to Chen’s model. It is worth mentioning

that, for some cases, when for Chen’s model no optimal solution is found, the solver can still

find the optimal solution for model 1. This applies also for the instances generated using input

from PDSNL.

For model 3, often no solution is found or CPLEX exceeds the time limit. If for some

instance an optimal solution is found, it requires the same number of bins as the solutions of

Chen’s model for this instance. Nevertheless, the computational time needed to solve model 3

is often longer than for Chen’s model. The solutions of models 4.1 and 4.2 are not comparable

to the solutions of Chen’s model. Repeatedly no solution is found for these models. This can

be caused by the dimensions of the items, which are specific uniform distributions based on the

bin dimensions. Therefore, there may be items that do not fit within the fixed layers.

In the parcel delivery services, a key indicator of customer satisfaction is delivering on time.

This industry handles large quantities of small items every day. Therefore, the solver should

be able to find solutions for a large set of items. Based on the results of Tables 9 and 10,

model 1 fits the best for the parcel delivery services. First, this is the only model for which all

solutions of experiment three are optimal. Secondly, even though model 1 does not allow for

items to rotate, for this industry, this is not a problem since in real practice this might also

be a limitation of some items. Thirdly, model 1 uses physical layers to place the items in the

bins. Whenever containers are transported, the use of layers may provide extra stability to the

containers, which may be an advantage. Furthermore, an advantage may be the possibility to

separate different product form each other.

To conclude, Chen’s model, which has no layers and allow items to rotate 360◦, is a reliable

and performing model for small instances. When Chen’s model is adapted to layer packing
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models with fixed height (Models 4.1 and 4.2 or flexible height (model 3), the computational

times required increase significantly. Particularly, the fixed height layer packing (model 4.1 and

4.2) has the poorest computational performance in general. However, it is worth mentioning

that, when the rotation of items is not allowed, the computational performance is very good

as indicated by the outputs of model 1. For the cases with large item sets, the computational

performance of model 1 is even better than that of Chen’s model. This model, model 1, is also

the best fit for the parcel delivery services.

5 NUMERICAL EXPERIMENTS 40



Master’s Thesis Margot Kho

6 Conclusions and future extensions

In this research, four new mathematical models of the three-dimensional layer packing problem

are developed. Earlier studies that focused on this problem provide mathematical models for

the two-dimensional layer packing problem or the classical three-dimensional bin packing prob-

lem. By including extra constraints into the classical model, our work has extended this early

research to 3-D layer packing; thereafter, four models are developed for 3-D layer packing and

tested with literature-based data and real-world dataset and solved with a branch-and-bound

procedure.

We may say that our goal, to find indications of a feasible solution in lower time, is achieved.

For the relatively smaller instances, the solutions of Chen’s model are the best and the solver

requires a relatively short computational time, so none of the developed models has better per-

formances than Chen’s model. For the larger instances, the optimal solutions of model 1 may

be an indication of a feasible solution in lower time. The solutions of model 2 are also often

optimal solutions, however, the solver requires more time to find these solutions and therefore

model 1 is a better fit.

Based on the information in this study the solutions of the developed models are not exclu-

sively better for industrial use, it depends on the type of items that are to be packed. However,

for larger instances, the first two developed models are solved within one hour and the solutions

are optimal, the solver is not capable of doing this for the model of Chen et al. (1995). Although,

no hard conclusion may be drawn for the practical use of the models, however, it appears that

model 1 is best suited, due to its quick performances for larger instances.
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Bortfeldt, A. and Wäscher, G. (2013). Constraints in container loading–a state-of-the-art review.

European Journal of Operational Research, 229(1):1–20.

Chen, C., Lee, S.-M., and Shen, Q. (1995). An analytical model for the container loading

problem. European Journal of Operational Research, 80(1):68–76.

Coffman Jr, E. G., Csirik, J., Johnson, D. S., and Woeginger, G. J. (2004 (accessed July 21st,

2018)). An introduction to bin packing. www.inf.u-szeged.hu/~csirik/.

Crainic, T. G., Perboli, G., and Tadei, R. (2009). Ts 2 pack: A two-level tabu search for

the three-dimensional bin packing problem. European Journal of Operational Research,

195(3):744–760.

Dowsland, K. A. and Dowsland, W. B. (1992). Packing problems. European journal of opera-

tional research, 56(1):2–14.

Ecommerce (2016 (accessed April 10th, 2017)). Ecommerce in Europe to reach 509.9 billion Euro

in 2016. https://ecommercenews.eu/ecommerce-europe-reach-e509-9-billion-2016/.

Faroe, O., Pisinger, D., and Zachariasen, M. (2003). Guided local search for the three-

dimensional bin-packing problem. Informs Journal on Computing, 15(3):267–283.

Kim, S.-J., Lim, H., and Park, M. (2014). Analysing the cost efficiency of parcel distribution

networks with changes in demand. International Journal of Urban Sciences, 18(3):416–429.

Lodi, A., Martello, S., and Vigo, D. (2002a). Heuristic algorithms for the three-dimensional bin

packing problem. European Journal of Operational Research, 141(2):410–420.

Lodi, A., Martello, S., and Vigo, D. (2002b). Recent advances on two-dimensional bin packing

problems. Discrete Applied Mathematics, 123(1):379–396.

Lodi, A., Martello, S., and Vigo, D. (2004). Models and bounds for two-dimensional level

packing problems. Journal of Combinatorial Optimization, 8(3):363–379.

Martello, S., Pisinger, D., and Vigo, D. (2000a). The three-dimensional bin packing problem.

Operations Research, 48(2):256–267.

Martello, S., Pisinger, D., and Vigo, D. (2000b). The three-dimensional bin packing problem.

Operations Research, 48(2):256–267.

Paquay, C., Schyns, M., and Limbourg, S. (2016). A mixed integer programming formula-

tion for the three-dimensional bin packing problem deriving from an air cargo application.

International Transactions in Operational Research, 23(1-2):187–213.

Sciomachen, A. and Tanfani, E. (2003). The master bay plan problem: a solution method based

on its connection to the three-dimensional bin packing problem. IMA Journal of Management

Mathematics, 14(3):251–269.

Sciomachen, A. and Tanfani, E. (2007). A 3d-bpp approach for optimising stowage plans and

terminal productivity. European Journal of Operational Research, 183(3):1433–1446.

REFERENCES 42

www. inf. u-szeged. hu/~ csirik/
https://ecommercenews.eu/ecommerce-europe-reach-e509-9-billion-2016/


Master’s Thesis Margot Kho

Wu, Y., Li, W., Goh, M., and de Souza, R. (2010). Three-dimensional bin packing problem

with variable bin height. European Journal of Operational Research, 202(2):347–355.
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A Input data

A.1 Classes 1-5

A.1.1 8 items

Table 11: Classes 1 and 2, 8 items

Class 1 Item h w l Class 2 Item h w l

1 92 4 95 1 79 69 67
2 85 47 79 2 73 56 56
3 75 4 78 3 43 98 77
4 74 36 78 4 40 82 69
5 68 93 6 5 32 67 81
6 58 67 66 6 30 95 82
7 43 73 82 7 28 73 93
8 15 88 79 8 15 99 71

Table 12: Classes 3 and 4, 8 items

Class 3 Item h w l Class 4 Item h w l

1 100 92 11 1 99 98 14
2 93 4 98 2 96 75 62
3 89 71 42 3 89 99 75
4 81 84 6 4 87 79 79
5 80 68 43 5 84 16 76
6 76 67 86 6 69 76 59
7 70 70 13 7 47 7 13
8 13 45 27 8 12 88 82

Table 13: Class 5, 8 items

Item h w l

1 75 3 90
2 73 91 14
3 73 53 67
4 58 77 68
5 48 50 13
6 21 46 7
7 13 2 12
8 5 77 74
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A.1.2 10 items

Table 14: Classes 1 and 2, 10 items

Class 1 Item h w l Class 2 Item h w l

1 91 91 24 1 95 90 9
2 85 24 96 2 68 25 88
3 83 8 68 3 53 74 60
4 76 16 79 4 50 72 77
5 71 38 68 5 49 78 89
6 68 44 98 6 43 78 72
7 67 28 74 7 37 95 92
8 55 94 71 8 32 36 6
9 47 94 85 9 5 99 85
10 43 25 27 10 4 100 82

Table 15: Classes 3 and 4, 10 items

Class 3 Item h w l Class 4 Item h w l

1 99 97 13 1 95 98 96
2 93 27 79 2 85 81 41
3 92 75 17 3 80 54 76
4 86 69 35 4 75 44 67
5 83 97 15 5 57 86 81
6 74 84 12 6 56 94 97
7 69 68 10 7 55 52 92
8 52 56 56 8 54 76 65
9 50 99 88 9 33 89 81
10 19 44 50 10 11 1 47

Table 16: Class 5, 10 items

Item h w l

1 94 11 78
2 94 62 69
3 73 67 49
4 45 42 16
5 30 43 42
6 29 21 41
7 21 33 25
8 18 73 88
9 9 2 23
10 6 37 42

A INPUT DATA 45



Master’s Thesis Margot Kho

A.1.3 30 items

Table 17: Classes 1 and 2, 30 items

Class 1
Item

h w l Class
2

item h w l

1 99 33 82 1 98 93 50
2 97 12 93 2 97 60 74
3 97 70 15 3 92 75 42
4 95 16 89 4 92 94 48
5 94 35 77 5 73 63 57
6 88 62 83 6 70 45 92
7 87 7 78 7 57 74 57
8 84 22 69 8 46 90 93
9 83 5 67 9 46 41 7
10 83 53 63 10 44 68 81
11 82 33 82 10 41 99 73
12 81 36 96 10 38 80 86
13 81 2 98 10 38 81 68
14 80 34 84 10 31 72 76
15 77 50 91 10 30 70 100
16 77 18 97 10 28 77 76
17 77 32 86 10 28 41 27
18 75 11 91 10 23 98 98
19 74 89 8 10 23 76 75
20 72 62 100 10 22 2 20
21 70 13 67 10 18 83 79
22 69 28 80 10 17 86 100
23 67 21 90 10 13 72 86
24 59 62 65 10 12 87 90
25 41 24 5 10 7 91 75
26 34 99 84 10 4 75 92
27 23 30 13 10 3 100 83
28 20 89 92 10 3 82 75
29 20 98 90 10 3 94 99
30 2 81 87 10 3 69 84
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Table 18: Classes 3 and 4, 30 items

Class 3 Item h w l Class 4 h w l

1 100 70 3 1 100 90 30
2 100 64 73 2 95 60 57
3 99 74 8 3 91 94 31
4 98 67 29 4 88 78 71
5 98 99 98 5 87 78 50
6 96 60 88 6 86 36 76
7 95 75 32 7 86 90 77
8 94 89 36 8 81 51 65
9 94 100 35 9 79 43 68
10 93 92 46 10 78 23 68
11 92 81 20 11 77 51 56
12 92 77 86 12 74 63 84
13 91 21 88 13 73 2 71
14 86 83 11 14 72 87 37
15 85 6 87 15 71 44 92
16 82 1 92 16 70 51 89
17 80 81 25 17 70 96 76
18 80 92 23 18 68 77 70
19 79 11 67 19 68 82 93
20 77 80 1 20 66 65 53
21 74 96 34 21 63 51 58
22 72 40 97 22 62 86 66
23 71 95 9 23 61 63 100
24 70 81 37 24 59 91 83
25 70 73 29 25 53 59 91
26 68 89 36 26 50 82 89
27 42 45 17 27 40 68 90
28 19 8 34 28 33 78 84
29 17 17 2 29 33 49 36
30 10 23 11 30 3 14 17
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Table 19: Class 5, 30 items

Class 5 Item h w l

1 100 85 6
2 98 32 78
3 96 26 71
4 92 70 16
5 84 5 84
6 78 67 17
7 76 41 98
8 73 77 34
9 67 67 80
10 64 91 80
11 46 45 4
12 45 30 25
13 44 48 39
14 43 48 34
15 40 1 38
16 37 17 45
17 36 7 16
18 35 5 2
19 31 37 30
20 27 94 99
21 25 42 2
22 23 43 44
23 19 46 45
24 16 29 40
25 13 12 13
26 10 81 67
27 7 44 42
28 5 31 36
29 2 18 41
30 2 30 9
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A.2 Classes 6-11

A.2.1 10 items

Table 20: Classes 6 and 7, 10 items

Class 6 Item h w l Class 7 Item h w l

1 10 3 8 1 10 2 1
2 10 6 9 2 10 7 9
3 9 1 6 3 7 2 9
4 8 8 2 4 6 2 3
5 6 9 9 5 6 8 4
6 6 3 8 6 5 2 9
7 5 10 1 7 4 2 1
8 5 8 10 8 1 1 2
9 4 5 3 9 1 5 1
10 3 2 9 10 1 5 7

Table 21: Classes 8 and 9, 10 items

Class 8 Item h w l Class 9 Item h w l

1 32 27 15 1 34 18 11
2 22 13 29 2 17 1 26
3 22 17 20 3 15 9 17
4 18 34 13 4 15 14 18
5 14 27 30 5 14 12 13
6 12 2 21 6 7 29 19
7 8 12 18 7 4 8 25
8 7 3 17 8 4 20 32
9 7 4 19 9 3 20 3
10 4 12 5 10 2 12 12
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Table 22: Classes 10 and 11, 10 items

Class 10 Item h w l Class 11 Item h w l

1 98 63 8 1 99 43 9
2 93 38 60 2 90 24 83
3 83 21 80 3 88 40 5
4 80 100 39 4 76 80 24
5 75 55 83 5 46 8 56
6 52 69 86 6 38 87 4
7 29 38 48 7 6 15 37
8 27 56 90 8 5 10 52
9 21 43 45 9 2 85 41
10 14 18 50 10 1 80 67

A.2.2 30 items

Table 23: Classes 6 and 7, 30, items

Class 6 Item h w l Class 7 Item h w l

1 10 6 3 1 10 2 6
2 10 9 9 2 10 6 5
3 9 7 2 3 10 5 8
4 9 1 4 4 10 6 7
5 9 1 10 5 8 5 1
6 9 8 1 6 8 9 5
7 8 8 8 7 8 9 10
8 8 9 4 8 7 7 1
9 7 7 5 9 7 5 5
10 7 10 1 10 7 6 1
11 5 6 6 11 7 8 5
12 5 5 10 12 6 9 1
13 5 7 7 13 6 5 6
14 5 9 2 14 6 2 8
15 5 9 9 15 6 8 4
16 4 10 1 16 5 3 6
17 4 9 6 17 5 7 6
18 4 6 10 18 4 8 10
19 3 8 3 19 4 1 8
20 3 2 5 20 4 3 2
21 2 3 7 21 3 5 3
22 2 2 1 22 3 10 9
23 2 1 9 23 3 10 3
24 2 2 7 24 3 1 1
25 2 2 2 25 2 10 2
26 2 4 3 26 1 7 3
27 1 6 3 27 1 10 6
28 1 3 7 28 1 1 4
29 1 3 10 29 1 6 10
30 1 2 5 30 1 5 5
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Table 24: Classes 8 and 9, 30 items

Class 8 Item h w l Class 9 Item h w l

1 32 4 1 1 34 5 10
2 31 26 11 2 34 15 19
3 31 12 34 3 33 34 18
4 28 1 13 4 32 32 34
5 28 20 32 5 32 29 3
6 27 4 29 6 31 18 18
7 27 26 1 7 31 20 7
8 26 5 28 8 30 7 14
9 26 24 22 9 29 17 25
10 26 6 29 10 28 34 10
11 23 4 21 11 28 13 30
12 20 23 12 12 20 17 15
13 20 2 22 13 19 9 23
14 19 18 34 14 18 14 26
15 19 21 24 15 18 16 15
16 18 2 27 16 18 18 17
17 16 8 4 17 15 23 32
18 16 30 28 18 15 4 14
19 16 12 13 19 13 19 8
20 15 26 2 20 13 25 9
21 15 10 2 21 13 27 19
22 13 3 29 22 12 19 19
23 13 23 17 23 11 6 10
24 13 4 23 24 11 9 13
25 13 10 32 25 8 26 17
26 13 12 33 26 8 7 29
27 10 27 21 27 6 12 29
28 9 29 31 28 5 23 26
29 7 8 11 29 3 11 17
30 6 8 21 30 1 26 29
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Table 25: Classes 10 and 11, 30 items

Class 10 Item h w l Class 11 Item h w l

1 99 28 33 1 98 68 75
2 97 45 100 2 97 61 13
3 95 64 21 3 90 56 85
4 88 32 34 4 86 81 56
5 86 62 35 5 83 77 65
6 84 98 87 6 81 2 15
7 83 4 91 7 79 78 77
8 82 74 63 8 71 41 19
9 80 76 36 9 67 66 61
10 78 7 30 10 66 93 27
11 75 27 76 11 65 37 81
12 74 30 40 12 63 97 11
13 68 67 7 13 62 41 38
14 60 9 97 14 61 89 13
15 56 22 77 15 60 79 12
16 50 70 21 16 58 35 65
17 50 12 28 17 58 72 15
18 49 97 82 18 56 96 8
19 48 20 71 19 46 20 13
20 46 87 66 20 40 68 10
21 44 74 20 21 35 10 30
22 31 66 70 22 32 39 67
23 29 37 90 23 30 40 23
24 29 94 85 24 28 77 65
25 26 12 47 25 16 49 96
26 26 91 64 26 14 96 70
27 23 41 15 27 13 87 57
28 4 93 20 28 12 13 59
29 1 26 70 29 5 93 45
30 1 44 87 30 2 26 20
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A.3 Real world data PDSNL

A.3.1 Instances 1 and 2, 10 items

Table 26: Instances 1 and 2, 10 items

Instance
1

Item h w l Instance
2

Item h w l

1 77 46 46 1 83 24 50
2 62 32 41 2 60 24 34
3 62 30 35 3 58 29 53
4 60 31 47 4 58 22 34
5 58 27 41 5 57 27 37
6 55 28 48 6 55 33 33
7 50 35 36 7 54 30 47
8 47 19 43 8 49 24 29
9 38 34 35 9 47 19 45
10 37 31 36 10 43 10 35
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A.3.2 Instances 3 and 4, 30 items

Table 27: Instances 3 and 4, 30 items

Instance
3

Items h w l Instance
4

Items h w l

1 65 20 26 1 77 42 46
2 64 35 63 2 72 39 42
3 64 35 55 3 72 38 66
4 62 32 61 4 64 35 63
5 62 19 25 5 62 35 48
6 62 25 28 6 62 32 41
7 61 18 30 7 60 35 47
8 60 17 41 8 59 37 45
9 59 33 38 9 58 35 36
10 59 18 39 10 58 34 48
11 58 34 42 11 58 18 31
12 58 18 31 12 58 30 41
13 57 35 42 13 57 36 37
14 57 19 40 14 56 35 41
15 56 36 43 15 56 33 55
16 55 32 38 16 56 24 31
17 54 21 33 17 55 29 48
18 53 20 31 18 51 32 37
19 52 20 33 19 50 35 46
20 48 23 36 20 48 17 32
21 48 17 32 21 47 36 43
22 46 16 30 22 44 28 32
23 46 15 32 23 43 31 37
24 42 31 41 24 43 23 40
25 42 25 30 25 42 31 41
26 42 29 40 26 41 37 38
27 41 15 23 27 38 35 38
28 39 34 37 28 38 35 36
29 26 15 24 29 35 23 32
30 25 12 22 30 25 12 22
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