
UNIVERSITY OF GRONINGEN

Non-linear saturated control without

velocity measurements for planar,

flexible-joint manipulators

by

Thomas Wesselink

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Science and Engineering

Industrial Engineering and Management

supervised by

Prof. dr. ir. J.M.A. Scherpen

Prof. dr. A.J. van der Schaft

Dr. L.P. Borja Rosales

August 2018





UNIVERSITY OF GRONINGEN

Abstract

Faculty of Science and Engineering

Industrial Engineering and Management

Master of Science

by Thomas Wesselink

In this thesis a constructive procedure for energy-shaping without solving partial differ-

ential equations [1] is used to develop control for a planar robot arm with rotational,

flexible joints. It is shown that taking the natural damping into consideration can benefit

the process of developing control through passivity-based techniques. Furthermore, this

work presents a control law that does not use velocity measurements and is by itself fully

saturated. All of the resulting control laws are compared against a linear alternative

and each other through simulations and tests on an experimental set-up.
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Notation

• All vectors are column vectors and for the scalar function V (x), with x = (x1, . . . , xn)>,

the following derivatives apply:

∂V

∂x
(x) =


∂V
∂x1

(x)
...

∂V
∂xn

(x)

 , ∂2V

∂x2
=


∂2V
∂x21

. . . ∂2V
∂xn∂x1

...
. . .

...

∂2V
∂x1∂xn

. . . ∂2V
∂x2n


• The following notation with x ∈ Rn, K ∈ Rn×n is equivalent:

x>Kx = ‖x‖2K

• A subscripted asterisk outside a bracket means the contents of the bracket are

evaluated at a point x∗:

[
V (x)

]
∗

=
(
V (x)

)
∗

= V (x)
∣∣∣
∗

= V (x∗)

• Suppose four matrices A,B,C,D are respectively sized p×p, p×q, q×p and q×q,

and that D is invertible. A composite matrix’s Schür complement can be found

as follows:

M :=

A B

C D


M
/
D = A−BD−1C and M

/
A = D − CA−1B

• Abuse of notation is often made by leaving out arguments

vi



Chapter 1

Introduction

The focus of this thesis is on designing control for a robot arm with flexible joints. A

new, passivity-based, constructive procedure for doing so will be tested. Furthermore,

the work in this thesis contributes to literature a case for considering the natural damping

and a new saturated form of control without velocity measurements. This introductory

chapter will present the concept of (non-linear) control and the challenges that come

with it. The definition of the specific problem this thesis aims to solve will delineate

within these challenges a more precise focus.

1.1 Control theory

Controller System

Sensor

-
+

Reference

Error
System 
input System output

Measured output

Figure 1.1: A closed-loop feedback control. The output of the system is measured and
compared to the desired output. A controller then translates this into an appropriate
input.

Engineers dealing with control and automation are concerned with analyzing and con-

trolling bounded parts of their environment. Such a port, when properly defined is

1



Introduction 2

Figure 1.2: The fly-ball governor, invented by James Watt in 1769. The speed of the
engine is regulated because at higher speeds, the spinning of the metal spheres raises
the governor, decreasing the amount of steam entering the engine. [3]

called a system. These systems often accept an input, produce an output and that what

is going inside can be captured in a certain number of states. The goal of the control

engineer, is then to device the inputs that, when fed into the system, make the output

behave in a desired way. The most prominent form of controllers that are used are

closed-loop feedback controllers. In these loops, information about the actual output is

compared to the desired output, and the controller then translates the difference into a

input signal for the system (see figure 1.1). Although automatic control had been (often

unknowingly) used in history, one of the earliest studied examples [2]1 of an automatic

(yet fully mechanical) controller was James Watt’s fly-ball governor (figure 1.2). Watt

developed the device in 1769 to control the speed of steam engines, and it played a large

role in enabling the industrial revolution. The field has progressed massively since and

modern control systems are often sophisticated entities in which the control law is exe-

cuted on a computer. The basic elements are however still the same, and the closed-loop

feedback principle as seen in Watt’s fly-ball governor is currently applied in billions of

devices over the world.

1For a brief history through early, early twentieth century, and classical control, the reader is referred
to this work by Stuart Bennett.
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One important development is the mathematical domain in which the analysis of the

system’s dynamics was performed. Although this analysis initially started with looking

at differential equations, developing a simple and useful framework for proving stability

of the systems eluded the mathematicians working on the problems. Classical control

theory took over around the 1930’s with analysis in the Laplace-domain, the systems

being described as transfer functions. The 1950’s brought modern control techniques,

and systems were for the first time described in the state-space notation, which will

also be used in this thesis. The state-space of a system is a set of first order differen-

tial equations describing the relation between the inputs and outputs of a system, and

the solution of each differential equation yields a state: a variable that describes the

condition the system is in.

In whatever form, control theory is applicable in any situation in which the output of

a system has to be regulated, and in a more and more automated world, the number

of this kind of situations is increasing; self-driving cars have to maintain speed and

follow a trajectory (fig. 1.3), drones cooperate to create flying light shows (fig. 1.4) and

industrial robot arms swing around a factory to produce cars (fig. 1.5).

Figure 1.3: Self driving cars
Figure 1.4: Drones flying in
formation

Figure 1.5: Robot arms
working on cars

1.2 Non-linear control

The rigorous analysis of systems and ways to control them started with linear systems.

James Clerk Maxwell formalized the control principle of Watt’s regulator in 1868 [4]

(see figure 1.6), and famous theorists as Routh, Sturm and Hurwitz continued this work

later. With Nicholas Minorsky and his invention of PID control [5], many of the linear

problems became relatively easily solvable. Control of non-linear systems proved harder

to crack.
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A non-linear system is loosely speaking a system in which the outputs are not directly

proportional to its inputs. In other words, the systems dynamics cannot be written as

a linear composition of the independent states. The dynamics of these systems behave

differently and small differences in the starting conditions or the control signals can

generate vastly different outcomes.

Non-linearity also brings other phenomena that do not occur in linear systems. The

states can become infinite in finite time, there can be multiple and isolated equilibria,

there can be isolated oscillations in which a trajectory may be trapped forever and the

number of equilibrium points can change when changing system parameters in a process

called bifurcation.

Non-linear systems can be linearized using techniques related to the Taylor expansion

but the downside is that all non-linear behaviour is lost. This means that linearized

models only partly explain the system’s behaviour and additionally only work in a small

region around the point of linearization. These models however still work well enough

for a lot of practitioners, and the discussion about the need for non-linear models has

raised its head multiple times. The analysis of non-linear systems is more complicated

than the analysis of their linear counterparts. For linear systems there exist generalized

frameworks applicable to every conceivable linear system. A famous quote from Tolstoy’s

Anna Karenina has once been used to express why non-linear systems are harder to crack:

”Every linear system is linear in the same way, whereas every non-linear system has its

own way of being non-linear”. Although for example controllability and observability

have been generalized for all non-linear systems, controller synthesis methods have only

been successfully developed for certain well delineated classes of systems.

It seems that a generalized method for finding a suitable control law for any non-linear

system cannot be possible. However, developing control for well-defined classes of non-

linear systems certainly is. The fact that non-linear analysis works in a larger range

of motion and can make stronger guarantees about stability than its linear counterpart

is a good argument to continue this research. Also, in a significant amount of cases

non-linear analysis can yield better performance; this thesis is an example of that.
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Figure 1.6: Illustrations from Maxwell’s work: On governors

1.3 Port-Hamiltonian models and passivity

Whilst topics concerning control and stability are often considered from a mathematical

point of view, the engineer needs to keep the practical applications in mind. Control the-

ory is applicable to a broad range of domains, but energy is usually the property shared

in all of those. This energy is stored, supplied, dissipated and routed between differ-

ent parts of the physical systems. To model these characteristics, different frameworks

exist. The Euler-Lagrangian and Newtonian frameworks are well suited to modeling

mechanical systems, but they lack a clear and intuitive representation of the energy. A

better alternative in that respect is given by the Hamiltonian framework. It is oriented

around the Hamiltonian of a system, which in mechanical systems is the total energy of

the system at a certain time.

The concept of port-Hamiltonian further improves this framework. It uses a fixed struc-

ture that is based on the interconnection of different parts of the system where the energy

flow is represented by across and through variables. Although not really applicable to

this thesis, the connection (of a large number) of parts from different physical domains

becomes very convenient through this structure. Another advantage is that it gives a

clear and convenient overview of the way parts of the system interact, and where energy

is dissipated or added through control inputs.
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Passivity is another term closely related to this convenient framework for modelling

physical systems. Loosely speaking, a system is passive when it does not generate

energy by itself. This means that the energy stored in the system can never be greater

than the supplied energy and the energy present in the system at the initial time. All

real physical systems automatically adhere to this. The property of passivity turns out

to be very useful for control design, the work in this thesis is heavily based on passivity-

and energy-based works of Daniel Dirksz [6] and Pablo Borja et al. [1].

Dirksz’s work on energy based control design uses the advantage of the energy based

representation of PH models to design robust control. The fact that the Hamiltonian

can be used as a candidate Lyapunov function, a useful tool to prove stability, is also

exploited. Borja’s falls under the category of passivity-based control methods. These

also exploits the energy-based characteristics of port-Hamiltonian models, for example,

they are automatically passive. It aims to change the minimums of energy with regards

to the change, and then render the closed loop system stable. Borja’s method of PI-

PBC is in fact very close to the linear methods with proportional and integral terms, a

reassuring nomenclature for practitioners.

1.4 Robot arms and flexible joints

An interesting example of non-linear systems and the area that will be the focus of this

thesis is that of robot arms. These arms are extensively used in factories and replace

humans in the production process. They can carry loads much larger and yet work

at a much higher accuracy than their human counterparts. Often, these arms have

rotational joints that allow them to freely move around their workspace. The geometric

consequence of having these joints are that the dynamics become non-linear.

The scale and configuration of these arms cause an extra non-linearity: that of flexible

joints. In industrial robot arms, transmission systems like harmonic drives and trans-

mission belts allow the link of the robot to be in a slightly different position than the

motor, this deflection occurs in an elastic manner. A second possibility is that the length

of the arm is so large that it bends slightly causing the end of the manipulator to be at

a different angle than the beginning and therefore the motor.
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1.5 Problem formulation

A way to tackle the problem of designing control for non-linear systems is passivity-

based control. The energy-balance of the system has certain characteristics that can

be exploited to design control laws that provide desired performance. However, most

techniques associated to this method require solving differential equations. This is often

a difficult and time-consuming process. Borja et al. [1] devised a procedure to use

passivity without solving partial differential equations. This procedure will be applied

to the non-linear flexible-joint robotic manipulators as discussed in the previous section.

Its usefulness as a way to develop robust and efficient control techniques will be tested.

Furthermore, in theoretical work, the choice is often made to include the velocity in

the control law. In practice, velocity cannot be measured directly. The velocity mea-

surements are obtained by differentiating the position measurements over time. Since

the resolution of position measurements are limited (often by the amount of slips on an

encoder disk), these measurements already have a certain error. This error will amplify

when the position measurements are used to calculate the velocity. Another problem

is that these methods and sensors are expensive. It is therefore desirable to be able to

control a robot arm without these measurements.

A third problem to which this thesis aims to provide a solution is that in practice,

systems can often only handle inputs with a limited amplitude. A reasonable input for

a robot arm is an electric current expressed in Ampère. If the controller output is a

current that is too strong, the motors in the arm might be damaged. Control signals

are therefore often saturated, which often means that any signal exceeding a certain

threshold is cut off. The relatively unsophisticated way to handle strong signals can

cause vibration and trouble the analysis. The effects are often largely ignored and if the

proof that a control law works without saturation is given the research is often concluded

without further thought about the applications.

Lastly, the natural damping of systems is often kept out of consideration in theoretical

work about control. In reality, a form of damping is almost always present. In robot

arms, this damping comes from friction between different parts or the air resistance

caused by moving the arm through its environment. The effects of damping are therefore

not always extensively researched and when it is, it is seen as a nuisance and negating
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its effect is often a priority. In this thesis it is shown, that damping can have an enabling

effect as well, and including it in research can be worth the trouble.

1.6 Thesis outline

From this point on, the challenges discussed will be treated in the following order. A pre-

liminary chapter will explain the port-Hamiltonian framework in which the systems are

considered, the notions of stability and passivity and methods to prove the requirements

for these notions are satisfied, and passivity-based control. The next chapter, Chapter

3, will treat the way flexible-joint manipulators can be modelled. Chapter 4 will test

Borja et al.’s [1] constructive procedure on the robot arm. Chapter 5 will explain how

considering natural damping can help in this case and Chapter 6 will remove velocity

measurements from the control law and saturate the signals. The last chapter, Chapter

7, will present results about the rejection of external disturbances. Chapter 8 features

a discussion of the work in this thesis and possibilities for further research.



Chapter 2

Preliminaries

This chapter will present an outline of the theoretical background of the methods used

in this thesis. The chapter will feature a section about port-Hamiltonian systems, since

the arm will be modelled using this framework. As the goal of this thesis is to develop a

stable control, a definition of stability as well as a summary of methods to prove stability

will also be given. Finally passivity-based control, the method of control development

the techniques in this thesis are based on, will be explained.

2.1 The port-Hamiltonian framework for mechanical sys-

tems

The analysis of physical and especially mechanical systems has taken place mostly within

the Lagrangian or Hamiltonian frameworks. The Euler-Lagrangian equations are given

as

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = τ (2.1)

in which L = T (q, q̇) − V (q) is the Lagrangian of the system and exists of the kinetic

energy T and potential energy V . q = (q1, . . . , qn) are the generalized coordinates for

a system with n degrees of freedom. The notations ∂L
∂q and ∂L

∂q̇ represent the column

vectors of partial derivatives of L with respect to the generalized coordinates q or its

derivatives q̇. The vector τ incorporates the (generalized) forces acting on each state

9
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of the system into the model. The kinetic energy T takes in mechanical systems the

following form:

T (q, q̇) =
1

2
q̇>M(q)q̇ (2.2)

in which the mass-inertia matrix M(q) is symmetric and positive-definite for all q. The

generalized momenta (p1, . . . , pn) are defined as p = ∂L
∂q̇ and for mechanical systems are

given by:

p = M(q)q̇ (2.3)

For the Hamiltonian framework, the Hamiltonian can be found from the Lagrangian by

applying the Legendre transformation:

H = q̇
∂L

∂q̇
− L

resulting for mechanical systems in H = T + V . Using (2.3) and the fact that M(q) is

symmetric the Hamiltonian can be rewritten in terms of the coordinates and momenta:

H(q, p) =
1

2
p>M−1(q)p+ V (q) (2.4)

The Hamiltonian conveniently represents the total energy of the system and allows for

the Hamiltonian equations of motion. In these equations, the n second-order equations

of (2.1) are replaced by 2n first-order equations:

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H
∂q

(q, p) + τ

(2.5)
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These equations can be generalized to:

q̇ =
∂H

∂p
(q, p), q, p ∈ Rn

ṗ = −∂H
∂q

(q, p) +B(q)u, u ∈ Rm

y = B>(q)
∂H

∂p
(q, p), y ∈ Rm

(2.6)

where B(q) is the input force matrix with B(q)u = τ . Considering that m is the amount

of inputs, if m < n the system is underactuated and not all momenta can directly be

influenced by the input u. If m = n and the matrix B(q) is invertible for all q the system

is fully actuated. These equations can be further generalized for any local coordinates

x on an n-dimensional state space manifold X whilst including energy dissipation. The

equations of motion in (2.7) are, under the assumptions of (2.8), in port-Hamiltonian

(PH) form (introduced by Maschke and van der Schaft in [7]).

ẋ =
(
J(x)−R(x)

)∂H
∂x

(x) + g(x)u

y = g>(x)
∂H

∂x
(x), y ∈ Rm

(2.7)

J(x) is the n × n interconnection matrix that shows the way energy travels between

different elements of the system. It is assumed to be skew-symmetric. R(x) is a positive

definite, symmetric matrix called the damping matrix. This damping matrix governs

the energy dissipation of the system.

J(x) = −J>(x)

R(x) = R>(x) ≥ 0
(2.8)

PH systems can describe many (non-linear) systems including mechanical, electrical,

electro-mechanical and thermal systems. It is especially useful to describe complex

systems since parts of the model can be split and connected through the interconnection

matrix. More information, including more detailed explanations of the material in this

section, can be found in [8], [7].
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2.2 Stability and passivity

2.2.1 Stability

Stability is an important concept in dynamical systems that describes certain aspects of

their behavior. In particular, stability tells one about the states of a system over time,

and whether or not they are contained in a certain region. A more precise definition of

stability in the sense of Lyapunov [9] follows:

Definition 2.1. An equilibrium point x∗ ∈ Rn is called

• stable, if for every ε > 0 there exists a δ > 0 such that if ‖x0 − x∗‖ < δ then

‖x(t;x0)− x∗‖ < ε for all t ≥ 0.

• asymptotically stable, if x∗ is stable and there exists a δ > 0 such that ‖x0−x∗‖ < δ

implies that lim
t→∞

x(t;x0) = x∗.

• globally asymptotically stable, if x∗ is stable and for every x0, limt→∞ x(t;x0) = x∗.

• unstable, if x∗ is not stable.

The notation x(t;x0) indicates the trajectory of state x over time t with initial conditions

x0.

To prove whether or not an equilibrium is (asymptotically) stable, the methods in this

thesis will rely heavily on Lyapunov’s second method. Additionally, Barbalat’s lemma

is used to analyze the behaviour of certain functions as t→∞. Both will be explained

in the next sub-sections.

Lyapunov’s second method

Aleksandr Lyapunov (1867 - 1918) was a Russian mathematician who developed several

methods to investigate the stability of equilibrium points. His second method, also

known as Lyapunov’s direct method, relies on finding a function that does not increase

along the solutions: a Lyapunov function.

Definition 2.2. Let Ω ⊂ Rn be a subset containing an open neighborhood of equilibrium

point x∗. A function V : Ω→ R is called a Lyapunov function for equilibrium point x∗

if:
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1. V is continually differentiable.

2. V has a unique minimum in x∗, and V (x∗) = 0.

3. For all x ∈ Ω, V satisfies the following inequality:

V̇ (x) =
n∑
i=1

∂V

∂xi
ẋi ≤ 0

Remark 2.3. For systems with multiple states, as will be encountered in this thesis

showing a potential Lyapunov function has a unique minimum can be performed as

follows: a function V has a unique minimum in x∗ if:

1. ∂V
∂x (x)

∣∣∣
x∗

= 0n×1

2. ∂2V
∂x2

(x)
∣∣∣
x∗

> 0 (is positive definite)

where ∂V
∂x is the vector of partial derivatives of V with respect to all states x and ∂2V

∂x

the Hessian matrix of V with respect to states x.

Stability can be investigated using a Lyapunov function using the following theorem (for

which the proof can be further studied in [9]):

Theorem 2.4. Lyapunov’s direct method: Consider a system as in (2.7) without inputs

(i.e. u = 0) defined on Rn with equilibrium point x∗. If there exists a Lyapunov function

V on an open neighborhood Ω ⊂ Rn of x∗, then the equilibrium point x∗ is stable.

Furthermore, if V̇ (x) < 0 for all x ∈ Ω \ {x∗}, then x∗ is asymptotically stable.

Lasalle’s invariance principle

A problem that often arises is that asymptotic stability is often hard to prove using

only Lyapunov’s direct method. As explained in the last subsection, a point is only

asymptotically stable if the Lyapunov function is negative definite. In practice, V̇ rarely

depends on all states. In this case, LaSalle’s invariance principle can often be used to

prove asymptotic stability. First, an important notion for this principle is defined: the

invariant set.

Definition 2.5. A set G ⊂ Rn is called an invariant set for (2.7) without inputs (i.e.

u = 0) if every solution of (2.7) with initial condition in G, is contained in G.

This allows stating LaSalle’s invariance principle:
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Theorem 2.6. Lasalle’s invariance principle: Let K be a compact invariant set in

the neighborhood of x∗ for (2.7) without input (i.e. u = 0). Let V be a continuously

differentiable function on K with V̇ ≤ 0. Define S :=
{
x ∈ Rn

∣∣ V̇ = 0
}

and G the

largest invariant set in S. Then for every x0 ∈ K, the solutions of x converges to G, i.e.

lim
t→∞

d(x(t;x0),G) = 0.

Loosely speaking, if a Lyapunov function with a semi-negative definite time derivative is

found, all solutions will converge to the largest invariant set contained in the set where

V̇ = 0. When the equilibrium point x∗ is shown to be the largest invariant set in S, it

can be concluded that x∗ is asymptotically stable.

A useful corollary (but proven before the introduction of LaSalle’s invariance principle)

is Barbashiin’s theorem:

Corollary 2.7. Let x∗ be an equilibrium point and V a Lyapunov function on a domain

D containing x∗. Let S =
{
x ∈ D

∣∣ V̇ = 0
}

and suppose no solution can stay identically

in S except the trivial solution. Then, the origin is asymptotically stable.

The proofs and more detailed information about these methods can be further studied

in [9], [10].

Barbalat’s lemma

Lyapunov’s direct method and LaSalle’s invariance principle can be used for non-autonomous

systems. That is, systems of which the dynamics do not directly rely on time (t). Bar-

balat’s lemma (for proof see [9]) is especially useful for systems of which the dynamics

do explicitly rely on time (time-varying or autonomous systems), but has uses elsewhere

too, as is shown throughout this thesis.

Theorem 2.8. Barbalat’s lemma: Suppose f(t) ∈ C1(a,∞) and lim
t→∞

f(t) = a where

a <∞. If ḟ is uniformly continuous, then lim
t→∞

ḟ(t) = 0.

This is a useful property because of the following corollary:

Corollary 2.9. If a function f(t) : Rn → R is twice differentiable, has a finite limit,

and its second derivative is bounded then ḟ(t)→ 0 as t→∞.
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Another useful corollary [11] (to the same extent) can be stated as follows:

Corollary 2.10. If a function f(t) : Rn → R satisfies the following conditions:

• f(t) is lower bounded

• ḟ(t) is negative semi-definite

• ḟ(t) is uniformly continuous

then ḟ(t)→ 0 as t→∞

2.2.2 Dissipativity and passivity

Dissipativity and passivity (see [12], [13]) are concepts that, in the context of the physical

systems treated in this thesis, are closely related to the energy-balance and flows in the

system. Roughly speaking, a system is dissipative if it releases (dissipates) energy to

the environment. Passive systems are a subclass of dissipative systems which do not

store more energy than is supplied to it (it does not generate energy by itself). To more

formally define these concepts, consider a general state-space system:

Σ :
ẋ = f(x, u)

y = h(x, u)
(2.9)

In this system with input u ∈ Rm, output y ∈ Rp and x = (x1, . . . , xn)> the coordinates

for an n-dimensional state space manifold X , the scalar function s
(
u(t), y(t)

)
is called

the supply rate.

Definition 2.11. A state-space system as in (2.9) is:

• dissipative with respect to supply rate s if there exists a function S : X → R+

(called the storage function) such that for all x0 ∈ X , all t1 ≥ t0 and all input

functions u:

S
(
x(t1)

)
≤ S

(
x(t0)

)
+

∫ t1

t0

s
(
u(t), y(t)

)
dt

• passive if it is dissipative with respect to supply rate s(u,y) = u>y, i.e.

S
(
x(t1)

)
≤ S

(
x(t0)

)
+

∫ t1

t0

u>y dt
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For Hamiltonian systems without damping (i.e. (2.7) with R(x) = 0), passivity comes

natural. Because of the form of the output y = B>(q)q̇ the energy-balance is as follows:

Ḣ
(
q(t), p(t)

)
= u>(t)y(t)

showing that a Hamiltonian system is passive according to definition (2.11) when H is

non-negative. In this approach, the Hamiltonian H is used as storage function. The

above system is (when H is non-negative) in fact lossless, a strong form of passivity if

the time-derivative of the storage function is equal to (=) instead of less than or equal

(≤) to the supply rate. For systems like (2.7) with damping, the energy balance takes

the following form:

Ḣ
(
q(t), p(t)

)
= u>(t)y(t)−

(
∂H

∂x

(
x(t)

))>
R
(
x(t)

)∂H
∂x

(
x(t)

)
≤ u>(t)y(t)

showing again that the system is passive (but not lossless) when H is non-negative.

2.3 Passivity-based control

The notion of passivity enables the effective design of control methods through a tech-

nique called passivity-based control [13] (PBC). The groundwork for PBC was laid by

Jan C. Willems [12] and among others extended by Hill and Moylan [14]. In the currently

used variants of this technique, the input is used to passivize the system to be controlled

with respect to a storage function that has a minimum at the desired equilibrium. This

renders the equilibrium point stable. Usually, damping is then injected to ensure the

equilibrium becomes asymptotically stable.

In this thesis the focus is on classical PBC, meaning that a storage function is selected

beforehand (in this case the Hamiltonian), and a control law is then designed to make the

storage function’s time-derivative negative(-semi) definite. Additionally, interconnection

and damping assignment passivity-based control (IDA-PBC) will be used to explain the

success of some alternative control method. IDA-PBC is part of a class of PBC methods

that aim to achieve a certain closed-loop structure instead of a desired storage function.

The energy functions that are valid for that structure are then given by a set of partial

differential equations.
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2.3.1 Classical PBC

In the version of classical PBC used in this thesis, found by Borja et al. [1], the Hamil-

tonian acts as natural storage function since it represents the energy of the system. The

goal is to find a control law:

u = a(x) + v

to change the system into a system with PH structure but a changed Hamiltonian:

ẋ = (J(x)−R(x))
∂Hd

∂x
(x) + g(x)v

y = g(x)>
∂Hd

∂x
(x)

The desired Hamiltonian Hd is chosen so that it has a minimum at desired equilibrium

x∗. This leads to the following time-derivative:

Ḣd = −
(
∂Hd

∂x

(
x(t)

))>
R
(
x(t)

)∂Hd

∂x

(
x(t)

)
+ y>v

Since H is non-increasing, the system is stable. v can now be chosen so that the system

becomes asymptotically stable. Usually, a form of v = K(x)y, with K(x) a positive

definite matrix, can be used.

2.3.2 IDA-PBC

For IDA-PBC (see [15]), there exists not only a desired Hamiltonian Hd, but also a

desired structure consisting of Jd and Rd. This entire desired closed-loop system is

given by:

ẋ = (Jd(x)−Rd(x))
∂Hd

∂x
(x)

y = g(x)>
∂Hd

∂x
(x)

In which the constraints on J(x) and R(x) given in (2.8) have to be satisfied by Jd(x)

and Rd(x) as well. Any function that satisfies the following partial differential equations

can be used as Hd:

g⊥(x)

(
[Jd(x)−Rd(x)]

∂Hd

∂x
(x)− [J(x)−R(x)]

∂H

∂x
(x)

)
= 0
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where g⊥ is the left annihilator of g(x). This yields:

Ḣd = −
(
∂Hd

∂x

(
x(t)

))>
R
(
x(t)

)∂Hd

∂x

(
x(t)

)
Here LaSalle’s invariance principle is often used to prove that the resulting closed loop

system has x∗ as an asymptotically stable equilibrium.

2.4 Linear Quadratic Regulators

As a counterpart of the methods discussed in this thesis, infinite horizon linear quadratic

regulators (LQRs) will be used to compare the performances of non-linear and linear

methods. The LQR is a control law that provides optimal control based on a linear

quadratic cost function (see for example [16]). It is always based on a linear system:

ẋ = Ax+Bu

and a cost function of the following form:

J =

∫ ∞
0

(
x>Qx+ u>Ru+ 2x>Nu

)
dt

The optimal control is then given by:

u = −R−1
(
B>P +N>

)
x

where P is found by solving the algebraic Riccati equation:

A>P + PA− (PB +N)R−1(B>P +N>) +Q = 0

This concludes the preliminary section on the theory needed for the following chapters.

For more in-depth explanation and proofs the reader is referred to the citations at the

respective theorems.



Chapter 3

Flexible-joint manipulators

This chapter describes the robot arm to be controlled. Although the model that is

developed describes robots with flexible joints in general, specific focus will be on the

Quanser 2-DOF Serial Flexible Joint robot (see figure 3.1). This is the arm used as an

experimental set-up to further evaluate the developed control. The Quanser arm has

two set-ups, one with rigid and one with flexible joints, which can be alternated between

by placing struts between two distinct parts of the joint. Although the focus is on the

flexible case, because of this adaptability, the (closely related) rigid joint model will also

be developed in order to perform additional tests.

Figure 3.1: The Quanser 2-DOF Serial Flexible Joint

19
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3.1 Flexible joints

For the flexible case, the following (standard [17], [18]) assumptions are made [19]:

• All joints are of rotatory type.

• The displacement between each link and motor is small, a linear model is therefore

used for the springs.

• The center of mass of each of motor is located somewhere on the motor’s rotational

axis.

• The angular velocity of the motors is only due to their own spinning.

For an arm with n links and joints we denote qli for the angular position of link i and

qmi for the angular position of motor i. ql, qm, pl, pm ∈ Rn are the respective vectors of

link and motor (angular) positions and momenta.

q =

 ql

qm

 ∈ R2n

the vector of all angular positions. Motor 1 is considered the base of the arm and link

1 is attached to this motor. Motor 2 is then mounted at the end of link 1, and controls

link 2. This process repeats itself until link n.

To find the Hamiltonian, it is useful to first list all energies of the arm:

• Kinetic energy of the links: Tl(ql, q̇l) = 1
2 q̇
>
l Ml(ql)q̇l where Ml(ql) = M>l (ql) > 0

is the link’s mass-inertia matrix.

• Kinetic energy of the motors: Tm(qm) = 1
2 ˙qm

>Mm ˙qm where Mm = M>m > 0 is the

motor’s mass-inertia matrix.

• Potential energy due to gravity: Not applicable. Gravity does not affect the system

since rotation only occurs in the horizontal plane.

• Potential energy due to elastic joints: V (ql, qm) = 1
2(qm − ql)>Ks(qm − ql) where

Ks is the diagonal positive-definite spring matrix.

The Hamiltonian can now be expressed as:

H(q, p) =
1

2
q̇>l Ml(ql)q̇l +

1

2
q̇>mMmq̇m +

1

2
(ql − qm)>Ks(ql − qm)
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Keeping in mind p = Mq̇ the Hamiltonian rewrites to:

H(q, p) =
1

2
p>M−1p+

1

2
(ql − qm)>Ks(ql − qm) (3.1)

with

M =

Ml(ql) 0

0 Mm

 = M> > 0

Until explicitly stated otherwise, damping will not be considered (i.e. R = 0, see (2.7)).

Since the links cannot be directly influenced the system is underactuated and the model

becomes:  q̇

ṗ

 =

 0 I

−I 0

 ∂H
∂q

∂H
∂p

+

 0

B

u, with B =

 0n×m

In×m

 (3.2)

For the 2-link experimental set-up the mass-inertia matrices are as follows:

Ml(ql) =

 a1 + a2 + 2b cos ql2 a2 + b cos ql2

a2 + b cos ql2 a2

 Mm =

Im1 0

0 Im2



with constants:

a1 = m1r
2
1 +m2l

2
1 + I1

a2 = m2r
2
2 + I2

b = m2l1r2

where mi, li and Ii are the mass, length and inertia of link i, ri is the distance of

the center of mass of link i to its point of rotation and Im1 the inertia of motor i

exact values can be found in Table 3.1. In this table, the parameters corresponding to

the natural damping, Dl (for the links) and Dm (for the motors) were found through

experimentation. The simulated results were compared to the experimental results under

identical circumstances and the values for Dl and Dm were chosen so that the two results

resembled each other the most.
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i 1 2

mi 0.5 1
li 0.343 0.275
ri 0.2 0.25
Ii 0.01 0.01
Imi 0.001 0.001
Ksi 9.0 4.0
Dl 0.001 0.001
Dm 0.01 0.01

Table 3.1: Parameters of experimental set-up by Quanser [6]

3.2 Rigid joints

The rigid case is similar to the flexible case with a notable absence of potential energy

due to flexible joints. Since the joint and link are always aligned (i.e. ql = qm a single

angular position sufficiently describes both joint and link positions. qm, p ∈ Rn are

the link (and motor) angular positions and momenta. Because all states can now be

actuated we have the following model:

 q̇m

ṗ

 =

 0 I

−I 0

 ∂H
∂qm

∂H
∂p

+

 0

B

u, with B = In×m (3.3)

with Hamiltonian:

H =
1

2
q̇>mMr(qm)q̇m =

1

2
p>M−1

r (qm)p (3.4)

and:

Mr(qm) = Ml(qm) +Mm =

a1 + a2 + 2b cos qm2 a2 + b cos qm2

a2 + b cos qm2 a2

+

Im1 0

0 Im2



3.3 Assumptions and comparison with linear control laws

In order to properly use LaSalle it is assumed that the initial conditions (q0, p0)> =(
q(t0), p(t0)

)>
will always be in a compact neighborhood around the desired equilibrium

point.

Definition 3.1. A topological space X is called locally compact if every point x in X

has a compact neighborhood, so that there exist an open set S and a compact set C

such that x ∈ S ⊆ C
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All designed controllers will be tested in both a simulation and experimental environ-

ment. The model as described in chapter 3 with parameters as in 3.1 will be used for

the simulations, and the Quanser 2-DOF Serial Flexible-Joint experiment will be used

for the experiments. In every situation the reference signals will be a step function to 1

rad for link 1, and a step function to −1 rad for link 2, the step occuring at t = 0.

Since in the experimental set-up, the control signals are cut off above 1.2 and below −1.2

to protect the motors, the same saturation is applied in the simulations. The control

signals are always shown in their original form, without saturation.

As a baseline, a linear quadratic regulator (LQR) based on the linearization of the model

around (ql1 , ql2 , p) = (1,−1, 0) is used to test the performance of the non-linear control

laws against a linear one. The LQRs minimize the following quadratic cost function:

∫ ∞
0

x>Qx+ u>Ru+ 2x>Nu dt with: Q,R = I, N = 0

It is worth noting that the LQR uses velocity measurements.
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Rigid-joint LQR results

The results show that in the rigid case, the LQR performs well. The positions are driven

to their reference signal between 2 and 4 seconds, with small overshoot and no notable

oscillations. A small steady-state error exists in the experimental results, see figure 3.2.

This is a performance that is relatively good, the positions converge fast and there is

little to no overshoot.

((a)) ((b))

((c)) ((d))

Figure 3.2: Simulated and experimental positions and control signals for LQR on rigid-
joint arm
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Flexible-joint LQR results

In the flexible case the LQR has more difficulty in driving the positions to their desired

points. The convergence is noticeably slower and the links oscillate around the motors.

Convergence, barring again a steady-state error in the experimental set-up, happens in

approximately 10 seconds. See figure 3.3. The performance of the LQR in the flexible

case is noticeably worse than in the rigid case. The fact that the system becomes

underactuated and more complex all together when the joints are flexible explains part

of this.

((a)) ((b))

((c)) ((d))

Figure 3.3: Simulated and experimental positions and control signals for LQR on flexible-
joint arm

An interesting philosophy about the worse performance of the LQR in the flexible case

is that the flexible case is, in a sense, more non-linear. The added complexity caused by

the flexibility in the joints reduces the similarity of the non-linear model to the linearized

model. The non-linear control laws developed in the rest of this thesis might be more

beneficial in the flexible case than in the rigid case.



Chapter 4

Passivity-based PI control

The approach of passivity-based control in this thesis is to change the Hamiltonian to a

desired Hamiltonian with a strict minimum at the desired equilibrium. Damping is then

injected to make the equilibrium asymptotically stable. In this chapter, a control law

for the rigid case will first be explained to illustrate the method with a simpler system.

The flexible case will be treated afterwards.

4.1 Rigid case

Proposition 4.1. The control law u := −KI q̃m−KP q̇m renders the rigid system asymp-

totically stable.

Proof. For the rigid case, the system as in (3.3) with Hamiltonian (3.4) is considered.

The passive output y is identified first:

Ḣ(qm, p) =

(
∂H

∂x

)>  q̇m

ṗ

 =

[ (
∂H
∂qm

)> (
∂H
∂p

)> ] q̇

ṗ

 =

[ (
∂H
∂qm

)> (
∂H
∂p

)> ] 0 I

−I 0

 ∂H
∂qm

∂H
∂p

+

 0

B

u
 =

(
∂H

∂p

)>
Bu =

p>M−1
r (qm)u = q̇>u = y>u

26
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The desired equilibrium is at p = 0, which is automatically incorporated into the Hamil-

tonian because kinetic energy is at a minimum when the momenta are zero, and qm = q∗m.

Defining a new variable q̃m := qm − q∗m the desired Hamiltonian is proposed as:

Hd(qm, p) := H(qm, p) +
1

2
‖q̃m‖2KI

with KI a constant gain matrix to be designed. This Hamiltonian has an extreme value

at the equilibrium:

∂Hd

∂x

∣∣∣ p=0
qm=q∗m

=

 1
2

∑n
i=1 eip

> ∂M
−1
l

∂qmi
p+KI q̃m

M−1
l p


p=0

qm=q∗m

=

 0

0



(with ei a vector of zeros except for a 1 at the i’th position), and that extreme value is

in fact, a minimum:

∂2Hd

∂x2

∣∣∣ p=0
qm=q∗m

=

KI 0

0 M−1
l

 > 0

Now, the desired Hamiltonian can be rendered non-increasing by implementing the con-

trol law u := −KI q̃m + v:

Ḣd = q̇>mu+ q̇>mKI q̃m =⇒ Ḣd = 0 for v = 0

This shows that the arm is stable with the desired Hamiltonian as a Lyapunov function.

v can be used to inject damping (v := −KP q̇m with KP a to be designed positive-definite

matrix) and make the arm asymptotically stable:

Ḣd = −q̇>mKP q̇m ≤ 0

Because the Hamiltonian’s derivative is not negative definite, Barbashiin’s theorem is

used to prove asymptotic stability. All trajectories will converge to the largest invariant

set in Ω :=
{
qm, p ∈ R2n

∣∣ Ḣd = 0
}

. If Ḣd = 0 it follows that q̇m = 0 and therefore

p = 0. With p a constant zero we find:

ṗ = −∂Hd

∂qm

∣∣∣
p=0
−KPM

−1
l p

∣∣∣
p=0
−KI q̃m = 0
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q̃m = 0 =⇒ qm = q∗m

The only invariant set in Ω is therefore (qm, p) = (q∗m, 0). This concludes the proof that

the control law u = −KI q̃m −KP q̇m renders the equilibrium q∗m asymptotically stable.

Results

The PI control in the rigid case performs similarly to the LQR control law. Convergence

occurs in 2 to 4 seconds and overshoot is only slightly present in the simulated position

of the first link. Again, a small steady-state error exists in the experimental results.

See figure 4.1. As expected, this control law does not improve much on the results

of the LQR. The rigid-joint system is similar enough to its linearized version to yield

approximately the same results. Larger improvements might however be expected in the

flexible case.

((a)) ((b))

((c)) ((d))

Figure 4.1: Simulated and experimental positions and control signals for PI control on
rigid-joint arm
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4.2 Flexible case

Proposition 4.2. The control law u := −KI q̃m−KP q̇m renders the closed-loop system

asymptotically stable.

Proof. In the flexible case as in (3.2) with Hamiltonian (3.1) the desired equilibrium

is at p = 0 and ql = qm = q∗ so that x∗ = (q∗l , q
∗
m, p

∗
l , p
∗
m)> = (q∗, q∗, 0, 0)>. This

time, in order to ease into upcoming sections, a more general formulation will be used.

First, the passive output comes from finding the time-derivative of the current system’s

Hamiltonian, which is as follows:

Ḣ =

[ (
∂H
∂q

)> (
∂H
∂p

)> ] q̇

ṗ

 = p>mM
−1
m u = q̇>mu

The passive output is identified as y = q̇m and γ := qm is defined such that γ̇ = y. The

energy function can now (in a general sense) be shaped as shown below:

Hd = H + Θ(γ)

with Θ a to be determined function that has a minimum at the desired equilibrium.

This means the derivative changes as follows:

Ḣd = Ḣ + y>
∂Θ

∂γ
(γ) = y>u+ y>

∂Θ

∂γ
(γ) = y>

(
u+

∂Θ

∂γ
(γ)

)

Taking u = −∂Θ
∂γ (γ) − KP y (with KP a to be designed positive definite matrix) the

Hamiltonian becomes non-increasing:

Ḣd = −y>KP y ≤ 0

At this point the function Θ must be better specified. It must admit a minimum at

the desired equilibrium and will loosely speaking act as a potential energy around this

point. A variable is first defined as γ̃ = γ − γ∗ where γ∗ is the desired value for γ (in

this case q∗). Now, Θ takes its final form:

Θ(γ) =
1

2
‖γ̃‖2KI so that

∂Θ

∂γ
= KI γ̃
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with KI a to be designed positive definite matrix. Now to show that the new desired

Hamiltonian indeed has a minimum at the desired equilibrium:

∂Hd

∂x

∣∣∣
x∗

=


1
2

∑n
i=1 eip

> ∂M
−1
l

∂qi
p−Ks(qm − ql)

Ks(qm − ql) +KI γ̃

p>l M
−1
l (ql2)

p>mM
−1
m


∗

= 0

Furthermore, since the original Hamiltonian is positive definite and only the desired

potential energy (those terms that only involve q) is changed, in this case the following

inequalities are equivalent:

∂2Hd

∂x2

∣∣∣
∗
> 0 ⇐⇒ ∂2Vd

∂x2

∣∣∣
∗
> 0

with Vd(q) = 1
2 ‖qm − ql‖

2
Ks

+ 1
2 ‖γ̃‖

2
KI

. Its Hessian:

∂2Vd
∂x2

∣∣∣
∗

=

 Ks −Ks

−Ks Ks +KI


Since Ks = K>s we can prove ∂2Vd

∂x2
is positive definite using Schür’s complement:

∂2Vd
∂x2

/
Ks = Ks +KI − (−Ks)K

−1
s (−Ks) = Ks +KI −Ks = KI > 0

Now the solutions will converge to the largest invariant set in Ω =
{

(q, p) ∈ R2n
∣∣ Ḣd =

0
}

=
{

(q, p) ∈ R2n
∣∣ γ̃ = q̃m = 0

}
. This leads to pm = Mmq̇m = 0 which in turn shows

ṗm = p̈m = 0, which finally gives:

p̈m = Ks(q̇m − q̇l) +KI�
�>

0
q̈m = 0

This shows q̇l = 0 which leads to pl = 0. Then:

ṗl = Ks(qm − ql) = 0 =⇒ ql = qm

From ṗm = KI q̃m = 0 the proof is now complete.
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Results

The flexible PI control outperforms the LQR. Convergence occurs in approximately 7

seconds in the simulations and 4 seconds in the experiments. It is possible that the

friction causing the steady-state error plays a positive role in damping the oscillations.

See figure 4.2. The steady-state error still exists, and from the control signals it can be

seen that the control law is trying to correct them. The arms however will not move,

which indicates that they are at a sticking point. This is further supported by the fact

that the simulation (which does not consider the damping) does not feature a steady

state error. A sticking point exists if the friction is higher when the arm is stationary.

After overcoming the first friction to start moving the friction becomes slightly lower.

An example of a friction model that can explain this is Stribeck friction [20].

((a)) ((b))

((c)) ((d))

Figure 4.2: Simulated and experimental positions and control signals for PI control on
flexible-joint arm

From these results it can be seen that the damping plays a considerable role in the per-

formance of the proposed control laws. This damping however, has not been considered



Passivity-based PI control 32

in the analysis. The coming chapter will show why this is a problem.



Chapter 5

A case for considering natural

damping

The flexible-joint control laws that were previously discussed performed better in theory

than in practice. On the real arm, stabilizing the arm around the motor position takes

a significant amount of time. This is partly because the damping is only injected in the

motors, and oscillations in the link are then only damped because they propagate in the

motors. In the real arm, friction in the motors and their actuation are enough to (under

the previously discussed PI law) keep the motors fully stationary regardless of the links

position and velocity. The movement of the link therefore, does not affect the motors

and the oscillations in the links remain undamped. This is especially the case when the

oscillations are small, and it takes a long time before such movement disappears. The

links are then only damped by the natural damping, a limited effect.

During the experimentation phase, an intuitive solution for this problem was tried: to

directly inject damping on the links, that is:

u := −KI q̃m −KP1 q̇m −KP2 q̇l = −KI q̃m −KP1M
−1
m pm −KP2M

−1
l (ql)pl

The idea is that although the damping on the links is injected at the motors, it will

propagate to quickly diminish the oscillations in the links. This control law proved to

work exceptionally well under tuned versions of gain matrices KI , KP1 and KP2 (all

positive definite). In justifying this control laws the techniques that were used thus far

seem lacking. In the classical PBC used in the following section use of any system state

33
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apart from the passive output or its integral results in complicating cross-terms (picking

up from (4.2):

Ḣd = q̇>m

(
u+

∂Φ

∂qm
(qm)

)
= −q̇>mKP1 q̇m − q̇>mKP2 q̇l � 0

The time-derivative of the Hamiltonian is clearly not negative semi-definite. In this case

it is useful to see what inputs (and thus closed-loop dynamics) are possible whilst pre-

serving a mechanical PH structure. IDA-PBC can show exactly this, take the dynamics

in PH structure:

ẋ = f(x) + g(x)u = [Jd(x)−Rd(x)]
∂Hd

∂x

The above equation formalizes that the open-loop system in combination with a control

law u, should equate to a closed-loop system (without a free control law u) in mechanical

PH form. To see what structures are possible the input is factored out by pre-multiplying

both sides of the equation above by the full row-rank left-annihilator of g(x) called g⊥

(pronounced g-perp):

g⊥ẋ =⇒ g⊥f = g⊥ [Jd(x)−Rd(x)]
∂Hd

∂x
=⇒

g⊥
{

[J(x)−R(x)]
∂H

∂x
− f(x)

}
= 0 (5.1)

In the case of the flexible link robot (and many other mechanical systems):

g(x) =

 0

B(x)

 =⇒ g⊥ =

I 0

0 B⊥(x)


Since it is preferable to preserve the mechanical structure any desired Hamiltonian will

have the following form: Hd = V (q)+ 1
2p
>M−1

d (q)p and the final structure of the desired

dynamics is as follows:

 q̇

ṗ

 =

 0 M−1Md

−M−1Md J2 −Dd

 ∂Hd
∂q

M−1
d p


where the lower left part of the matrix is because the skew-symmetry is a requisite of

a PH structure. q̇ is equal to M−1(q)p as usual, from this it is clear that q̇ cannot be
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changed. The lower part of the conditions in (5.1) is:

B⊥
{
∂H

∂q
−MdM

−1∂Hd

∂q
+ [J2 −Dd]M

−1
d p

}
= 0

with:

B =

 0

I

 =⇒ B⊥ =

I 0

0 0


Solving this PDE called the matching condition will yield the possible structures and

Hamiltonians. In this case however, since a control law has already been found, it

is interesting to see if it is possible to retain the mechanical PH structure with that

law. Therefore, the pre-multiplication with B⊥ is reversed, the matching-condition now

becomes:

−∂H
∂q

+Bu = −MdM
−1∂Hd

∂q
+ [J2 −Dd]M

−1
d p

which can be split in two equations, one containing the potential energy, and one contain-

ing the kinetic energy. Equivalently, the matching condition is split up in one equation

without the momenta p, and one containing p:


−∂V
∂q +Bβ = −MdM

−1 ∂Vd
∂q

−∂T
∂q +Bζ = −MdM

−1 ∂Td
∂q +

(
J2 −Dd

)
M−1
d p

(5.2)

where ζ and β come from splitting up the control law similarly: u = β(q) + ζ(q, p). For

the potential energy part, the first equation will show if the chosen control law alters

the closed-loop mass-inertia matrix (if M = Md holds):

 −Ks(ql − qm)

Ks(ql − qm)−KI q̃m

 = MdM
−1

 −Ks(ql − qm)

Ks(ql − qm)−KI q̃m


This shows the mass-inertia matrix stays the same: Md = M . Since M = Md implies

Td is equal to T the second equation now becomes:

Bζ =
(
J2 −Dd

)
M−1
d p

 0

−KP1 −KP2

 q̇ =
(
J2 −Dd

)
q̇
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An option for J2 and Dd is:

J2 =

 0 1
2KP2

−1
2KP2 0

 Dd =

 0 1
2KP2

1
2KP2 KP1


These matrices however do not satisfy the requirements: J2 = −J>2 and Dd = D>d ≥ 0.

The top-left part of Dd can never be non-zero (and therefore Dd cannot be positive

semi-definite) when J2 is skew-symmetric. From this it is apparent that the mechanical

structure cannot be preserved under the proposed control law. Inspecting the eigenvalues

of the linearized system shows that the proposed closed-loop system is even unstable,

when the stability in the results from experimentation clearly indicate otherwise.

5.1 Considering the natural damping

The fact that the real system shows asymptotically stable behavior while analysis in-

dicates instability suggests the problem might lie in the difference between these two

environments. Although it could be possible that the system parameters are inaccurate,

it is more likely that this difference is caused by a more radical distinction. In modelling

the system, as is usual in literature, the damping is not considered. In doing so, the

forms the control input can take whilst preserving mechanical PH structure and ensur-

ing stability is strongly restricted. This can be shown when the damping in this case

is considered (as linear damping with damping matrix D: a diagonal positive definite

matrix) as in the following system:

 q̇

ṗ

 =

 0 I

−I −D

 ∂H
∂q

∂H
∂p

+

 0

B

u
The time-derivative of the desired Hamiltonian now shows the energy-dissipation caused

by this damping:

Ḣ = y>u− p>M−1DM−1p
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Using the same calculations as in the previous section the equations in (5.2) look similar

but with an important distinction:

Σ


−∂V
∂q +Bβ = −MdM

−1 ∂Vd
∂q

−∂T
∂q +Bζ = −MdM

−1 ∂Td
∂q +

(
J2 −Dd

)
M−1
d p+DM−1p

The top equation did not change, the conclusion is therefore still Md = M which implies

that also Td = T . The lower equation rewrites to the following equality:

Bζ =
(
J2 −Dd +D

)
M−1
d p

 0 0

−KP2 −KP1

 = J2 −Dd +D = J2 −Dd +

Dl 0

0 Dm


with J2 and Dd free to choose as long as they satisfy the constraints for mechanical

structures. A possible solution is then:

 0 0

−KP2 −KP1

 =

 0 1
2KP2

−1
2KP2 0


︸ ︷︷ ︸

J2=−J>2

−

 Dl
1
2KP2

1
2KP2 Dm +KP1


︸ ︷︷ ︸

Dd=D>d

+

Dl 0

0 Dm



Dd = D>d > 0 if and only if (from Schür’s complement):

KP1 ≥
1

4
KP2D

−1
l KP2 −Dm (5.3)

If this condition is met, the mechanical port-Hamiltonian structure is preserved with a

control law that initially seemed to violate these constraints. Now to prove the stability:

Proposition 5.1. The control law u := −KI q̃m−KP1 q̇m−KP2 q̇l asymptotically stabilizes

the flexible-joint system.

Proof. The following desired Hamiltonian is proposed:

Hd = H +
1

2
‖q̃m‖2KI
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so that the Hd’s derivative becomes:

Ḣd = y>u−
[
q̇l q̇m

]Dl 0

0 Dm

 q̇l

q̇m


Now substituting the proposed control law for u:

Ḣd = −
[
q̇l q̇m

] Dl
1
2KP2

1
2KP2 Dm +KP1


︸ ︷︷ ︸

Dd

 q̇l

q̇m



where Dd is the same matrix as encountered earlier and positive definite under condition

(5.3). Hd now becomes a Lyapunov function showing that q̇l = q̇m = 0. Because q̇l = 0,

pl = 0 which leads to ṗl = 0. Then:

ṗl = Ks(qm − ql) = 0 =⇒ ql = qm

Now:

ṗm = −KI q̃m = 0 (5.4)

shows q̃ = 0, completing the proof.

Results

The PI control with damping on the links has excellent performance. Convergence occurs

in 2 seconds. In this case, no steady-state error occurs. See figure 5.1. Is is likely that

this is because the convergence occurs so fast that the arm does not settle at a sticking

point before the set-point. The arm approaches the set-point at a high speed and stops

relatively fast. The results are much better because of the added term. The oscillations

in the links are damped immediately.
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((a)) ((b))

((c)) ((d))

Figure 5.1: Simulated and experimental positions and control signals for PI control, with
damping on the links, on flexible-joint arm

The performance is very significantly improved compared to the non-linear control law

and even the normal PI-PBC control law. The control law however uses the velocity

measurements of both the links and the motors and very high control signals are given,

especially at time t = 0. The following chapters will check if the same results can be

obtained whilst not using velocity measurements and saturating the signals.



Chapter 6

Saturated control without

velocity measurements

As discussed in earlier sections, the availability and accuracy of velocity measurements

is often limited. An explanation of a control that does not require these measurements,

and additionally is saturated, is given in the coming sections, starting with the rigid case

and then moving on to the flexible case. Damping will not be considered until explicitly

mentioned.

6.1 Rigid case

Proposition 6.1. The rigid system can be asymptotically stabilized by a naturally sat-

urated control law u := α tanh z

Proof. First, for the rigid case, some definitions are needed for the new control law.

Since in the rigid case the link and motor positions are always the same, qm will be

used as angular position. The first defined variable, q̃m, is a translation of qm to the

equilibrium. xci is a new virtual state, the will be used as a virtual extension of the

dynamics. zi is a new variable that relates q̃m and the virtual states xci .

q̃mi := qmi − q∗mi , zi := q̃mi + xci

40
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The goal is to shape the Hamiltonian with an equilibrium at x∗ = (q̃m, p, xc)
> = (0, 0, 0)>

as follows:

Hd(qm, p, xc) = T (p, qm2) + Φ1(z1) + Φ2(z2) +
1

2
kcx

2
c1 +

1

2
kcx

2
c2

with Φi : R → R a to be designed saturated function of the new state z, to help with

constructing a saturated control law. The time-derivative of Hd is given as:

Ḣd = y>u+ Φ̇1 + Φ̇2 + ẋc1kcxc1 + ẋc2kcxc2 (6.1)

Keeping in mind that because of the simple definition of z:

∂zi
∂qmi

=
∂zi
∂xci

=⇒ ∂Φi

∂xci
=
∂Φi

∂zi

∂zi
∂xci

=
∂Φi

∂qmi

and yi = qmi , (6.1) can be rewritten as:

Ḣd = y1

(
u1 +

∂Φ1

∂xc1

)
+ y2

(
u2 +

∂Φ2

∂xc2

)
+ ẋc1

(
kcxc1 +

∂Φ1

∂xc1

)
+ ẋc2

(
kcxc2 +

∂Φ2

∂xc2

)
(6.2)

The desired dynamics of the virtual states xc and the inputs u now become clear:

ẋci := −rc
(∂Hd

∂xci

)
= −rc

(
kcxci +

∂Φi

∂xci

)

ui := − ∂Φi

∂xci

(6.2) now takes the following form:

Ḣd = −rc
(∂Hd

∂xc1

)2
− rc

(∂Hd

∂xc2

)2
≤ 0

with rc > 0 to be tuned gain constants. Now to show that x∗ is an isolated minimum of

Hd, Hd is split in a potential energy part and a kinetic energy part:

Vd(qm, xc) = Φ1(z1) + Φ2(z2) +
1

2
kcx

2
c1 +

1

2
kcx

2
c2

Td(qm, p) =
1

2
p>M−1(qm2)p
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We find (provided that
(
∂Φ
∂x

)
∗ = 0, which will be discussed later):

(
∂Hd

∂x

)
∗

=


∂Vd
∂qm

+ ∂Td
∂qm

M−1(qm2)p

∂Hd
∂xc


∗

=


02x2

02x2

02x2


The Hessian of the desired Hamiltonian is (provided that

(
∂2Φ
∂x2

)
∗

= α, which will be

discussed later):

(
∂2Hd

∂x2

)
=


∂2Vd
∂q2m

∂
∂p

(
∂T
∂qm

)
∂
∂xc

(
∂Vd
∂qm

)
∂
∂qm

(
∂T
∂p

)
M−1(qm2) 0(

∂
∂xc

(
∂Vd
∂qm

))>
0 ∂2Φ

∂x2c
+ Ikc


which when evaluated at the equilibrium becomes:

(
∂2Hd

∂x2

)
∗

=



α1 0 0 0 α1 0

0 α2 0 0 0 α2

0 0 z11 z12 0 0

0 0 z21 z22 0 0

α1 0 0 0 α1 + kc 0

0 α2 0 0 0 α2 + kc


> 0

for:

M−1(qm2) =

z11 z12

z21 z22


showing that the equilibrium x∗ is an isolated minimum of Hd. Since Ḣd ≤ 0, or non-

increasing, the following follows from the fundamental law of calculus:

∫ t

0
Ḣd(τ)dτ = Hd(t)−Hd(0) ≤ 0

lim
t→∞

Hd(t) ≤ Hd(0) <∞ (6.3)

Because Hd is bounded from below, non-increasing and radially unbounded (requiring

that Φ is radially unbounded) it can be concluded that its variables qm, p, xc are bounded.

The derivatives of these values are also bounded. Since Ḣd is negative semi-definite, all
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solutions of the states converge to the following set:

Ω := { (qm, p, xc) ∈ R6 | Ḣd = 0 }

In this set the following is already apparent:

Ḣd = 0 =⇒


ẋc = 0

kcxc = −∂Φi
∂xc

To induce more about what is happening within Ω the following auxiliary function is

defined:

U1 := −xc1p1 =⇒ U̇1 = −��>
0

ẋc1p1 − xc1 ṗ1 = −xc1u1 = xc1
∂Φ1

∂xc1
= −kcx2

c1 ≤ 0 (6.4)

Since the variables xc1 and p1 are bounded, U1 is bounded from below. U̇ is negative

semi-definite and Ü2 = −kc��>
0

ẋc1xc1 is finite. This means that (invoking corollary 2.10 of

Barbalat’s lemma) U̇1 → 0 as t → ∞, implying that xc1 → 0 as t → ∞ as well. This

sets off the following line of reasoning:

xc1 → 0 =⇒ ∂Φ1

∂xc1
→ 0 =⇒ z1 → 0 =⇒ q̃m1 → 0 =⇒ qm1 → q∗m1

It can already be seen (for the convergence of qm2) that:

qm1 → q∗m1
=⇒ ∂T

∂qm2

= (q̇m1 + q̇m2)��
�*0

q̇m1b sin qm2 → 0

A second auxiliary function is now defined:

U2 := −xc2p2 =⇒ U̇2 = −��>
0

ẋc2p2 − xc2 ṗ2 = −xc2
(
u2 +

�
�
��

0
∂T

∂qm2

)
= xc2

∂Φ2

∂xc2
= −kcx2

c2 ≤ 0

Having arrived at the same point as in (6.4) the proof of stability is now close:

U̇2 → 0 =⇒ xc2 → 0 =⇒ ∂Φ2

∂xc2
→ 0 =⇒

z2 → 0 =⇒ q̃m2 → 0 =⇒ qm2 → q∗m2
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The only thing that is now left is to choose Φ such that
(
∂Φ
∂x

)
∗ = 0,

(
∂2Φ
∂x2

)
∗

= α and

Φ is radially unbounded. This brings the interesting possibility to saturate the control

input. If Φ is chosen such that ∂Φ
∂x is the hyperbolic tangent, the norm of the control

signal will never exceed a certain value (see figure 6.1), since u only depends on this ∂Φ
∂x .

This leads to the following definition of Φ for i = 1, 2:

Φi := αi ln cosh zi

∂Φi

∂x
= αi tanh zi

∂2Φi

∂x2
= αi sech zi

with αi > 0 the saturation limit which the control signal will never exceed. This satisfies

the assumptions that were left to discuss:

1. Φi(zi) > 0 ∀zi 6= 0, Φi(z
∗
i ) = 0

2. ∂Φi
∂x (z∗i ) = 0

3. ∂2Φi
∂x2

(z∗i ) = αi

4. lim
|q,xc|→∞

αi ln cosh zi =∞

with z∗ = q̃∗m + x∗c = 0.

Figure 6.1: The hyperbolic tangent α tanhx with α = 1
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Results

The saturated control performs well on the rigid set-up. Performance is again approx-

imately equal to the LQR as convergence occurs in around 2 seconds. The experiment

produces a negligible steady-state error. See figure 6.2.

((a)) ((b))

((c)) ((d))

Figure 6.2: Simulated and experimental positions and control signals for saturated con-
trol on rigid-joint arm

6.2 Flexible case

Proposition 6.2. The rigid system can be asymptotically stabilized by a naturally sat-

urated control law u := α tanh z

Proof. For the flexible case the system as in (3.2) is considered:

 q̇

ṗ

 =

 0 I

−I 0

 Ks(qm − ql) + ∂T
∂q

M−1(q2)p

+

 0

G

u, G =

 02×2

I2×2


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with:

M(ql2) =

Ml(ql2) 0

0 Mm

 , T =
1

2
p>l M

−1
l (ql2)pl +

1

2
p>mM

−1
m pm

The passive output is identified as follows:

H =
1

2
(qm − ql)>Ks(qm − ql) + T (ql, pl, pm)

Ḣ = q̇>mu, y = q̇m, γ = qm

Now defining:

z := q̃m + xc , z, xc ∈ R2

and:

Hd := H + Φ1(z1) + Φ2(z2) +
1

2
‖xc1‖2Kc1 +

1

2
‖xc2‖2Kc2

Ḣd = Ḣ + Φ̇1 + Φ̇2 + ẋc1kc1xc1 + ẋc2kc2xc2 (6.5)

Noting that because of the definition of z:

∂Φi

∂qi
=
∂Φi

∂xci

(6.5) can be rewritten as follows:

Ḣd = q>m1

(
u1 +

∂Φ1

∂qm1

)
+ q>m2

(
u2 +

∂Φ2

∂qm2

)
+

ẋc1

(
kc1xc1 +

∂Φ1

∂qm1

)
+ ẋc2

(
kc2xc2 +

∂Φ2

∂qm2

)
(6.6)

Defining the following:

u1 := − ∂Φ1

∂qm1

u2 := − ∂Φ2

∂qm2
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ẋc1 := −Rc1
∂Hd

∂xc1
ẋc2 := −Rc2

∂Hd

∂xc2

with Rc free positive definite diagonal matrices, (6.6) now becomes:

Ḣd = −
∥∥∥ kc1xc1 +

∂Φ1

∂xc1︸ ︷︷ ︸
∂He
∂xc1

∥∥∥2

Rc1

−
∥∥∥ kc2xc2 +

∂Φ2

∂xc2︸ ︷︷ ︸
∂He
∂xc2

∥∥∥2

Rc2

≤ 0

The fundamental law of calculus yields the following:

∫ t

0
Ḣd dt ≤

∫ t

0
0 dt =⇒ Hd(t)−Hd(0) ≤ 0 =⇒ 0 ≤ Hd(t) ≤ Hd(0) <∞

Because Hd is bounded from below, non-increasing and radially unbounded (requiring

that Φ is radially unbounded) it can be concluded that its variables q, p, xc are bounded.

The derivatives of these values are also bounded. The solutions converge to the set

Ω :=
{

(q, p, xc) ∈ R10
∣∣ Ḣd = 0

}
, in which the following is known:

Ω =⇒


ẋci = 0 ∀i ∈ {1, 2}

xcikci = − ∂Φi
∂xci

∀i ∈ {1, 2}

The following auxiliary function is defined:

U1 := −xc1
(
pm1 + pl1

)
such that:

U̇1 = −��>
0

ẋc1
(
pm1 + pl1

)
− xc1

(
ṗm1 + ṗl1

)
= −xc1u1 = xc1

∂Φ1

∂xc1
= −kc1x2

c1 ≤ 0

Using corollary 2.10 of Barbalat with the same arguments as (6.4) it can be seen that

U1 → 0 as t → ∞ and therefore: xc1 → 0 as t → ∞. As xc1 → 0 =⇒ ∂Φ1
∂xc1

→

0 =⇒ z1 → 0 =⇒ q̃m1 → 0 =⇒ q̇m1 → 0 =⇒ pm1 → 0 =⇒ ṗm1 →

−K1(qm1 − ql1) +
�
��>

0
∂Φ1
∂qm1

→ 0 =⇒ qm1 → ql1 =⇒ q̇l1 → 0

A second auxiliary function is now defined as:

U2 := −xc2
(
pm2 + pl2

)
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U̇2 = −��>
0

ẋc2
(
pm2 + pl2

)
− xc2

(
ṗm2 + ṗl2

)
= −xc2

(
u1 −

�
�
��7

0
∂T

∂ql2

)
= xc2

∂Φ2

∂xc2
= −kc2x2

c2 ≤ 0

Using Barbalat again using similar steps as for link 1 it can be seen that U2 → 0 as

t→∞ and therefore: xc2 → 0 as t→∞. As xc2 → 0 =⇒ ∂Φ2
∂xc2

→ 0 =⇒ z2 → 0 =⇒

q̃m2 → 0 =⇒ q̇m2 → 0 =⇒ pm2 → 0 =⇒ ṗm2 → −K2(qm2 − ql2) +
�
��>

0
∂Φ2
∂qm2

→ 0 =⇒

qm2 → ql2 =⇒ q̇l2 → 0

This completes the proof that x∗ is now an asymptotically stable point of the closed

loop system.
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Results

The controller converges similarly to the flexible-case LQR, as convergence takes ap-

proximately 7 seconds. A large steady-state error exists in the experimental case. Link

1 oscillates around the motor for considerable time in the experiments. See figure 6.3.

The performance is worse than the performance of the enhanced PI law. The control

signal is now however saturated and the velocity measurements are no longer used.

((a)) ((b))

((c)) ((d))

Figure 6.3: Simulated and experimental positions and control signals for saturated con-
trol on flexible-joint arm

The trade-off between information about the velocity and saturation on the one side,

and performance on the other could have been expected. The results do indeed suffer

when not all states can be used for the feedback. The damage is not too large, and

further tweaks can improve the performance further.
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6.3 Flexible case with damping on the links

Proposition 6.3. The control law u := −∂Φm
∂qm
− α∂Φl

∂ql
can asymptotically stabilize the

flexible-joint system.

Proof. In order to inject damping based on the velocity in the links, the natural damping

will be considered in this case. This means the system under consideration is the system

as in (5.1) such that:

Ḣ = q̇>mu− p>M−1DM−1p

Defining:

zm := q̃m + xm zl := q̃l + xl

the desired Hamiltonian can be formulated as follows:

Hd := H +
1

2
‖xm‖2Km + Φm(zm) + Φl(zl) (6.7)

and its derivative is given as:

Ḣd = −
[
q̇>l q̇>m

]Dl 0

0 Dm

 q̇l

q̇m

+ q̇>mu+ q̇>m
∂Φm

∂qm

+ ẋm

(
∂Φm

∂qm
+Kcxm

)
+ q̇>l

∂Φl

∂ql
+ ẋ>l

∂Φl

∂ql
(6.8)

When the following control input and virtual state dynamics are chosen:

ẋm := −Rm
(
∂Φm

∂qm
+Kcxm

)
ẋl := −Rl

∂Φl

∂qm
(6.9)

u := −∂Φm

∂qm
− α∂Φl

∂ql

with Rm, Rl,Kc positive definite gain matrices to be designed, equation (6.8) rewrites

as follows:

Ḣd = −1

2

∥∥∥∥∂Φm

∂qm
+Kcxm

∥∥∥∥2

Rm

−
[
q̇>l q̇>m

∂Φl
∂ql

>
]

Dl 0 −I

0 Dm α

0 0 Rl


︸ ︷︷ ︸

= Rmat


q̇l

q̇m

∂Φl
∂ql


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Since Dl, Rl > 0, Rmat is positive definite when the following condition holds:

Dl −
[

0 1
2I
]Dm

1
2α

1
2α Rl

−1  0

1
2I

 ≥ 0

Dm
1
2α

1
2α Rl

−
 0

1
2I

D−1
l

[
0 1

2I
]

=

Dm
1
2α

1
2α Rl − 1

4D
−1
l

 ≥ 0

Using Schür’s complement this is equivalent to:

Rl −
1

4
D−1
l −

1

4
α2D−1

m ≥ 0 (6.10)

This only works when: Dm
1
2α

1
2α Rl


is invertible, which it is when it is positive definite. From applying Schür’s complement

again another bound on Rl is found:

Rl −
1

4
α2D−1

m > 0

this bound is however not as tight and therefore satisfied automatically if (6.10) is

satisfied. Since Rl is free to design Hd can always be rendered non-increasing and all

solutions will converge to Ω :=
{

(q, p, xl, xm) ∈ R12
∣∣ Ḣd = 0

}
. In this set the following

is known:

Ω =⇒


Kcxm = −∂Φm

∂xm
=⇒ ẋm = 0

q̇l, q̇m = 0 =⇒ pl, pm = 0 =⇒ ṗl, ṗm = 0

∂Φl
∂ql

= 0 =⇒ zl = 0 =⇒ q̃l = −xl

Then since:

ṗl + ṗm = −∂Φm

∂qm
= 0 =⇒ xm = 0 =⇒ qm = q∗m

ṗl =
∂V

∂ql
= 0 =⇒ ql = qm = 0

this completes the proof that (q, p, xl, xm) = (q̃, 0, 0, 0) is asymptotically stable.
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One downside of this control law is that the PH structure of the closed loop system

cannot be preserved under this control law. Since only the motors are actuated the

open loop ṗl does not depend on the input u. This means that the closed loop ṗl must

be exactly equal to the open loop ṗl. These however do not match, comparing the two

dynamics:

ṗlOL = −∂H
∂ql
−Dl

∂H

∂pl
= −∂T

∂ql
−Ks(ql − qm)−DlM

−1pl

ṗlCL = −∂Hd

∂ql
−Dl

∂Hd

∂pl
= −∂H

∂ql
−Dl

∂H

∂pl
− ∂Φl

∂ql
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Results

Convergence occurs in around 6 seconds. A steady-state error exists but it is smaller than

the saturated control without damping on the links. The control signals are saturated

at 1.2 and −1.2. See figure 6.4. The effects of adding damping in the links is not as

large as in the normal PI control. There are less oscillations but they still exist. The

steady state error is also still present, this problem will be tackled in the next section.

((a)) ((b))

((c)) ((d))

Figure 6.4: Simulated and experimental positions and control signals for saturated con-
trol, with damping on the links, on flexible-joint arm

6.4 Integral term on position

Tests in the experimental set-up revealed the existence of stead-state errors that were not

present in the simulations. Although the current control has a proportional and integral

term, these terms are named with respect to the passive output q̇m. The integral term

acts on qm or motor positions and does therefore not correct any steady-state errors. An
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extra integral action on the position can prevent these errors. A new virtual state σ will

be introduced for this purpose. However, it is more convenient to couple σ̇ to the virtual

state xm (which is strongly related to qm) than to qm directly. This is because coupling

σ to the xm makes it easier to preserve the PH structure (it can easily be coupled to

∂H
∂xm

).

Proposition 6.4. The control law u := −∂Φm
∂qm
−α∂Φl

∂ql
+β ∂Φσ

∂σ together with virtual state

dynamics σ̇ := γ
(
∂Φm
∂qm

+Kcxm

)
− Rσ ∂Φσ

∂σ can asymptotically stabilize the flexible-joint

system.

Proof. First the desired Hamiltonian extends Hd from the previous case (6.7):

Hσ = Hd + Φσ

with Φσ such that ∂Φσ
∂x is some form of the hyperbolic tangent. Taking ẋl, ẋm as in (6.9),

and u and σ̇:

u := −∂Φm

∂qm
− α∂Φl

∂ql
+ β

∂Φσ

∂σ
σ̇ := γ

(
∂Φm

∂qm
+Kcxm

)
−Rσ

∂Φσ

∂σ

with Kc, Rσ positive definite gain matrices to be designed, the entire closed loop dy-

namics become:

q̇l

q̇m

ṗl

ṗm

ẋl

ẋm

σ̇


=



0 0 I 0 0 0 0

0 0 0 I 0 0 0

−I 0 −Dl 0 0 0 0

0 −I 0 −Dm −α −I β

0 0 0 0 −Rl 0 0

0 0 0 0 0 −Rm 0

0 0 0 0 0 γ −Rσ



∂Hσ

∂x

The Hamiltonian’s derivative is as follows:

Ḣσ = Ḣd + q̇>mβ
∂Φσ

∂σ
+ σ̇>

∂Φσ

∂σ
= Ḣd + q̇>mβ

∂Φσ

∂σ
+

(
∂Φl

∂ql
−Rσ

∂Φσ

∂σ

)> ∂Φσ

∂σ
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= −Ψ>



Rm −1
2γ 0 0 0

−1
2γ Rσ 0 1

2β 0

0 0 Dl 0 −1
2I

0 1
2β 0 Dm

1
2α

0 0 −1
2I

1
2α Rl


︸ ︷︷ ︸

= Rmat



∂Φm
∂qm

+Kcxm

∂Φσ
∂σ

q̇l

q̇m

∂Φl
∂ql


︸ ︷︷ ︸

=Ψ

< 0

in Rmat from the last paragraph is shown that the lower 3× 3 blocks part of the matrix

is positive definite when Rl − 1
4D
−1
l −

1
4α

2D−1
m ≥ 0. If this is the case, using Schür’s

complement, the entire matrix Rmat is positive definite when Rm > 0 and:

Rσ −
1

4
β − 1

4
γR−1

m γ > 0

Defining Ω :=
{

(q, p, xm, xl, σ) ∈ R14
∣∣ Ḣσ = 0

}
as the set all solutions converge to, the

following is known inside that set:

Ω =⇒



∂Φm
∂qm

= −Kcxm =⇒ ẋm = 0

∂Φσ
∂σ = 0 =⇒ σ = 0

q̇l, q̇p = 0 =⇒ pl, pm = 0 =⇒ ṗl, ṗm = 0

∂Φl
∂ql

= 0 =⇒ q̃l = xl

Then similarly to the previous section:

ṗl + ṗm = −∂Φm

∂qm
= 0 =⇒ xm = 0 =⇒ qm = q∗m

ṗl =
∂V

∂ql
= 0 =⇒ ql = qm = 0

showing that (q, p, xl, xm, σ) = (q̃, 0, 0, 0, 0) is asymptotically stable. Similarly to the

previous section, the PH-structure cannot be preserved.
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Results

The steady-state error is eliminated and convergence occurs in around 5 seconds. The

control signals are still present but declining as the friction keeps the motors static. See

figure 6.5. Although convergence takes longer than in the previous example, in this

experiment the positions converge exactly to the set points. Oscillations smaller and

damped quicker than the last example.

((a)) ((b))

Figure 6.5: Experimental positions and control signals for saturated control, with damp-
ing on the links and double integral action, on flexible-joint arm

The results of the control laws are interesting, but the only results that are shown are

those of setpoint regulation from different initial conditions. To find out more about

the robustness of the controller, the next chapter will see what happens when the arm

is disturbed whilst at its set point.



Chapter 7

External disturbance rejection

In this chapter the flexible control laws will be tested to determine how fast they re-

stabilize the arm after an external disturbance. The external disturbance will be a push

against the end of the arm.

57
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LQR

The LQR takes around 20 seconds to stabilize the arm after an initial deflection of 0.25

rad. A large number of oscillations are seen both in the positions and control signals.

See figure 7.2.

((a)) ((b))

Figure 7.1: Experimental positions and control signals for LQR, rejecting disturbance
in flexible-joint arm

PI control

It can be seen that the PI control law stabilizes the arm at the same rate the LQR does.

The control signals are however much smaller. The PI control law cuts the oscillation

to a certain point after which the control signals are not large enough to overcome the

sticking point of the motors, the links are then damped by the natural friction only.

((a)) ((b))

Figure 7.2: Experimental positions and control signals for PI control, rejecting distur-
bance in flexible-joint arm
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PI control with damping on the links

The PI control with damping on the links once again has excellent performance. The

disturbance is rejected in under two seconds. The best results by a factor of 10. The

control signal used is very large, exceeding the saturation limit. See figure 7.3.

((a)) ((b))

Figure 7.3: Experimental positions and control signals for PI control with damping on
the links, rejecting disturbance in flexible-joint arm

Saturated control without velocity measurements

The saturated control has very similar behavior to the normal PI control. It stops the

large oscillations but the small oscillations are not affected. It leaves a relatively large

steady state error. See figure 7.4.

((a)) ((b))

Figure 7.4: Experimental positions and control signals for saturated PI control without
position measurements, rejecting disturbance in flexible-joint arm
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Saturated control with damping on the links without velocity measure-

ments

The saturated control performs slightly better but the control signals show this is not

because of its input. The controller only gives a signal for the first 7 seconds, after this

the deflections become too small to register.

((a)) ((b))

Figure 7.5: Experimental positions and control signals for saturated PI with damping
on the links, rejecting disturbance in flexible-joint arm



Chapter 8

Discussion and future research

This thesis provides the proof for asymptotic stability of different kinds of controllers for

planar (flexible-joint) manipulators. It shows that considering linear damping might pro-

vide more adaptability when considering passivity-based methods in the port-Hamiltonian

framework. Additionally, it introduces naturally saturated control for the specific sys-

tem.

From the experimental results it becomes obvious that most control laws (barring the

law with double integral action) tested on the experimental set-up leave relatively large

steady-state error. It is likely that there is a sticking point in the engine which is hard to

overcome at low speeds. This hints at the explanation that a non-linear friction model

(such as coulomb friction) would explain the natural damping better than the current

linear one. The experimental set-up could be researched further to determine a better

model for the friction.

In the results it can be seen that in the rigid case, the non-linear control laws show little

to no improvement over the linear quadratic regulator. However, the flexible-joint set-up

is forced to its desired equilibrium faster than the LQR with all non-linear control laws.

The non-linear PI controller with damping on the links yields the best results. When

the velocity measurements are sacrificed, this negatively impacts the performance of the

controller.

Several opportunities for research related to the work in this thesis remain:

61
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• The effects of non-linear frictions on the preservation of mechanical structure under

different control laws can be investigated. This research assumed linear friction

although the experimental results show a non-linear model for the friction would

be more accurate. The effectivity of controls based on the dynamics with linear

friction suggest that similar techniques might work for non-linear models of friction.

• The technique of developing saturated control laws could be generalized to a class

of systems. It is probable that saturated control will work on additional kinds

of dynamical systems. However, the requirements on these systems need to be

formalized.
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