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Abstract

Lovelock and galileon theories are known extensions of general relativity that have actions
containing second order derivatives, but do not produce field equation with third or
higher order derivatives. We show that the dimensional reduction of Lovelock results in
a generalized covariant galileon theory. Then we explain the Palatini formalism, a way
to consider gravity in non-Riemannian geometry. It is known general relativity can be
obtained in both the metric and Palatini formalism. This gives us a motivation to study
other higher order derivative theories in the Palatini formalism as well. The possibility
of using dimensional reduction as a tool to learn more about the Palatini formalism is
explored in this thesis but does not lead to interesting results. Then Palatini formalism
is applied to the cubic covariant galileon. The field equation for the connection can be
solved and is found to be the Weyl connection. Furthermore, we show that the physics
change in the Palatini formalism and point out the importance of projective invariance
and some kind of duality between torsion and non-metricity in the cubic covariant galileon

framework.



CHAPTER 1

Introduction

1.1 Motivation

In physics, we usually consider theories that have actions with at most first order deriva-
tives. Actions that depend on second or higher order derivatives give in general rise
equations of motion containing higher than second order derivatives. Ostrogradsky proved
that as a result, more initial conditions than degrees of freedom are needed and so-called
ghoststates appear, see appendix A for an outline of his argument. Theories with ghosts
are not stable and theoretically give infinite energy or particle production for example.
However, there are some special second order derivative theories that give rise to at most
second order derivative equations of motions. For this reason, these theories circumvent
Ostrogradsky’s theorem and are free of ghosts. Probably the best-known example of such

a theory this is general relativity.

Since the beginning of the civilization, people have tried to explain why objects fall. The
Greek philosopher Aristotle was one of the first people that we know of that tried to come
up with a theory for this. His explanation was that all bodies move to their natural place,
the center of the (geocentric) universe. Thousands of years after him, Newton wrote down
a more mathematical description of gravity, the gravitational force that we all know as
F = G™32. His theory was a great success and able to predict a lot of phenomena, such
as the movement of planets, very well. However, when astronomical observations improved,
small deviations from this theory were found in the orbit of Mercury [1]. First, this problem
in the discrepancy between theory and observations was tried to be solved by some ad-hoc
solutions, such as the existence of a small planet closer to the sun. This would slightly
modify the theoretical prediction to account for the observations. However, the hypo-

thetical planet was never observed and it this puzzle wasn’t solved by observing new matter.

Instead, a new theory solved the problem of Mercury. In the 20th century Einstein invented



general relativity (GR). He came with the idea that space-time is a dynamical entity
that interacts with the particles living in it. So GR describes gravity as a distortion of
space-time and this is a huge conceptual jump from Newtonian gravity. Einstein’s theory
predicted a lot of new physics, such as the existence of black holes and gravitational waves.
These were indeed detected long after Einstein came up with GR. The predictions of GR
are in agreement with experiments in scales that range from millimeters to astronomical
units [2]. However, there are a few problems with general relativity. To explain the rotation
curves of spiral galaxies for example, we need the existence of an enormous amount of
dark matter. On the other hand, to explain the distribution of matter at large scales, we
need another source of energy with repulsive gravitational properties, dark energy. In
total, dark matter and dark energy should constitute 96% of the total amount of total

matter in the universe and we have no idea what it is.

One thing that could solve this problem is the discovery of this matter, but so far, all
the searches for dark matter and energy didn’t help us any further. However, just as the
orbit of Mercury could only be explained by a new theory, maybe this time we should
investigate modifications of general relativity. Another problem of GR is that we can not
make predictions with it on quantum scales. So it’s a good idea to look at other gravi-

tational theories. We went from Aristotle to Newton and Einstein, who knows what’s next?

Modifying general relativity

If we want to stay as close to the original Einstein-Hilbert Lagrangian as we can without
breaking any symmetry, there are a few ways to modify gravity with a Lagrangian for-
mulation [1]. If we want to keep a single massless metric, we are forced to go to higher
dimensions. Then we will end up with Lovelock theory, which we will explain in the next
chapter. We can also stay in 4 dimensions and consider extra fields. If we consider scalar

fields, these theories are called galileon theories.

These two modifications of gravity have in common that they are described by actions
containing second derivatives, but their field equations do not produce third or higher
order derivatives. We will discuss them and their relations in the first part of this thesis.
Furthermore, we may think of other geometric constructions such as a different connection
than Levi-Civita to modify gravity. If we don’t assume the shortest path to be equal to
the path of parallel transport, a whole new way of calculating things open. This formalism
is called the Palatini or first order formalism and will form the main idea of the second

part of the thesis.



Objectives of the thesis

In this thesis we are going to investigate relations between the different modifications
shorlty mentioned. It is known for GR it does not matter if we use the Palatini or metric
formalism. So it is interesting to see what the effects of the Palatini formalism are on
other higher derivative theories. In order to do this, we will split the thesis into two parts.
The first half of the thesis (chapter 2-4) is dedicated to explaining different higher order
derivative theories that give at most second order field equation and the relation between

them. In this part we will try to answer the following research questions:

e We will explore modifications of General Relativity by considering Ostrogradsky-
ghosts free theories. Which higher order derivative theories with second-order

derivatives field equations do exist?

e Since Lovelock gives at most second-order field equations, its dimensionally reduced
counterpart should do the same. How does dimensional reduction work and which

specific scalar-tensor theory do we obtain by the dimensional reduction of Lovelock?

After this, we will introduce the Palatini formalism. We will apply this formalism to
the theories considered in the first part. Specifically, the following subjects and research

questions are explained in chapter 5-7:
e What is the Palatini formalism and what are its physical implications?

e We investigate the probability of dimensionally reducing a theory in the Palatini
formalism. Can we learn more about the first order formalism of Lovelock and maybe

even link it to the Palatini formalism of galileon theories?

e The last question that will be treated is what happens if we apply the Palatini
formalism to galileons that live in curved space-time. How does it look like and to

what extent is it different than the galileon in the metric formalism?

1.2 Outline

In the second chapter, a short summary of General Relativity is given. Its generalization
to higher dimensions, Lovelock theory, is treated as well in this chapter and we will give
an idea of how it avoids ghost states. In the third chapter, galileon theories are introduced
we aim to give an overview of the differences, similarities and relations between different
galileon theories. We will see that Lovelock and galileons have some similarities and in the
fourth chapter we will link the Lovelock and galileon theories. Dimensional reduction is
introduced and we will try to discover which galileon theory we obtain by the dimensional

reduction of Lovelock.



In the fifth chapter, we explain the Palatini formalism. We will show how this formalism
is equivalent to using the metric formalism for General Relativity. The consequences of
using the Palatini formalism on Lovelock and galileon theory are discussed.

The possibilities to learn more about Palatini formalism for Lovelock and galileon theories
are explored in chapter 6 and 7. In chapter 6 we start by calculating the dimensional
reduction of the first two Lovelock terms in the Palatini formalism. In chapter 7 we will
apply the Palatini formalism to the cubic galileon. The last chapter serves as a short

summary and conclusion.



CHAPTER 2

General relativity and beyond

One of the most elegant scientific theories ever developed is general relativity, Einstein’s
generalization of special relativity. In general relativity, gravity is a geometric phenomenon
and the universe is described as an four-dimensional space-time. Let’s review the basic

principles of this theory.

2.1 The equivalence principle and its tests

General relativity is mainly based on some thought experiments of Einstein that lead to

the equivalence principle. There are several forms of the equivalence principle [3][4]:

e The weak equivalence principle (WEP): The trajectory of a falling test body is

independent on its internal structure and composition.

e The Einstein equivalence principle (EEP): (1) the WEP is valid, (2) the outcome of
any local non-gravitational experiment is independent of the velocity of the freely-
falling apparatus (Local Lorentz Invariance, LLI) and (3) the outcome of any local
non-gravitational experiment is independent of where and when in the universe it is

performed (Local Position Invariance, LPI).

e The strong equivalence principle (SEP): The EEP is not only valid for test bodies
and non-gravitational experiments, but also for self-gravitating bodies and all other

experiments.

With a ’'test’ body or particle we mean a particle that is not acted upon by forces such
as electromagnetism and is too small to be affected by tidal gravitational forces. A local
non-gravitational test is any experiment which is performed in a freely falling laboratory
with negligible self-gravitating effects. We divided the equivalence principle into parts
because when considering different theories than general relativity, we should look at how

they function compared with the (different parts) of the equivalence principle. Let’s specify
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the differences between the equivalence principles.

The WEP implies a spacetime that has a family of preferred trajectories that are the
worldlines of freely falling bodies. As far as the WEP is concerned, free-fall trajectories
do not necessarily coincide with geodesics of the metric (so the WEP doesn’t imply a
metric) [4]. The EEP is more restrictive. The LLI and LPI together imply that in the
local freely falling frame, which all observers in free-fall carry, the theory should reduce to
Special Relativity. This implies a second rank tensor field that reduces in the local freely
falling frame to the Minkowski metric 7),,,. The EEP does not forbid theories with different
gravitational fields than the metric, as long as they do not couple to matter. However, the
SEP does forbid these theories. The only known theory that obeys the SEP is general

relativity.

Since the equivalence principle is fundamental for GR, we should ask ourselves if there is

any proof for it.

Tests of the equivalence principle

The weak equivalence principle, or the universality of free fall, has been tested lots of times
and by far with the best accuracy of the three forms of the equivalence principle. The
principle of all WEP-testing experiments is the same, let two objects with the same mass
but with different composition fall freely in a gravitational field and measure the differences
in acceleration. The equivalence principle tells us that the bodies fall at exactly the same
rate, so any deviation in the compared accelerations is a violation of the equivalence
principle.

The quantity in which the fractional difference in acceleration between two bodies is

expressed is called the Eotvos ratio:

a1 — as|

=2
n \a1+a2]

(2.1)
Where a; and ay are the different accelerations. Experimental limits on 7 place limits on
the WEP-violation.

The first tests of the weak equivalence principles have been conducted in the 16th century,
by Galileo and Stevin. They dropped different objects (with equal mass) from a tower
and concluded that they landed at exactly the same time. Since then, the precision of the
measurements has improved greatly.

One of the most recent experiments of WEP-violation is MICROSCOPE [5]. This is
an experiment conducted with satellites and measures free-fall around the earth. It is
expected that they can measure 1 up to an accuracy of 10718, In 2017 the first results of

the MICROSCOPE experiment confirmed an accuracy of the weak equivalence principle



up to 107'* and higher precision measurements are expected in 2018 [5].

The tests of local Lorentz invariance (LLI) consist simply put on finding deviations of the
speed of light from one. This has been done in numerous different experiments and the
current bound of the deviation is of the order of magnitude 1072° [3]. Experiments of the
(LPI) are done by comparing two clocks at different positions. For these experiments, the
best bounds on the deviations between the transitions of isotopes hover around the one
part per million.

The SEP has been tested to high precision in the solar system. Violation of the SEP
implies that the earth should fall towards the sun at a slightly different rate than the
moon. The Lunar Laser Ranging Experiment measures the distance between the Earth
and the moon and put heavy constraints on the violation. Tests that put limits on the
violation of the SEP outside the solar system can come for example from the measurement

of gravitational waves. In the next chapter, we will come back to this.

2.2 General relativity

The consequences of the EEP are that spacetime must be endowed with a symmetric
metric which determines geodesics and that locally in a freely falling frame one can use
special relativity to describe all non-gravitational physics [6]. Gravity is caused vy of the
curvature of spacetime.

The logical question to ask is what exactly curves spacetime. Newton described the mass
of objects as the gravitational source, so at least mass should curve spacetime. In general,
every type of energy and momentum of all types of fields present should have an influence.

Einstein came up with the following equation:
G = —rKT,, (2.2)

G is called the Einstein tensor and describes the curvature of space-time and 7}, is the
energy-momentum tensor. Conservation of energy implies that V, 7" = 0 and therefore

the divergence of the Einstein tensor should be zero as well. The Einstein tensor is defined

as |

GMV = RNV — §gMVR (23)

R is the Ricci scalar scalar R = ¢" R, R,, = R,,”. The Riemann tensor is given by
the following formula:

R, =01}, —-oL,,+1,.17, —T717 (2.4)



Here we encounter for the first time the connection I,
which tells us how to transport objects in spacetime
in parallel. The connection defines affine geodesics,
curves along which the tangent vector to the curve

is parallel-transported (see picture 2.1):

P4 TE 3P =0 (2.5)

Figure 2.1: The affine geodesic, curve
1, preserves it tangency under par-
connection: allel transport, whereas the non-
geodesic curve 2 does not. A vec-
VIV = 3pT: _F,);VTWV +FZ/\T;1\ (2.6) jcor initially tangent to curve two
is no longer tangent when parallel-

transported around it [7].

The covariant derivative is defined in terms of the

When we assume the connection to be symmetric
and metric compatible V,g,, = 0, the connection takes a really simple form and is called

the Levi-Civita connection:
n 1 o
I = 59 (0900 + 0pGus — O Gup) (2.7)

In this thesis, we use the notation Jy, = % and work with a mostly minus metric (+——-—).
To obtain the correct Newtonian limit the constant x is defined as k = 87G y, where Gy

is Newton’s constant .

The Lagrangian formulation of general relativiy

It is possible to construct an action that yields the Einstein equations as its Euler-Lagrange
equations. The mathematician Hilbert introduced this action in 1915 and therefore it is
called the Einstein-Hilbert action:

S:/d4x |g|(iR+EM) (2.8)

In this action g=det(g,,) and & is the Einstein constant. Varying the action (2.8) with

respect to the metric gives us the equations of motion as we have seen before if we define

T, = —2 O191L ) (2.9)

j1% \/m 5g;u/

A characteristic of the Einstein-Hilbert action that is worth pointing out, is the fact the

action depends on second derivatives of the metric R ~ 00g. However, the Einstein

equation does not depend on third or higher order derivatives of the metric and is thus



free from unwanted extra degrees of freedom.

We can also write the action in terms of the reduced Planck mass Mp = ﬁ. Note
that we work with natural units, so h = ¢ = 1. With this, the Einstein-Hilbert Lagrangian

1s written as:

S = [ d'zy/| %]23
= gl (ZF R+ L) (2.10)

This notation has some conceptual advantages, as we will see later. That is because gravity
is regarded as an effective field theory. Effective field theories only describe physics on
energy scales below its cut-off scale. The cut-off scale of general relativity is M2. At last,
let’s take a look at the dimensions of the action because this will become important later
on as well. If we write everything in dimensions of unit length (L), d*z has a dimension
of 4. The action has to be a scalar without units, therefore the total Lagrangian needs
dimension —4. All partial derivatives 0, = % have dimension —1, so the Ricci scalar
R ~ 00g has dimension —2. With all masses having dimension —1 as well, the combination
M32R exactly has dimension —4. So sometimes the factor of M3 is left out of the action,
since we can always reconstruct by dimensional reduction later how many factors of Mp

we must introduce.

The only way the Einstein-Hilbert action can be generalized (in four dimensions) without
adding degrees of freedom, breaking the general covariance or generating higher than
second order equations of motion is by introducing the cosmological constant A (with

dimensions —4).
M3
Sen = /d4x \g\(fR— A) (2.11)

However, if we consider higher dimensional theories, we can add more terms to the action.

We will see this in the next section.

2.3 More than four dimensions: Lovelock

Lovelock’s theory is a modification of gravity that in four dimensions turns out to be exactly
GR. In the Lovelock Lagrangian we stick to the field g,, with a Levi-Civita connection.
As pointed out earlier, we want a theory to give at most second order differential field

equations. If the field equations have higher order derivatives, we will get unstable ’ghosts

and there is no lower bound on the energy, see appendix A.

Lovelock formulated the most general Lagrangian with the field ¢ and at highest second
order derivative field equations in an arbitrary number of dimensions. In four dimensions

there is only one modification that we can do, the addition of a cosmological constant term.



Other higher order curvature invariants will give us either a total derivative term (that
doesn’t contribute to the field equations) or add higher derivatives to the field equations.
Lovelock showed that if we consider higher dimensions, we can add extra higher order
derivative terms to the Lagrangian that will give us second order field equations. So we
can see Lovelock theory as a generalization of GR in higher dimensions.

In order to construct a Lagrangian containing higher order curvature terms that nevertheless

gives rise to second order field equation, Lovelock made the following assumptions:

e The generalization of the Einstein tensor should be a symmetric two-rank tensor:

Ap =4,

e The generalized Einstein tensor depends on the metric and its first two derivatives:
A/,LI/(.Q? ag? 82g>

e The generalized Einstein tensor is divergence free, V#A4,, =0

Lovelock’s Lagrangian in arbitrary dimensions D is given by [8]:

S = /de\/ |g|Llovelock (212)

The Lovelock Langrangian is described as

(P31

Llovelock - Z Chﬁh (213)

h=0

In this equation [%] is the integer part of %, cp are coupling constants and L, is
given below. Consider for a moment the dimensionality of the coupling constants c¢,. The
dimensionality of Ry, is —2h, whereas the dimension of d”z is D. Therefore, the constants
cp, have dimensionality 2h — D and it is common to write them in terms of some higher
dimensional fundamental cut-off scale Mp.[9]
In the case of compact dimensions, this scale can be linked with the Planck mass by the
size of these extra dimensions. In general M2 ~ V,, M75"? where n is the number of extra
dimensions D = 4 + n and V,, is the n dimensional volume of the n extra dimensions.
Note that sometimes the higher dimensional cut-off scale M%*2 is denoted as M3. An
advantage of this notation is the action in the two formalisms looks the same, however in
this notation the higher dimensional planck mass doesn’t have dimension [-1].
Let’s see what L}, is:

(2h)!

L, = > Ru (2.14)

10



where

by...bap,

h
Rh — 6(11...a2h H Razh_lthbQi—lei (215)
1=1

and the first term £y, = A. From this last equation we can see that if » > D/2, R/ will be
zero because the delta tensor (see appendix C) has more indices than there are different
indices available.The term with h = D/2 is always a topological term, so it only depends
on the topology of the manifold. Therefore, it does not contribute to the equations of
motions and is non-dynamical. We already discussed that in general terms like R? do
give rise to higher than order two derivative equations of motion. However, the specific
combinations of higher curvature terms R}, give rise to different higher order derivative
terms in the equations of motion that exactly cancel each other.

For clarity the first few terms Rj; are written down below.

Ro=A (2.16)

Ri=R (2.17)

Ry = R* —4R,,R*™ + R, ,n R*"° 2.18
(7 v p

The first two terms are the cosmological constant and the Einstein-Hilbert term. The last
term is known as the Gauss-Bonnet term and was discovered before Lovelock came up with
his generalization of gravity. In four dimensions, the Gauss-Bonnet term is non-dynamical
one and hence does not contribute to the equations of motion. In higher dimensions
though, the Gauss-Bonnet term is dynamical and should be included in the action, because

it will modify the equations of motions.

Recap

In this chapter, we have introduced all actions that depend on at most second derivatives
of the metric g, that give rise to second order differential field equations. The Einstein-
Hilbert action is the only one relevant in four dimensions, but we have seen the Lovelock
Lagrangians as an extension of general relativity to higher dimensions. In the next chapter,
similar theories are introduced, however this time the starting point is not a tensor, but a

scalar field.
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CHAPTER 3

Galileons

In the previous chapter, we have seen expressions for a purely tensorial theory with second
order derivatives. In this chapter, we will discuss higher derivative scalar theories, the
galileon theories. There are galileons that involve only scalars and theories that involve
both tensors and scalars.
We know that GR is not complete and we should consider possible corrections. However,
the equivalence principle strongly suggests that gravity should be described by a metric
theory, so why even bother with scalars? Actually, the equivalence principle does not
forbid a scalar term in the gravitational action. The weak equivalence principle only tells
us how matter behaves. So we can introduce a scalar in the gravitational part of the
action and as long as it doesn’t appear in the matter part, it won’t violate the equivalence
principle:

Stot = S6(Guv: @: --) + Sm(Gpuws ¥m) (3.1)

So the gravitational action may depend on other gravitational fields!, while the weak
equivalence principle tells us that the matter fields 1, only couple to the metric [1].

Of course, the matter might couple to the other gravitational fields as well. In that
case, the weak equivalence principle is broken. As discussed in the previous chapter, the
equivalence principle is tested extremely to extremely high precision, but there is still some

room for breaking of the equivalence principle if the scalar does enter the matter Lagrangian.

Galileons in every flavour

Arbitrary scalar Lagrangians with second derivatives will give higher order derivative
equations of motions. However, similar to the way that we have seen in Lovelock theory,

there is a way to add higher-order derivatives terms, resulting in (up to) second order

IThe terms gravitational and non-gravitational fields are quite ambiguous. With gravitational fields
we refer to all extra fields that intervene in the generation of spacetime geometry by the matter fields.

12



derivative equations of motions. The Lagrangians that contain specific combinations
of second derivatives of scalar fields and give rise to field equation with up to second
order terms are called generalized Galileons. The subgroup that gives rise to equations of
motion with purely second order field equations are called the galileons. These theories

are invariant under the following Galilean symmetry:
o= o+ c+uat (3.2)

Previously mentioned theories live in flat spacetime and contain only scalar fields. If we
promote them to live in curved spacetime, we call them covariant theories and they will
be combined scalar/tensor theories. While galileon theories have purely second order field
equations, covariant galileon theories will have up to second order field equations as we
will see. The biggest group is the covariant generalized galileons, which is the covariant
version of the generalized galileons. By setting the curvature zero one finds the generalized

galileons and by imposing more symmetries galileons.

History and motivation

The galileons were first introduced in [10] as the four-dimensional limit of the five-
dimensional Dvali-Gabadadze-Porrati (DGP) model. This theory gives an alternative
explanation for dark energy. In the DGP model, matter is confined to live on a 4-
dimensional brane while gravity can propagate in five dimensions. The action at long
distances is dominated by everything that lives in five dimensions. At short distances, the
DGP model is well described by a 4D model of a scalar field mixed with the metric. Due to
the galilean symmetry of this scalar field in Minkowski spacetime, in [10] they proposed to
name the scalar field a galileon. One year later, it was shown that galileons naturally arise
in the decoupling limit (the mass of the field approaches zero) of the most general massive
gravity theory [11]. Later, inflations models based on covariant and generalized covariant
galileons were investigated [12] [13] [14]. These cosmological models might produce an
accelerated expansion of the universe without introducing any dark energy [15].

Purely scalar theories are interesting to study because they can give us better insight into
how exactly higher derivative theories work. Physically these theories might arise from
situations were the no-gravity limit is taken. Furthermore, they can be used as a ped-

agogical example because they could be regarded as a scalar analog to general relativity [16].

Some scalar-tensor theories have been developed years ago already. Horndeski theory is
a prime example of this. Until a few years ago, people were thinking about this kind of

theories as the addition of a scalar field to a gravitational field. However, we will see that
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it is also possible to construct exactly the same theory by starting with scalar Lagrangian
and adding gravity to it. This sounds similar but is fundamentally different. So a thorough
understanding of these pure scalar field theories in flat space might give us more insight
into existing tensor/scalar gravitational theories, such as Horndeski theory. Now we will

give an overview of the different scalar-tensor theories with (up to) second order derivatives.

3.1 Galileons in flat spacetime

3.1.1 Galileons

Galileons are scalar Lagrangians that give purely second order equations of motion. They

are invariant under the galilean symmetry mentioned earlier (3.2).The Lagrangian can be
D+1

written as £ = Y cyLy. There are different notations found in the literature for £y that
N=1

all differ by a total derivative. We will follow [17] and have a look at two of the notations.

We call them galileon 1 (G1) and galileon 3 (G3):

LG = (n+ D)l dmirg, @i ghn (3.3)
LGP = nlottng @7 e (3.4)

Where ¢, = 0,¢ and ¢, = 0,0,¢, N is the number of times that the scalar field occurs.
N =n+2, N <D+ 1 and the (trivial) £; = ¢. Let’s write down a few terms in both

notations:

L5 = L5° = (99)?

L5 = O¢pud" + ¢ dud,

L5* = Opgue”

L5 = (0¢)?0ud" — 2006,68" ¢y — G ®” 60" + 200" ¢1p0"
LF = 676, ((08)* = ¢ud*”)

Here O¢ = ¢"70,,0,¢. In literature, L3 is called the cubic galileon, £4 the quartic galileon
and so on.

It is trivial that the first of these terms gives second order equations of motion. For
Lagrangians L3 however, it isn’t that obvious. The derivative of [J¢ and second derivative
of ¢, give third order derivatives in the equation of motion. However, it turns out that all

terms in the equations of motion with higher than second order derivatives will cancel
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each other. The two different Lagrangians £! and £ can be connected to each other in

the following way:

N N —2
I N L R A (3.6)

Since total derivative terms never add to the equations of motion, the field equations of
L and £ are identical. The notation of G3 is more compact, so that is the one that is

going to be used throughout this thesis.

3.1.2 Generalized galileons

By definition galileon theories have strictly second order derivative equations of motion on
flat spacetime. From Ostrogadsky’s theory we learn that we can not increase the order of
derivatives in the field equations, however we can find the most general scalar theory with
at most second order derivative field equations. It turns out that generalizing galileon
theory on flat-space is really simple, we can just add some function fy that depends on ¢

and X = ¢,¢". With that, the generalized galileon lagrangian becomes:

D+1 .
L=>> Lyfy (3.8)
N=2
With
Lyfy = (o, X)L (3.9)

The equations of motion of this Lagrangian depend, for a non-constant f, not only on ¢,,,
but on ¢, and ¢ as well. Naturally, the generalized galileons are no longer invariant under

the galileon symmetry (3.2).

3.2 A recipe to add gravity to the galileon

So far, we have considered galileons in flat spacetime only. Extending the previous theories
to a curved spacetime with metric g, is called covariantization and the resulting theories
are called covariant galileons. Covariantization means changing the partial derivatives 9,
to covariant derivatives V. However, note that if we apply this change to Ly, we might

get higher than second order equations of motions. To see why, let’s look at some terms of

15



the equation of motion (e3) of L3

e3 ~ V,V V0V 0V Vi — V.V, V,6V V" V¢
= [V,, V|V, 0V 6V Vi) = —R, PN,V ¢V Vi

As we can see, in flat spacetime this terms disappears, but in curved spacetime it does
not. Instead, the commutation of the derivatives introduces the Riemann tensor in the
equation of motion. Therefore the equation of motion again does not contain higher than
second order derivatives. Note that the field equation does involve first derivatives of ¢

and g now, so it’s no longer purely second order.

In the case of £, we are not so lucky that we obtain ghost-free equations of motion for
free. Instead we get derivatives of the Ricci tensor and scalar ¢4 ~ V,R + V,R*. Since
the Ricci scalar and tensor depend on second derivatives of the metric 0, previous terms
will give us third-order derivatives of the metric. Hence we should add some terms to
L4 that exactly cancel these terms in the equation of motion. Adding to £§*! the term
Eﬂ = —¢",0,G* ¢, gives correct (ghost-free) field equations again. Note that we obtain

a non-minimal coupling between the scalar and metric here.

Are we always able to find such counterterms that cancel the unwanted terms in the equation
of motion? It turns out that we can. In article [15] it is shown that the ”dangerous” terms
in the equation of motion are first derivatives of the Riemann tensor and that we only need
to add some finite number of counterterms to obtain correct equations of motions. With

this information, we can summarize the covariantization process of galileons as follows:
1. Change all partial derivatives for covariant derivatives
2. Calculate the equations of motions

3. Determine the counterterms which remove all the higher than second order derivates

terms

In flat spacetime we can write the difference between two different formulations of galileons
as a total derivative term. It turns out that in the covariantized version of both formalism,
the differrence is exactly the covariantized total derivative term. So you have to add
different terms to the different formulations £§' and £§3, but the sum of the original and

counterterms are again equal op to some integration by parts. The counterterm for £ is

LT} = 1000"Pud" R.

The covariantization of all galileons is done in a systematic way by Deffayet and Steer

[15]. They covariantized galileons in an arbitrary number of dimensions. Since we will
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need the notation for the covariant galileon in chapter 7, here the first few terms of
5

L= > eyLy in four dimensions will be written down:

N=1
L, = M3
Lo=X
Ly = %XV“VW (310)
Ly= %X(V“VWV”V@ — VIV,6V, V"¢ + iR)

Where M is a constant with dimensions of mass, and is seen as the cut off value of the
galileon theory. For the reader interested in the full notation of covariantized galileons,

the paper [17] is recommended.

3.2.1 The covariant generalized galileon

The covariantization process has been done for generalized galileons as well and the results
are summarized in [17]. The procedure of the covariantization is similar to the procedure
mentioned before. Let’s see how these theories look like. As mentioned the notation of
Deffayet and Steer is more or less followed. However, as their Riemann tensor is defined
differently from ours, some changes have been made in the notation. The covariant

generalized galileons are all described by the following Lagrangian.

D+1

L= £ fn(6.X) (3.11)

N=2

where

Z

-2
2

L (6, X) =) Cnplupfn (3.12)

(]

o

bS]

The coefficients C'y,, make sure all higher derivative terms exactly cancel each other and

are given by the following expression in which n = N — 2:

1 n!
(=8)7 (n — 2p)!p!

Cnp = (3.13)
Furthermore, the part that depends on p and R are given as a product of three different
functions

ZN,pr = n!(smmuanRqu:anp (314)

V]...Un
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with the following functions:

X X, Xp1
Pp:/ Xm/ dXQ.../ dX,fn (6, X)X, (3.15)
X0 Xo Xo
p
Rp - H _RMFW%I&FU/% <316)
=1
qg—1
Sq=119""0n,_.¢ (3.17)
=0

3.2.2 Equivalence of Horndeski’s theory and covariantized gen-

eralized galileons

For the moment, let’s take a look at a different scalar theory: Horndeski theory. Al-
ready in 1974 Horndeski came up with a theory of extended gravity. He formulated the
most general scalar-tensor theory in 4 dimensions that yields second order field equa-
tions. His theory remained unnoticed until its recent discovery as generalized covariant

galileons, in [17] it is proven that the two theories are actually equivalent in four dimensions.

This is not trivial since the construction of the two theories is totally different. Horndeski
started by trying to find the unique set of scalar-tensor theories that give up to second order
equations in curved four-dimensional spacetime. This is really similar to the procedure
Lovelock followed. On the other hand, as we have seen, galileon theory starts with a pure
scalar theory and constructs its covariantized generalization without knowing or imposing
on forehand that it is unique. An open question remains if the equivalence between Horn-
deski and generalized galileons holds in dimensional larger than four, because at the time of

writing the extension of Horndeski’s construction for higher dimensions is still unknown [17].

After a few years of research, Horndeski changed his
career to become a painter. His love for physics never
disappeared completely and in some paintings he in-
corporated texts relating to physics. When Horndeski
published his theory, it went by quite unnoticed. His
paper published in 1974 got the first citation in 2010
and at the moment is cited more than 1100 times. That
got him back to physics, as he says himself [18]: "It
seems that the scalar-tensor equations that I developed
in my Ph.D. thesis, and actually derived when I was

23, had become all the rage in Cosmology, and was

18 Figure 3.1: A painting by Horn-
deski about his own theory



being used to attempt to explain inflation in the early Universe as well as dark energy. So
that got me interested in going back and doing some work on scalar-tensor field theories.

So I am doing that stuff again now, as well as painting, and having a fantastic time doing

both.”

3.3 The fate of covariant galileons after gravitational

waves measurements

A thing one must always take in mind is how to check these models. When new fields are
coupled to gravity, as in Horndeski and covariant galileon theories, the propagation speed
of gravitational waves might be changed. Therefore, measurements of gravitational waves

can be used to test theories of modified gravity.

As we have seen, the quadratic and cubic galileon couple minimal to gravity. Therefore,
they are not expected to have an influence on the speed of gravitational waves. However,
the quartic and quintic galileon do have a non-minimal coupling to gravity. Measurements

of gravitational waves can only put constraints on these theories.

In 2017, a binary neutron star merger was observed with LIGO. The measurements of the
produced gravitational waves placed strong bounds on scalar-tensor theories of gravity. In
November 2017, a few different papers appeared on the bounds of scalar-tensor theories[19]
20] [21]. In [22] they showed that these measurements imply that the quartic and quintic
galileons almost completely vanish, if you do not allow strong fine-tuning of the parameters.

In this article they show that the deviation of the speed from the gravitational waves from
1 depends on Ox fi, 05 f5 and Ox fs.

This fact combined with the measured limits of the speed of the gravitational waves, leads
to the conclusion that the quartic Lagrangian reduces to L5 fy ~ f(¢)R while the only

surviving term of the quintic Lagrangian is £ f5 ~ G, VIV .

Conclusion

In this chapter we introduced the scalar theories with equations of motions that have
(up to) second order equations of motion. We have seen that they can be written in
different notations, all related by a total derivative term. To promote such theories to
curved spacetime, we change all partial derivatives for covariant derivatives and look

for counterterms to add to the action to remove higher derivatives in the equation of
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motion. It turns out that the difference between two covariantized galileons is exactly the
covariantized version of the total derivative.

Horndeski theory is a scalar-tensor theory that was invented years ago as the most general
scalar-tensor theory without ghost-like instabilities in four dimensions and turns out to
be equivalent to the covariantized galileons. In principle, covariant galileons could yield
interesting dark energy models, however cosmological observations of gravitational waves

put super heavy constraints on the existence of them.

In the next chapter, we are going to relate the covariant galileons to Lovelock theory by

dimensional reduction.
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CHAPTER 4

Dimensional reduction: from

Lovelock to galileons

We have seen that the Lovelock and galileon theories are similar in the way that they both
are the most general Lagrangians (tensor or scalar) that contain second order derivative
terms, but do not give dangerous higher order derivative terms in their equations of motion.
In this chapter we are going to investigate the relation of both extended gravities to each

other, by using dimensional reduction to obtain a galileon theory from Lovelock gravity.

Even before string theory, the possibility of extra dimensions was considered. In 1919
Kaluza and Klein tried to unify electromagnetism and gravity by assuming a fifth di-
mension. Compactifying one of the coordinates, a four-dimensional theory combining
both gravity and electromagnetism was obtained. However, the original theory failed
to correctly match with experimental data, since it predicted the existence of a never
observed scalar field as well. Nevertheless, the simplicity and beauty of the theory led to
many unified field theories and the procedure for dimensional reduction by compactifying

one or more of the coordinates still has their name.

In the Kaluza-Klein model, the compactification of higher dimensions gives rise to a scalar
field. While this was an unwanted side effect for the original goal of Kaluza and Klein,
it can give us a link between Lovelock and galileon theories. As we will see, Lovelock
gravity might be a source of the scalar field in galileon theories. In [23] it was proven that
you get galileon terms from Lovelock terms by dimensional reduction. In this analysis
however they only took into account separate Lagrangian terms and didn’t calculate the
dimensional reduction of the sum of Lovelock Lagrangians. Furthermore, they only pointed
out the terms they were interested in after the reduction, which does not give a very
well-explained introduction to this topic.

The goal of this chapter is to introduce and explain the procedure for Kaluza-Klein dimen-
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sional reduction and investigate the relation between galileons and dimensionally reduced
Gauss-Bonnet. We will calculate the reduction of the Einstein-Hilbert and Gauss-Bonnet
Lagrangians en check if we end up with a galileon theory. By explicitly calculating all
terms, we hope to gain better insight into the relation between Lovelock and galileon

theories and to find out exactly which galileon theory we obtain.

4.1 Kaluza-Klein theory

Figure 4.1: In every point of spacetime, there is one extra dimension rolled up. Here we
show 2D space for simplicity [24].

Suppose that we have a theory in N + 1 dimensions and we want to obtain a N-dimensional
theory. This can be done by compactifying one of the (spatial) coordinates, let’s call
it w at the moment, on a circle S* of radius Ry. To account for the unobservability of
this extra dimension, we assume that this radius is very small (comparable to the Planck

length). In figure 4.1, it is shown how we can imagine such a space with an extra dimension.

Low energy limit

From now on, we denote all objects living in the N+1 dimensional space with a hat
(g, R, %, etc), and objects living in a N-dimensional space without a hat (g, R, x,..). So the
N + 1 higher dimensional coordinates, change into N coordinates plus the compactified
coordinate T — x,w.

We could expand all components of the (N + 1)-dimensional metric as a Fourier expansion:
Gur(,0) =Y gl (@)™ " (4.1)

If we do this, we see that we get an infinite number of fields in N dimensions. They are

labeled by their Fourier mode number n. However, it turns out that only the fields with
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mode number n = 0 are massless. To illustrate this, consider a toy model of a scalar field.
O(s,0) = 3 Ga(a)eme/ B (42)

The Klein-Gordon equation in the higher dimension is:
o =0 (4.3)

Where [J = 09, 1f we substitute our Fourier expansion in, we get:

2

O, — %%qsn —0 (4.4)

So all modes with n # 0 have a mass %. We assumed Ry to be very small, so all modes with
n # 0 would be really heavy. In the low energy limit, the mass-less mode is the only one that
is relevant and it is safe to neglect all other modes. Therefore, we will take g,, to be inde-

pendent of w and assume that none of the fields depend on the compact coordinate: 9, = 0.

Reduction of the metric

Now we want to decompose the metric gz, in N dimensional objects. We can write the
different components of the metric as g, Juw and Guw. In N dimensions these are a
metric, a 1-form and a scalar field, so at first sight it looks like we can define them by g,,,,
A, and ¢. However, these objects do not behave correctly under infinitesimal coordinate
transformations (see appendix D). Following equation (D.4) this is the infinitisial coordinate

transformation for a tensor:
0G50 = E0pG5 + Gp00pE” + 93p05E" (4.5)

Now we can have a look at how the different components of the metric transform under a

N+1 coordinate transformation.

3gww - gpapgww - 5gww (46)
Sguw = fpapguw + gpwaufp + gwwaugw (47)
00 = € 0pl + GO’ + GuovOu€” + GupOr€” + Gusr€” (4.8)

We see that g, does transform as a scalar in both N + 1 as N dimension, so there is
no problem in using it. However, g,, and g,, do no transform as a vector and tensor

respectively in lower dimensions, due to the presence of terms proportional to 9,£“. Luckily
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it is not so hard to define objects that transform in the right way, namely A, = g“—‘“ (note:

- _ - Juwg
we know G, # 0) and g = G — %. Now g, transforms as a tensor and A, as a

covector under the gauge potential U(1)!:
0A, = 0A, + 0,8 (4.9)

For our reduced metric, we take the Ansatz [25]:

G = eQad)gW — ewd’AuA,, (4.10)
Juw = —€*P? A, (4.11)
Guo = —€279 (4.12)

where o and 3 are arbitrary constants. The scalar field is called the dilaton and A, the
Kaluza-Klein vector. We are only interested in a combined scalar gravity theory at the
moment, so we will put all A, to zero. This is a consistent truncation, because we don’t

get, solutions to the equations of motion that do not exist in the higher dimensional theory.

Reduction of the Riemann tensor

It turns out that for dimensional reduction, it is way easier to work with Vielbein coordinates
than with curved coordinates. That’s why we calculate the Vielbeins (see appendix B) of

our N-dimensional metric in terms of the reduced metric.

& = e*et, el = e ek (4.13)

e = e? &Y = e P9 (4.14)

w

The first object that we will have to calculate for the dimensional reduction of the action,

is the square root of the determinant.

Vgl = e?ler?e| = 270 /]g] (4.15)

Now let’s have a look at the flat derivatives:

Da = &Ly, (4.16)

'Remember that the electromagnetic tensor F** = 9*AY — 9, A" is unvariant under the transformation
of the potential A, — A, + 0, A.
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which gives us

>

. =0 (4.17)
Dy = €790, (4.18)

In order to calculate the spin connection, we first will need to calculate all lef. For that
we will use equation (B.9). Since 2 is antisymmetric in its first two indices, we have five
cQ,7Q,.7 and Q_*. Computing these

different contributions to Q .¢, namely Q,,°, Q,.¢Q.,7,

ab ’

will give us only two non-zero components:

Q¢ = e P20 ,° + aBa8 — adyddC) (4.19)
2 = Bema=y 4 (4.20)

o

az

By using formula (B.17), we can calculate the spin connections. The nonzero components

are

G = €770 (¢ — ad PNy + ADPOL) (4.21)
Gy = Be "0 (4.22)
&,.¢ = Be 9 geg (4.23)

(4.24)

Now we have everything we need to finally compute our Riemann tensor by using equation
(B.18). For Einstein-Hilbert, we could also just calculate the Ricci tensor, but we need
Riemann when will calculate the dimensional reduction of the second Lovelock term

(Gauss-Bonnett) next. After a long, but straightforward calculation we find:

A

Ry’ = (Ryp! — 0%0.00.06, + 00,00 ¢ + o0y 0c06 (4.25)
— QP0G Pac + &2 (00)*14c0y — *(99)*Npedt + Dy D3y
— aD,D%pny. — aDyD 0 + aDyDpnq,)

R,.. = Be 972D ((8 - 20)0,60:6 + a(06)*1uc + DuD.o) (4.26)

Here, D, is the covariant derivative for flat derivatives. We can write the expression in a
more compact way by raising indices and using normalized antisymmetrization brackets
(la,b] = 3(ab — ba)). Finally, we obtain:

A

Ry = e 20720 (R, — 40200008, + 20%(99)%0% + 4aD, DP¢0y)  (4.27)
R,.% = Be 2720 ((5 — 20)0,00°) + a(8)*6¢ + D, D o) (4.28)
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Lovelock terms reduced by 1 dimension

Now we have almost all the ingredients that we need to start the dimensional reduction.
We only need to know the form of the reduced Lovelock terms. By using symmetries of
the Riemann tensor and the Lagrangian in the delta notation, it’s not too hard to find an
expression of this higher dimensional Lagrangian in terms of N-dimensional indices. We
will try to find a general expression of the Lovelock terms dimensional reduction. For the
Einstein-Hilbert terms this is quite trivial, so we show here how it works for the Ro, the

Gauss-Bonnet term.

Ry = 0004 R, o PR, 0 (4.29)
=0 AalagbleRagmbsm + 451?111;;5; AalagbleRagafSZ (4.30)
= 5511:....1;14Ra1a2b1b2ﬁa3a4b3b4 + 861(7111;22b(;3zzRa1a2b1b2Ra3a4b32 (431)
- 5;11157;21)@3?;)24}%&1&2171112 f%agcmbgb4 + 251?111;1221;22 Rmagble Ragzbaz (432)
In general for R,,, we find for a one-dimensional reduction
61?11122: H R&2i71&2i = 61(71111?22: H Raziqazib%_lb%
i=1 i=1
- (4.33)
+ 261()1111;122::11 azn—lzb%ilz H Ra2¢71a2ib2i71b2i
i=1

The simplicity of this equation once again shows how useful it is to work with delta-tensors.
Note that for a dimensional reduction over one dimension, we will never obtain terms

containing multiplications of .. This is due to the fact that the delta tensor containing

aia2

two compact coordinates, 07

will always give zero.

4.2 Dimensional reduction of Einstein-Hilbert

The first part that we are going to dimensionally reduce is the Einstein-Hilbert term.

Using equation (4.33) we see that this is:

. : :
L1 = =511 (05252 Ry + 200 Ry, ) (4.34)
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Calculating this Lagrangian with the above formulas, we find:

S = /ﬁldNHm zg/d]vx |g|e PN =2)ot (R— (@*(N —1)(N —2)
(4.35)
+2aB(N — 2) +26%)(06)* + 2(a(N — 1) + B)quﬁ)

Taking into account that D?¢ = V?¢ and using integration by parts gives us

R MN-1

S = /dNHa:LI = /dNH:c |g|ePHIN=29 (R—a(N— 1)(04(N—2)+2ﬁ)((9¢)2)
(4.36)

Now we can integrate over the extra dimension and find:

S =2rR, / dVz Ll
. 4.37)
2r RyMN—1 (
= MOT/CZNI |g|ePHN=2e <R —a(N —1)(a(N —2) + 25)(3@25)2)

Note that this action isn’t written as the common Einstein-Hilbert action, £ ~ \/ER,
because there is a factor e?®) in front. We say that lagrangians of the form £ ~ \/m R
are written in the Jordan frame, while lagrangians without this factor are written in the
Finstein frame. The two metrics are related by a Weyl transformation g, = e‘z’(f”)gul,.
This transformation isn’t a coordinate change, but fundamentally changes the geometric
properties of space. It is not exactly clear yet which frame is the 'physical’ frame, so with
which metric you can compare experimental results [6]. Most of the time, the metric is

considered in the Einstein frame and therefore it’s important to write (4.37) in this frame.

We can do this by choosing § = —(N — 2)a. Furthermore, we see that we can define
2R MY~ = MYN~2 and o = m to get to:
5= [@ail (M r+ M 00) (4.38)
Which is in four dimensions:
S = /d4x yg|(MTf%R+ %((%)2) (4.39)

One last comment before going on to the Gauss-Bonnet term. Notice that we end up
with a massless scalar field terms in the action, that, of course is a galileon term. It
is a covariant galileon, however, note that equation (4.37) was written in the way of a
generalized covariant galileon. Only after redefining our parameters, it becomes clear that

this falls into the subgroup of covariant galileons.
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4.3 Dimensional reduction of Gauss-Bonnet

We have all the ingredients to start with the dimensional reduction of the Gauss-Bonnet
term in the Lagrangian. Let’s start with formulating the reduced Gauss-Bonnet Lagrangian

term by using formula (4.33):
A /T ~( ca1a2a3a4 P bi2 D b a1azas 1 biop» b3z
£2 = -9 (6b11b22b33l))44Ra1a2 12Ra3a4 o + 25bllbg2b32Ra1a2 12Ra32 : ) (440)

So the action for this term becomes S = [ d” x¢yLo. Just as we did for the Einstein Hilbert

case, let’s define the higher dimensional constant ¢, as ¢y = 27‘;1%20. We know that ¢y has
dimension [4-N] whereas ¢ has dimension [4 — (N + 1)]=[3 — N], so dimensionally this
fits perfectly.

It is clear to see that if we work this out, we will get terms proportional to the Riemann
tensor, the Riemann tensor squared and a pure scalar term. For clarity, we will write them
separately. After working out pages of calculations with a lot of care, this Lagrangian

splits up in the following parts.

Terms that are proportional to R?

The term in the Lagrangian that is proportional to the squared Riemann tensor is noted

here. To shorten the notation, from now on we write R, 012 = Rbib2

ajaz ajag”
Lrz =1/ g\e¢(5+(N‘4)“> Gyt Rt Rbsbs (4.41)

We see that we get the original Gauss-Bonnet term again, with a conformal factor in front.

Notice that if we choose the Einstein frame, 5 = —(N — 2)a, we do not lose this factor.

All terms that are proportional to R

(6+(v-1)a)

From now on, let’s write e? = ¢“?. The part of the Lagrangian that turns out

to linear in the Riemann tensor is given by

Lr=/|gle® RM" %

aia2

(2(ﬁ(ﬁ —20) = (N = 3)a?) 00, 00° 60, 17500+
) (4.42)

SNV = 2)(a(N = 3) +28)(90)°5;152+

2(a(N —3) + 5)Da3Db3¢5g;;;b§3>
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We can use integration by parts and the Bianchi identity to get rid of the first term in the

previous expression. What we end up with in the end is the following expression:

Lr= |9|€CRZiZ22*
]. a1a2
(§a<zv —2)(a(N —3) + 28)(06)25012 + (4.43)
o@?(N —3)? + aB(2N —5) b
2 D D 3 ai1a2a3
(N —4)a+ 3 s ot )

Scalar part of Lagrangian

For the scalar part of the Lagrangian we find at the end of our calculation some expression
consisting ofthe terms (9¢)*, (D?¢)?, (DD@)?, (0¢)*>D*¢ and (0¢0¢)(D D). Here we used
the notation D?¢ = D*D,¢ and (DD¢)? = D,Dy¢D*D’¢. By using integration by parts,

we arrive at the following expression for the scalar part of the Lagrangian:

3

Ly =/]gle

((m@?’ + Lal(N = 5)(N — (N = 8) + 4GV —4) + 27B((N — 47 — (N - 3)) (90’
+ (2N = 3)(V — 4)a” + 60 + 6(N — 4)a*8) (96)2 D%
n <2a2(N —3)+ 4aﬁ) (D)2 — (DD¢)2)>

(4.44)

We have written the Lagrangian in the same form as the the generalized galileon /horndeski
theory, in order to check the reduction. However, the last term can be removed by

integration by parts to other scalar and mixed Ricci/scalar terms.

4.4 Checking the solutions

To check if our solution is a covariant generalized galileon, we will take a look at the
mathematical notation of these theories. We will use the notation described by Deffayet
and Steer [17]. We will check if our obtained Lagrangian indeed is a generalized covariant
Galileon and fits eq (3.11). To do that, let’s first explicitly write down some of the terms
of equation (3.12).
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L5 fr = fo(¢, X)X
L5 fs = Vo fi(¢, X)X

X
£5 iy = G2, VO, V26 (6, X)X + S5 R / dX1 fol, X1) X,
Xo

viv2 4 vive 112

zgovf — JH1H2p3 Vul v gbvlm \V4E ¢Vﬂ3 A ¢f3(¢a X)X

vivav3
x

+ 5”1M2M3 REBN V20 dXi f3(¢, X1) X1

vivavs < p1pe
Xo

L fo = 55; LV Vi V0 fi(0, X)X
X
+ 5#1 4 YV VMBV”3¢V“4V”4¢ dX1f4(¢,X1)X

Vy...v4 P12

3
6(5’;11 ,ﬁffRle’l’fQRZgZ‘;/ dX1/ dXsfs(d, X2) X

Note that this is written in curved coordinates with a covariant derivative and our reduction
in Vielbein coordinates. Since all indices are contracted, we can just change the Vielbein
coordinates to curved coordinates and covariant Vielbein derivatives to curved covariant

derivatives. A proof of this is given in appendix B.

Since we reduced from R?, there can’t appear more than four derivatives together. Two
for every R(oc 0T ox ddg o< 00¢). Therefore, we expect the first term of £ f5 and the
first two terms of ng’v fe to be zero. As we can see, we indeed do not get this terms.
Furthermore, the integrals of the last terms of Egov f5 and Eg"“ fe can only give us a function
of ¢, not of X = (9¢)?. We identify (4.41) with the last term of £ fs, and the last term
of (4.43) with the last term of £& f5. The first term of (4.43) is exactly written in the
form of the last term of £ f.

Now we're just left with checking that the scalar part of the Lagrangian fits in this
formalism as well. Let’s take a look at equation (4.44). The first term is written in the
form of ngw f2, the second term in the form of Egov f3 and the last term identifies with the

first term of £ f,.

Since we have both terms of Ei"“ f4 in our reduced Lagrangian, we can check if we get

twice the same function f;. From equation (4.44) we read off that:

N -2
€C—

3 (40*(N — 3) + 8ap) (4.45)

fa(o, X)X =
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which gives us

X J—
;1/ dX1f4(0, X1) X, = —60N3 2(a2(N —3)+2aB)X (4.46)
Xo

which is indeed what we have find as our first term in equation (4.43).

If we add the terms of the reduction of the Einstein-Hilbert Lagrangian, we are still in the
generalized galileon framework. The terms from that reduction alter function f4(¢, X), on
which there are no further constraints and the integral [ dX f4X. However, since the term
with the Ricci scalar from the Einstein-Hilbert reduction does not contain any dependence
on X = (9¢)?, we can see this as an integration constant and therefore the theory is still

valid.

So we checked our solution and see that all terms fit exactly into the generalized covariant
galileon theory. Do they fit in the 'pure’ covariant galileon theory as well? On first sight,
the answer to this question is no, since they have a function f(¢) o € in front of them.
This function of ¢ is not there in the 'pure’ covariant theory. We could remove this by
choosing o and 3 wisely, but then we gain a conformal factor in the reduced quantities of
the Einstein-Hilbert term. Just by smartly choosing our parameters, it is impossible to
remove all factors e?(z) and therefore we will always end up with a generalized covariant

theory instead of the pure one.

Scalar Lagrangian in the weak field limit

We are also interested in the scalar Lagrangian in the weak field limit. Usually in four
dimensions we expand the metric around a Minkowski metric (g,,, — 7., + Miphw), change
the covariant derivative for a partial one (V — 9) and let the Planck mass go to infinity
(Mp — o0). When the Ricci scalar is not coupled to anything, this becomes some function
of &?h that is not important for the kinematics of the other fields.

To see which fields are most suppressed, it is instructive to look at the four-dimensional
example. For the Einstein-Hilbert part, we end up with (9¢)?, but the Gauss-Bonnet con-
tributions all have at least a factor o in front. We know from our Einstein-Hilbert action
that a and 3 are proportional to MLP Since the reduction of Gauss-Bonnet to four dimen-
sions doesn’t give us a multiplication with a dimensionful constant, these terms are much
more heavily suppressed than the kinetic term from Einstein-Hilbert. So in the weak field

limit, we obtain S = [ %(8¢)2d4x. A similar argument holds for all higher order reductions.
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Is there some way in which we can obtain a different weak field limit, one in which a
galileon contribution is retained? Actually, there are several. The first method would
require extreme fine-tuning of the coupling constant of the Gauss-Bonnet term. Probably
it’s possible to keep some other scalar terms, but it makes the compactification of Gauss-
Bonnet a rather unnatural way to physically derive the galileon terms. Furthermore, by
fine-tuning of the coupling constant, we can not get rid of the conformal factor in front of
the galileon terms, so we would end up with generalized galileons. We are not going to
pursue this route further.

The second method is to consider separate Lovelock terms, instead of the sum. In that
case, we are free to choose our parameters a and § and we can choose them in such a

¢ cancels. Considering only seperate Lovelock terms is

way that the conformal factor e
done in the paper [23]. Based on dimensional analysis they state that the fields we would
end up with in the weak field limit of the Lovelock reduction are pure galileon. Can we
see that in our reduction as well? Following our previous argument, and the argument
in [23] use as well, in the weak field limit only the terms that have the lowest factor of
a and (8 remain. If we take a look at the scalar reduction of the Lovelock Lagrangian
4.44 we see this corresponds to the last terms. This is however a total derivative in flat
space, so instead we end up with the (9¢)2D?@ term which indeed is a galileon term. In

2

four dimensions this term would cancel however®, so we would need to consider another

dimension.

Conclusions and recap

We have seen that the sum of the reduction of the Einstein-Hilbert and Gauss-Bonnet terms
gives us a scalar-tensor theory. Since Lovelock terms are known to give at most second
order equations of motions, we expected to end up with a theory that fits the covariant
generalized galileon framework. We have seen that this is indeed the case. Furthermore,
we saw that it isn’t possible to rewrite this as a covariant galileon theory and that in the
weak field limit, all Gauss-Bonnet contributions disappear and we are only left with the
kinetic term of Einstein-Hilbert.

Note that these results are only valid for a 1-dimensional reduction. For a higher dimen-
sional reduction, we are not sure what happens and this could be a nice follow-up research

question.

2To cancel for e, we would need to choose 8 = —(N — 4)a.
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CHAPTER 5

Palatini

In the previous chapters, we have introduced higher differential order scalar and tensor
theories and explored the relation between them. This constituted the first part of the
thesis, in this chapter we are going to introduce a new concept: the Palatini formalism.
The Palatini (or first order) formalism gives us a new way to relate geometry to physics
and to analyze the effects of gravitational theories.

We will start by explaining the Palatini formalism and its motivations. Then we will
specifically look at the consequences of the Palatini formalism for GR, Lovelock and galileon
theories in this chapter. There is not a lot of literature about the Palatini formalism of
scalar-tensor theories as introduced in the previous chapters. So the next two chapters
will consist of combining the knowledge of the Palatini formalism with everything we have

seen in the first chapters to explore this largely unknown territory.

5.1 Introduction to the Palatini formalism

As we have seen in the introduction, General Relativity links gravity to geometric proper-
ties of space-time, namely to the metric (g) and the connection (I'). The connection tells
us how to parallelly transport vectors and tensors along curves, in other words, it learns
us about the intrinsic curvature of our manifold. In contrary, the metric tells us how to
measure distances between points in the manifold and it defines angles between vectors.
They are two different objects, that specify two different trajectories. The metric defines
geodesics, so curves that minimize or maximize the distance between two point. The
connection defines the worldline of a free particle!, so a curve along which there is no accel-
eration. In the standard formulation of General Relativity, the two curves are required to

be identical and this fixes the connection to be the Levi-Civita (or metric) connection (2.7).

IThe affine geodesics we have seen in chapter 2
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Assuming the Levi-Civita connections from the beginning is called the metric formalism
and the geometry in which the connection is defined by the metric is called Riemannian
Geometry. Only after Einstein came up with GR, the theory of non-Riemannian geometry
was developed. So this gives new opportunities to consider gravity as a geometrical

phenomenon [26].

Another motivation to study gravity in a non-Riemannian geometry? can be taken from
condensed matter systems [27]. In these systems, the lattice structure gives rise to the
emergence of a continuous geometry that can not be described in terms of the metric
alone. Other geometric structures that can be related to the connection bare necessary to
account for physical characteristics (like plasticity) of these systems.If space-time would
have some kind of "microstructure” (as expected in approaches to quantum gravity) we

should explore the potential impact of geometric structures caused by the connection.

Properties that may arise when working with an affine connection are torsion 7%, =
v, —TI'7, and non-metricity V,g,,, # 0. Geometrically we can describe them as the failure
of a parallelogram to close (picture 5.1) and the change of the norm of a vector under

parallel transport.

There are some reasons to prefer the Levi-
Civita connection over a general one. We
said that for arbitrary connections, the metric
and affine geodesics do not coincide.  There-
fore, it is not clear what which would repre-

sent the trajectories of free particles [29]. Fur-

thermore, since for the Levi-Civita connection

p
both torsion and non-metricity are zero, we do

not have to worry about their physical proper- Figure 5.1: Two vector fields u and
ties. v are given. Starting at a point P, u
and v are transported parallelly alon|%

v and u respectively. The become uy,

If and how exactly torsion and non-metricity are and Ug . We asstme the point R and

physical observable is still a topic about which (@ are infinitesimally near to P. If
there is a lot of uncertainty. Recently some ar- torsion is present, a closure failure
ticles discussing experiments to test torsion and T'(u,v) emerges [28].

non-metricity have appeared [27] [30]. In article [27] it is stated that the observable
consequences of non-metricity still are largely unknown. It is known that the Dirac field

(that describes fermions) couples to the torsion and non-metricity tensors. They use data

2The study of gravity in a non-Riemannian geometry is also called metric-affine gravity.
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from positron-electron scattering to give a lower bound on the energy scale at which
non-metricity can be present of 1 TeV. In [30] they make a difference between torsion that
is present in a purely gravitational theory and induced torsion by matter. The first type
of torsion is constrained heavily while there are no strong constraints on torsion induced

by matter.

We can conclude that there is no a priori reason to exclude torsion and non-metricity from
a generic description of spacetime, it is left to matter to probe whether they have physical
relevance and lead to observation [31].

Often it is assumed that the Equivalence Principle forces us to choose a symmetric, torsion-
free connection. That it tells us that locally the gravitational force can be gauged away by
a clever choice of coordinates. Mathematically this translates to the fact that at any point,
coordinates can be found such that the connection is zero. Then one could argue that
since the torsion is a tensor, this can only be the case if the torsion is zero everywhere
[29]. However, because of the symmetry of the affine geodesic equation, the geodesics are
only determined by the symmetric part of the connection [32]. Hence the torsion does not

affect the geodesic equation.

In this chapter, the Levi-Civita connection will be denoted as fzy and an arbitrary

connection as I},

5.2 Palatini formalism for GR

We gave a lengthy introduction to Palatini formalism, know let’s see how it works in
practice. We start by taking the Einstein-Hilbert action and assume that the connection
is independent of the metric. Instead of varying the action with respect to the metric
only, we vary it with respect to g"” and I'7,. This is called the Palatini (or first order)
formalism. However, what we nowadays call the Palatini formalism, wasn’t formulated by
Alletio Palatini. His paper is quoted incorrectly quite often, which might be due to the
fact that it is written in Italian [33]. Palatini did not work in a nonmetric framework and
didn’t suggest a possible extension of his work to an arbitrary connection. At the end,
it was Einstein that formulated the variational principle that is nowadays known as the
Palatini principle.

The Einstein-Hilbert action in the Palatini formalism can be written as [26]:

Y

=7

/ o/ gl Ry (T) (5.1)

35



Note that at the moment, we only consider theories the existence of matter that does not
have a coupling to the connection in its Lagrangian (such as scalars). We will discuss this

point later on.

Varying the action with respect to both the metric and the connection, we obtain two
equations of motion. The variation of the action with respect to the metric yields the

Einstein equations. The field equation for the connection is [34]:

14 oV 1 T 174 1 T ov 174 ov oV
VAg" = Vog™ 05 + 59V g" = 59" Vo 9prg™ 0 = Tng™ + g™ 03 + 15597 = 0
The first thing that should be pointed out, is that choosing the connection to be the
Levi-Civita one, trivially solves this equation. Then the set of equations reduces to the set
of equations in the metric formalism. Of course, that does not mean that the Levi-Civita

connection is the most generic solution for the connection.

It turns out that the field equation of the connection can be solved to find the most generic
solution of the connection. For the procedure, see [34] or a similar calculation in chapter

7. The solution for the connection in Einstein-Hilbert gravity is:

° 1 °
FZV = FZV + ngg(ﬁf = FZV + A”(Sf,’ (52)

The connection is solved in terms of the Levi-Civita connection and the trace of the
torsion, that can be described by a D-dimensional vector T, = (D — 1).A,,. Note that the
most generic solution for the connection is not just the Levi-Civita one and is non-metric

compatible and non-symmetric.

What are the differences between using the Palatini connection (5.2) and the Levi-Civita
connection? The first thing that deserves attention is the fact that the action does not

depend on the connection that we use. The Ricci tensor in the Palatini formalism is

o

Ry, = R, +90,A, —0,A,
So the symmetric part of the Ricci tensor is the same in both formalisms. This means
that Ricci scalar is invariant R = R and that the Einstein equations do not change using

either the metric or Palatini formalism.

Actually, it has been known for some time that the Einstein-Hilbert action remains

36



invariant under what is called the projective transformation

A A A
7, — 5, + Aud, (5.3)
The fact that the EH-action is invariant under this transformation is called the projective
inwvariance. We will see in chapter 7 that this has implications for the use of the Palatini

formalism in extended theories of gravity.

The geometric consequences of the Palatini connection

In article [29] it is argued that for the full physical equivalence of the Palatini and metric
formalism, the geometry of the Palatini connection must not give any observable differences
from metric geometry. Because even though the Einstein equations do not change, a
different connection will, in general, define a new affine geodesic. Therefore, the motion
of test particles changes. Let’s see what happens if we consider geodesics of the Palatini

connection. The affine geodesics are defined by the following equation:
2PV it =0 (5.4)

The curve x#(7) is parametrized by an arbitrary parameter 7, which doesn’t have to be
the proper time. If the connection changes, we expect the geodesic equation to change
as well. This would result in particles following different trajectories. Let’s write (5.4) in

terms of the metric geodesic and A,

PPN it = BN it + At = 0

: (5.5)
= GV it = — A, i d”

We know that if we use an arbitrary parameter A, the metric pregeodesics (are reparametrized

geodesics) are calculated by taking the extremum of the arc length

SO\ = /0 NI (5.6)

where a dot means the derivative with respect to X. In general, the extrema of this

functional can be written in the form[32]:

v ggw (5.7)

The left side of this equation is purely geometric while the right hand side is dependent on
parametrization of the curve. It is always possible to choose a linear reparametrization of

the curve such that it vanishes. So we can see that (5.4) are not only the affine geodesics,
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but can also be considered as reparametrizations of the Levi-Civita geodesics. We can

transform (5.5) in equation (5.7) by the parameter choice [34]:

A
s(\) = / e NN
0

A daP
G(A :/ — A, dN
( ) 0 d\ 14

(5.8)

In particular the affine geodesic equation can be transformed in the geodesic equation of

the Levi-Civita connection through the parameter change

Z—; = e W (5.9)
So the affine geodesics described by the Levi-Civita connection and the Palatini solution are
physically equivalent. In article [34] it is argued that besides this fact, also the non-metricity
produced by the Palatini connection does not produce any physical observable effects.
Although the norm of a vector changes under parallel transport, this is a mathematical
construction rather than something that can be physically observed. So there are no
observational differences between the geometries defined by the two different connections.
However, note that this physical equivalence only holds if we are working with minimally
coupled matter Lagrangians. If matter is allowed to couple to the connection, non-
gravitational physics is affected and we cannot say that non-metricity has no observational
effects [29]. Concluding we can say that the Palatini formalism for the Einstein-Hilbert
points to the Levi-Civita connection as the most logical connection to use (instead of an
a priori choise). We would like to stress that GR formalated in the metric formalism is
equivalent to GR in the Palatini formalism since the equations of motion do not change
and the motion of independent test particles (geodesics) coincide. We do not have to
assume Riemannian geometry to obtain GR [35]. This gives us a good reason to consider

other gravitational theories in non-Riemannian geometry as well.

5.3 Lovelock theory obtained by the Palatini formal-
ism

Like we have seen in chapter 2, in 4 dimensions Einstein Hilbert is the natural choice for
the action, but that in dimensions higher than four there is no reason to exclude quadratic
or even higher order terms of the Riemann tensor. As long as you take not just some
random combination of higher order terms, but specifically the Lovelock combination,
we get a ghost-free theory. What happens if we consider Lovelock theory in the Palatini

formalism instead of the metric formalism?
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We start by considering the equivalence between the metric and Palatini formalisms. In
the previous section, we have seen that choosing the Levi-Civita connection as an ansatz
in the equations of motion obtained by the Palatini formalism, the equations reduced to
the field equation obtained by the metric formalism. If that happens, we say the two
formalisms are equivalent. This is not the case for all gravitational theories.

If we consider higher order theories (that are not per se Lovelock combinations) in the
Palatini formalism, the Levi-Civita connection does not solve the equation of motion for
the connection. In [36] it is proved that the Levi-Civita connection solves the connection
field equation only if the Lagrangian is a Lovelock Lagrangian. This means that we now
we have two different approaches to obtain Lovelock gravity: we can either demand at
highest second order equations of motions, or the equivalence between the Palatini and

metric formalism.

As opposed to what we have seen for the Einstein-Hilbert action, the most generic solution
for the connection is not known yet for the field equation of the connection in Lovelock
gravity. We do know that the Levi-Civita solution is a solution of the Palatini field equation
and that the Lovelock Lagrangian is invariant under the same projective symmetry as the
Einstein-Hilbert Lagrangian. However, it is unknown if the variational principle gives the

Palatini connection for Lovelock.

An open question that remains is whether we are able to solve the equation of motion for
the connection in Lovelock gravity and what the geometrical implications of this solution
would be. For the Einstein-Hilbert action, the Palatini connection gives the same physics
as the Levi-Civita connection. Should that be the case for Lovelock gravity as well? We
already know that Levi-Civita is a solution of the field equation in the Palatini formalism.
If the generic solution gives physics different than that of the Levi-Civita connection, it
gives difficulties interpreting the Palatini formalism. Would it, for example, point out

different classes of geodesics?

5.4 Palatini formalism galileons

There is surprisingly little literature about the Palatini formalism for covariant galileons.
Probably, this is due to the facts that (i) the galileon theories are quite a new field of
research and (ii) scalar gravitational fields make the geometric interpretation of gravity less
clear. Articles that do study subjects regarding the Palatini formalism and scalar-tensor

theories of gravity are mostly quite recent [35][6][37].
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There exist another class of modified gravitational theories, where the Palatini formalism
is used a lot. These are f(R) theories, they are not studied in this thesis and are only
mentioned because it is a good motivation for studying covariant galileons in the Palatini
formalism. In short, f(R) theories of gravity consider the gravitational actions that are
functions of the Ricci scalar (so the Einstein-Hilbert action falls in this class as well). It
is known that we can obtain scalar-tensor theories from f(R) theories by a conformal
transformation of the metric. We know this is quite abstract and refer the reader to
[38] [31] [6] for more details. Studying f(R) theories of gravity in the Palatini formalism
showed that the use of the Palatini formalism and metric formalism is far from equivalent
and gives interesting physics. Furthermore, cosmological predictions differ drastically.
Since these theories can be linked to scalar-tensor theories of gravity, we think it is very
useful to explore the implications of the Palatini formalism tot covariant galileons. So
in chapter 6, we will try to link the Palatini formalism for Lovelock to galileons and in

chapter 7 we write the covariant galileon in the Palatini formalism.

5.5 Does matter matter?

In the first part of this chapter, we have only considered the Palatini formalism in settings
where matter doesn’t couple to the connection. In other words, we only studied matter
Lagrangians like a massless scalar field, the electromagnetic field or perfect fluid. This
raises the question if we can consider all matter to be completely independent of the
connection?

Suppose for the moment that we have a gravitational action S,(g,I') depending on both
the metric and connection and a matter action S,,(g, ¥) depending on the matter fields
(), the metric but not on the connection. Actually, theories that have actions like this
fall in a class of theories known as "metric theories of gravity” [3]. These theories assume a
pseudo-Riemannian geometry a priori and test particles follow geodesics of the Levi-Civita

connection.

Assuming an independent connection and a pseudo-Riemannian geometry sounds like a
contradiction. However what happens is that the connection loses is geometrical meaning.
Let’s see it this way: since the matter Lagrangian is forbidden to couple to the connection,
matter automatically follows metric geodesics. Since the connection no longer defines free
fall of particles, it loses its geometric interpretation and reduces to some auxiliary field [38].
We can compare this to adding a gravitational scalar field to our theory of gravity, as we
have seen before. Just like the scalar field influences the curvature of spacetime by matter

without of affecting the geometry, connections that are not coupled to matter work in
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the same way. The connection field simply participates in the way matter curves spacetime.

So in order to keep the geometrical meaning of the connection, we have to let matter couple
to the connection® and specify if we take matter into account (and which kind of matter
we consider). Only in this case, we can assume test particles to follow affine geodesics,
even if we don’t consider the specific forms of matter that couple to the connection.

Furthermore, generally the field equation for the connection will depend on the matter
action as well as the gravitational action. As a result, matter doesn’t only tells spacetime

how to curve but also how to twirl [38].

Let’s end with a short overview of which types of matter do and which do not couple
to the connection. The scalar and electromagnetic field do not couple to the connection
and therefore will not introduce torsion or non-metricity. Another situation that is very
interesting are matter configurations in which matter is treated macroscopically. The
consideration of a universe that is filled with a perfect fluid is common in cosmology.
Actually the matter action of a perfect fluid depends on three scalars (the energy density,
pressure and velocity potential) and therefore does not depend on the connection [4].

A field that does have an explicit dependence on the connection is the Dirac field, that
describes fermions. So a Dirac field will potentially produce torsion and non-metricity in

the Palatini formalism of General Relativity.

Conclusions

In this chapter, we have introduced the Palatini formalism. The Palatini formalism gives
us a strong argument for using the Levi-Civita connection in general relativity. Besides
that the Palatini and metric formalism are actually equivalent for GR in vacuum, so that
gives us a reason to consider other gravitational theories in the Palatini formalism as well.
The only combinations of higher order derivative terms that are equivalent under the
Palatini and metric formalism are exactly Lovelock combinations. For galileon theories,
there isn’t known a lot about the implications of using the Palatini formalism, but probably
it will change the physics. Finally, we tried to emphasize the philosophical importance of

stating if we allow matter to couple to the connection or not.

3Sometimes this is called the metric-affine formalism instead of the Palatini formalism [2] [38].
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CHAPTER 6

Dimensional reduction of the

first order formalism

In the previous chapter we have seen that the Palatini formalism an alternative to the
metric formalism for analyzing gravitational theories. Furthermore in chapter 4 we showed
that we can relate the Lovelock to galileons by Kaluza-Klein dimensional reduction. What
would happen if we combine these two facts and try to find the dimensional reduction of

Lovelock in the Palatini formalism?

Besides a purely theoretic interest in the possibility of reducing a theory in the first order
formalism, doing this dimensional reduction might provide us with more information about
two things. The first is that we possibly learn something about the Palatini formalism for
Lovelock. We don’t know the generic solution for the connection in Gauss-Bonnet gravity
and the dimensional reduction might point certain aspects of this out. In the dimensionally
reduced version of Lovelock-Palatini, we might see relations that were harder to discover
in the full theory.

We know that using the Palatini formalism and substituting the Levi-Civita solution gives
us an equivalent set of equations as the metric formalism in Lovelock gravity. In the reduced
theory this must still be true and it might not be trivial, but instead happens because of a
particular combination of scalar terms. So besides learning something about the Palatini
formalism for Lovelock, dimensional reduction of the first order formalism might give us

more information about the properties of scalar-tensor theories or even put constraints on it.

If we reduce the first order formalism for Einstein Hilbert gravity, we expect that the
imposing Levi-Civita will solve the equations of motions in the reduced theory and that
we can solve these equations of motion exactly. This should give us the same result as

in the higher dimensional theory and therefore is a good check to see if we managed to
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successfully reduce the first order formalism. So in the next section we will start by finding
a way to reduce Einstein-Hilbert Lagrangian in the first order formalism. After that, we

apply dimensional reduction on the first order formalism of Gauss-Bonnet.

6.1 Dimensional reduction of an arbitrary connection

How can we actually reduce a Lagrangian written in the first order formalism? From
chapter 4 we know how to reduce g, but the whole idea is to take the connection independent
of the metric. The connection itself is not a tensor, which makes it quite difficult to reduce
dimensionally. We conclude that again is useful to write an arbitrary connection (I') as

o

the sum of the Levi-Civita connection (I') and a tensor in the following way

o

r,=r,'+K,"” (6.1)
Since we already calculated dimensional reduction with the Levi-Civita connection, for
our new theory we only have to calculate the part that corresponds to the tensor K. So
let’s figure out how we can calculate the reduction of a tensor.

This is really non-trivial. We can decompose a three-rank tensor into a new tensor, three
matrices, three vectors and a scalar. However, just as with the metric, we see that if we
just assume for example K, * = ¢, K,,* = A, etc, this doesn’t work out because these
properties don’t transform like scalars, vectors or tensors. So we have to find a way to
construct objects out of elements of K " that transform correctly. It turns out that the
most natural way to decompose a three tensor is with all indices down. Let’s look at how

the different parts of the tensor transform using equation (D.4):

0K ar = €0, Kopy = 0K (6.2)
0K jpw = €0, K i + 0,8 Ky + 008" Ky (6.3)
= 0K e + 046" K (6.4)

0K e = §0,Kyw + 0,8 Koo + 0,6 Koo + 0,8 Ko + 06" K (6.5)
= 0K e + 046" Koo + 0,6 K (6.6)

0Ky = €10, Ky + 0,8 Ky + 0,65 Koy + 0,6 K (6.7)
+ 0,6 K gy + 00 K + 0,6 K e (6.8)

= 0K p + 0uE" Ky + 0" K oy + 0,6 K (6.9)

(6.10)

As we can see K,,, transforms as a scalar in lower dimensions, but the other components

of K do not transform as vectors and tensors. The first thing that comes to mind, is to
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K -+3@+3. +'

Figure 6.1: This is how we can imagine the dimensional reduction of a tensor. The big
cube (K) will reduce to one scalar ¥ (the small red cube), three vectors B, C, D (the
yellow parts), three two-index tensors L, M, N (the green parts) and one three-index tensor
K (the remaining cube).

construct objects in the same way as we did for the metric. Remember that we constructed

the Kaluza-Klein vector as 2. In the same way, we could define the object Ruze which

gww : Kzzz
transforms as covector under an U(1) potential:
N [A( Tx K TT K TT
I(Z) = €0, () + e 2+ 0ug
TTrT . TTT T (6‘11)

K
= o( ) + 0,7
K.’I?.’ZCE !
However it is important to realize that where we knew that g, is never zero, Kmx can
be zero. Using a vector composed in the way that we proposed gives us an inconsistent
theory: in the lower dimensional theory we are able to find solutions that don’t exist in
the higher dimensional theory by putting K., = 0 in the equations of motion. Instead,

we take:
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Koo = €700 (6.12)
[A(Mm = e¢(a+26)BM + 636¢\IIAM’7 ( )
Ko = 20, 4 3990 A, (6.14)
T — ef(at28) D,+ 380y Ay (6.15)
vp =L 4 POt A Oy 4 e?OT A, Dy + 0T A, A (6.16)
[A(Wp = e¢(2a+ﬁ)Mup + e¢(a+26)Aqu7 + e¢(a+26)ApBu7 + 63B¢\I/AMA,,72 (6.17)
_f(um — e¢(2a+B)NW + 6¢>(O<+2B)AMCﬂ + e¢(a+2’8)AVBM7 + egﬁd’\IJAHAﬂQ ( )
wp = €K, + e?2ath) AL, + e9ethn 4, M,, (6.19)
+ 6¢(2a+’8)7ApNW + e‘b(o‘*zﬁ)vauA,,Dp + e¢(“+25)72AuApC,, ( )

+ e? @2 A A Byt + POVALA AN (6.21)
(6.22)

In these equations A, is again the Kaluza-Klein vector as introduced in chapter 4. We can
see that all our new objects (V, B,C, D, L, M, N, K) transform as proper scalars, 1-forms
and tensors, without any gauge freedom. We chose the factors of e in such a way that the

above expression simplifies enormously in Vielbein coordinates (even without setting A,

to zero!):
[A(ZZZ =V [A(azz = B, (623)
kzbz = Cb IA(zzc =D, (624>
f(abz = Nab IA{azc = Mac (625>
f(zbc = Lab f(abc - Kabc (626)

This are the objects that we will use for the dimensional reduction of the Einstein-Hilbert

Lagrangian.

6.2 The reduction of the first order formalism in Einstein-

Hilbert gravity

We can write the Ricci tensor with a general connection in terms of the Ricci tensor with

a Levi-Civita connection and our previously defined tensor K, see also [32]:

R,=R,.," =R, +V,K~-V,K  +K,/ €K °—K,/ K, ° (6.27)
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By using partial integration, we can get rid of the derivative terms in the Einstein Hilbert

actions. Therefore, the action reduces to

S = / dN /g (J-i’ +g"(K,, K, — KW’VKM)")) (6.28)

Note that the partial integration only was possible because (6.27) is written in terms of
the Levi-Civita covariant derivative. The result that we obtained now can really easy
be dimensionally reduced, because we already know the dimensional reduction of the
‘ordinary’ Ricci scalar. What we eventually end up with can be written in the Einstein

frame in the following way (as before, we set A, = 0):

—e 1
S = /dN |g| (R + §<a¢)2 + Kachcab - KabaKch
— LM.> — M,°N,* — Ny L® + M,*N,° + K,*C, + K,,°D"  (6.29)
— U(N,°+ M,%) + DB, + BaO“)

The first thing to note is that if we take the equations of motion, every term in the field
equations of the reduced quantities will at least contain one factor of K. Therefore, if we
take Levi-Civita as an ansatz the equation will be trivially solved and we recover the lower
dimensional theory in metric formalism.

We can solve the equations of motion for our reduced quantities, which results do we expect?
Since the solution for K for the Einstein-Hilbert action is K aop = flﬂgf,,;. Therefore, we

expect

L,,=—Vg,
g o (6.30)
Kyuwp = —Bugup

And that all other lower dimensional components (M, N, C, D) are zero.
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Let’s take the variation of the action (6.29) with respect to all the different tensors:

0=N,"+ M,

0=D"+C"

0= B+ K,

0=B"+K,"

o A (6.31)

0=—L" — N*™ 4+ gV“Npp _ gvu\p
0= —M" — LPF 4 gPP M Y — gPH T
0= KHP 1 Prv _ gvuK/\Aﬂ — g"’K, + ¢"PC* + g"" D?

It is possible to solve this system of equations and we get: C'=D = M = N = 0 are zero,
K, ,’=—B,0) and L,, = —Vg,,. This is exactly what we expected. So we can conclude
that we managed to successfully reduce a theory with arbitrary connection. Now we are
going to reduce the next Lovelock term: Gauss-Bonnet.

If the reduced components have still some geometrical meaning in the lower dimension

remains unclear.

6.3 The reduction of Gauss-Bonnet in the Palatini

formalism

The first thing to notice is that with an arbitray connection, we can define two independent
Riccl tensors: Ry, = R0y R, = Rl Furthermore, while before we found R,%=0,
this is not true anymore .Therefore, the formula for the reduction that we used previously
(4.32) no longer is valid. Instead, we use:

5 a1...04 bibo pp  b3b

RZ = 6511544Rd1d2 ! 2R&3&4 304

. aja2a3aq > b1b2 > bgb4 a1a2a2 ® blbg > b32
o 6b1b2b3b4 R R + 5b1b2b3 R Rasz

a1a2 a3aq alja (6 32)
a1a2a2 P b1bs 1 zbg a1a2a2 1 bibo 1 zbg ’
+ 5b1b2b3 Ra1a2 Rzag + 5[)162173 Rza1 Ra2a3
a1a2a2 > b1bo > b3z
+ 6b1b2b3 Ralz Ragag
as before, we use
D PN M\ oY po N ¥
R;w = R/w +V,.K, V,,KM + K, Kua Ku K, (6.33)

What we find is an extremely long and complicated expression, that we cannot easily

rewrite in a shorter form. Even if we set certain parts of the reduced tensor to zero, which
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probably aren’t even allowed truncations, the expression remains horrible.

Contrary to the reduction of the Einstein-Hilbert action, this time we obtain terms that
contain a product of the scalar field and some component of K. This is due to the product
terms of RK and products of the derivatives VR or VK with K.

Our goal was to obtain more information about either the solution for the connection in
Lovelock gravity or about the implementation of the Palatini formalism in galileon theories.
If we have pure scalar theories, there is only room for a connection with one index!.
However, even if we set K = L = M = N = 0 and look what remains then we still can’t
find a relation between the scalar field and our vectors. So obviously this isn’t a practical

way to get more information or insight in a possible first-order formalism of galileon theories.

A thing that we should check as well is if Levi Civita (K = 0) still is a solution for the
dimensional reduction of Lovelock. We know in the higher dimensional theory the Palatini
and metric formalism are equivalent, let’s see how this works out in the lower dimensional
theory. As we have seen, for the Einstein Hilbert action it is trivial that K = 0 is a
solution for the equations of motions of the connection tensor. There are only quadratic
terms in the action, so every term in the equations of motions of the reduced Lagrangian
will have at least one component of K.

Let’s see how this functions with the Lovelock Lagrangian. First look at the Lagrangian
in higher dimensions. In the next expression, we omitted the hats for clarity, but every

object and index lives in the higher dimension:

£ = Vgl (G5 Raya,”" Raga,™)
_ 5211&4 (éala;}lbz + 2@@ Kag biby | 2Ka1cb2Ka2blc)
(éa3a4b3b4 + 26@3ka4b3b4 + 2Ka3db4Ka4 bSd)
_ 51(1111......&4 (éalagble éa3a4b3b4 + 4& b1bs ﬁag Ka4 b3by + 4éa1a2blb2 Kagdb4 Ka4 bsd
+ 46(11 Kag b1tz %Q3Ka4 bobs + 86&1Ka2 blb?Kagdb4Ka4b3d + 4Ka3db4K 4b3dKalcb2 Ka2 blc)

a (6.34)

aiaz

Looking at this equation, it isn’t directly obvious that K = 0 will solve the equations
of motions, since we now have the term RVK and VKV K which won’t per se produce

terms with more than one factor of K. However, we can do some smart manipulations:

/ aj...aq » blbg > b3b4 _ ai...aq > » blbg b3b4

/ ’g|6b1b4 ala2 VGSKCM - / \% |g|5b1b4 VGSRalag Ka4
_ at...a4 - b1bo bsby

= / V |g|5b1...b4 [asRalaQ} K,

'We will not further investigate the Palatini formalism for flat galileons in this thesis and for coherence
did not explain it in detail. However, for the reader interested in how we could implement some kind of
Palatini formalisms in flat galileon theories, the paper [16] is recommended.

(6.35)
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This gives us zero by the Bianchi identity! So we don’t have to worry about this term.

/ a1...a4 v b1b2 bsbg / ay...aq b1bo = b3by
/ |g|5b1...b4 V‘11[((12 Va3‘[(0L4 — _/ |g|6b1...b4 Ka2 ValvaiB‘[(cu

(6.36)

= - / \/mégff.fzifffag b1b2%[a1 %CLS]Kazlbsbzl
The anticommutator of two derivatives, gives us the Riemann tensor. So we can write this
as a product of the Riemann tensor and two K tensors. So in the end, every term in the
Lagrangian will be a product with a least two factors of K in it. Therefore, every term in
the equations of motion will contain at least one part of the reduced tensor K and setting

them all to zero will trivially solve the equations of motion.

Conclusions

Concluding we can say that we have succeeded in the finding the dimensional reduction of
a Lagrangian in the Palatini formalism. Doing this with the Einstein-Hilbert action didn’t
teach us anything new, as expected. For Gauss-Bonnet, the reduction soon turned out
to be too complicated to use it as a way to learn more about the Palatini formalism in
the higher dimension. Furthermore, we did not succeed in finding a link between the first
order formalism of Gauss-Bonnet and galileons in any way. However, we wouldn’t have

known if we hadn’t tried.
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CHAPTER 7

The Palatini formalism for the

cubic covariant galileon

In the previous chapter, unfortunately we did not get much wiser about the Palatini
formalism for galileons by using dimensional reduction as a tool to relate Lovelock in the
Palatini formalism with galileons. In this chapter we take a different approach and apply
the Palatini formalism to the cubic covariant galileon (L3, see chapter 3). The first reason
to look at this variant of the galileon, is simplicity. The cubic galileon is the first covariant
galileon with a second derivative scalar field, and therefore the first galileon theory that
has a connection in its action. Therefore it is the simplest example galileon term to which
we can apply the Palatini formalism. Starting here will help us to gain insight in how the
first order formalism works for gravitational theories with more than one gravitational
field.

Furthermore, in recent years research interest in the cosmological predictions of the cubic
galileon has gotten renewed interest [14], and treating the galileon in a first order formalism

might have an influence on the cosmological predictions of the cubic galileon.

7.1 A problem arises for the cubic galileon in the

Palatini formalism

The simplest! form of this galileon in metric formalism is £3 = —aX¢"'V,V ¢, where
X = (0¢)?* = 0"¢d,¢. For clarity, we omit the kinetic term ((9¢)?) at the moment. We
can do this since it doesn’t add to the equation of motion for the connection and can

always be added later. We consider the following action:

'Remember from chapter 3 that we can write the Lagrangian in more than one way, differing by a
total derivative.
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M3 . o
S:/d4a§ |g|(TpR—a(8¢)ngV,,VM¢) (7.1)

In the first order formalism, we change the Levi-Civita derivatives to covariant derivatives
defined by an arbitrary connection (VVVMQS — V,V,0). If we do this however, quite a
big problem arises. To see why the notation of the galileon in the first order formalism
isn’t straightforward, let’s calculate the equation of motion with respect to an arbitrary
connection for the above Lagrangian:

MI% yng pv SH 1 nv o1 1 pY _OT 122 pv o Pyl

- (VA" = Vg™ 05 + 5997 Vagor — 5979V gor 0y = 9" T05 + 9™ T},
+97T7,08) + a(99)*0npg™ = 0

p

(7.2)

When we take the 6 trace of this equation, we end up with X9#¢ = 0. This requirement
puts a huge constraint on the scalar field and in fact eliminates our whole galileon from
the action. Does this mean that there is no such a thing as a galileon theory in first order
formalism or is there a deeper lying reason for this inconsistency and can we do something
about it?

This inconsistency stems from the fact that, as we have seen earlier, the Einstein-Hilbert

action is invariant under the projective transformation
A A A
e, — T, + A, (7.3)

The galileon Lagrangian however is obviously not invariant under this transformation,
since it only contains one connection term. In order to remove the strong constraint on
the theory we found, it is necessary to construct a projectively invariant galileon [35]. So
our goal is to find an action that (i) is invariant under (7.3) and (ii) simplifies to (7.1) for

the Levi-Civita connection.

Note that we can formulate different terms in the Palatini formalism that reduce to

g‘“’%,,@,ﬁ in the metric formalism:
gV, Vb Vo (9"'V.,0)

This is due to the fact that covariant derivative of the metric tensor isn’t zero when using
an arbitrary connection. Taking some combination of V#V,¢ and V,V*¢ looks as a

promising way to construct a projectively invariant galileon Lagrangian.

o1



The projectively invariant cubic galileon

Consider action (7.1) in the Palatini formalism with a linear combination of the previous

mentioned derivative terms:
D MFQ’ po v o v
S = [P0y 25 R-a1970,00,00" 9,V 6-al(1-0)”0,00,69 (6" V,) ) (7.4)

To easiest way to see if this Lagrangian solves the problem stated above is to calculate the

equation of motion with respect to the connection:

2

M 1 1
TP (ng’“’ — V0708 4+ 0" 47"V rGor — =07 9°7V pGor 08 — g T\ + g™ T“

2 2 (7.5)
4 gTZ0L) + 0100 0r09" — all —)(06 "85 = 0

If we now again take the 6} trace we get

1(99)%0"¢ — (1 —7)(99)*0"¢ = 0 (7.6)

This time the equation can be solved without constraining the galileon theory, by choosing
v = % Note that we cannot freely choose 7 between one and zero. Our projectively

invariant galileon Lagrangian is:
i 1 o v 1 o v
L5 = —a597 0,00,09" Y,V — 059" 0,60,6V u(g" )V 0 (7.7)

It is an easy check to see that this Lagrangian indeed is invariant under the transformation

(7.3) and reduces to the 'normal’ cubic covariant galileon for the Levi-Civita connection.

7.2 Solving the field equation of the connection

Now we are ready to investigate the cubic galileon in the Palatini formalism. First, we
will solve the equation of the equation of motion for Fﬁy. We will follow the procedure of
[34] where this is done for the Einstein-Hilbert Lagrangian. We start with equation (7.5)

with v = % and calculate the equation of motion with respect to the connection:

1 1

Vg = V,g™ o\ + 59“”g”VAgm - §gp”g”Vpgm<5“ — ¢TI + g™ T,
(7.8)
+ g™ T + 2 (00)2050g™ — ——(0¢)20" ¢ot = 0

M3 M2
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To simplify this equation we take the d§ trace:

1
—597 V" Gor +

-
Pg 2

-2 o
pvmo 2 qv
19T 07 (79)

Where D is the dimension. Substituting this trace in the first equation gives:

1
Vag" — g" T+ g™ Tl + 9" 5,08+ 59" 9V Agor + —(0¢) Orpg" =0 (7.10)

D—l

We should check if this equation is still equivalent to the previous one to make sure no
information is lost. We do this by taking the trace of this equation and we see that is
gives exactly (7.9) again. So we get back the condition that we used and we can treat our

equation as equivalent. From this new equation, we take the g,, trace:

1 D aD

- 0T - _—_ o _ - 2
29 V)\gm‘ D— 1Ta)\ MI%(D N 2) (agb) a)xgb (71]‘)

Substituting this in (7.10)

2c
m ey PTTON 4 g7 T+~ (00) 07w = 0 (7.12
Vag" + 59" T+ 59" 15,0 + 9 A+M1%(D_2)(¢) N (7.12)
Lowering the indices:
Vg + G T+ T + Gon T + — et (9)*Onb = 0 (7.13)
PNy D_ 1g/w 2N D — 1 Gopdyx MI%(D — 2) A\NPGuy = .
Writing this in terms of the connection a:
" " 1 - 1 20 9
NGy — IS 9ve — I'oaGuo — ngxg;w D 1Ta'1/g)\,u m@@ PG =0
(7.14)
To solve this equation, we permute the indices twice
- o 1 1 200
8ugu)\ - F#yg)\a - qugua - D — 1Ta'“gV>\ D — 1To)\g/w + W( gb) ;4¢9VA =0
(7.15)
" " 1 - 1 2c
azxg)\u - Fy,\g,ua - Fuyg)\o' - mTo'yg/\,u _D 1T0'Mg1//\ + W( ¢) I/(bg)\,u == O
(7.16)
Adding the last two equation and subtracting the first:
Dugor + Dogons — Oy — 207 ga) — — 2@ 20 (962040
g v AGuv “yg)\cr D_1 g#gl/)\ M%(D — 2) APy
% % (7.17)
FYSYE S 1% FYSYE Y V - O
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Which ultimately can be written as

o 1 Qo
e, —I0, — ——T17060 — ————(0¢)%0"
nv D—1 opv M]%(D N 2) ( gb) gbgu)\ +

(09)*0,60, =0

(6]
o (09)70,60,
Mp(D =2) (7.18)

MQ(D 2)

We see that we can solve the equation of motion for the connection. Let’s write the con-

nection in terms of the Levi-Civita connection, A, = 5= i1y, and W, = 35— ( D—2) (09)20,¢:
T7, =10, + Audl — Wog,, + W80 + W, 0, (7.19)

We found the most generic solution for the connection, without assuming anything about
symmetry or torsion in the beginning. As expected, we get the same term for projective
invariance as in the Einstein-Hilbert Palatini formalism, namely A,,07. Without loss of
generality, we can set this term to zero. Notice that the connection depends on the galileon
field. This means that, even the scalar field doesn’t enter the matter action explicitly, a
coupling of the scalar field with matter may arise through the connection.

The connection that we found is actually a well-studied connection in both mathematics
and physics, it is known as the Weyl connection. In a bit, we will give the history of this
connection and will comment on its geometrical properties. However, let’s first check if
and how the action and equation of motion change using this connection instead of the

Levi-Civita connection.

7.3 The effective action and equations of motion

In chapter 5, we saw that the Palatini solution for the connection did not change the
Einstein-Hilbert action and its field equations. That implies that the physics of the theory
in the metric and Palatini formalism is equivalent. We will see that things are really

different for the cubic galileon.

The effective action

First, let’s check if the action changes by substituting the solution for the connection (7.19)

in it. This is quite easy to calculate, the calculation is included in appendix E and we

M2 . o o 302 X3
S = /d4x 9] (TPR—QXV“V,@— O‘—) (7.20)

obtain:

1M

It is obvious that this action is different than (7.1). An extra factor X3 = (0¢)° appears

in the action, so this isn’t a covariant galileon theory anymore. However, note that the
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new term is suppressed by a factor of M3. Therefore, if we turn gravity off (by setting
M} — o) we recover the galileon in the weak field limit.

So we can say that we found another type of galileon theory, the Palatini covariant galileon.
It is a subclass of the generalized covariant galileon theory, but simplifies to pure galileon

theory in the limit of no gravity.

Equations of motion

In order to compare the equations of motion in the Palatini formalism to those found in
the metric formalism, we start by calculating the latter ones. The equation of motion with
respect to ¢ of (7.1) is:

0 = 2007 ¢V, VIV 1 — 200° 9V V Vb + 20V, VI OVIV 160 — 2aV VPGV, V b
= V,VIOV"V 6 — V'VPOV, V0 + R 8 ¢D,d
(7.21)

The equation of motion for g"” gives us

- 1 o s o o o
M3 (R, — 5gWR) =2aV,V,00"$d° g, + 2aV°V 0,60, ¢ (7.22)

- 2a<%uﬁp¢ap¢&/¢ + %V%pgbapgbaﬂb)

In order to be able to compare the equations of motion, we have substituted the solution

for the connection in the equations of motions. So what we did is calculating the equations
1
2
connection?. The equation of motion with respect to ¢ in the Palatini formalism is

of motion of the action (7.5) with v = 5 and then a posteriori substituting the Weyl

o o o o o o o o D—-1) o &
2V, VIOVIV 6 — 2V VPOV, V i + 2R, P07 60, + %D_;)vpvpgb(@w
24a(D — 1) ’ (7.23)
P -
(D 3 VeV 000(00)" = 0

and the variation of the action with respect to g"” gives us the following equation:

2 Actually this is equivalent to calculating the equations of motion for the effective action, which is
way easier because then we only work with Levi-Civita connections. However, it is a good check doing it
the way mentioned in the main text. We refer the reader interested in the equations of motions written in
terms of the arbitrary connection to appendix E
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M3 - 1 o> D—1

5 (B = 50w R) = aV,Vo00' 60" bgu +aVIV 100,:00,6 — o 55— (06) g
30 D L 190,60, — (VY600 00,0 + V¥ ,00°60,0)
QMI% D — 2 M v uyp v vyvp H
(7.24)

Comparing this with the Einstein equation in the metric formalism, we note that we
have two extra terms. So physics in the metric and Palatini formalism is certainly not
equivalent for scalar tensor-theories. However, the two new terms are heavily suppressed
so only become important at very high energy scales.

Since the equations of motion change, the physical and cosmological implication of the
theory will change as well. The inequivalence of the equations of motion in the Palatini
and metric formalism for the cubic galileon, is a motivation to study the cosmological
consequences of the theory not only in metric [14] but also in the Palatini formalism. Now
we will see what implications for the geometry are if we would consider not the Levi-Civita,

but the Weyl connection.

7.4 The Weyl connection

The generic solution for the connection is the Weyl connection. We will give its physical

properties and a short history of this connection.

A short history: the first gauge theory ever by Weyl

In 1918, Weyl was one of the first to try to incorporate electromagnetism with gravity.
He assumed that general relativity should be scale invariant [32]. He "recalibrated” the
metric:

M@ g, (7.25)

g;w =€
and introduced a new, non-metric, connection:

[0, =10, — A0 — A8 + Alg,, (7.26)

Now, under the transformation (7.25) this connection is invariant, if the vector A, trans-
forms as A, — A, = A, + 9,A. Weyl identified this vector with the electromagnetic
potential and concluded that one could change ”gauge” distances if compensated by a

gauge transformation of A,,.

However, soon it was pointed out by Einstein that this theory was inconsistent and it would
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lead to observational deviations in the lines of atomic absorption spectra [32]. A solution
that would solve this problem is if there would exist a scalar ¢, such that A, = 9,¢° (see
[39] for a more elaborate explanation of the problems of Weyl’s theory). In that case, the
electromagnetic field would disappear completely and therefore Weyl had to abandon the
assumption that A, could serve as the electromagnetic potential*. However, Weyl’s failed
attempt to unify electromagnetism with gravity laid the foundations for both gauge theory
as well as physics in non-Riemannian geometry.
In integrable Weyl geometry, it is a well known fact that null geodesics are preserved,
so spacetime has the same causal structure as Riemannian geometry. To see why this
happens, let’s take a look at the geodesic equation

d?at , dx” dx? d*z* . dx” da” dx” dx* dx” @

e N2 @ b &b o ar
ds? v ds ds ds? ez ds ds +20,9 s ds 0" PG ds ds

=0 (7.27)
Treating null geodesics, the last term vanishes. Then we take the reparametrization:

dr —2¢(s)
— = s 7.28
o= (7.28)

And we obtain:

a2 v s ds e T — ar dr

dPxt o dx¥ dxP
—eto[ ET | GO0
¢ ( ds? Yo dr dr )

A2t u dz? dxP - (d2xﬂ B ngb dﬂ) N — ﬁ@ N 26—4¢@V da? dz”

(7.29)

On first sight, it looks like this argument doesn’t hold for non-integrable Weyl geometry.
However by performing a coordinate transform as an integral over a worldline, like in
section 5.1, we can obtain a similar result for non-integrable Weyl geometry. So null

geodesics (and thereby the causal structure) are preserved in all Weyl-geometries.

So the connection that solves the field equation for the connection in the Palatini defines
in general different geodesics than in Riemannian geometry, but the null geodesics remain

invariant.

3A geometry that is described by a Weyl connection with A, = 0,¢ is called an integrable Weyl
geometry.

4Note that in this thesis this is already the second theory that was found by a failed attempt to
combine gravity with electromagnetism. In chapter 4 we have seen that Kaluza-Klein theory was developed
with the same goal in mind. It’s quite nice that trying to combine gravity and electromagnetism led to
various new theories and formulations that did not succeed in what they intended to do, but nevertheless
turned out to be very useful and insightful on the foundations of GR.

o7



7.4.1 A duality between torsion and nonmetricity

The torsion (7%, = I, —I'} ) of the Weyl connection is zero, because the connection
is symmetric in its two lower indices. Furthermore, the non-metricity of the metric is
proportional to the Weyl tensor V,g?" = 2W,¢7°.

We know that the action of the cubic galileon is invariant under the transformation
e, — f‘ZV + A,07. Therefore, the field equations do not change under this transformation
and in chapter five we discussed that geodesics motion is invariant under the projective
transformation as well (see the discussion under the Einstein-Hilbert Palatini formalism in
chapter 5). When we perform a projective transformation on our Weyl connection, we

obtain the following connection:
re, =10, —W’gu, +W,6 (7.30)

Now the connection is metric compatible V,g* = 0, but not torsion-free anymore
(T », = W, —W,05. However, since we have seen in chapter 5 that the physical properties
of a projectively invariant theory do not change under this information, we can conclude
that torsion and nonmetricity are physically equivalent properties for pure cubic covariant
galileon theory.

In a paper that appeared in October 2018 [31], the same duality is observed for another
extended theory of gravity, where the gravitational action is S, [ d*z\/[g|R?. They ex-
tended the analysis to cosmology and showed that both torsion and non-metricity may be

considered as a source of cosmological acceleration in their gravitational theory.

However, it has to be pointed out that this duality probably doesn’t hold in the presence
of matter that couples to the connection. An interesting study would be to find out how
this duality of torsion and non-metricity is broken (or preserved) by particular forms of

martter.

One last thing that we would like to point out is that since the obtained connection is not
equal to the Levi-Civita connection, bosons (minimally coupled fields) and fermions (the
Dirac-field, non-minimally coupled) probably will have different couplings to the galileon
field ¢ in the Palatini formalism.

A question that arises naturally is if the Weyl connection is a solution for the higher order
galileons as well or if this is a peculiarity of the cubic galileon. We will address this later
on, but first we are going to look at how the equations of motion for the cubic galileon

change in the metric formalism.
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7.5 First order formalism galileon £,

For the cubic galileon the first order formalism is solvable and gives us a Weyl connection.
Furthermore, because of the lack of projective invariance of this galileon, we had to adjust
our starting Lagrangian. How are these two properties for the next galileon, £,7 In the

Levi-Civita notation this covariant Lagrangian is:
o o o o o o o o 1
Ly = B(09)* (V'V,u 8V Vi =V, V6V V76 + £ (06)°R) (7.31)

Again, to see how the Lagrangian should look like in Palatini formalism, we start by taking
the most general combination of second derivatives terms that gives us (7.31) in the metric
formalism. After that we calculate the equation of motion for I'},, and set the 4 trace to

zero. Then the total action in the first order formalism reads:

M2 1 1
S = / d*z+/|g] <TPR + B(0¢)° (Zwvmvuvycp +5VIV0VL VG
1 1
+ ViV G — SV, VL0V

1o ov wo Lo v 1
— VAV G — SVIV,6V Y6 + 4(a¢)23)>
(7.32)

Note how different this Lagrangian looks than the one in the Palatini formalism: in the
metric formalism we have the @M¢V¢¢“ﬁ”¢ term, but we don’t have the equivalent of
that V,V,¢oV#V"¢ in the first order formalism.

We are not able to solve the field equation for the connection in the same way as we did
for the cubic covariant galileon. However, we are mostly interested in the question if the
Weyl connection is again a solution for this galileon. We will check this and to make our
calculation as general as possible, we take the combination of £3 and L4. So we start with

the following action:
M (v3) | i)
S= / d'a/lgl (SR + L8 + £87) (7.33)
Where £ means the projectively invariant galileon Lagrangian in Palatini formalism.

The easiest way to check if the Weyl connection solves the equation of motion for the

connection is to use I'f, = fﬁ,, + K,,” again. Then equation of motion with respect to
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K, and raising all indices gives us:

€ K)\,uu + KV)\/,L . g,u/\Kppu . g,LWKp)\p> + anu[ua/\]¢

+ 2 (N%MA@% + "0 60, 6(K, " — K,

— 0G0, (K, 7 — K, 7)) + AVIVIE N + 2 KNG 60" ¢ + zK”WaAqaw) =0
(7.34)
Where € = (MT’% + %BX 2). Note that in this notation the projective invariance is much

easier to see as well. Now, if we plug in as an ansatz the Weyl connection K, ° =

—WPg,, + W00 + W,0f, we only keep a few terms:

9" |e(2 = D)W + (% — BXV?0)0N) + X (2 — D)W”c‘?%@@)]
Fg D~ W — (%~ BXV9)0w + BX(D - 2)W78”q587¢)] (7.35)

+ 28X VAV NG =0

We could solve the first two lines for W, however, we cannot get rid of the last terms. The
last line can never be written in terms of g"¥ or g"*, so this equation can not be solved
for W. So the solution of the first order formalism for the fourth Galileon isn’t a Weyl

connection, but probably a Weyl connection plus some other terms.

Final comment on the quartic covariant galileon

In the previous discussion, we started with the quartic galileon in metric formalism and
found a way to write it in a projectively invariant way that reduces to this form. However,
recall from the discussion on covariantizing galileon in section 3.3, that we had to add
+%X R to the Lagrangian in order to avoid derivatives of the Ricci scalar and tensor in the
equations of motion. They would produce third order derivatives of g.

In the first-order formalism having derivatives of the Ricci scalar and tensor doesn’t give
problems regarding higher derivatives and unwanted ghosts, because the Ricci scalar only
depends on first order derivatives of I'. So that would give an argument for removing }1X R
from the Lagrangian, but other physical effects should be considered as well before we can

say that it gives a correct theory.
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Conclusions

We applied the Palatini formalism to covariant galileons and discovered a lot of interesting
properties of scalar-tensor Lagrangians in the Palatini formalism. First we saw the when
applying the Palatini formalism, it is crucial to notate the theory in a projective-invariant
way. We proceeded in doing this for the cubic and quartic galileon, one open question is if
this could be extended to all covariant galileons.

We solved the equation of the connection for the cubic galileon and found it to be the Weyl
connection. In the effective action an extra term appeared, which clearly indicates that the
physics is different when the theory is regarded in the Palatini or metric formalism. This
could change (cosmological) predictions of the theory, so we conclude that the Palatini
formalism for covariant galileons does deserve more consideration.

Furthermore the Palatini formalism indicates some kind of duality between the physical
meaning of torsion and non-metricity and a different coupling of the scalar field to the
Boson and Dirac fields. It would be very interesting to investigate the precise meaning of
this duality.

This section can be extended in the following ways: firstly one could look at the possibility
of formulating projectively-invariant galileon theories. Besides that, implications of the
Palatini formalism for the cosmological prediction of the cubic galileon deserves attention.
The exact meaning of the duality between torsion and non-metricity should be studied
in order to better understand the relation between geometry and physics. The inclusion
of matter in this theory would interesting to investigate and finally the extension of this

chapter to generalized or higher order galileons is worth exploring.
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CHAPTER 8

Conclusions and outlook

We started by motivating the search for extended theories of gravity. Since there exist
observations that do not match with the predictions of GR and we still do not know how
to combine gravity with quantum physics, extensions to GR are worth studying. Two
characteristics of GR are that (i) it is a higher order derivative theory without ghosts and
(ii) that we obtain the same theory if we formulate it in the metric or Palatini formalism.
These two subjects have been studied throughout this thesis in order to better understand

their implications and to find which other gravitational theories they point out.

In the second chapter, we gave a recap of GR and its founding principles and introduced
Lovelock theory as its extension to higher dimensions. Just as GR, Lovelock Lagrangians
depend on second order derivatives of the metric but give only up to second order derivative
field equations. In four dimensions GR and Lovelock are equivalent. In the third chapter
we have seen if we require second order derivative equations of motion for scalar field, we
end up with theories that are called galileons. So in a way, galileons can be regarded as
a scalar portrayal of Lovelock theory. In this chapter we discussed the different types of
galileon theories that exist and tried to clarify the distinction between galileons, generalized
galileons and covariant galileons. After that, in chapter four, we introduced Kaluza-Klein
reduction and demonstrated that the dimensional reduction of the Lovelock Lagrangian
gives rise to gemeralized covariant galileons. A remarkable result was that in the flat space
limit, the dimensional reduction of the sum of the Lovelock Lagrangians only gives rise to
the kinetic scalar term. It could be interesting to study what extra terms appear if we

consider dimensional reduction over more than one dimension.

After the introduction and study of higher order derivative theories, in chapter five we in-
troduced another way to describe GR: in the Palatini formalism. In the Palatini formalism
the connection is taken as an independent quantity as opposed to related to the metric in

the metric formalism. We saw that in Einstein-Hilbert gravity, the first-order formalism
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and metric formalism give rise to exactly the same physics in vacuum. We also discussed
the importance of including matter for the geometrical meaning of the connection. For
Lovelock gravity, the first-order formalism is equivalent to the metric formalism in the way
that the different sets of equations of motion give the same information when demanding
the connection to be Levi-Civita. However, the general solution for the connection is not
found yet. The Palatini formalism for galileon theories is largely an unknown domain. The
possibility to learn more about both the first-order formalism for Lovelock as the formalism
for galileons are explored in chapter 6 and 7. In chapter 6 we started by calculating
the dimensional reduction of the first two Lovelock terms in the Palatini formalism. We
succeeded in finding a way to reduce a theory in the first-order formalism, by regarding
that having an independent connection is equivalent to a Levi-Civita connection and tensor.
For Einstein-Hilbert, we could again solve the equations of motions but did not gain any
physical insight on the Palatini formalism. In the case of Gauss-Bonnet, we couldn’t find a
way to extract useful information of the formalism. Even equivalence between the metric
and Palatini formalism turned out to be trivial in the reduced theory and did not give any

relations between the scalar field and the connection.

Then finally in chapter 7 the Palatini formalism was applied to the cubic covariant galileon.
We noticed a few different interesting concepts. Firstly we have seen that in order to
apply the Palatini formalism on covariant galileons, it is crucial that they have the same
projective invariance as the Ricci scalar. We found a projectively invariant notation for
both the cubic and quartic covariant galileon. In contrast to the case of Einstein-Hilbert
and Lovelock, for the covariant galileon the Palatini formalism is certainly not equivalent
to the metric formalism. Therefore, a study of the physical and cosmological implications
of the cubic galileon in the Palatini formalism would be a nice follow-up. Furthermore,
in the cubic galileon framework, there seemed to be some duality between torsion and
non-metricity. This duality has appeared in different theories as well. The extension to
which this duality is preserved in situations where matter is included or the exact physical
meaning remains unknown and deserves to be studied in more detail to really understand

the relation between geometry and physics.
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APPENDIX A

Ostrogradsky’s theorem

Ostrogradsky was a 19th century mathematician and came up with a theory that restricts
the inclusion of non-degenerate higher (time) derivative terms in Lagrangians [40]. Non-
degeneracy means that the higher derivative terms can not be written to as a total
derivative and contribute to the field equations. Ostrogradsky’s theorem is important as it
puts severe constraints on higher derivative theory and the idea behind the theory is quite
elegant and simple.

In order to explain the theorem, we will consider two different Lagrangians. The first
Lagrangian doesn’t depend on second time derivatives: £ = L(x,%). So from this
Lagrangian we obtain the Euler Langrange equation g—§ — %g—g

implies that % depends on z, so the equation of motion depends on second order derivatives

= 0. Non-degeneracy

of x, .
Whe can express the second derivative of x as a function containing the first derivative
and x: & = F(x,%. Therefore, we can solve for x as z(t) = X (¢, x¢,4o) and it becomes

apparent that the solution depends upon two pieces of initial data, which means that we

oL
0

first derivative of x as a function of both canonical coordinates & = v(Q, P) and find for

can take two canonical coordinates. We call them ) = x and P = %%. We can write the

the Hamiltonian:

H=PQ—L=Pvu(Q,P)— L(Q,v(Q,P)) (A1)

So far so good. Now let’s consider a second Lagrangian L(z, &, ¥ that depends on second

derivatives of x as well. Its Euler-Lagrange equation is:

oL doL & oL

o dior TdEoi (A2)

Again the assumption of nondegeneracy implies that % depends on Z and the EL-equations

contains up to fourth order derivatives of x. This time we can express the fourth order

derivative as a function of the lower derivatives (¥ = F(z,#,%,2®) and see that there
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are four initial conditions. So we need to choose four canonical coordinates, following

Ostrogradsky we call them Q1 =z, Qs = 2, P, = % — %% and P, = %. The acceleration

can be written as & = a(Q1, @2, P»), so it doesn’t depend on P;. The Hamiltonian is:

H = PQ; + Pa(Q1,Q2, P2) — L(Q1,Q2,a(Q1, Q2, P2)) (A.3)

In contrast to the Hamiltonian considered before, this one is linear in the canonical
momentum FP;. This implies that no system having this Hamiltonian can be stable and
since P, can get infinitely negative, the Hamiltonian in not bound from below. That means
that some degrees of freedom of the system can have arbitrarily negative energies.

In higher than second order derivatives theories, the Hamiltonian gets even more linear

instabilities [40]. This analysis is based on classical mechanics, but a similar argument
holds for field theories.
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APPENDIX B

The Vielbein formalism of

General Relativity

The equivalence principle tells us that we can find, at any point P, a local inertial frame
where the physical laws become those from Minkowski space. We use in a point P locally
free-falling coordinates £*(P). We can choose these coordinates to be orthonormal. Then
the metric is given by:

ds? = ngdeede? (B.1)

For clarity, it is common to label the inertial coordinates by latin indices and the arbitrary

coordinates by greek sign. We define the vielbein fields e? en the inverse vielbeins e as:

ox®

a_ 9 _
- - e

d¢ @dxa = el (x)dx” dx®

d¢® = e (x)dg” (B.2)

So we can see the vielbein as the transformation matrix between arbitrary coordinates x
and inertial coordinates £. So the vielbeins permit the transformations of tensors between

a different base:
V*=elV® Ve =erV*® (B.3)
The vielbein and ivnerse veilbein are related by
elel = o eney =0y (B.4)

Vielbein means "many legs” in German, in four dimension the vielbein is also called

Vierbein or tetrad. Let’s look at the metric

ds® = ngpde®de® = nabeZegd:B“dx” = g, datdz” (B.5)
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So we see that we can see the vielbein as kind of the square root of the metric

Guw = Nabeie, (B.6)

Taking the determinant, it follows that

enl = Vgl (B.7)

One important thing to note is that, because the vielbeins depend on the coordinates of
the manifold, it’s partial derivatives 0, = e/ 0,, do not commute. If we consider a scalar
field ¢:

[0a, O] = =250 (B.8)

where
Qo = ehey (0,6, — Opuey,) (B.9)

Just as in the curved formalism, we can define covariant derivatives in the vielbein
formalism as well. We denote with V the covariant derivative with respect to curved
coordinates, D the covariant derivative with respect to flat coordinates and D the total

covariant derivative.

Dy = Ot (B.10)
D, T’ =0,T! + wuch; — wuaCTf (B.11)

where omega is called the spin connection. Just like the connection I' the spin connection
does not transform as as tensor, but the difference between two spin connections does.

The complete covariant derivative acts on tensors in the following way:

DT, = 0,1, —T0,T% 4+ ', T (B.12)

pa— v

The vielbein postulates

The first vielbein postulate is that the total covariant derivative of the vielbein field is zero
D,e;, =0 (B.13)
This postulate gives us a relation between the spin and the affine connection:

wuab = eZeZFfw —e0,€" (B.14)
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The second vielbein postulate is the compatible of the metric with the covariant derivative
V,.9v, = 0, which gives us
Vou(eserna) = 0 (B.15)

If we combine this with the first postulate, we see that the minkowski metric is compatible

with the spin connection
Dyney =0 (B.16)

If we assume the Levi-Civita connection, I' is completely determined in terms of the metric.

This allows us to write the spin connection with all flat indices in a very beautiful way
c — i c 1 e cd e cd c
Wap = CaWpp = §(Qad N Mbe + pa N Nae — Ly ) (B'17)
Now we can write the Riemann curvature tensor with flat indices R, % as:
d d d
- gaacfwa + wbcfwaf o Qabf(")fc <B18>

d __ d d
Rabc = 0aWp, — 6bwac

Since we have all geometric objects expressed with curved and flat indices, both formalisms

carry the same information about the gravitational action.

Proof of equivalence flat and covariant derivatives

Here we want to proof that using 622D, V, “, where V is a unspecified tensor, is equivalent

to 04V, V, 7. Since we only have flat indices, we can write
5?§Davb “ = 5Z§Davb o
Now going to curved coordinates and using the first Vielbein postulate:

ab cd __ gab_pu v _c d Py

0ed DaVy " = 0gqeh Dy (epegesV, )
_ sab_p v c d Py
= Oggenep€,65 DLV,

= 0DV,

We have everything written in curved coordinates so we can change the derivative
o DV, T =000V, V,

With that we have proven that

6D,V = o NV,
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APPENDIX C

Kronecker delta properties

Working with Kronecker delta tensor’s and (anti)symmetrization brackets simplifies our
calculations a lot. In this section of the appendix, the most frequently used expressions
will be given.

We define the Kronecker delta function as follows:
5,?11,;1”" = 5&11 55;...5;:] (C.1)

[] denote normalized antisymmetrization brackets, for example [ab] = 1 (ab — ba). Now we
have a look what happens when we contract the Kronecker delta tensor with Kronecker
delta symbols.
ai...a D_(n_l)a...a
Sy = g (€2)

bi...by, “a1

Where D denotes the dimension where the indices live in. Another really useful property is

that antisymmetry brackets will cancel when contracted with the Kronecker delta tensor.

1
aq...an by bo __ gai.anp — b1 yb2 _ b1 yb2
5b1...bn ,‘T[alXag] - 5b1...bn 2<Ta1 Xaz Tag Xal) (CS)
5a1a2.A.anTb1Xb2 _ 6a2a1...anTb1Xb2 _ _6a1a2...anTb1Xb2 (C 4)
b1bs...by, a2 a1 = “biba...by al a2 bi1ba...by, al a2 N
ai...an bl b2 __ sai...an b1 b2
5b1...bn j—v[alXag] - (Sbl..‘bn Ta1 Xa2 (C5)
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APPENDIX D

Infinitesimal coordinate

transformations

Usually it is much easier to use infinitesimal transformation to see if an action is invariant
under some kind of transformation, than to calculate the change of the whole Lagrangian
under that transformation. We know that the action is invariant if its infinitesimal variation
gives zero, 0.5 = 0.

Since vectors and tensor are defined by their coordinate transformation rules, we would
like to know the infinitesimal changes of coordinate transformations. Let’s consider the
following coordinate change: z'* = x* — &#(x) (see picture D.1) which gives us the variation
dxt = —&H(x). Here £#(x) is an arbitrary vector function.

From this follows that:

't
= ol — 0,8" (D.1)
o1
i o+ 9,&" (D.2)

Figure D.1: An infinitesimal coordinate transformation: by adding an &(z) to the
coordinate #* we obtain a new coordinate z'# [32].
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<

0

Figure D.2: The infinitesimal transformation of a scalar field ¥ under a coordinate
transformation [32].

For the functional variation of an object under a coordinate transformation, we compare
the value of the object at a point P; with coordinate system O; with the value at another
point P; in coordinate system O,, see picture D.2. The coordinates in both system are

the same, but we look at different points. For a scalar[32]:

0¢ = ¢ (x) — ¢(x) = ¢(2') + £"0u¢/ (2') — d(x) = §"0,u(x) (D.3)

Where we used that ¢'(2') = ¢(x), because this is the numerical value of a scalar at the

same point and a Tayler expansion. For vectors and tensors we get

SAM = €99, AM(z) — 0,6"AP(x) (D.4)
§B, = £°0,B"(x) + 0,£°B, (D.5)
55" = £90,5" + 8,60 S% — ,6"S! (D.6)

The functional variation d¢ form a closed algebra and are the infinitesimal generators of

the group of general coordinate transformations.
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APPENDIX E

Weyl connection properties

Under the Weyl connection I', = ffw — WPgu, + W00 + W,0f the Ricci tensor changes

as:

R, =R+ (D - 1)Vqu - 6pVVM + VV(WVQW)

(E.1)
+ (D =2)W'Wog, — (D = 2)W, W,
And the Ricci scalar:
R=R+ (2D —2)V,W’ + (D —2)(D — 1)W*W, (E.2)
The resultant action of the cubic galileon
We started with the following action:
4 M]% 1 v 1 v
S=[dz/g TR — §Xg” V,.V,0— oziX(bV#(g“ V.o) (E.3)
Using our relation for R we found earlier, the first terms gives us:
M? ME . M?
TPR — TPR - TP(D —2)(D - )W*HW,
LM XD 1) (E4)
2 2ME(D —2)

The second two terms will give us (up to a total derivative):

1 o o (8% (0%
—éan’“’VMVl,gb —aXV,(¢"V,0) = —aXV'V ¢+ EXg‘“’KWA&\é - EXKV,\VaA(?
a2X3(D — 1)

— —aXﬁ“%l@ T ME(D - 2)

(E.5)
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So the total resultant action becomes

M2 . o o 2X3(D -1
S—/d4x my(TPR_axv#vm_w)

2M(D — 2)
. M3 . e 3a2X3 (0

Equations of motions of the cubic galileon in the Palatini formalism

The equation of motion for ¢ in the metric affine formalism gives us:

9V 907V 'V, + 3V 5 g7P 0,V N ¢ + 2VPV .0V 'V, + 079V 56"V YV,

1
+ 59“%%&”@@%9“” + Vg7V, g" 8,00, — 20° ¢V, V6"

3 3 1 1
- Zg)\’yvug)\'y<a¢)2vuguy - Qvugwjvugapaa¢ap¢ - §(a¢)2vuvugwj - §(a¢)2vl/g>\’yvyg)\’y

1
- égvAvuvugv(aqbf - gkvvug)\vvygap a¢ap¢ - QQA’Yvug)wvyvaaaQs

1
- Zg)\’yvug)\'yvugap(a(ﬁ)anp - ngyvugapaa(bap(b - 4vyvo¢ap¢vugap - 2vuvo¢vuvp¢galo
+207g""(VoV, V0 =V, V,V,0) =0

(E.7)

And the field equation for the metric is:

1 « a
Ry, — §guuR + 5(8¢)2vap¢gm/ + Z(a¢)2aa¢guyvpgap — a0y 90, pVPV 10
(0% (0% (8%
- §(a¢)2vuvu¢ - §au¢au¢aa¢vpgpa + §ap¢au¢ao¢v,ugpg + avpva¢ag¢au¢ (ES)
(6%
+ 797 Vudop(06)°0,6 = 0

By using the the expressions for the first and second derivatives listed below, we will find

the same equations of motions as written down in chapter 7.

Non-metricity of the Weyl connection
Vibop = —2W,G0p
V,.9°° =2W,q°°
VoViu9op = =290pV Wy = 2959, W' W, + 8g,, W, W,
V.,V,q7" = QQUpﬁVWM +29°°9,,W'W,
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