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Abstract

In a recent paper, Lorenz Demey presents an algorithm to compute the maximal
Boolean complexity of a family of Aristotelian diagrams. However, the underlying
mathematical notions, involving partial orders extended with an involutive negation
function, are hardly worked out. The purpose of this thesis is to provide a critical
analysis of Demey’s paper and related work from a mathematical viewpoint. In a
clear and understandable way, the theory of Aristotelian diagrams is connected to the
mathematical notions of Hasse diagrams and Boolean algebras. Demey’s algorithm is
rewritten and applied in several examples of Aristotelian families.
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1 Introduction

Logicians make use of several kinds of diagrams for a variety of purposes, such as obtaining
new results and communicating their findings more effectively. Using diagrams is a way to
visualize properties of logical systems. Roughly seen, the logical diagrams can be divided
into two categories. The first is of diagrams that visualize formulas for some given logi-
cal system. The second is of diagrams that visualize the relations between such formulas.
Aristotelian diagrams fall under the latter. These diagrams visualize the relations between
a set of formulas from some given logical system. The ongoing investigations concerning
Aristotelian diagrams are mostly about determining their properties. Logicians develop
algorithms to obtain new properties of these diagrams. Aristotelian diagrams are not only
used in logic, but also in fields such as cognitive science [16], linguistics [12], philosophy
[15], neuroscience [1], law [13] and computer science: Aristotelian diagrams are used by
computer scientists to study various ways of knowledge representation in, e.g. rough set
theory [4], possibility theory [9], formal argumentation theory [2] and multiple-criterion
decision-making [10]. The most used and therefore most important Aristotelian diagram
is the so-called square of opposition, which will be shown later on in the thesis. Recently
other, more complex diagrams have also been investigated, such as hexagons, cubes, etc.
Despite the many researches on Aristotelian diagrams that have been done, the underlying
mathematics of these diagrams have not been made explicit yet. Working out these math-
ematics could make it less complicated to obtain a better understanding of Aristotelian
diagrams and its properties.

The overall purpose of this thesis is to provide a critical analysis of Demey’s article
on maximal Boolean complexity and the related work from a mathematical viewpoint.
Therefore, the research question that this thesis will answer is: what are the mathemat-
ical structures underlying logical diagrams and how can these be used to compute their
properties?

Before we answer this question you will find an extensive introduction to Aristotelian
diagrams, including an introduction to several forms of modal logic. Some mathematical
notions will be defined, such as Hasse diagrams and Boolean algebras. The connection
between these notions and Aristotelian diagrams will be explained and analyzed. After
this we can take a closer look at some properties of Aristotelian diagrams, including the
maximal Boolean complexity, introduced by Demey in [6].



2 Preliminaries

This section serves two purposes. The first is, in view of the possible situation where some
of the readers might not be well accustomed with the logic that is required to understand
the mathematics in this thesis, to acquaint general readers with fundamental background
of modal logic. Secondly, this section prepares the readers for the mathematics in later
chapters through some introductory chapters about Aristotelian and Hasse diagrams.

2.1 Modal logic

In this section the concept of modal logic will be introduced. For more information on
modal logic, see Priests book on logic [17].

Modal logic studies reasoning that involves the notions 'necessarily’ and ’possibly’. We use
a box ([O) for ’it is necessarily the case that’ and a diamond () for ’it is possibly the case
that’ For example, let p be the formula ’I will wear a red shirt today’. Then [p means
it is necessarily the case that I will wear a red shirt today and Op means it is possibly the
case that I will wear a red shirt today. These operators can be expressed in terms of the
other by use of negation:

Op < =0—p

This shows that it is necessary that I will wear a red shirt today if and only if it is not
possible that I will not wear a red shirt today, which sounds logical. Similarly, the converse
says that it is possible that I will wear a red shirt today if and only if it is not necessary
that I will not wear a red shirt today.

The semantics of modal logic can be formulated as follows. We have a set W containing
possible worlds. Intuitively, one can think of these possible worlds as places where things
may be different from the world we live in. For example, what kind of world would we
live in if everyone was two inches taller, or if you would have a different hair color. Of
course, our actual world is a possible world also. On such a set of possible worlds we have
an accessibility relation R. This relation is a binary relation on W. If v and v are two
possible worlds in W, then uRv means that in world u, world v is considered possible, i.e.
v is accessible from wu.

A model M in modal logic is given by the triple (W, R, V), where W is the set of
possible worlds, R is a relation on W called the accessibility relation and V' is a valuation.
The valuation V maps every atomic formula to the subset of W containing all worlds in
which the formula is true. We call a formula atomic if it contains no logical operators
(negation, conjunction, etc.), i.e. an atomic formula has no strict subformulas.

We introduce a symbol for semantical validity: . When a sentence ¢ is true in some
world w, we note this as w = ¢. The negated symbol [~ is used when a formula ¢ is not
true in some world w: w = ¢. With this information, we can give formal definitions of
the operators [0 and 0.

Definition 2.1. Let M = (W, R, V) be a model in some logical system. Then, for some
possible world w € W, some atomic formula p and some formula o,

w = p iffweVip),

ME=p iff wi=p for every world w € W,
wk-e  iffwiEe,

wE(pAY) iffwE e andw =,
wE (e V) iffwEeorwE,

wl= (g =) iff w i@ orwky,



w = Qg iff for every world u € W, wRu implies u = ¢,
w E Qp iff for some world uw € W, it holds that wRu and u |= ¢.

So the formula [p being true in world u means that in all accessible worlds from u the
formula p is true. The formula {p being true in world u means that there is at least one
world, accessible from u, where the formula p is true. So the operators show whether or
not formulas in the accessible worlds are true.

We have that w = p if p is true in world w, we have 9 |= p if p is true in every possible
world in the model, and we have one more expression: the left-hand side of the sentence
being empty (= ¢) means that 9t |= p for all models . In that case, the right-hand side
is called a tautology, i.e. a formula that is always true; in any model and in any world. The
symbol is used for logical entailment also, when a formula implies another: the sentence
¢ = 1 is equivalent to the sentence = ¢ — 1. In the sentence [~ ¢ the right-hand side is
a contradiction, i.e. a formula that is always false.

There are several logical systems in modal logic. In [11] an extensive overview is
given of these logics. The different systems of modal logic have their own properties
of the corresponding accessibility relation. The logic K is the most basic logic, having
no extra properties. The logical system KD has a serial accessibility relation: from every
possible world another world can be accessed. The following axiom belongs to this system:
Op | Op. Without the serial property of the accessibility relation, the formula Op does
not necessarily mean that there exists an accessible world (think about a model with a
single world; then every formula starting with [J is true). Some properties that accessibility
relations may have are:

e Serial: for every u € W, there exists a v € W such that uRv

o Reflexive: uRu for every u € W

e Symmetric: uRv implies vRu for all u,v € W

e Transitive: uRv and v Rw together imply vRw for all u,v,w € W

e Euclidean: uRv and uRw together imply vRw for all u,v,w € W1
One can prove that the serial property directly follows from reflexivity: for every u € W,
there exists a v € W such that uRv, namely u itself. Many properties correspond to an
axiom in the logic:

Serial: (p — Op

e Reflexive: Op — p

e Symmetric: p — O0p

e Transitive: Op — Olp

e Euclidean: Op — OOp
Combining the different properties and thereby the different axioms give logical systems,
e.g. KD (serial), KT (reflexive), KB (reflexive and symmetric), S4 (reflexive and transitive)
and S5 (reflexive and Euclidean). For a given logical system S the set of atomic formulas
is denoted by 5.

2.2 Aristotelian diagrams

In general, Aristotelian diagrams are diagrams that visualize the Aristotelian relations
between formulas from some given logical system. We define the Aristotelian relations
relative to some logical system S. This system is assumed to have the usual operators (—,
A, V) and a model-theoretic semantics Fg. Now we define the Aristotelian relations. The
formulas ¢, 1) € %5 are said to be

S-contradictory iff Es(pAY) and EspVy
S-contrary iff Es—(pAY) and (s eV

!(note that this also implies wRv)



S-subcontrary iff s (e A1) and sV
in S-subalternation iff Ese— and g v — .

The definitions of these relations can be read as follows. Every relation has two condi-
tions: the first tells us whether or not the two formulas can be true together; the second
condition tells us whether or not the formulas can be false together. So two formulas are
contradictory when they can neither be true together nor be false together, i.e. in any
situation, one of them is true and the other is false. Two formulas are contrary when they
cannot be true together, but they can be false together, i.e. in any situation, either one
of them is true and the other is false, or they are both false. For subcontrary formulas we
have the opposite: two formulas are subcontrary when they cannot be false together, i.e.
in any situation, either one of them is true and the other is false, or they are both true.
The last relation is different. Two formulas being in subalternation means that the first
entails the second, but the second does not entail the first.

Generally, Aristotelian diagrams impose three constraints on the formulas visualized:
they are contingent (may in some worlds be true and in some worlds be false), pairwise
non-equivalent, and they come in contradictory pairs (when a diagram contains a formula
¢, it also contains the negation —¢).

An example of an Aristotelian diagram is the well-known square of opposition in the
modal logic KD. This diagram consists of four formulas: Op, —Op, Op and —Op. As
can be seen in figure 1b, the formulas can be represented as vertices and the Aristotelian
relations between them as edges. More examples are shown in figure 2. These are examples
of Jacoby-Sesmat-Blanché (JSB) hexagons in the two different logical systems KD and KT.

contradiction Up L=p
contrariety — m--=-m==-------
Subcontra/riety ........................
. A y
subalternation > Op O-p
(a) Code for visualizing the Aristotelian relations (b) Classical square of opposition in KD
Figure 1
Cp vV U=p —pV Up

Op A O—p pAOD
(a) (b)
Figure 2: Examples of JSB hexagons in modal logics (a) KD and (b) KT



2.3 Partial orders

The way Aristotelian diagrams are presented above is somewhat informal. The underly-
ing mathematics can be made more explicit. For this, we need to see that Aristotelian
diagrams are closely related to Boolean algebras. Kolman, Busby and Ross gave a clear
explanation of the mathematical notions needed for understanding Boolean algebras [14,
Ch. 6], which is summarized in this section.

First the notion of partial order has to be introduced. A partial order is a relation R
on a set A that has the following three properties:

e Reflexivity: Va € A, aRa,

e Antisymmetry: Va,b € A, if aRb and bRa, then a = b,

e Transitivity: Va,b,c € A, if aRb and bRc, then aRc.
The combination of a set A with such a partial order (A, R) is called a partially ordered
set, in short poset. A partial order is often noted as <, as will be done from here on.

Example 2.2. Let A be a collection of subsets of a set S. Then the relation C of set
inclusion is a partial order on the set A. So (A, C) is a poset.

Example 2.3. The set Z* of the positive integer numbers with the relation of divisibility
(aRb if and only if a divides b) is a poset.

Two elements a, b in a poset are comparable if they are related: aRb or bRa. In example
2.3 two elements are comparable if one of them divides the other. The numbers 2 and 7
are not comparable, since 2 does not divide 7 and 7 does not divide 2. When every pair
of elements in a poset A is comparable, then the poset is called a linearly ordered set or
chain. The corresponding partial order is called a linear order.

A strict partial order is a partial order that is not reflexive, but irreflexive: an element
in a set with a strict partial order is not related to itself, i.e. it is not true that aRa for
strict partial order R. The properties of transitivity and antisymmetry still hold for strict
partial orders?>. We denote a strict partial order by <.

A poset can be visualized in a directed graph (digraph). In a digraph the vertices
represent the elements in the set and the edges are arrows that show when two elements
are comparable and which way the relation < goes, so for elements a, b in the set, an arrow
points from a to b if and only if @ < b. In figure 3a an example is given of the digraph of
the poset {1,2,4,5,10,20} with the relation of divisibility as its partial order.

Because of the properties of a partial order we can simplify such a digraph a lot.
First, we can delete the loops, since these are implied by the property of reflexivity of the
partial order. When considering a strict partial order <, the loops are not in the digraph.
Since the partial order is always mentioned when showing a digraph, one can see from
the context whether or not reflexivity is a property of the corresponding partial order and
therefore whether or not it is a strict partial order or a regular partial order. Next, we
can delete a lot of arrows that are a consequence of the transitivity property (if @ < b and
b < ¢, then a < ¢). For example, the arrow from 1 to 4 is implied by the two arrows from
1 to 2 and from 2 to 4. Last, we agree to draw a digraph of a poset with all edges pointing
upwards, so that the arrows may be drawn as simple lines. The resulting diagram is shown
in figure 3b. Such a diagram is called a Hasse diagram, after the German mathematician
Helmut Hasse (1898-1979).

Two posets (A, <) and (A4’, <') are called isomorphic if there exists an isomorphism?
between them. In that case, the Hasse diagrams of the posets look the same.

2Note that the property of antisymmetry follows from irreflexivity and transitivity.
3A function f : A — A’ is called an isomorphism from (A, <) to (A, <') if it is bijective and, for any
a,be A, a <bif an only if f(a) <" f(b)
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Figure 3: The directed graph and the Hasse diagram of the relation of divisibility on the
set {1,2,4,5,10,20}.

We recall the definitions for upper and lower bounds. For a subset B of a poset A an
element a € A is called an upper bound of B if ¢ < a for all ¢ € B. Similarly, an element
b € A is called a lower bound if b < ¢ for all ¢ € B. In addition, an element a € A is called
a least upper bound of B if a is an upper bound of B such that a < a/ whenever a’ is an
upper bound of B. Similarly, an element b € A is called a greatest lower bound of B if b
is a lower bound of B such that ¥ < b whenever b’ is a lower bound of B.

The last notion we need to introduce before defining a Boolean algebra is the lattice. A
lattice is a poset (L, <) in which every subset {a, b} consisting of two elements has a least
upper bound an a greatest lower bound. The least upper bound of the subset is called the
join of a and b and is denoted by a V b and the greatest lower bound is called the meet
of a and b and denoted by a A b. A Boolean algebra is a lattice with the following two
additional properties.

Definition 2.4. Distributive lattice A lattice (L, <) is distributive if the following two
additional (equivalent) identities hold for all a,b,c € L:

aN(bVe)=(aANb)V(aAc)

aV(bAc)=(aVb)A(aVec)

Definition 2.5. Complemented lattice A lattice (L, <) is complemented if it is bounded
(containing a least element 0 and greatest element 1) and if every element a € L has a
complement, i.e. an element b € L such thataVb=1 and a ANb=0.

As an example we consider again the poset {1,2,4,5,10,20} with the relation of divisi-
bility as its partial order. This poset is distributive, since for any combination of any three
elements in the set, the distributivity property holds. However, the poset is not comple-
mented. Although it has a least element 1 and a greatest element 20, not every element
has a complement: there does not exist an element b in the poset such that 2V b = 20 and
2 A b= 1. The same holds for 10.

2.4 Boolean algebras

Now that we have defined partial orders and lattices, we can define the Boolean algebra.

Definition 2.6. Boolean algebra A Boolean algebra is a complemented distributive lat-
tice (L, <) with least element 0 and greatest element 1.



We can denote a Boolean algebra mathematically using a 6-tuple of all six components
that form a Boolean algebra together:

B=(X,L1L, T,AV,).

We have the set X containing all elements on the Boolean algebra; the least element
L (also called ’bottom element’); the greatest element T (also called ’top element’); a
conjunction operator A; a disjunction operator V; and a negation operator —. Applying
the conjunction operator on two or more elements in X gives an element that appears
lower in the Boolean algebra. Applying the disjunction operator on two or more elements
in X gives an element that appears higher in the Boolean algebra. The negation operator
gives the complement of an element. The structure has to satisfy a number of axioms for
the components to form a Boolean algebra together.

Example 2.7. An example of a Boolean algebra is the Hasse diagram of a power set with
the relation of set inclusion as its partial order. The bottom element is the empty set, the
top element the full set, and in between all possible subsets are given. Such a diagram of
a power set is shown in figure 4a for the set {1,2,3}. In this example, we have that the
conjunction operator is the intersection of sets, the disjunction operator is the union of
sets, and the negation operator is taking the complement of a set. The least and greatest
elements are the empty set and the full set.

The elements in the power set can be represented by bitstrings: sequences of 0’s and 1’s.
A bitstring represents a characteristic function that corresponds with one of the subsets
in the power set: for every element in the set there is one place in the bitstring, which
will be a 0 if it is not in the subset, and a 1 if it is. For the set in this example we use
bitstrings of length 3 since it has three elements. The resulting Boolean algebra can be
seen in figure 4b.

{1,2,3} 111
{1,2} o {1,3} » {2,3} 110 o/ 101 011
{1} {2} {3} 100 @ 010 e 001
\.
0 000
(a) (b)

Figure 4: (a) Hasse diagram of the poset (P({1,2,3}), <) and (b) the same diagram with
the subsets on the vertices represented as bitstrings.

A finite Boolean algebra is generated by its atoms: the first elements above the bottom
element. In the previous example the singletons of the three elements that are in the
complete set are the atoms: {1}, {2}and{3}. From only these three singletons we would
be able to create the entire Boolean algebra by taking unions. As Demey and Smessaert
point out in [7] a way of generalizing Boolean algebras is using bitstrings on the vertices
instead of specific elements. In figure 5 we see four Boolean algebras of different sizes with
bitstrings on the vertices. The Boolean algebra B, is the Boolean algebra that is generated

10



111

1 11
° /. 110 ><. 101 e 011
10 O\ ® 01 100 & 010 e 001
[ ] @ ®
° 0 00 000
(@)n=0 (b)n=1 (c)n=2 (d)n=3

Figure 5: Hasse diagrams of the Boolean algebra B,, for n =0,1,2, 3.

by n atoms. With this number of atoms one can compute the size of the Boolean algebra:
the size is equal to 2". One can think of the diagram B, as the Hasse diagram of the
power set of the set {1,2,...,n}, where the subsets are represented by bitstrings of length
n: for every element in the set there is one fixed place in the bitstrings. Whenever the
element is in the subset, there will be a 1 on its place, if not, there will be a 0. A Hasse
diagram is in fact a Boolean algebra if and only if it is isomorphic to B,, for some n € N.

11



3 Aristotelian structures

Demey notes in his paper [6] that the Aristotelian relation of subalternation on a fragment
F of formulas is a strict partial order and hence the set F' in combination with subalterna-
tion is a poset. Furthermore, since for each formula in the fragment its negation is also in
the fragment, we can view the contradictory relation as a unary and involutive? function —
on F. It is not hard to see that the four Aristotelian relations can be characterized in terms
of the last relation (subalternation) and equivalence using this negation function. We use
the strict partial order symbol < for the strict subalternation relation. Two formulas ¢
and v are:

contradictory iff ¢ = ) (and, equivalently, =p = ),
contrary iff v < ) (and, equivalently, ¥ < —¢),
subcontrary iff - < 1 (and, equivalently, =) < ).

Using this interdefinability of the Aristotelian relations, we can define the Aristotelian
structure as a 3-tuple (F, <, ) that has the following properties:

e < is the strict partial order of subalternation on F

e - is an involution on F'

o Vp,heF, (p<t & < p)

To connect the theory of posets and Hasse diagrams to Aristotelian diagrams, we
look at a Hasse diagram of a fragment of formulas from modal logic.> Every Aristotelian
diagram can be turned into a Hasse diagram, showing the strict partial ordering in the
fragment. The fragment of formulas is treated as a poset with logical entailment as its
partial order. From the Aristotelian diagram we pick only the subalternation edges and
make sure these point upwards. Figure 6a shows the Hasse diagram of a fragment of
formulas in logic system S5. In figure 6b the top and bottom elements T and L are
added. As indicated in [5], these elements represent the least and greatest elements of
the fragment. The top element is a tautology and the bottom element is a contradiction.
These formulas are called non-contingent. A formula is contingent if and only if it may in
some worlds be true and in some worlds be false. We see here that the diagram is in fact
a Boolean algebra after adding the top and bottom elements, as it is isomorphic to the
Boolean algebra Bs.

The atoms are the strongest consistent formulas in the visualized fragment. The
stronger a formula, the more other formulas it implies. The bottom element L is the
strongest of all formulas and stronger than the atoms, but it is not in the fragment. The
three formulas above the atoms are weaker than the atoms, since they imply less other
formulas. The top element T is the weakest.

The Boolean algebra is, as said before, completely generated by its atoms. In the case
of logical formulas one can compute the entire algebra out of the three strongest formulas
using only disjunctions. In figure 6b one can see that the formula ¢p is equivalent to the
disjunction of the left two atoms in the Boolean algebra:

OpV (Op A O—p) =s5 Op

To investigate the properties of Aristotelian diagrams, we distinguish between individ-
ual Aristotelian diagrams and families of Aristotelian diagrams. A family of Aristotelian
diagrams (in short, Aristotelian family) is defined as a class C' of Aristotelian diagrams
that are all isomorphic to each other, and any diagram that is isomorphic to a member

4A function is unary if it has only one argument. A function is involutive if it is equal to its own inverse.
Equivalently, applying an involution twice yields identity.

®In [8] the exact mathematical computation that links the Hasse diagram to the Aristotelian diagram
of a fragment is given.

12
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Op A O—p Op NO—p

1
(a) (b)

Figure 6: (a) Hasse diagram of a fragment of formulas in modal logic S5 and (b) the
Boolean algebra after adding the top and bottom element

of C' is a member of C itself. Using this definition, we can generalize our diagrams. In
figure 7 we see two generic descriptions of Aristotelian families. Figure 7a shows us the
generic description of the Aristotelian family of classical squares: instead of using spe-
cific examples of formulas on the vertices, the generic fragment {1, p2, @1, 72} is used.
This fragment can be used without loss of generality because of the assumption that for
every formula ¢ in a fragment, its negation —¢ is in the fragment also. Figure 7b shows
the generic description of the Aristotelian family of JSB hexagons with generic fragment

{8017 $2, Y3, 7P1, P2, _'@3}'

—|802

®1 P2

_‘802 —%01

Figure 7: Generic diagrams of the Aristotelian families of (a) classical squares and (b)
JSB hexagons

For both Aristotelian families one can make a Hasse diagram from the generic Aris-
totelian diagram. For the Aristotelian family of classical squares, we get the diagram in
figure 8a. The Aristolian family of JSB hexagons gives the Hasse diagram shown in figure
8b. The arrows representing the relation of subalternation in figure 7 are changed into
lines, where the direction of the entailment is always upwards.

13



P2 P TP3 @ o Y2 e Y1

¥1 ®2 1 @ ©2 ©3
(a) (b)

Figure 8: Hasse diagram of (a) the generic Aristotelian square (fig. 7a) and (b) the generic
Aristotelian JSB hexagon (fig. 7b)
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4 Maximal Boolean Complexity of an Aristotelian family

The connection between Aristotelian diagrams and Hasse diagrams enables us to investi-
gate and compute certain properties of Aristotelian diagrams that are hard to find other-
wise. Demey introduces the maximal Boolean complexity of an Aristotelian family [6]. He
gives an algorithm to compute it, but the mathematics behind it is hardly made explicit.
The results of computing the maximal Boolean complexity of an Aristotelian diagram
can be used to classify Aristotelian diagrams systematically into Aristotelian families and
Boolean subfamilies. We will try and build a similar algorithm step by step, using the
mathematics behind Aristotelian diagrams, instead of using only the diagrams.

4.1 Computing the maximal Boolean complexity

The complezity of a Boolean algebra is equal to the number of atoms in it. So the com-
plexity of an algebra B, with 2" vertices is equal to n. In this section we want to find
out how to obtain the Boolean complexity of an Aristotelian diagram. This involves more
steps than just counting the number of atoms in a Boolean algebra. From the fragment of
an Aristotelian diagram, we use conjunctions to create the strongest formulas that can be
made from the fragment. These conjunctions can be used as atoms to create a Boolean
algebra that contains the fragment from the diagram. The complexity of this Boolean
algebra, which is equal to the number of atoms just computed, is the Boolean complexity
of the Aristotelian diagram. Since we are interested in properties of families of Aristotelian
diagrams, we look at the mazimal Boolean complexity of an Aristotelian family, which is
defined as follows.

Definition 4.1. Maximal Boolean complexity The maximal Boolean complexity of
an Aristotelian family is equal to the complexity of the largest Boolean algebra that can be
made from the Aristotelian diagrams in the family.

To find the Boolean complexity of a given fragment F', we have to find the atoms. These
atoms are equal to the conjunction of the elements in a maximal consistent upwards closed
subset of (F, <,—). For a subset A C F we have the following.

Definition 4.2. A is consistent if there are no two formulas @, € A such that p < =
or ¢ = .

Definition 4.3. A is mazimal consistent if adding any other formula from F to A makes
A inconsistent. As a consequence, A is maximal consistent if and only if for any consistent
set B C F' that includes A (A C B) we have that B = A.

Definition 4.4. A is upwards closed if for formulas ¢, € F we have: if ¢ € A and
w <Y, then Y € A also.

One can prove that in fact the last follows from maximal consistency of a subset:
when A is a maximal consistent subset of F' and for formulas ¢, € F we have ¢ € A and
@ < 1, but ¢ ¢ A, then the formula ¢ can be added to A without making it inconsistent.
Therefore, upwards closedness follows from maximal consistency.

The set of the conjunctions of each maximal consistent upwards closed subset of a
fragment F' in logical system S is called the partition of S induced by F. The size of the
partition of a fragment is equal to the Boolean complexity of the Boolean algebra that
can be created using the elements in the partition as its atoms.

15



4.2 Examples of partitions
We take a look at an example of a partition of an Aristotelian diagram.

Example 4.5. Figure 2a shows a JSB hexagon in the logical system KD visualizing the
Aristotelian relation between the formulas in the fragment F' = {Op, Op, Op A O—p, O—p,
O-p,Op v O-p}. The Hasse diagram of this fragment is shown in figure 9. The maximal
KD-consistent upwards closed subsets following from this strictly partially ordered set are:

{Op, Op,Op v O-p},
{8-p, O—p,0Op v O-p},
{Op, O—p,0Op v O-p},
{Op, 0—p, Op A O—p}

We see in these sets that whenever a formula ¢ implies another formula v, it is never the
case that only ¢ is in the set and v is not. The upwards closedness property is satisfied.
Furthermore, one cannot add another formula from the fragment to either of these sets
without making the set KD-inconsistent. So the maximal consistence property is also
satisfied. To form the partition that follows from the fragment, we have to make the
conjunctions of the found subsets:

Op A Op A (Op v O=p) =xp Op
O=p A O=p A (Op vV O=p) =xp O-p
Op A O—p A (Op Vv O-p) =kp Op A O—p
Op A O—p A (Op A O—p) =kp Op A O—p

One can see that the conjunctions of the last two subsets are equivalent to each other. So we
find that the partition of KD induced by F' consists of three elements: {{p, O-p, OpAO—p}.
The Boolean complexity of this Aristotelian diagram is therefore equal to 3.

’ XX h
Cp @ ® ® [I-p
Op A O—p

Figure 9: Hasse diagram of the KD-fragment in example 4.5

By using a generic fragment instead of a specific fragment, we can find the maximal
Boolean complexity of an Aristotelian family.

Example 4.6. We take the generic fragment {1, @2, p3, 791, @2, 73} with subalter-
nation as partial order and the Hasse diagram shown in figure 8b. We have to find all
maximal consistent upwards closed subsets of this fragment. The first thing we notice is
that a formula ¢; and its negation can never be in one subset together, since that would
make it inconsistent. Also, each subset has to contain for every ¢; either the formula ¢;
itself or its negation —;. If not, one could add this formula or its negation to the subset
without making it inconsistent. Thus, from all three ¢’s the formula itself or its negation
has to be in each subset. Third, we have to make sure that the subset is upwards closed.
For example, 1 implies both =9 and =3, so when ; is in the subset, both @9 and @3
cannot be. We find the following partition:

{1, w2, 73}, {—e1, w2, 73}, {1, w2, 3}, {1, 72, 73t}
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As we can see the partition has four elements. Therefore, the Aristotelian family of JSB
hexagons has maximal Boolean complexity 4.

4.3 Algorithm in a mathematical setting

Demey gives an algorithm in his article [6] to compute the partition of a fragment in an
Aristotelian family. In this section, his algorithm will be redesigned into a mathematical
setting. By computing the partition of the generic description of an Aristotelian family,
we can obtain its maximal Boolean complexity by simply counting the number of elements
in the partition.

The input of the algorithm is an Aristotelian structure (F, <, ), where F is the frag-
ment of formulas in the diagram, < is the strict partial order of subalternation and — is
the involutive negation function. The output of the algorithm will be the partition; the
set of all maximal consistent upwards closed subsets of the fragment F'.

The Boolean algebra for an Aristotelian structure has the following components. The
set of all formulas in the algebra is equal to the power set of the partition of F, i.e. all
possible subsets of the partition of F. The bottom element is the empty set, and the
top element is the full partition of F. The conjunction operator is the intersection of
sets N, the disjunction operator the union of sets U and the negation function is taking
the complement of a set (for a set A, the complement is given by A®). So we have the
following representation of a Boolean algebra for an Aristotelian diagram A:

B(A) = (PII(F)),0,II(F),N, U, -©).

From this mathematical description one can see that the partition is the only thing
needed to create a Boolean algebra from an Aristotelian diagram. So two things can be
done after computing the partition of a diagram. First, a Boolean algebra corresponding
with an Aristotelian diagram can be formed as we have seen above. Second, the maximal
Boolean complexity of an Aristotelian family can be derived from the size of the partition.
This can be done by taking a generic fragment of a family as input of the algorithm.
The output will be the maximal partition of this family, of which the size is equal to the
maximal Boolean complexity.

In section 4.2 we computed the partition of the generic description of the Aristotelian
family of JSB hexagons by obtaining all subsets of the fragment that were both maximal
consistent and upwards closed. Recall that a set S is maximal consistent if and only if
for every formula ¢ in F' either ¢ itself or the negation —¢ is in S. The set S is upwards
closed if and only if for every two formulas ¢ and %, if ¢ is in S and ¢ < 1, then ¥ is in
S also. This gives us the following mathematical description of the partition II(.A) of an
Aristotelian diagram A = (F, <, —).

(A ={SCF|VpeF (either p € S or —p € S) and
Vo, e F' (peShp<y)=yveS }

Because of the property of a partition that every set contains exactly one of the ele-
ments of every pair {¢, —p} in F, we can say that the size of each set is equal to half the
size of the fragment F'. To simplify the algorithm, we can write the fragment F' as follows
without loss of generality: F' = {©1,p2, ..., ¥p, 71, 72, ..., 7pp}. Since F' contains 2p
elements, we have that the sets in the partition obtained from the algorithm contain p
elements.

Roughly, the steps in the algorithm for obtaining the partition are as follows. We
initialize the partition Ily as a set containing only the empty set. Then, for every ¢ =
1,...,p, we consider the pair {¢;, ~p;}. Since every set in the partition will contain either
w; or —;, we take two steps for every set X in II;_;: if we can add ¢; to X without

17



making the set inconsistent, then we add the set X U {p;} to II;, and similarly, if we can
add —p; to X without making the set inconsistent, we add X U {—¢;} to II;.

The only thing left to find out before putting together the algorithm is how to test
whether a set is consistent or not. As said before, a set is consistent if and only if there
are no two formulas ¢, ¥ in the set such that ¢ = =t or ¢ < —). Thus, checking that
X remains consistent after adding the element ; means in fact checking that X does not
contain an element v such that ) = —p; or ¥ < —p; (or, equivalently, ¢; < —)). Since
we treat every pair {¢;, —¢;} one by one in the algorithm, the first condition will never be
the case. We only have to check the second condition: ¥ < —¢;. Algorithm 1 shows the
pseudocode for the obtained algorithm for creating the partition of a given Aristotelian
diagram.

Input : Aristotelian structure (F' = {¢1, ..., ©p, 71, ..., "@p}, <, )
Output: partition IT of the Aristotelian structure
initialize 11y = {0};
foreach i in {1,...,p} do
foreach set X in II;_; do
if X contains no element 1 such that ¥ < —p; then
‘ add X U {p;} to II;; // X U{p;} is consistent
end
if X contains no element v such that ¢ < ¢; then
| add X U {—¢;} to II; // X U{=pi} is consistent
end

end

end
IT = IL,;
return II
Algorithm 1: Computing the partition of an Aristotelian diagram

This algorithm strongly relates to Demey’s algorithm. Although his algorithm works
with conjunctions instead of sets in the partition, the basic concept is the same: for every
element in the fragment, checking whether we can add the element or its negation to the
sets in the partition without making them inconsistent.

4.4 Time complexity of the algorithm

For determining the time complexity of the algorithm, we estimate the number of ele-
mentary computation steps. First, we have two foreach-loops and after that two if-loops,
which both contain a number of steps to find out whether the if-statement is true or not.
We know that at least one and at most two of the if-statements are true for every set X
in II;_;. We also know that for ¢ = 1 both if-statements are true, since the only set X in
Iy is empty during that step. This i = 1 gives two steps: adding {¢;} to II; and adding
{—p1} to II;. For i > 2 every if-statement takes one step per element in the set X. Since
the number of steps taken depends heavily on the specific entailment relations between
the formulas, we can only compute the minimum and maximum of the number of steps,
i.e. the best-case and the worst-case scenario.

The minimum number of steps is based on the assumption that for every set X in II;_;
for i > 2, only one of the if-statements is satisfied, and therefore the final set II, only
contains two sets; for every ¢ > 2 the two sets from the first ¢ are only expanded and no
extra sets are added. In this case we take 2(1 + 2(¢ — 1)) steps for every ¢ > 2; there are
two sets in II;_1, where for each we add one set to II; and check a condition two times for
all ¢ — 1 elements in the set. Including the two steps taken for the first 7, we obtain the
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minimum number of steps taken by the algorithm: 2+ Y%, 2(1 +2(i — 1)), which can be
simplified to

= p(p—1)
2+2(p—1)+4Zi:2+2(p—1)+4~T = 0(p?).

i=1
We find that the best-case scenario gives us a quadratic time complexity.
The worst-case scenario is based on the assumption that both if-statements are satisfied
for every set X. For every i, II; will double in size with respect to II;_; and the sets in 1I;
will grow in size with one element: for i = 1 we obtain two sets containing one element
each, i = 2 gives us four sets containing two elements, ¢ = 3 gives eight sets containing
three elements, and so on. For every i the algorithm takes 2i=!. (24 2(i — 1)) steps; there
are 2071 sets in II;_;, where for each set we add two sets to II; and check a condition 2
times for all ¢ — 1 elements in the set. So the maximum number of steps taken by the

algorithm is:
P

Y224 2(i - 1) = 027 - p?) = O(2),

i=1
Generally, the worst-case scenario is used for the actual time complexity of an algorithm.
Therefore, we can say that our algorithm has exponential time complexity.

4.5 Examples of computing the maximal Boolean complexity

We take a look at an example using the algorithm. Ciucci, Dubois and Prade [3] give an
analysis on an Aristotelian diagram that is derived from the square of opposition (figure
7a). Figure 10a shows this diagram; the cube of opposition. As can be seen it contains two
replicas of the square, connected to each other by the Aristotelian relations of contrariety,
subcontrariety and subalternation.

2
©1 P2 P4 TP1 3
[ )
—|g03
1 P32 P4
—|802
(b)

Figure 10: (a) Generic cube of opposition with (b) its Hasse diagram

Example 4.7. Figure 10b shows the Hasse diagram from the cube of opposition with sub-
alternation as strict partial order. The comparable formulas form two separate identical
Hasse diagrams. To compute the partition using the algorithm we use as input the Aris-
totelian structure (F, <, ), where F' is the fragment {p1, v2, 3, 04, 7@1, 72, @3, P4 }.
We initialize the partition ITy as the set {0} and then we have to take a series of steps for
every ¢ = 1,2,3,4. We start with ¢ = 1.
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The set IIy contains only one set, the empty set. Since the empty set contains no elements
at all, both if-statements are satisfied and we add QU{p1} = {1} and 0U{=p1} = {—¢1}

to II1; we find
I = {{e1}, {—e1}}.

Then we have ¢ = 2. The set II; contains two sets. For both we have to see whether
adding (92 or =9 will make the set inconsistent. The first set {¢1} contains the element
1, which entails -9, so the first if-statement is not satisfied. The second if-statement is
satisfied, since the set does not contain an element that entails ¢5. So we add {1, ~¢a}
to ITa. The second set {1} contains no elements that entail o as well as —ps, so we
add both {—p1, 2} and {—¢1, =2} to . This gives us the set

My = {{p1, g2}, {1, P2}, {~p1, 72} }.

For ¢ = 3 we have to check all three sets from II5. For the first set both if-statements are
satisfied, so we add the two sets {¢1, 2, p3} and {p1, ~p2, 73} to II3. For the second
set only the second statement is satisfied, so we add {—¢1, p2, s} to II3. The last set
again satisfies both if-statements, so we add the sets {—¢1, @2, 3} and {—¢1, p2, s}
to II3. We end up with the set

IIs = {{e1, ~@2, 03}, {1, 2, ~@3}, {—e1, 2, 73}, {1, @2, 3}, { @1, ~@2, ~ps}}

At last, for i = 4, we check all five sets in II3. For the first, second and fourth set, only the
second if-statement is satisfied, so we add these three sets, each with the extra element
—py4 added, to II4. The third and fifth set satisfy both if-statements. So for each we add
two sets to Il4; one with ¢4 and one with =, added.

The final set we obtain is:

I = {{p1, ~p2, 03, 704}, {@1, 702, 703, 2@a}, {01, 2, @3, @i}, {1, 2, 73, ~04},
{_'3017 P2, L3, _'(104}3 {_‘3017 P2, 7L3, (104}? {_'(101’ Y2, Y3, _'904}}'

This partition contains seven elements. Therefore, we can now say that the family of
classical cubes has maximal Boolean complexity 7.

As we can see in this example, it takes a lot of steps to compute the maximal Boolean
complexity of an Aristotelian family when using the algorithm. One can do this a lot faster
by hand using the symmetry in the Hasse diagram. We show this for the same example.

Example 4.8. We look at the Hasse diagram of the generic cube of opposition in figure
10b again. We want to find the number of maximal consistent upwards closed sets in
this diagram, without using the algorithm. It is not hard to see that taking the top
four elements -1, —ps, 73 and -4 will form one set in the partition; from each pair
{i, i} we have one element and every element that is implied by one of the four elements
is included in the set.

Now we try to replace an element in this set with an element from the bottom row.
In figure 11a we see that we can replace -3 by 3 in the set and still end up with a
maximal consistent upwards closed set {—¢1, 792, @3, 74} Knowing this, we can use
the symmetry of the diagram to come up with the set {—p1, w2, @3, 74}, where —pg
is replaced by 9, as we can see in the same figure. In the same way we can replace a
formula from the top of the diagram with one of the outer formulas on the bottom row
of the diagram: replacing —p;1 by @1 gives us {¢1, 72, 73, “p4}. With the symmetry of
the diagram we can replace —p4 by 4 also, see figure 11b. So by trying to replace one
element and using the symmetry, we can count four new sets in the partition.

We saw that adding one element from the bottom row can be done for every element, and
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we can also try this for two elements. From the left side, we can replace —¢; and -3
by ¢1 and ¢3 without making the set inconsistent: {1, @9, p3,ps}. The symmetry
of the diagram gives us a similar set on the right side, as we can see in figure 11c. Any
other combinations of two elements from the bottom row and two elements from the top
row cannot form a consistent set for the partition, so we can count two new sets to the
partition.

Adding more than two elements from the bottom row is not possible without making the
set inconsistent, so we have reached all maximal consistent upwards closed subsets. We
see again that the maximal Boolean complexity of the cube of opposition is 7.

w éﬁ ; 4 ﬂpg ﬁ )
¥1 ¥3 P2 P4 #1 ©3 2 2
(a) (b)

P2 P4 TP —P3
P1 Y3 P2 P4

()

Figure 11: The seven sets in the partition of the cube of opposition

Another example that is interesting to look at is the Aristotelian rhombic dodecahe-
dron, shown in figure 12a. The Aristotelian relation of subalternation is only visualized in
this figure. The rhombic dodecahedron is an example of a 3D Aristotelian diagram. Since
we have fourteen formulas, using the algorithm for this example will take again many
steps, so we will work out this example using only the Hasse diagram.

Example 4.9. Figure 12b shows the Hasse diagram of the rhombic dodecahedron. To find
the partition, we want to find all subsets that are upwards closed and maximal consistent.
Maximal consistency is satisfied if the set contains either ¢; or —y; for all ¢ = 1,..,7.
We start off with the top four formulas in the Hasse diagram 1, @2, @3 and ¢4. From
the middle row of the diagram we can add at most three formulas for the set to remain
consistent. We can do this systematically: starting off without negations, i.e. adding the
formulas @5, g and 7, and allowing one negation more in the set each time will give us
all possible sets containing the four elements from the top row and three formulas from the
second row. We obtain the following eight sets having zero, one, two or three negations:

{1, 92, 03, 04, 5, V6, P7}

{1, 02,93, 1, s, w6, 7} {P1, P2, 03, 1, 5, 706, 7} {P1, 92, @3, P4, 5, 6, @7}
{01, 02, 03, P4, 705, 706, P7} {91, P2, P3, P4, 705, P6, 707} {01, P2, P3, P4, P5, 06, TPT}
{1, 02, 03, 1, 705, 06, 7}

In the Hasse diagram we can see that from the bottom row at most one formula can be
in each set. For any combination of two or more formulas from the bottom row the same
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Figure 12: (a) Generic rhombic dodecahedron and its (b) Hasse diagram

situation occurs: following the upwards entailments, a formula from the middle row as
well as its negation have to be in the set, which will make the set inconsistent. Including
one formula from the bottom row automatically forms the rest of the set through the
entailments. We obtain the following four sets, one for each element in the bottom row:

{—1, 02, 03, 01, 705, 76, 07} {01, P2, P3, P4, s, V6, ~P7}
{01, 02, 703, @4, 05, 706, 77} {91, P2, P3, P4, 05, P6, P7}

Any other combination of the formulas will not form maximal consistent and upwards
closed sets, so with these twelve sets we have found the partition of the Aristotelian
rhombic dodecahedron. Therefore, the maximal Boolean complexity of this diagram is 12.
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5 Conclusion

The aim of this thesis was to analyze and work out the mathematics behind Aristotelian
diagrams and their properties. The research question matching this purpose was: what
are the mathematical structures underlying Aristotelian diagrams and how can these be
used to compute their properties? Hasse diagrams were introduced and explored to find
that the essence of Aristotelian diagrams lies in the entailment relations in the visualized
fragment of formulas. Combined with an involutive negation function, one can represent a
diagram in a way that makes explaining and computing certain properties less complicated.
Demey’s article about the maximal Boolean complexity of Aristotelian families [6] gives
a peek at these underlying mathematics, but in the actual computations they are hardly
worked out. I introduced and defined the Aristotelian structure (F, <,—) and used this
to redesign Demey’s algorithm for computing the partition of an Aristotelian diagram
(and therefore its Boolean complexity). The new algorithm is designed in a mathematical
setting, which makes it easier to understand for mathematicians.

An interesting topic regarding the maximal Boolean complexity of Aristotelian dia-
grams is non-binary entailment relations, where more than one formulas together entail
another formula. Introducing an entailment structure (F,>, —) satisfying certain proper-
ties, where FE is a set of formulas and > is the entailment relation, would enable us to
investigate its properties. How would this, for example, influence the computation of the
partition and the maximal Boolean complexity? This question is left for further research.
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