
An Analysis of Decompositional Rule Extraction

for Explainable Neural Networks

Bachelor’s Project Thesis

Nicholas Kees Dupuis, s2843013, N.K.Dupuis@student.rug.nl,

Supervisor: Dr Bart Verheij, bart.verheij@rug.nl

Abstract: As artificially intelligent systems take a more important role in our society, it becomes
important to be able to explain their decisions. Neural networks have recently been one of the
most successful tools for producing intelligent systems, but the decisions of neural networks are
inherently difficult to explain, as the internal state is incomprehensible. Rule extraction seeks to
make that state accessible to humans, and bring explainability to neural networks. This paper
analyses a decompositional approach to rule extraction as applied to feed forward networks
trained with back propagation, and finds that explainability may come at the cost of losing
robustness in the presence of noise, scalability and reasonable time complexity, and flexibility to
learn different types of relationships.

1 Introduction

There has been a strong call from the research com-
munity for an increased focus on Artificial Intelli-
gence (AI) safety, and in particular, explainability
of AI systems. Explainable AI (or XAI) refers any
system for which a human can understand why a
decision is made and how it came to its conclu-
sions (Gunning, 2017). The Asimolar A.I. princi-
ples, signed by 1273 AI researchers calls specifically
for systems which can “provide a satisfactory expla-
nation auditable by a competent human authority”.
It is thus important to be able to construct a trans-
parent system for which the internal state is acces-
sible to a human operator and can be interpreted
unambiguously.

1.1 Why XAI?

There are several reasons why explainable AI is im-
portant. In the short term, as AI systems are be-
ing included in larger, more complex systems, they
will need to be proven robust before they can be
included. This is especially true when systems are
used in safety critical applications in which failure
may result in injuries, damages, or loss of life. It is
important that these types of failure can be proven
unlikely or impossible to occur. This kind of exten-
sive verification requires a strong understanding of

the inner working of such an AI system.

In the long term, it will be necessary to be able to
align AI systems’ values with human values (ASI,
2017). One potential obstacle to doing this success-
fully is that a sufficiently intelligent AI with goals
which do not align with human goals would have
a strong incentive to deliberately decieve its user
about its plans, goals, and values in order to keep
them from being altered (Bostrom, 2014). While
developing AGI∗, it will be imperative to verify that
the beliefs and values of those systems are desirable,
and match those of humankind.

1.2 Increasing Explainability with
Rule Extraction

The use and efficacy of neural networks has ex-
ploded in recent years, and they are quickly taking
a more prominent role in our society and economy.
This poses a problem for explainable A.I, as neu-
ral networks are inherently incomprehensible. One
of the methods which may help make them more
explainable, and thus more safe, is rule extraction
(Hailesilassie, 2016).

∗Artificial General Intelligence, or AGI, refers to future
systems which, unlike “narrow AI” will be able to solve prob-
lems in a wide range of domains (Goertzel and Pennachin,
2007).

1



Rule extraction refers to any method which takes
a neural network as input and returns symbolic in-
formation which was embedded in the weights and
biases of that network. When a neural network can
correctly identify relationships in a set of data, it
can be assumed that knowledge about those rela-
tionships exists, albeit abstractly, in the weight vec-
tors of that network. Rule extraction seeks to make
this knowledge externally accessible by construct-
ing a symbolic rule set with declarative logical rules
which are easy to understand.

1.2.1 Knowledge Acquisition for Symbolic
AI

Rule extraction can further be used to increase ex-
plainability in A.I. by helping solve the knowledge
acquisition problem faced by symbolic AI systems.
In contrast with deep learning, symbolic systems
are inherently more explainable, because knowledge
is encoded in a declarative way. However, construct-
ing knowledge bases is incredibly difficult and labor
intensive, and often requires expert input. Rule ex-
traction has the potential to assist in this task by
deriving new rules from neural networks, and thus
combining the learning power of deep learning with
the explainability of symbolic A.I (Ultsch and Ko-
rus, 1995).

1.2.2 Decompositional Rule Extraction

The most direct form of rule extraction is decom-
position, which refers to the decompilation of the
internal state (weights and biases) of a neural net-
work. Relationships between individual neurons are
derived in order to ultimately derive the relation-
ship between the input layer and the output layer.

There exist other families of rule extraction
methods which do not examine the weights and bi-
ases of the network. These approaches do not deal
with the internal state of the network, and instead
treat the network as a “black box” and use it to
generate samples for symbolic learning algorithms
(Robert Andrews and Tickle, 1995). Decomposition
directly tries to translate the complex internal state
of a neural network into something legible and ex-
plainable, and will be the primary focus of this pa-
per.

1.3 An Empirical Analysis of Rule
Extraction

There exist a wide range of machine learning ap-
proaches which differ in both performance and in
explainability. Deep learning has a characteristi-
cally high performance, while also having very low
explainability. Any advance in XAI requires not
only improving explainability, but also maintain-
ing performance (Gunning, 2017). In order for rule
extraction to be useful in explaining deep learning,
it should keep those things which make deep learn-
ing powerful in the first place. These include the
following:

1. Robustness in the presence of noise

2. Scalability and reasonable time complexity

3. Flexibility to learn different types of relation-
ships

In order to test these, different types of rule sets
will be generated and tested with a rule extractor.
Experiments will be performed using the KT algo-
rithm by LiMin Fu (Fu, 1994), one of the earlier
decompositional rule extraction methods. While it
is not correct to generalize the efficacy of the KT
algorithm directly to all rule extraction algorithms,
it is a heavily cited, tried and true method, and the
types of problems faced will serve to shed light on
the challenges of decompositional rule extraction
approaches in general.

2 The KT Algorithm

The KT algorithm (Fu, 1994) takes in a general
feed forward neural network as input and returns a
set of rules. More detail can be found in the orig-
inal paper, along with mathematical justifications
for each of the design decisions, but an overview is
provided here.

The algorithm tries to find a set of rules which
map inputs to outputs, by finding intermediate
rules which connect neurons locally. All neurons in
the network are therefore treated as boolean liter-
als, and their local relationships are described by
if-then implications. To convert the neurons, which
have a continuous activation, to boolean literals

2



with discrete values (true or false), the backpropa-
gation algorithm used must have a sigmoid activa-
tion function with a high λ value:

1

1 + e−λx

This ensures that a neuron’s activation is either
very high or very low, making ambiguous activa-
tions extremely unlikely. The neuron’s continuous
activation can now be converted into a boolean,
where a high activation is true, and a low activa-
tion is false. This now allows us to derive logical
relationships between the neurons of the network.

The KT algorithm can be divided into 3 steps:

1. Search: Rules defining the relationship be-
tween neurons of adjacent layers are found.

2. Re-write: Those rules are rewritten to only de-
scribe neurons in the input and output layers.

3. Rule Refinement: The accuracy of those rules
are tested against some data to remove poorly
performing rules.

2.1 Search

The search phase tries to derive if-then implica-
tions, where an antecedent is comprised of a set of
literals connected by conjunctions, and the conse-
quent implied by the antecedent is a single literal.
The literals in the antecedent may be either pos-
itive or negated, and the consequent may likewise
also be negated.

The search phase goes neuron by neuron through
the network and tries to generate rules in which
the consequent is the neuron currently being ex-
amined. Antecedent literals are drawn from the
previous layer of neurons, whose activations di-
rectly impact the consequent neuron. The previ-
ous layer of neurons is refered to as the set of “at-
tributes.” Attributes can be either positive(A+) or
negative(A−), referring directly to the sign of the
weight which connects it to the consequent. This is
not to be confused with positive or negated literals,
which refers to the logical operation of negation.

Rules generated by the KT algorithm may take
two forms: Confirming

IF A+
1 , ...A

+
i ,¬A

−
1 , ...¬A

−
i THEN C

or disconfirming.

IF ¬A+
1 , ...¬A

+
i , A

−
1 , ...A

−
i THEN ¬C

Thus if all positive literals in the antecedent are
true, and all negated literals are false, it holds that
the consequent must be true.

2.1.1 The Certainty Condition

For each neuron, the search phase tries to find rules
which satisfy the certainty condition:

• If in the antecedent all positive literals are true
(the corresponding neurons have activations of
1), and all negated literals are false (the neu-
rons have an activation of 0), then the neuron
referred to by the consequent MUST have an
activation greater than 0.5. (or in the case of
a disconfirming rule, less than 0.5)

In practice, this means that if we constrain the
activations of the neurons referred to in the an-
tecedent, regardless of the activations of any un-
constrained neurons, the activation of the neuron
referred to by the consequent must mathematically
be greater than 0.5 (or less than 0.5 if the rule is
disconfirming).

Figure 2.1: Example of a network excerpt

For example, take the network excerpt from fig-
ure 2.1, and suppose we have the following potential
rules:

1. IF A+
1 , A

+
2 THEN C

2. IF A+
1 , A

+
2 ,¬A

−
2 THEN C

3



3. IF ¬A+
1 THEN ¬C

For C to have an activation of at least 0.5, the
sum of all the incoming inputs must be greater than
zero. In the case of rule 1, it is possible to have a
sum greater than zero, but it is not guaranteed,
because the unconstrained neurons (A−1 and A−2 )
could bring that sum as low as -0.2. Therefore rule
1 does not satisfy the certainty condition. Rule 2
on the other hand, constrains A−2 to an activation
of zero, thus guaranteeing the sum be greater than
zero. Because of this addition, rule 2 does satisfy
the certainty condition. Rule 3 is disconfirming, so
the sum of the inputs must be guaranteed to be
less than zero. In order to reach a sum greater than
zero, both A+

1 and A+
2 must have an activation of

one to overcome the negative bias term. Since A+
1 is

constrained to an activation of zero, this becomes
impossible, and thus rule 3 also satisfies the cer-
tainty condition.

The search phase performs a heuristic tree search
for each neuron in the network to find confirming
and disconfirming rules which satisfy the certainty
condition.

2.2 Re-write

After the search phase, the algorithm has a set of
rules which all satisfy the certainty condition. Many
of the boolean literals will refer to “concepts”, or
neurons found in the hidden layer(s) and not in the
input or output layers. In order for all the rules
to contain only literals from the input layer in the
antecedent, and literals from the output layer as
consequents, the rules must be rewritten.

For example, suppose we have the rule:

• M1 ∧M2 → C

In which M1 and M2 both refer to concepts,
which are in turn consequents of other rules:

• A1 ∧B1 →M1

• A3 →M1

• A2 ∧ ¬B2 →M2

The rewrite step creates new rules by replacing
concepts with the antecedents of rules in which that
concept is the consequent:

• A1 ∧B1 ∧A2 ∧ ¬B2 → C

• A3 ∧A2 ∧ ¬B2 → C

2.3 Rule Refinement

The last step of the KT algorithm takes a set of
rules produced by the previous two steps, and seeks
to refine them by removing poorly performing rules.
This stage is technically optional, but in practice is
quite useful, as the algorithm often returns many
partially correct or incorrect rules alongside the
correct ones.

This refinement can be done by taking the train-
ing data used to train the neural network, and using
it to test each rule in the rule set. If it is often the
case that when the antecedent of a rule is true and
the consequent of the rule is false, then this rule
ought to be discarded from the rule set. The rules
which perform well under rule refinement are kept,
and make up the final extracted rule set.

2.4 Parameters

There are two constants which assist in limiting
the time complexity of the algorithm and need to
be defined at the start:

The first is k, which refers to the maximum num-
ber of literals in a rule’s antecedent. The time it
takes to run the algorithm grows exponentially with
the number of literals to consider, and limiting this
with the constant k is a necessary condition for the
algorithm to terminate in reasonable time.

The second is ε which is an addition to the cer-
tainty condition. ε effectively refers to “how cer-
tain” a rule must be to be included. Instead of com-
paring a sum to the threshold in the search phase,
the algorithm compares the sum to the threshold
plus ε. A positive ε requires the rules to be more
certain, and a negative ε allows them to be less cer-
tain.

3 Methods

In each experiment, different rule sets will be
learned by a neural network, and then subsequently
extracted. The extractor’s performance will be de-
termined by comparing the initial rule set to the
final rule set.

The neural network will be performing a classifi-
cation task in which, based upon a series of inputs,
it must classify a data point as either true or false.

First, an initial rule set is selected to be tested.
Which rule set is selected is the dependant variable

4



Figure 3.1: Diagram of the experimentation pro-
cess

of any experiment. Next, data is generated from the
initial rule set. For each data point, twelve inputs
are all initialized randomly as either ones or zeros.
If a confirming rule applies, the output is set to 1.
If a disconfirming rule applies, the output is set to
0. If no rule applies, then the output is randomly
initialized to either zero or one. This means that,
while the input space will be uniformly represented,
the output space may not be.

Next, the data is used to train and test a neu-
ral network. The network used will be a 3 layer
network with 12 input neurons, 12 hidden neurons,
and 1 output neuron. 2400 training samples will be
used to train the network, after which the network
will be tested 10 times, each time with 10000 dif-
ferent samples of randomly generated testing data.
For each rule set there exists a maximum accuracy
a classifier can be expected to achieve, which can
be found by assuming the classifier correctly clas-
sifies all samples for which a rule applies, and then
guesses on all remaining samples. If the network
fails to get within half a percent of this maximum
accuracy in any of the 10 times it is tested, it is
trained again. This continues until all 10 tests are
passed. This level of strenuous training and testing
ensures with a high degree of certainty that before
extraction begins, the network has correctly learned
the initial rule set.

Finally, Rules are extracted from the network us-
ing the KT algorithm. (Fu, 1994)

3.1 Evaluating the Final Rule Set

An extraction is either deemed “successful” or “un-
successful.” If the final rule set can be used to clas-
sify the data with an accuracy which is at least
within 1 percent of the maximum accuracy, the ex-
traction is considered to be a success. It is possible
for the extractor to return a partially correct rule
set which classifies above 50 percent, but does not
manage to classify as well as the original rule set
and neural network. This is still deemed a failed
extraction.

3.2 Parameters and Time

Because the KT algorithm requires the parameters
k and ε to be initialized before it runs, and these
values can greatly affect the success or failure of ex-
traction, each experiment runs the algorithm many
times with different parameters until a solution is
found. This is done in the following way:

1. Set k to 1 and ε to 3 at the start

2. While ε is greater than or equal to -3 decrease
ε by 0.5

3. If ε is less than -3, set ε to 3 and increment k

If this method fails to produce a solution in 2
minutes, the method is terminated.

4 Experiments

4.1 Robustness in the Presence of
Noise

One of the important questions about rule extrac-
tion is how robust it is in the presence of noisy data.
If a neural network can learn a rule set well with
noisy data, can that rule set still be extracted?

For this experiment, 3 rule sets are tested†:

1. A1 → C, ¬A1 → ¬C

2. A1 → C, A2 → C, ¬A1 ∧ ¬A2 → ¬C

3. A1 ∧ ¬A2 → C, ¬A1 ∧A2 → C,
A1 ∧A2 → ¬C, ¬A1 ∧ ¬A2 → ¬C

To determine robustness, “noise data” is added
to the training data, or data points for which the
output is entirely random, and not determined by
the rule set. This is analogous to “outlier” points,
or points which don’t fit the general pattern in the
data. Experiments were thus performed with differ-
ent percentages of the data points being noise.

Each experiment was performed 40 times, and
the success rate was recorded. These results can be
seen in figure 4.1.

Evidently, the addition of outliers has a strong
and immediate effect on the performance of the rule
extractor. Clearly the quality of the data is an im-
portant factor.

†literals Ai refer to the twelve input neurons, and C refers
to the output neuron

5



Figure 4.1: Results of Noise Data

0 5 10 15 20 25

0.2

0.4

0.6

0.8

Noise (Percent)

S
u

cc
es

s
R

at
e

Rule Set 1
Rule Set 2
Rule Set 3

Real world data is seldom without noise, and
one of the reasons neural networks are so useful
is their robustness in the presence of noise. If a
rule extraction technique is to be viable for solving
the problem of transparency it should work well
in cases where the neural network was trained on
noisy data.

4.2 Scalability and Time Complex-
ity

Another concern when using rule extraction is scal-
ability. Naturally the ideal would be for rule extrac-
tion to scale as well as the neural networks used,
such that any deep learning system could be ex-
tracted from, and thus explained. This scalability
depends on two factors: time complexity and accu-
racy as rule sets get larger.

In order to test these, two experiments will be
performed. The first will test the effect of adding
more rules. Each rule will be a single input which
implies the output. The second experiment will test
one rule, but the antecedent will have a variable
number of attributes.

Each experiment will consist of 20 trials, and the
success rate and the average time will be recorded
in seconds. If the algorithm fails to find a solution
after 2 minutes, this will be considered a failed ex-
traction, and the time will not be recorded. (see
results in table 4.1 and 4.2)

The accuracy and time complexity are naturally
correlated, as the algorithm fails whenever it takes
too long (2 minutes) to find the answer. Observe
the following extractor output for the rule set A1 ∧
A2 → C: (see figure 4.2)

Table 4.1: Results of adding rules

Succ rate Avg. Time
1 Rule 90% 0.78
2 Rules 85% 2.8
3 Rules 85% 7.5
4 Rules 65% 2.3
5 Rules 70% 6.1

Table 4.2: Results of antecedent size

Succ rate Avg. Time
1 Att. 95% 0.74
2 Att. 90% 15.6
3 Att. 50% 9.0
4 Att. 50% 63.6
5 Att. 0% N.A.

Figure 4.2: Sample extractor output

Success (y/n) Time
y 9
y 1
y 2
y 2
y 34
y 7
y 1
n 120+
y 47
y 2
y 8
y 2
y 7
y 1
y 52
y 2
y 1
y 7
y 96
n 120+

6



What is apparent is that the time to extract
is generally quite low, with several outliers. When
testing the rule with 3 attributes (A1 ∧A2 ∧A3 →
C), it was found that in half of the trials the solu-
tion needed at least 120 seconds to be found (the
extractor terminated at 2 minutes), and yet in the
other half of the trials the solution was found in
just 9 seconds on average. The extractor is deter-
ministic, and will perform exactly the same if tested
twice on the same network. Both training of neural
networks and the generation of training data, how-
ever, are stochastic, and it appears the result net-
works can either be easy to extract from or quite
hard.

This could be explained by the fact that each
time the extractor increments k, or the number
of antecedents a rule may have, the time it takes
to search grows rapidly (exponentially). Thus, the
time to extract may be expected to increase ex-
ponentially, rather than linearly. There is a funda-
mental limit to k, namely the largest layer of the
network (in this case 12 neurons), but as the ex-
tractor seldom makes it past k = 5 before the 2
minutes are up, it is unlikely this limit would ever
be reached in reasonable time.

In order to determine whether it might be ex-
pected for those cases which fail to terminate in
2 minutes would eventually find a solution given
unlimited time, a single trial experiment was per-
formed with a single rule with 5 antecedent at-
tributes (the case which in the previous experiment,
given 20 trials, failed to ever terminate in under 2
minutes).

Given unlimited time, the extractor did find a
solution in 6 minutes and 4 seconds. This is a good
sign for sure, but considering the network it ex-
tracted from managed to finish training in just a
couple seconds, this is a problem. Consider cases
where training a neural network can take hours or
days. If scaling up the problem size would have the
same effect on the rule extractor, we might not be
able to expect a solution for months, or even years.

4.3 Flexibility

Neural networks are quite good at learning many
different kinds of relationships. Does rule extraction
share that kind of flexibility? To test this, we will
consider different kinds of input space partitions.

Any rule set is essentially a description of how to

classify different parts of the input space. Take the
following rule set:
A1 → C, A2 → C

This can also be described by the input space
diagram show in figure 4.3.

Figure 4.3: Diagram of the input space

In this case, the inputs A1 and A2 are positively
correlated with the output C. A similar rule set can
be constructed such that both inputs are negatively
correlated with the output:
¬A1 → C, ¬A2 → C

The input space diagram for this rule set is also
similar, only it has now been flipped. (see figure
4.4)

Figure 4.4: Diagram of the flipped input space

Flipping the input space has no measurable effect
on the neural network’s ability to learn relation-
ships. The following experiment seeks to determine
whether or not rule extraction shares this flexibil-
ity. To test this, 6 rule sets are constructed in which
the inputs positively correlate to the output, and
6 similar but ”flipped” rule sets are constructed
which negatively correlate to the output: (see table
4.3)

7



Table 4.3: Rule Sets to be tested

Original Flipped
Set 1a A1 → C ¬A1 → C
Set 1b ¬A1 → ¬C A1 → ¬C
Set 2a A1 → C ¬A1 → C

A2 → C ¬A2 → C
Set 2b ¬A1 → ¬C A1 → ¬C

¬A2 → ¬C A2 → ¬C
Set 3a A1 → C ¬A1 → C

A2 → C ¬A2 → C
A3 → C ¬A3 → C

Set 3b ¬A1 → ¬C A1 → ¬C
¬A2 → ¬C A2 → ¬C
¬A3 → ¬C A3 → ¬C

After performing each experiment 20 times, the
following results are achieved: (see table 4.4)

Table 4.4: Results of Flipping the Input Space

Original Flipped
Set 1a 85% 50%
Set 1b 35% 85%
Set 2a 85% 15%
Set 2b 30% 90%
Set 3a 75% 25%
Set 3b 65% 90%

One observation which is striking, is not the ef-
fect of correlation, but rather that those rule sets
with negated antecedents all performed worse than
their twin rule set with positive antecedents. To test
this observation, the experiment was run again on
the same rule sets, dividing them this time into
those with positive antecedents, and those with a
negated antecedents. (see table 4.5)

Table 4.5: Results of testing a negated an-
tecedent

Positive Ant. Negated Ant.
Set 1a 90% 55%
Set 1b 100% 20%
Set 2a 95% 50%
Set 2b 90% 35%
Set 3a 75% 45%
Set 3b 95% 25%

The KT algorithm itself has no explicit prefer-

ence for positive or negative antecedents in its tree
search. The only other explanation for this differ-
ence in accuracy is that the structure of the neural
network extracted from is different in a way that
is more challenging to extract from. This is sur-
prising, considering that both networks trained on
rules with positive antecedents and the nets trained
on rules with negative antecedents classify with the
same maximum accuracy.

What this does show is that two very similar rules
can differ significantly in their difficulty with re-
spect to the rule extractor, and that to achieve a
high success rate the rules may need to adhere to
a particular format. This is not particularly flexi-
ble, and poses another limit to the utility of rule
extraction.

5 Discussion

The experiments of this paper tested the presence
of the following three characteristics in rule extrac-
tion:

1. Robustness in the presence of noise

2. Scalability and reasonable time complexity

3. Flexibility to learn different relationships

Firstly, the extractor proved not to be very ro-
bust when noise was included in the data. A small
amount of noise had an immediate effect on the
performance of the extractor, and a large amount
of noise completely crippled its ability to derive the
rule sets. The presence of noise in data is often a
reason to choose deep learning over other machine
learning approaches, and so rule extraction failing
to handle noise would prove a major limitation to
its application.

Secondly, when the rule set was scaled up, both
by adding more rules and by increasing the size of
those rules, the performance dropped significantly.
Especially in the case of increasing the size of rules,
experimental results suggest an exponential time
complexity, which would not be considered reason-
able.

This is consistent with other research which
shows that rule extraction, specifically those meth-
ods which aim for perfect network fidelity like the
method used in this paper, are in the general case

8



NP-hard (Chorowski and Zurada, 2011). This sug-
gests an upper limit on the problem sizes that rule
extraction can be expected to handle.

Thirdly, it was shown that a small change in the
rule set, namely flipping the input space partition,
could produce a large negative effect on the per-
formance of the extractor. Specifically, when the
classification problem involves matching inputs of
1 to an output, the extractor performs far better
than when it involves matching inputs of 0 to that
same output. This is not very flexible and poses a
problem, particularly because when trying to dis-
cover rules, we can’t be expected to know if those
rules match a particular format the rule extractor
can handle well.

What this shows is that qualities which make
neural networks so useful across so many domains
may be limiting factors for the use of rule extrac-
tion to provide explainability. It may be necessary
to make sacrifices in the name of explainability by
limiting problems to be within a domain for which
rule extraction works well.

6 Conclusion

When discussing machine learning methods, we
should consider both learning performance as well
as explainability. This can be done by plotting these
qualities on a graph like the one published by Darpa
shown in figure 6.1 (Gunning, 2017).

Figure 6.1: Current Machine Learning Methods

For rule extraction to be useful, it must not only
make deep learning more explainable, but it must
also avoid harming learning performance. There al-
ready exist methods with lower learning perfor-
mance which are more explainable than deep learn-
ing, and so for rule extraction to be an improvement
on the state of the art, it must be able to combine

the high learning performance of deep learning with
the explainability of logical rules.

The KT algorithm requires sacrificing many of
the things which make deep learning powerful in
order to successfully derive the rule set. If rule ex-
traction is to truly make deep learning explainable,
it should place as few limitations as possible on
learning performance, and the KT fails to do so.
Future research should focus on mitigating these
limitations as best as possible in order successfully
bring the power of deep learning to explainable ar-
tificial intelligence.

References

Asimolar AI Principles. https://futureoflife.

org/ai-principles/, 2017.

Nick Bostrom. Superintelligence: Paths, Dangers,
Strategies. Oxford University Press, 2014.

J. Chorowski and J. M. Zurada. Extracting rules
from neural networks as decision diagrams. IEEE
Transactions on Neural Networks, 22(12):2435–
2446, 2011.

LiMin Fu. Rule generation from neural networks.
IEEE Transactions on Systems, Man, and Cy-
bernetics, 24:1114–1124, 1994.

Ben Goertzel and Cassio Pennachin. Artificial gen-
eral intelligence, volume 2. Springer, 2007.

David Gunning. Explainable artificial intelli-
gence (xai). Defense Advanced Research Projects
Agency (DARPA), nd Web, 2017.

Tameru Hailesilassie. Rule extraction algorithm for
deep neural networks: A review. arXiv preprint
arXiv:1610.05267, 2016.

Joachim Diederich Robert Andrews and Alan B
Tickle. Survey and critique of techniques for ex-
tracting rules from trained artificial neural net-
works. Knowledge-Based Systems, 8:373–389,
1995.

Alfred Ultsch and Dieter Korus. Automatic acqui-
sition of symbolic knowledge from subsymbolic
neural networks. 3rd European Congress on In-
telligent Techniques and Soft Computing, 1:326–
331, 1995.

9


