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Introduction

The control of upper body prosthesis through the use of myoelectric signal has been present
in concept for the past 60 years [1]. For that purpose, surface electromyography (EMG)
electrodes are used to record the muscle fiber action potentials of muscle bundles underneath
the skin. Surface electrodes offer a non-invasive solution to EMG signal extraction, but they lack
behind intramuscular electrodes, especially with regards to recordings from deep muscles and
subsequent EMG crosstalk. Surface electromyography is constantly under development to
overcome issues such as the displacement of the electrodes [2].

Myoelectric control of prosthesis includes many types of control methods, such as threshold,
proportional and pattern recognition control. In the case of less complex controls, such as
threshold control systems, the system toggles between movements, such as hand
opening/closing, where the force and/or velocity of the movement is controlled by the intensity
of the extracted EMG signal from surface electrodes. The type of movement is selected by
contracting muscle bundles assigned to a movement, with EMG surface electrodes attached to
these muscles [3].

Myoelectric pattern recognition MEPR is based on the idea that individuals are able to
produce repeatable patterns of muscle signal, which gives MEPR its biggest advantage over
other control methods. This means that it offers users the ability to control their prosthesis as
they will [4]. However, MEPR is still not a popular choice. This is mainly attributed to the
complexity of the training process for new users, which increases with added degrees of
freedom, and users are mostly unable to reliably produce robust patterns [5].

The process of pattern recognition generally relies on derived values from the initially
acquired data, called features. These various feature sets represent different aspects of interest
in the original data, for example the color value of pixels in an image or the voltage amplitude
of a signal. It is important to select relevant features to be extracted for the purpose of the
pattern recognition system. These features are then used to train classifier algorithms to make
predictions about the classes of new, but similar, data sets. When these new data sets are not
similar to the data used to train the algorithms, the chances to have a correct prediction of the
class of the data is low. [6].

After the desired features are selected, these features are extracted from segmented raw
EMG data; by segmenting the data into overlapping windows, and these windows are divided
into training, validation and testing sets [7].

Feature extraction can be implemented in the open-source myoelectric control platform,
BioPatRec [8]. The system learns about the patterns in the data and how to classify them using



the training and validation sets, while using the testing set to check the accuracy of the system.
The classification process is carried out by a classifier algorithm, and one of the advantages of
using BioPatRec is that it has the option to choose from many different classifiers, or even the
ability to add new ones [8].

The EU funded project INPUT [9] aims towards creating upper limb prosthesis that users can
reliably utilize in their everyday activities. The function of the prosthesis is to use surface
electrodes to extract EMG signal from the arm above the amputation region, and extract a
predetermined set of features to train the MEPR system.

In a test carried out by members of project INPUT, EMG readings from surface electrodes
were collected from 38 able bodied participants. The participants were given movement tasks
to train the pattern recognition algorithm used in the project, and to test the ability of the
algorithm to classify the movements from the extracted EMG signal, using the motion test [10].

In this project, with the help of the platform BioPatRec, data collected from participants can
be further studied. This could be done by extracting different features, and checking the
classifiers interaction with these features, as well as the possibility to use different classifiers.
However, the data was collected and stored in a format that was incompatible with the
required data format for BioPatRec.

Therefore, the primary goal of this study is to use Matlab to manipulate the structure of the
data set used in project INPUT. This is expected to allow the use of the data on the platform
BioPatRec. Second goal is to check for a possible correlation between the feature data sets and
the ability of able bodied users to use the classifier algorithm. With the help of some statistical
analysis, a further understanding of the effect of feature changes on performance could be
acquired.

Methods

Original data structure

Project INPUT collected EMG data from 38 subjects using an 8 channel input from electrodes
attached to the subjects’ forearm. The first objective was to extract the raw data for each
participant, with a total of 15 sessions per participant, and save it in a single file.

The original data was stored in a (.mat) file that contained three main divisions called
structs. These 3 structs contained groups of participants that were divided according to the
type of feedback the participants received; extended feedback (EF struct), medium feedback
(MF struct) and no feedback (NF struct). Each one of these 3 structs contained fields
corresponding to the participants for each group; 12 participants in the EF struct, 13 in the MF
struct and 12 in the NF struct. Each participant field had 15 structs representing each session of
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their participation in the trial. Finally, each one of these 15 structs contained the EMG recording
session, as well as two performance indication fields; a field with the values of the number of

correct classifications and another for accuracy (Fig.1).

| MF16 1x1 struct
£l MF17 Tx1 struct
ﬁj MF18 Ix7 struct
£ MF19 Tx1 struct
PR —— ﬂ MF2 TxT1 struct
P g _j MF20 Ix1 struct
Tx1 struct ;EJ MF3 Ix1 struct
_] MF4 Tx1 struct
_J MF5 Ix1 struct
—£| MF6 Tx1 struct
i] MF7 Ix1 struct
-£| MF8 Ix1 struct

Figure 1: Original data structure

EEJ Trial_1
(£ Trial 2
[l Trial_3
[_] £| Trial 4
[E] Trial_s
[E] Trial_6
[E] Trial7
I:__‘ £ Trial_8
[_J | Trial_9
l_j Trial_10
[El Trial_11
[E] Trial_12
[E] Trial_13
[E] Trial_14

[E] Trial_15

Ix1 struct
Ix1 struct

- rRAW
j:] Accuracy
_tj CorrectMovements

3000x8x24 double
66.3800
5

The original format for the data contained the bulk of recording session for all participants,

but could not be directly imported into BioPatRec, since BioPatRec only accepts data files

containing a single struct with eleven fields. The fields should have identical names to the ones

used by BioPatRec, and it has the EMG recordings for a single session, as well as other fields

such as the sampling frequency, the name of movements used and the number of channels.

Data adjustment

Extraction of RAW data

The first step was writing a script using Matlab, which loaded the original data file and

accessed each individual raw data field, labeled it with the participant’s category — MF/NF/EF-
and the trial number, then saved it as a (.mat) file for further use (fig.2).



o load ('ExpData.mat'):;

= names MF = fieldnames (DatalAll.MF);

= names NF fieldnames (DataZll.NF);

= names EF fieldnames (DataAll.EF);
$allocating MF feedback entries

I

— [lfor i = length(names MF):-1:1

= Current (i) = deal(Datakll.MF. (names MF{i})):
= Trial number = fieldnames (Current(i)):

— = for j = 1 : length(Trial number)

W 0 =] o = W N

10 - k= ((i-1)*15)+ 3:

5 IR MF entries(k) = deal (Current(i).(Trial number{j})):
12 tbuffer

13l = x = MF _entries(k):

14 — save (sprintf ('MF _entries %024',k), 'x'):
b= end

R = - end

17 $allocating NF feedback entries

18 — [Jfor i = length(names NF):-1:1

19 - Current 2 (i) = deal(DatalZll.NF. (names NF{i})):
20 — Trial number = fieldnames (Current 2(i)):

2T = | for j = 1 : length(Trial number)

22 k= ((1-1)*15)+ j:

2= NF _entries (k) = deal (Current 2(i).(Trial number{j})):
24 $buffer

25\ = x = NF_entries (k)

26 save (sprintf ('NF_entries %02d',k), 'x'):
27 end

P4 -end

29 $allocating EF feedback entries

30 - [Jfor i = length(names EF):-1:1

= Current 3 (i) = deal(DatakZll.EF. (names EF{i})):
e = Trial number = fieldnames (Current 3(i)):

33 | for j = 1 : length(Trial number)

34 - k= ((i-1)*15)+ 3:

5l EF _entries(k) = deal (Current 3(i).(Trial number{j})):
36 $buffer

St x = EF _entries (k)

Sh:= save (sprintf ('EF_entries %024d',k), 'x'):
35 = end

40 — ~end

Figure 2: Data extraction code

A shorter version of the script was originally used, which used a single loop for all three
participant types — MF/EF/NF-, but was later expanded into three distinct parts to debug
possible issues. One of the issues encountered was that there was a recording session missing
for one of the participants, which initially caused a labeling error for the saved files. The issue



was mitigated by using the number of structs for each participant as a variable that can be used
for numbering in the formula [k = ((i-1)*15) + j]. The saved files had a title containing the type
of the participant —-MF/EF/NF- and the numbering for the trials for each type from 1 to the total
number of trials of the same type. For example, the fifth EF Participant would have their 10™
trial’s raw data saved as ( EF_entries_50.mat). This formatting allowed for using simpler
counters in further parts of the data processing, and could easily be recovered into the original
trial numbering from 1 to 15.

Data formatting

The format that needed to be changed was the format of the EMG [RAW] data within each
recording session, which is why the RAW data was extracted from the original data file into
individual files. The recordings in the original data were divided into 21 movements for each
trial, where 7 movements were used to create the 21 sets; such that each movement is made
into sets of 3 consecutive 3 second contractions with 30%, 60% and 90% contraction power
respectively. Rest was treated as a separate extra movement. The original RAW data files
contained a 3 dimensional matrix, where one dimension was for each of the 8 channels, one
dimension represented one of the 24 movements (3 repetitions of 7 movements + 3 rest) and
one dimension for the raw data for each movement for each channel.

For the data to be imported into BioPatRec, recordings had to be in a specific format of 3
repetitions of 3 seconds of contraction followed by 3 seconds of rest for each movement.
Which means that each one of the 21 movements ( as categorized in the original data) needs to
have its contractions extracted individually, and then having its corresponding rest data added
between each 3 second contraction of the same movement type, such that the data would be
in the form: [3 seconds 30% contraction (movement (x)) = 3 seconds rest = 3 seconds 60%
contraction (movement(x)) = 3 seconds rest = 3 seconds 90% contraction (movement(x)) 2 3
seconds rest. There was only 1 set of rest data in the original recordings consisting of 9 seconds
of rest, and it was used to fill in the rest data for all movements. This was done after making
sure that BioPatRec wouldn’t be using the rest intervals in the feature extraction, and is
exclusively for entering the data in an acceptable format, as they are cut out by BioPatRec in
the phase where the contractions are extracted from the data file.

Using MATLab, 555 individual RAW data files were created in the extraction of RAW data
step, containing the individual recordings for each participant for each day. These data files
were read into the data formatting script (fig.3), which put the data in the correct format, and
created a struct containing the data. The script also created the other fields required by
BioPatRec that define the number of channels and the name of movements, as well as other
fields that are used in the feature extraction phase (fig.4).
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name counter = 1;
Number = 195;
[ZJfor n = 1:Number
Trial_num = rem(n,15);
if Trial num == 0
Trial num = 15;

end
if Trial num == 1

name_counter = (name_counter + 1) 2
end

X = load(sprintf ('NF_entries_%d.mat', n)):
$ main loop through 8 channels

Hfor r = 8:-1:1

% loop through the movement types (21 in total) with a step size of 3,
$ 60% and 90% for each iteration

] for i = 8:-1:1

kKl = ((3%(i-1))+1):

$extract the 3 data sets for each moevment

-] for j = kl1+2:-1:k1

jj movement (:,j) = X.X.RAW(:,r,j)’

k2 = ((k1+3)-3):

rest(:,j) = X.x.RAW(:,r,k2);

$create a small block containing a contraction plus rest

block 1(:,j) = vertcat(movement(:,j),rest(:,3)):

%$if all 3 contraction forces are conc. to their respective rest

$data, create a bigger block contianing all 3 contractions and
$rest
if 3 =— k1

end
B end
I end
-end
tdata = block_3(:,:,2:8);
date = [2016 12 15 12 08 20]:
dev = char('13E200'");
temp_field = names_NF{name_counter =1}
$create the modified data

save (sprintf ('adjusted_%s_trial%d.mat',temp field, Trial num ), 'recSession’'):
-end

Figure 3: Data formatting code

dnclude 30%,

block_3(:,r,i) = vertcat(block 1(:,J), block_1(:,j+l), block 1(:,3+2));

recSession = struct('sF',1000,'sT',18,'cT',3,'cT"',3,'nM',7,'nR"',3, 'nCh"',8, ['mov',{{'Pronation’';

'*Supinatio



[£] 1x1 struct with 17 fields

Field Value
H sF 1000

H tw 0.2000
H nCh [1,2,3,4,5,6,7.8]
Y mov 8x1 cell
1 scaled NaN
H noise 0
H wOverlap 0.0500
| dev "13E200"
ae| comm 'N/A'
3 fFilter Tx1 cell
{}] sFilter Ix7 cell
H trSets 43
H vSets 24
H tSets 49
E| trFeatures 48x8 struct
-E| vFeatures 24x8 struct
£| tFeatures 49%8 struct

Figure 4: Format of adjusted data

The script for this phase was initially made to loop through all 3 types of data ( NF/MF/EF),
then a single script for each data type was used instead to simplify the code and it could be
easily adjusted to all three types. The script shown in figure (3) was used for (NF) titled part of
the data, and the concept for data formatting is the same for the other two types. With
knowledge of the sampling frequency of the original data, and the arrangement of the
movement types, the code starts looping through each of the 8 channels from the recording
while taking in consideration the size of each contraction. The code saves the rest data aside,
separates the first contraction power for the first movement and concatenates it with the
corresponding part of the rest data. Then the code does the same for the second and third
contraction parts of the same movement, and saves the created block of data which contains
the consecutive contractions and rest. The code then proceeds to the next movement and
repeats the process, and does so for all the movements, before proceeding to the next channel,
until all the data is in the desired format. Afterwards, the script creates the fields shown in
figure (4), and saves the data in a new file with the number of the trial.

A visualization of how the data looked like before and after adjustment can be noted by
plotting the data (fig. 5). The figure illustrates how a single iteration of the code concatenates a
movement to its corresponding rest data.
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Figure 5: Extraction of the data of individual contraction powers and corresponding rest from the original format (a,b and c).

Adjusted data of contraction powers and corresponding rest, making 1 move (d)
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As a last adjustment before using the data, the file naming was changed to include the original
naming of the data from project INPUT (fig. 6).

|_| adjusted_EF_entries_166.mat adjusted_EF9_triall.mat
|| adjusted_EF_entries_167.mat adjusted_EF9_trial2.mat
|| adjusted_EF_entries_168.mat || adjusted_EF9_trial3.mat
adjusted_EF9_triald.mat
adjusted_EF9_trial5.mat
adjusted_EF9_trial6.mat
adjusted_EF9_trial7.mat
adjusted_EF9_trial8.mat
adjusted_EF9_trialS.mat
adjusted_EF9_trial10.mat
|| adjusted_EF_entries_176.mat || adjusted_EF9_trial11.mat
|| adjusted_EF_entries_177.mat adjusted_EF9_trial12.mat
adjusted_EF9_trial13.mat
adjusted_EF9_trial14.mat
adjusted_EF9_trial15.mat

|| adjusted_EF_entries_169.mat
.| adjusted_EF_entries_170.mat
|| adjusted_EF_entries_171.mat
|| adjusted_EF_entries_172.mat
|| adjusted_EF_entries_173.mat
|| adjusted_EF_entries_174.mat

|| adjusted_EF_entries_175.mat

__| adjusted_EF_entries_178.mat
|| adjusted_EF_entries_179.mat
|| adjusted_EF_entries_180.mat

Figure 5: Saved data and naming; Initial naming (left) and new naming (right)

Feature extraction

Four features were chosen to be extracted from the signal, according to their prominent use
in literature, as a non-exhaustive compilation of myoelectric signal features employed in
pattern recognition for prosthetic control. These features are: Absolute mean value, zero
crossing, wave length and root mean square [8].

The feature absolute mean value is referred to as (tmabs) in BioPatRec, and it is calculated
from the mean of the sum of the absolute data values in the segmented window. The root
mean square is referred to as (trms), and is calculated from the square root of the sum of the
squared values divided by the number of data points in the window. The zero crossing feature
referred to as (tzc) represent points in the data where the value changes from positive to
negative, or vice versa. The calculation of the wavelength feature, as an accumulative change in
the length between consecutive points in the same phase, is referred to as (twl). The
calculation of all four features is carried out within the (GetSigFeatures) function in BioPatRec
through formulas dedicated to different feature types (fig.7).
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85 [[] function pF = GetSigFeatures_tmabs (pF)

gé $ 2011-07-27 Max Ortiz / Creation

87 — pF.f.tmabs = mean (pF.absdata);

gg — ~end

122 [-] function pF = GetSigFeatures_ trms (pF)

123 $ 2011-07-27 Max Ortiz / Creation

124 - pF.f.trms = sgrt(sum(pF.absdata .~ 2)/pF.sp):

E25 = —-end

113 [/ function pF = GetSigFeatures twl (pF)

114 % Waveform Length (acumulative changes in the length)
115 % 2011-07-27 Max Ortiz / Creation

EE6 S mdata = [zeros(l,pF.ch) ; pF.data(l:pF.sp-1,:)1;
VT = pF.f.twl = sum(abs (pF.data - mdata)):

118 - ~end

129 o functicn pF = GetSigFeatures tzc(pF)

130 [} 2011-07-27 Max Ortiz / Creation

131 - %check if tmabs is available

3= if ~isfield(pF.f, 'tmabs')

333 = pF = GetSigFeatures tmabs (pF):;

184~ end

135

136 - tmp = repmat (pF.f.tmabs, [size (pF.data,1),1] ):

137 = zc = ( pF.data > tmp ) - (pF.data < tmp )

138 — pF.f.tzc = sum( ( zc(l:pF.sp-1,:) - zc(2:pF.sp,:) ) ~= 0);
139

140 3 $ Zero Crossing / using the abs mean as threshold

141 3 for i =1 : pF.ch

142 & zc = (pF.data(:,1i) >= pF.f.tmabs(i)) - (pF.data(:,i) < pF.f.tmabs(i)):
143 3 pF.f.tzc{i) = sum((zc(l:pF.sp-1) - zc(2:pF.sp)) ~= 0):
144 3 end

145

146 — end

Figure 6: Mean absolute average (Lines 86-88), root mean square (lines 122-125), wave length (lines 113-118) and zero
crossing (lines 129-146)

Since the feature data is extracted for every one of the 8 channels used for recording, and
divided into training, validation and testing sets, the extracted features needed to be laid out in
proper format to collect all the fragments in one data set. Through the combined use of
BioPatRec and Matlab, the feature sets of each participant could be calculated. The script could
continuously interact with the features produced by BioPatRec and transform them into the
desired format (fig.8).
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load('Channel_test_l.mat')ﬂ

$aquire structs for the training, wvalidation and testing

tr = deal (sigFeatures.trFeatures):
v = deal (sigFeatures.vFeatures);
te = deal(sigFeatures.tFeatures);
$initializing feature sets

tr mabs = zeros((8%48),8);

tr_zc = zeros((8%48),8);

tr wl = zeros((8*48),8);

tr_rms = zeros((8%48),8):

v_mabs zeros((8%24),8):;

v_zc = zeros((8*24),8):

v_wl = zeros((8%24),8);

v_rms = zeros((8%24),8);

te_mabs = zeros((8%49),8);

te_zc = zeros((8%49),8);

te wl = zeros((8%49),8):;

te_rms = zeros((8%49),8);

$create a step count to fill in the data: 8 data points per step for each

%$0f the 8 channels starting with the training set

lfor 3 = 1:8
oy
= for i = 1:48

X (1*8)
vyv=(x-17):
tr mabs((y:x),j) = tr(i,]j).tmabs;
tr_zc((y:x),J) = tr(i,]).tzc;
tr wil((y:x),3J) = tr(i,]).twl;
tr rms((v:x),3) = tr(i,j).trms;
i end

-end
$ Validation set

i=/for j = 1:8
é] for i = 1:24

I

X (1*8) ;

' . Sl I

v_mabs((v:x),J) = v(i,]).tmabs;
v_zc((y:x),3) = v(i,]).tzc;
v_wl((y:x),3) = v(i,]).twl;
v_rms((y:x),J) = v(i,]).trms;

B end

- end
$test set

14



43 — for j = 1:

I

44 - for i 1:49

45 — X = {i*8);

46 — v=(x-T7):

R = te mabs((y:x),Jj) = te(i,]).tmabs;
g8 — te_zc((y:x),Jj) = te(i,]j).tzc;

49 — te wl((y:x),3j) = te(i,]).twl;
= te_rms((y:x),3j) = te(i,]j).trms;
2 A= end

5287 end

53 $concatenate values from all the sets

54 - mabs = cat(l,tr_mabs,v_mabs,te_mabs);

A o zc = cat(l,tr_zc,v_zc,te_zc);

56 — wl = cat(l,tr wi,v_wl,te_wl);

A o rms = cat(l,tr_rms,v_rms,te_rms);

58 - save ('Channel test features 1','mabs','zc','wl','rms'):;

Figure 7: Feature extraction and formatting code

Biopatrec divides the extracted features into training, validation and testing sets. All three
sets are required in order to construct an array of all features for each channel. The code
extracts the four specified features and concatenates all three types of feature sets, and then it
saves the features with the corresponding trial number. Another script was used to collect all
features extracted from all 15 trials for each participant that simply puts the extracted features
from individual trials together in one field.

Performance

The original data collected from participants included performance indicators. A
classification was made using Matlab, according to the overall performance enhancement
throughout the trial, and the participants that showed the most improvement were the ones
further studied.

The goal was to select participants that showed positive and consistent change in their
performance throughout the trials. The classification was carried out by plotting both accuracy
and number of correct movements for all 15 sessions of each participant. The data in the
performance plots were analyzed by calculating the number of positive changes between
consecutive points in the graph, and the value of change. Negative change contributed
negatively to the performance enhancement according to how much the accuracy or number of
correct movements dropped (fig.9).

The decision on the participant that showed most improvement was made by choosing the
participant with the highest change value; such that the participant would show improvement

15



in performance from the initial trial, and consistently kept the performance high with little
negative retrace.
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Figure 8: Performance plots of some participants

Performance tracking by the INPUT team in the original data was indicated by two fields:
accuracy and number of correct movements. Accuracy is a measure of the percentage of the
time the performed movement matches the prompted movement for the participant, and the
number correct movements are the number of movements that were performed without
misclassifications for two seconds. A profile containing the 4 chosen features was created,
containing data for the participant that showed the most enhancements in performance
throughout the 15 trials, which is participant EF_20. Using this profile, the feature data could be
put up against the performance indication data set for that participant, and further statistical
study of a possible systematic change in the features was possible.

Statistical analysis

In order to study a possible systematic change in the feature data sets corresponding to
performance indicators for participants, four spearman correlation tests were carried out. The
aim of carrying out multiple tests was to test the correlation coefficient value between equally
high, equally low and between high and low performance trials from the same participant, as
well as between equally high performance trials from different participants. These four tests
were made to check all possible correlations between performance values. Spearman

16



correlation was used instead of pearson correlation, since the data is non-linear [11].

The feature data from participant EF_20 was used for the first three tests, which are those
carried out on the data from the same participant: Test number one was between two high
accuracy trials, trial 9 (accuracy: 93.8%) and trial 10 (accuracy: 94%). The second test was
between two low accuracy trials, trial 1 (accuracy: 46.24%) and trial 4 (accuracy: 49.4%). The
third test was between one low and one high accuracy trial, trial 1 (accuracy: 46.24%) and trial
15 (accuracy: 98.84%).

The fourth correlation test, which was between equally high performance trials from
different participants, was carried out on the extracted features from participant EF_20 — trial 9
(accuracy: 93.8%), and participant EF_9 —trial 11 (accuracy 92.7%).

Results

The first part of the study, which aims to extract and change the format of the data from
project INPUT into the format used by BioPatRec, was successful for all recording sessions
(Fig.10), and the data could be loaded into BioPatRec to extract the feature data sets.

[E] 1x1 struct with 11 fields €| 1x1 struct with 3 fields

Field Value Field Value
H sF 1000 FH rRaw 3000x8x24 double
o sT 18 FH Accuracy 66.3800
ZD 4] 3 bﬂ CorrectMovements 5
T 3

-H nM 7

-HnR 3

-H nCh 8

ﬁl mov 7x1 cell

—H date [2016,12,15,12,8,20]

-H tdata 18000x8x7 double

abe| dev "13E200'

Figure 10: Adjusted data ( left) and original data (right)

For the selection of the participant showing the most prominent improvement in
performance, the performance indication in the form of a plot for both accuracy and number of
correct movement was created with Matlab, which allowed to visually and numerically check
for the participant with the highest performance improvement. This helped selecting
participant (EF_20) as the most prominent enhancement in performance (Fig. 11).
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Figure 11: Performance of participant EF_20 - accuracy (left) and number of correct movements (right)

“In terms of feature extraction, the four chosen features were extracted and plotted for each of
the 8 channels. For each participant, the full feature points collected throughout their 15 trials
could be presented both numerically (as 15,000 points) and graphically, as show in (Fig. 12).

Channel 7

=
- 6000 '

(m

(O]
< 4000

0 2000 10000 Data pOiIltS 15000

Figure 12: (Mabs features for participant EF_20) - channel 7

As for the statistical study of a possible correlation between the feature data points, with
regards to the achieved accuracy in trials, Graphpad Prism was used; pearson correlation test
was performed using GraphPad Prism version 7.04 for Windows [12]. Where the correlation
coefficient (r) has a value between [-1,1], where an r value of (-1) means that the data sets are
completely inversely correlated, (0) means that there is no correlation between the data, and
(1) means that the data is completely correlated. The tests were carried out on the data from

all four extracted features, and for each of the 8 channels.
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Color coding:

R value 0.85>1 0.75->0.85 | 0.65->0.75 0.5-0.65 0.1-0.5 <0.1
color

Each row in the tables represents the correlation (r) value between two different trials; where
the number of the channel in comparison is mentioned in the first row, while the title of the
compared feature is mentioned in the first column.

R values between high accuracy trials for participant EF_20, between [trial 9 (93.8%) and trial
10 (94%)]:

Channel
8
No data

Channel
7

Channel
6
0.7903
(0.7646
to

0.8134)

Channel
5

Channel
4

Channel
3

Channel
2

Channel
1

Mabs

0.5929
(0.5492
to

0.6334)

WL No data

0.8146)

RMS 0.8426 No data
(0.8227
to

0.8604)

(0.7588
to
0.8087)
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R values between low accuracy trials for participant EF_20, between [trial 1 (46.24%) and trial 4

(49.4%)]:
Channel | Channel | Channel | Channel | Channel | Channel 6 | Channel | Channel
1 3 4 5 7 8
Mabs | 0.5021 0.5441 0.7768 | 0.7451 0.7426 No data
(0.452 (0.4967 (0.7497 | (0.7148 (0.712
to to to to to
0.5491) 0.5882) 0.8013) | 0.7727) 0.7704)

0.5784
(0.5335
t0 0.62)

0.5026
(0.4525
to
0.5496)
0.5539
(0.5072
to
0.5973)

RMS

No data

0.803 0.775 0.771 (

(0.7787 | (0.7478 0.7433 to

to to 0.796

0.8249) | 0.7997) )

0.7622 0.7386 0.7369 No data
(0.7336 | (0.7077 (0.7058

to to to

0.7881) | 0.7667) 0.7652)

R values between high and low accuracy trials for participant EF_20, between [trial 1 (46.24%)

and trial 15 (98.84%)]:

Channel | Channel 2 | Channel
1 3
Mabs | 0.5483 SONOLIoPAEN 0.6615
(0.5012 oM PAer:EYe) (0.6234
to 0.00888) to
0.5921) 0.6965)

/ol 0.05937 0.09138
(- (0.02667
0.005517 to

to 0.1553)

0.1238)

0.5542 [ONEF/ENSN 0.6429
(0.5076 [ORPXERTIM (0.6032
to 0.007864) K%
0.5976) 0.6794)

RMS |0.5326 [ENy2A0M 0.6637
(0.4845 [ORERTNN (0.6258
to 0.0008543) K%

0.7601)
0.04523 -0.1809

(- (-0.2429

0.01969 to -

to 0.1174)

0.1098)

0.7501
(0.7203
to
0.7771)

Channel | Channel | Channel | Channel | Channel
4 5 6 7 8
0.7313 | 0.7898 | No data
(0.6996 | (0.7641
to to

0.813)
0.07174
(0.0069
to
0.136)

0.817
(0.7942
to

0.8375)

No data

No data

0.7711
(0.7434
to

0.7798
(0.7531
to

No data
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[05775) [N 0.6985) [10:8765) [IOMASIN 0.7961) | 0.804) |

R values for high accuracy trials between participant (EF_20) - trial 9 (93.8%), and participant
(EF_9) - trial 11 (92.7 %)]:

Channel | Channel | Channel | Channel | Channel | Channel | Channel | Channel
1 2 5 6 7 8
Mabs | 0.7517 | 0.5023 0.6149 0.819 No data
(0.722 (0.4521 (0.5729 (0.7964
to to to to
0.7786) | 0.5492) 0.6537) 0.8393)
ZC 0.03605 0.04676 0.01297

(- (- (-

0.02888 0.01816 0.05194
to to
0.1113) 0.07777)

0.7744 0.5253 0.6526 No data
(0.7471 | (0.4766 (0.6137
to to to
0.7992) | 0.5707) 0.6883)
RMS 0.7501 0.6187 No data
(0.7203 (0.577
to to
0.7771) 0.6572)

Discussion and conclusion

The extraction and reformatting of data from project INPUT allowed for the data from
project INPUT to be used in the pattern recognition platform BioPatRec. This opened the
opportunity to further investigate the EMG signal collected from the participants in the project,
and the ability to study extracted features from the signal.

Many scripts were designed using Matlab, most of which are explained in this paper. The use
of Matlab and the implementation of basic logic and programming offered a simple and
effective approach to transform the data into the desired format, and to interact with the
pattern recognition platform.

The statistical analysis of the extracted features was carried out using Graphpad prism, after
choosing a participant from project INPUT that exhibited the most noticeable enhancement in
performance, in both accuracy and number of correctly classified movements. The statistical
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test carried out was planned to give an idea about the possible correlation between feature
data sets. The tests were carried out between trials of similar accuracy values, both high and
low, and between the highest and lowest accuracy values. This was done to test all possible
scenarios in a non-exhaustive manner, in order to test the hypothesis about the existence of a
correlation.

The first test was between two trials from the same participant, who had a high accuracy on
both chosen trials. The result of the correlation test shows a very high correlation between the
trials for the Mabs, WL and RMS features. This high correlation might point to a systematic
change in the feature data corresponding to the high accuracy achieved in the trials. The
second test was for the same participant, but between two low accuracy trials. The result of the
correlation test shows poor correlation between the trials, which points to the low repeatability
of the feature data. The third test for the same participant was between a low accuracy trial
and a high accuracy trial. The results also show a poor correlation between the trials, which
supports the idea that the accuracy of classification is reflected in the feature data, such that
different spectra of accuracy would exhibit differently correlated feature data, and only highly
accurate trials would exhibit a high correlation. The last test was between two trials of similar
accuracy, but for two different participants. The idea of this last test was to check if different
participants exhibit a specific level of repeatability in the feature space that can be traced via
ranking correlation. The result of the test showed a moderately strong correlation between the
two trials, which might point to a systematic change in the feature space that reflects the
performance of participants.

Throughout the tests, all 8 channels of the data were used, but it appears that the data
collected from channel 8 was of much lower amplitude than the rest, and was considered an
outlier since it offered an almost constant/non-varying read out values. However, the 7 other
channels were all considered, some of which consistently offered a higher correlation than
others as seen in channel (4). Also, the nature of the chosen features can offer a higher
correlation based on the algorithms used in acquiring them, which is why the color coding was
used to determine variability in correlation instead of using (r) values as they are conventionally
used. It can also be noticed that the zero crossing feature offered very little contribution to the
correlation on the scale, but variations can be noticed nonetheless between strongly and poorly
correlated trials.

A first conclusion from these results is that there seems to be a systematic change in the
feature data that reflects the performance of participants. However, the signal acquisition and
processing contributes to a high extent in such a correlation. It is also important to point out
that the correlation tests were carried out on only two participants. Therefore, a complete
analysis for other random participants will be necessary to have a more concrete resolution
about the existence of a correlation.
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