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Introduction 
The control of upper body prosthesis through the use of myoelectric signal has been present 

in concept for the past 60 years [1]. For that purpose, surface electromyography (EMG) 

electrodes are used to record the muscle fiber action potentials of muscle bundles underneath 

the skin. Surface electrodes offer a non-invasive solution to EMG signal extraction, but they lack 

behind intramuscular electrodes, especially with regards to recordings from deep muscles and 

subsequent EMG crosstalk. Surface electromyography is constantly under development to 

overcome issues such as the displacement of the electrodes [2]. 

  Myoelectric control of prosthesis includes many types of control methods, such as threshold, 

proportional and pattern recognition control. In the case of less complex controls, such as 

threshold control systems, the system toggles between movements, such as hand 

opening/closing, where the force and/or velocity of the movement is controlled by the intensity 

of the extracted EMG signal from surface electrodes. The type of movement is selected by 

contracting muscle bundles assigned to a movement, with EMG surface electrodes attached to 

these muscles [3].   

  Myoelectric pattern recognition MEPR is based on the idea that individuals are able to 

produce repeatable patterns of muscle signal, which gives MEPR its biggest advantage over 

other control methods. This means that it offers users the ability to control their prosthesis as 

they will [4]. However, MEPR is still not a popular choice. This is mainly attributed to the 

complexity of the training process for new users, which increases with added degrees of 

freedom, and users are mostly unable to reliably produce robust patterns [5].  

  The process of pattern recognition generally relies on derived values from the initially 

acquired data, called features. These various feature sets represent different aspects of interest 

in the original data, for example the color value of pixels in an image or the voltage amplitude 

of a signal. It is important to select relevant features to be extracted for the purpose of the 

pattern recognition system. These features are then used to train classifier algorithms to make 

predictions about the classes of new, but similar, data sets. When these new data sets are not 

similar to the data used to train the algorithms, the chances to have a correct prediction of the 

class of the data is low. [6]. 

After the desired features are selected, these features are extracted from segmented raw 

EMG data; by segmenting the data into overlapping windows, and these windows are divided 

into training, validation and testing sets [7].   

  Feature extraction can be implemented in the open-source myoelectric control platform, 

BioPatRec [8]. The system learns about the patterns in the data and how to classify them using 
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the training and validation sets, while using the testing set to check the accuracy of the system. 

The classification process is carried out by a classifier algorithm, and one of the advantages of 

using BioPatRec is that it has the option to choose from many different classifiers, or even the 

ability to add new ones [8].  

  The EU funded project INPUT [9] aims towards creating upper limb prosthesis that users can 

reliably utilize in their everyday activities. The function of the prosthesis is to use surface 

electrodes to extract EMG signal from the arm above the amputation region, and extract a 

predetermined set of features to train the MEPR system.  

  In a test carried out by members of project INPUT, EMG readings from surface electrodes 

were collected from 38 able bodied participants. The participants were given movement tasks 

to train the pattern recognition algorithm used in the project, and to test the ability of the 

algorithm to classify the movements from the extracted EMG signal, using the motion test [10].

  

   In this project, with the help of the platform BioPatRec, data collected from participants can 

be further studied. This could be done by extracting different features, and checking the 

classifiers interaction with these features, as well as the possibility to use different classifiers. 

However, the data was collected and stored in a format that was incompatible with the 

required data format for BioPatRec.  

  Therefore, the primary goal of this study is to use Matlab to manipulate the structure of the 

data set used in project INPUT. This is expected to allow the use of the data on the platform 

BioPatRec. Second goal is to check for a possible correlation between the feature data sets and 

the ability of able bodied users to use the classifier algorithm. With the help of some statistical 

analysis, a further understanding of the effect of feature changes on performance could be 

acquired. 

Methods  

Original data structure 

  Project INPUT collected EMG data from 38 subjects using an 8 channel input from electrodes 

attached to the subjects’ forearm. The first objective was to extract the raw data for each 

participant, with a total of 15 sessions per participant, and save it in a single file.  

   The original data was stored in a (.mat) file that contained three main divisions called 

structs. These 3 structs contained groups of participants that were divided according to the 

type of feedback the participants received; extended feedback (EF struct), medium feedback 

(MF struct) and no feedback (NF struct). Each one of these 3 structs contained fields 

corresponding to the participants for each group; 12 participants in the EF struct, 13 in the MF 

struct and 12 in the NF struct. Each participant field had 15 structs representing each session of 
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their participation in the trial. Finally, each one of these 15 structs contained the EMG recording 

session, as well as two performance indication fields; a field with the values of the number of 

correct classifications and another for accuracy (Fig.1). 

 

 

 

 

 

 

 

 

 

  The original format for the data contained the bulk of recording session for all participants, 

but could not be directly imported into BioPatRec, since BioPatRec only accepts data files 

containing a single struct with eleven fields. The fields should have identical names to the ones 

used by BioPatRec, and it has the EMG recordings for a single session, as well as other fields 

such as the sampling frequency, the name of movements used and the number of channels. 

 

Data adjustment 

Extraction of RAW data 

  The first step was writing a script using Matlab, which loaded the original data file and 

accessed each individual raw data field, labeled it with the participant’s category – MF/NF/EF- 

and the trial number, then saved it as a (.mat) file for further use (fig.2). 

Figure 1: Original data structure 



6 
 

 

Figure 2: Data extraction code 

  A shorter version of the script was originally used, which used a single loop for all three 

participant types – MF/EF/NF-, but was later expanded into three distinct parts to debug 

possible issues. One of the issues encountered was that there was a recording session missing 

for one of the participants, which initially caused a labeling error for the saved files. The issue 
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was mitigated by using the number of structs for each participant as a variable that can be used 

for numbering in the formula [k = ((i-1)*15) + j].  The saved files had a title containing the type 

of the participant –MF/EF/NF- and the numbering for the trials for each type from 1 to the total 

number of trials of the same type. For example, the fifth EF Participant would have their 10th 

trial’s raw data saved as ( EF_entries_50.mat). This formatting allowed for using simpler 

counters in further parts of the data processing, and could easily be recovered into the original 

trial numbering from 1 to 15.  

Data formatting  

  The format that needed to be changed was the format of the EMG [RAW] data within each 

recording session, which is why the RAW data was extracted from the original data file into 

individual files. The recordings in the original data were divided into 21 movements for each 

trial, where 7 movements were used to create the 21 sets; such that each movement is made 

into sets of 3 consecutive 3 second contractions with 30%, 60% and 90% contraction power 

respectively. Rest was treated as a separate extra movement. The original RAW data files 

contained a 3 dimensional matrix, where one dimension was for each of the 8 channels, one 

dimension represented one of the 24 movements (3 repetitions of 7 movements + 3 rest) and 

one dimension for the raw data for each movement for each channel. 

  For the data to be imported into BioPatRec, recordings had to be in a specific format of 3 

repetitions of 3 seconds of contraction followed by 3 seconds of rest for each movement. 

Which means that each one of the 21 movements ( as categorized in the original data) needs to 

have its contractions extracted individually, and then having its corresponding rest data added 

between each 3 second contraction of the same movement type, such that the data would be 

in the form: [3 seconds 30% contraction (movement (x))  3 seconds rest  3 seconds 60% 

contraction (movement(x))  3 seconds rest  3 seconds 90% contraction (movement(x))  3 

seconds rest. There was only 1 set of rest data in the original recordings consisting of 9 seconds 

of rest, and it was used to fill in the rest data for all movements. This was done after making 

sure that BioPatRec wouldn’t be using the rest intervals in the feature extraction, and is 

exclusively for entering the data in an acceptable format, as they are cut out by BioPatRec in 

the phase where the contractions are extracted from the data file.  

  Using MATLab, 555 individual RAW data files were created in the extraction of RAW data 

step, containing the individual recordings for each participant for each day. These data files 

were read into the data formatting script (fig.3), which put the data in the correct format, and 

created a struct containing the data. The script also created the other fields required by 

BioPatRec that define the number of channels and the name of movements, as well as other 

fields that are used in the feature extraction phase (fig.4). 
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Figure 3: Data formatting code 
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Figure 4: Format of adjusted data 

 

  The script for this phase was initially made to loop through all 3 types of data ( NF/MF/EF), 

then a single script for each data type was used instead to simplify the code and it could be 

easily adjusted to all three types. The script shown in figure (3) was used for (NF) titled part of 

the data, and the concept for data formatting is the same for the other two types. With 

knowledge of the sampling frequency of the original data, and the arrangement of the 

movement types, the code starts looping through each of the 8 channels from the recording 

while taking in consideration the size of each contraction. The code saves the rest data aside, 

separates the first contraction power for the first movement and concatenates it with the 

corresponding part of the rest data. Then the code does the same for the second and third 

contraction parts of the same movement, and saves the created block of data which contains 

the consecutive contractions and rest. The code then proceeds to the next movement and 

repeats the process, and does so for all the movements, before proceeding to the next channel, 

until all the data is in the desired format. Afterwards, the script creates the fields shown in 

figure (4), and saves the data in a new file with the number of the trial.  

   A visualization of how the data looked like before and after adjustment can be noted by 

plotting the data (fig. 5). The figure illustrates how a single iteration of the code concatenates a 

movement to its corresponding rest data. 
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(a) 

 

(b) 
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(c) 

 

 (d) 
Figure 5: Extraction of the data of individual contraction powers and corresponding rest from the original format (a,b and c).  

Adjusted data of contraction powers and corresponding rest, making 1 move (d) 

 



12 
 

As a last adjustment before using the data, the file naming was changed to include the original 

naming of the data from project INPUT (fig. 6). 

 

 

Figure 5: Saved data and naming; Initial naming (left) and new naming (right) 

 

Feature extraction 

  Four features were chosen to be extracted from the signal, according to their prominent use 

in literature, as a non-exhaustive compilation of myoelectric signal features employed in 

pattern recognition for prosthetic control. These features are: Absolute mean value, zero 

crossing, wave length and root mean square [8].  

  The feature absolute mean value is referred to as (tmabs) in BioPatRec, and it is calculated 

from the mean of the sum of the absolute data values in the segmented window. The root 

mean square is referred to as (trms), and is calculated from the square root of the sum of the 

squared values divided by the number of data points in the window. The zero crossing feature 

referred to as (tzc) represent points in the data where the value changes from positive to 

negative, or vice versa. The calculation of the wavelength feature, as an accumulative change in 

the length between consecutive points in the same phase, is referred to as (twl). The 

calculation of all four features is carried out within the (GetSigFeatures) function in BioPatRec 

through formulas dedicated to different feature types (fig.7). 
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Figure 6: Mean absolute average (Lines 86-88), root mean square (lines 122-125), wave length (lines 113-118) and zero 
crossing (lines 129-146) 

 

   Since the feature data is extracted for every one of the 8 channels used for recording, and 

divided into training, validation and testing sets, the extracted features needed to be laid out in 

proper format to collect all the fragments in one data set. Through the combined use of 

BioPatRec and Matlab, the feature sets of each participant could be calculated. The script could 

continuously interact with the features produced by BioPatRec and transform them into the 

desired format (fig.8).  
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Figure 7: Feature extraction and formatting code 

 

  Biopatrec divides the extracted features into training, validation and testing sets. All three 

sets are required in order to construct an array of all features for each channel. The code 

extracts the four specified features and concatenates all three types of feature sets, and then it 

saves the features with the corresponding trial number. Another script was used to collect all 

features extracted from all 15 trials for each participant that simply puts the extracted features 

from individual trials together in one field. 

 

Performance  

  The original data collected from participants included performance indicators. A 

classification was made using Matlab, according to the overall performance enhancement 

throughout the trial, and the participants that showed the most improvement were the ones 

further studied.  

  The goal was to select participants that showed positive and consistent change in their 

performance throughout the trials. The classification was carried out by plotting both accuracy 

and number of correct movements for all 15 sessions of each participant. The data in the 

performance plots were analyzed by calculating the number of positive changes between 

consecutive points in the graph, and the value of change. Negative change contributed 

negatively to the performance enhancement according to how much the accuracy or number of 

correct movements dropped (fig.9).  

   The decision on the participant that showed most improvement was made by choosing the 

participant with the highest change value; such that the participant would show improvement 
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in performance from the initial trial, and consistently kept the performance high with little 

negative retrace. 

 

Figure 8: Performance plots of some participants 

  Performance tracking by the INPUT team in the original data was indicated by two fields: 

accuracy and number of correct movements. Accuracy is a measure of the percentage of the 

time the performed movement matches the prompted movement for the participant, and the 

number correct movements are the number of movements that were performed without 

misclassifications for two seconds. A profile containing the 4 chosen features was created, 

containing data for the participant that showed the most enhancements in performance 

throughout the 15 trials, which is participant EF_20. Using this profile, the feature data could be 

put up against the performance indication data set for that participant, and further statistical 

study of a possible systematic change in the features was possible. 

 

Statistical analysis  

  In order to study a possible systematic change in the feature data sets corresponding to 

performance indicators for participants, four spearman correlation tests were carried out. The 

aim of carrying out multiple tests was to test the correlation coefficient value between equally 

high, equally low and between high and low performance trials from the same participant, as 

well as between equally high performance trials from different participants. These four tests 

were made to check all possible correlations between performance values.  Spearman 
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correlation was used instead of pearson correlation, since the data is non-linear [11].  

  The feature data from participant EF_20 was used for the first three tests, which are those 

carried out on the data from the same participant: Test number one was between two high 

accuracy trials, trial 9 (accuracy: 93.8%) and trial 10 (accuracy: 94%). The second test was 

between two low accuracy trials, trial 1 (accuracy: 46.24%) and trial 4 (accuracy: 49.4%). The 

third test was between one low and one high accuracy trial, trial 1 (accuracy: 46.24%) and trial 

15 (accuracy: 98.84%).  

   The fourth correlation test, which was between equally high performance trials from 

different participants, was carried out on the extracted features from participant EF_20 – trial 9 

(accuracy: 93.8%), and participant EF_9 – trial 11 (accuracy 92.7%). 

 

Results 
  The first part of the study, which aims to extract and change the format of the data from 

project INPUT into the format used by BioPatRec, was successful for all recording sessions 

(Fig.10), and the data could be loaded into BioPatRec to extract the feature data sets. 

 

 

                                                Figure 10: Adjusted data ( left) and original data (right) 

  For the selection of the participant showing the most prominent improvement in 

performance, the performance indication in the form of a plot for both accuracy and number of 

correct movement was created with Matlab, which allowed to visually and numerically check 

for the participant with the highest performance improvement. This helped selecting 

participant (EF_20) as the most prominent enhancement in performance (Fig. 11). 
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Figure 11: Performance of participant EF_20 - accuracy (left) and number of correct movements (right) 

 `In terms of feature extraction, the four chosen features were extracted and plotted for each of 

the 8 channels. For each participant, the full feature points collected throughout their 15 trials 

could be presented both numerically (as 15,000 points) and graphically, as show in (Fig. 12). 

 

Figure 12: (Mabs features for participant EF_20) - channel 7  

  As for the statistical study of a possible correlation between the feature data points, with 

regards to the achieved accuracy in trials, Graphpad Prism was used; pearson correlation test 

was performed using GraphPad Prism version 7.04 for Windows [12]. Where the correlation 

coefficient (r) has a value between [-1,1], where an r value of (-1) means that the data sets are 

completely inversely correlated, (0) means that there is no correlation between the data, and 

(1) means that the data is completely correlated. The tests were carried out on the data from 

all four extracted features, and for each of the 8 channels. 
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Color coding:  

R value 0.851 0.750.85 0.650.75 0.50.65 0.10.5 <0.1 

color       

 

Each row in the tables represents the correlation (r) value between two different trials; where 

the number of the channel in comparison is mentioned in the first row, while the title of the 

compared feature is mentioned in the first column.  

   

R values between high accuracy trials for participant EF_20, between [trial 9 (93.8%) and trial 

10 (94%)]:  

 Channel 
1 

Channel 
2 

Channel 
3 

Channel 
4 

Channel 
5 

Channel 
6 

Channel 
7 

Channel 
8 

Mabs 0.919 
(0.9083 
to 
0.9286) 
 

0.8727 
(0.8563 
to 
0.8873) 

0.9569 
(0.951 
to 
0.962) 

0.9007 
(0.8877 
to 
0.9122) 

0.8945 
(0.8807 
to 
0.9068) 

0.7903 
(0.7646 
to 
0.8134) 

0.8613 
(0.8436 
to 
0.8772) 

No data  

ZC 0.5929 
(0.5492 
to 
0.6334) 

0.281 
(0.2202 
to 
0.3397) 

0.1336 
(0.06936 
to 
0.1968) 

0.4076 
(0.352 
to 
0.4603) 

0.3798 
(0.3228 
to 
0.4339) 

 

0.2311 
(0.1687 
to 
0.2916) 

0.2037 
(0.1407 
to 
0.2651) 

No data 

WL 0.9091 
(0.8971 
to 
0.9197) 

0.8733 
(0.857 
to 
0.8879) 

0.9628 
(0.9578 
to 
0.9673) 

0.9048 
(0.8922 
to 
0.9159) 

0.9007 
(0.8876 
to 
0.9122) 

0.7915 
(0.766 
to 
0.8146) 

0.8613 
(0.8435 
to 
0.8771) 

No data 

RMS 0.9207 
(0.9102 
to 
0.9301) 

0.8698 
(0.8531 
to 
0.8848) 

0.9592 
(0.9537 
to 
0.9641) 

0.8955 
(0.8818 
to 
0.9076) 

0.8908 
(0.8766 
to 
0.9035) 

0.785 
(0.7588 
to 
0.8087) 

0.8426 
(0.8227 
to 
0.8604) 

No data 
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R values between low accuracy trials for participant EF_20, between [trial 1 (46.24%) and trial 4 

(49.4%)]:  

 Channel 
1 

Channel 
2 

Channel 
3 

Channel 
4 

Channel 
5 

Channel 6 Channel 
7 

Channel 
8 

Mabs 0.5021 
(0.452 
to 
0.5491) 

0.3979 
(0.3418 
to 
0.4511) 

0.5441 
(0.4967 
to 
0.5882) 

0.8997 
(0.8866 
to 
0.9114) 

0.7768 
(0.7497 
to 
0.8013) 

0.7451 
(0.7148 
to 
0.7727) 

0.7426 
(0.712 
to 
0.7704) 

No data 

ZC 0.1539 
(0.0899 
to 
0.2166) 

0.1325 
(0.06825 
to 
0.1957) 

0.3682 
(0.3108 
to 
0.423) 

0.2422 
(0.1802 
to 
0.3023) 

0.2956 
(0.2352 
to 
0.3536) 

0.07387 
(0.009048 
to 
0.1381) 

0.1821 
(0.1187 
to 
0.2441) 

No data 

WL 0.5784 
(0.5335 
to 0.62) 

0.4534 
(0.4003 
to 
0.5035) 

0.5026 
(0.4525 
to 
0.5496) 

0.911 
(0.8993 
to 
0.9214) 

0.803 
(0.7787 
to 
0.8249) 

0.775 
(0.7478 
to 
0.7997) 

0.771 ( 
0.7433 to 
0.796 

) 

No data 

RMS 0.4797 ( 
0.4282 to 
0.5282 

) 

0.4035 
(0.3477 
to 
0.4564) 

0.5539 
(0.5072 
to 
0.5973) 

0.9014 
(0.8885 
to 
0.9129) 

0.7622 
(0.7336 
to 
0.7881) 

0.7386 
(0.7077 
to 
0.7667) 

0.7369 
(0.7058 
to 
0.7652) 

No data 

 

R values between high and low accuracy trials for participant EF_20, between [trial 1 (46.24%) 

and trial 15 (98.84%)]:  

 Channel 
1 

Channel 2 Channel 
3 

Channel 
4 

Channel 
5 

Channel 
6 

Channel 
7 

Channel 
8 

Mabs 0.5483 
(0.5012 
to 
0.5921) 

-0.05602 (-
0.1204 to 
0.00888) 

0.6615 
(0.6234 
to 
0.6965) 

0.862 
(0.8444 
to 
0.8778) 

0.4083 
(0.3527 
to 
0.4609) 

0.7313 
(0.6996 
to 
0.7601) 

0.7898 
(0.7641 
to 
0.813) 

No data 

ZC 0.05937 
(-
0.005517 
to 
0.1238) 

0.1178 
(0.05338 
to 0.1813) 

0.09138 
(0.02667 
to 
0.1553) 

0.04523 
(-
0.01969 
to 
0.1098) 

-0.1809 
(-0.2429 
to -
0.1174) 

0.1556 
(0.0917 
to 
0.2183) 

0.07174 
(0.0069 
to 
0.136) 

No data 

WL 0.5542 
(0.5076 
to 
0.5976) 

-0.05703 (-
0.1215 to 
0.007864) 

0.6429 
(0.6032 
to 
0.6794) 

0.8674 
(0.8504 
to 
0.8826) 

0.3717 
(0.3144 
to 
0.4263) 

0.7501 
(0.7203 
to 
0.7771) 

0.817 
(0.7942 
to 
0.8375) 

No data 

RMS 0.5326 
(0.4845 
to 

-0.06572 (-
0.13 to -
0.0008543) 

0.6637 
(0.6258 
to 

0.8606 
(0.8428 
to 

0.3877 
(0.3312 
to 

0.7711 
(0.7434 
to 

0.7798 
(0.7531 
to 

No data 
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0.5775) 0.6985) 0.8765) 0.4415) 0.7961) 0.804) 

 

R values for high accuracy trials between participant (EF_20) - trial 9 (93.8%), and participant 

(EF_9) - trial 11 (92.7 %)]:  

 Channel 
1 

Channel 
2 

Channel 
3 

Channel 
4 

Channel 
5 

Channel 
6 

Channel 
7 

Channel 
8 

Mabs 0.7517 
(0.722 
to 
0.7786) 

0.5023 
(0.4521 
to 
0.5492) 

0.8843 
(0.8693 
to 
0.8976) 

0.8814 
(0.8661 
to 
0.8951) 

0.6149 
(0.5729 
to 
0.6537) 

0.8658 
(0.8486 
to 
0.8811) 

0.819 
(0.7964 
to 
0.8393) 

No data 

ZC 0.236 
(0.1738 
to 
0.2963) 

0.1483 
(0.0842 
to 
0.2111) 

0.1865 
(0.1231 
to 
0.2483) 

0.03605 
(-
0.02888 
to 
0.1007) 

0.04676 
(-
0.01816 
to 
0.1113) 

0.1288 
(0.06449 
to 
0.1921) 

0.01297 
(-
0.05194 
to 
0.07777) 

No data 

WL 0.7744 
(0.7471 
to 
0.7992) 

0.5253 
(0.4766 
to 
0.5707) 

0.8855 
(0.8706 
to 
0.8987) 

0.9016 
(0.8887 
to 
0.9131) 

0.6526 
(0.6137 
to 
0.6883) 

0.8688 
(0.852 
to 
0.8839) 

0.8026 
(0.7782 
to 
0.8245) 

No data 

RMS 0.7501 
(0.7203 
to 
0.7771) 

0.485 
(0.4338 
to 
0.5331) 

0.8824 
(0.8672 
to 
0.896) 

0.8753 
(0.8592 
to 
0.8896) 

0.6187 
(0.577 
to 
0.6572) 

0.8648 
(0.8475 
to 
0.8803) 

0.8121 
(0.7888 
to 
0.8331) 

No data 

 

 

Discussion and conclusion 
  The extraction and reformatting of data from project INPUT allowed for the data from 

project INPUT to be used in the pattern recognition platform BioPatRec. This opened the 

opportunity to further investigate the EMG signal collected from the participants in the project, 

and the ability to study extracted features from the signal.   

  Many scripts were designed using Matlab, most of which are explained in this paper. The use 

of Matlab and the implementation of basic logic and programming offered a simple and 

effective approach to transform the data into the desired format, and to interact with the 

pattern recognition platform. 

  The statistical analysis of the extracted features was carried out using Graphpad prism, after 

choosing a participant from project INPUT that exhibited the most noticeable enhancement in 

performance, in both accuracy and number of correctly classified movements. The statistical 
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test carried out was planned to give an idea about the possible correlation between feature 

data sets. The tests were carried out between trials of similar accuracy values, both high and 

low, and between the highest and lowest accuracy values. This was done to test all possible 

scenarios in a non-exhaustive manner, in order to test the hypothesis about the existence of a 

correlation.  

  The first test was between two trials from the same participant, who had a high accuracy on 

both chosen trials. The result of the correlation test shows a very high correlation between the 

trials for the Mabs, WL and RMS features. This high correlation might point to a systematic 

change in the feature data corresponding to the high accuracy achieved in the trials. The 

second test was for the same participant, but between two low accuracy trials. The result of the 

correlation test shows poor correlation between the trials, which points to the low repeatability 

of the feature data. The third test for the same participant was between a low accuracy trial 

and a high accuracy trial. The results also show a poor correlation between the trials, which 

supports the idea that the accuracy of classification is reflected in the feature data, such that 

different spectra of accuracy would exhibit differently correlated feature data, and only highly 

accurate trials would exhibit a high correlation. The last test was between two trials of similar 

accuracy, but for two different participants. The idea of this last test was to check if different 

participants exhibit a specific level of repeatability in the feature space that can be traced via 

ranking correlation. The result of the test showed a moderately strong correlation between the 

two trials, which might point to a systematic change in the feature space that reflects the 

performance of participants.   

  Throughout the tests, all 8 channels of the data were used, but it appears that the data 

collected from channel 8 was of much lower amplitude than the rest, and was considered an 

outlier since it offered an almost constant/non-varying read out values. However, the 7 other 

channels were all considered, some of which consistently offered a higher correlation than 

others as seen in channel (4). Also, the nature of the chosen features can offer a higher 

correlation based on the algorithms used in acquiring them, which is why the color coding was 

used to determine variability in correlation instead of using (r) values as they are conventionally 

used. It can also be noticed that the zero crossing feature offered very little contribution to the 

correlation on the scale, but variations can be noticed nonetheless between strongly and poorly 

correlated trials. 

  A first conclusion from these results is that there seems to be a systematic change in the 

feature data that reflects the performance of participants. However, the signal acquisition and 

processing contributes to a high extent in such a correlation. It is also important to point out 

that the correlation tests were carried out on only two participants. Therefore, a complete 

analysis for other random participants will be necessary to have a more concrete resolution 

about the existence of a correlation. 
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