UNIVERSITY OF GRONINGEN
FACULTY OF SCIENCE AND ENGINEERING

Examining the Effects of Theory of Mind
on playing the Game of 'No Thanks!’
using ACT-R-based Cognitive Models

Master’s Thesis
Human-Machine Communication

Tom Renkema

Primary supervisor:
Prof. dr. Niels A. Taatgen
Artificial Intelligence, University of Groningen

Secondary supervisor:
dr. Jennifer K. Spenader
Artificial Intelligence, University of Groningen

August 20, 2018

Abstract

Theory of mind is the ability for an individual to reason about the mental state
of themselves and others. This project studied the effects of theory of mind
on playing the card game of No Thanks! using cognitive models. Multiple
cognitive models using different orders of theory of mind were developed using
instance-based decision making and a partial implementation of the cognitive ar-
chitecture ACT-R. Additionally, the performance of these models against human
players was examined. An iOS application was developed for the Apple iPad
with which a user could play the game of No Thanks! against the developed
cognitive models. Both an experiment with human subjects and simulations in
which the models played one other were conducted. The results of both experi-
ments showed that models using first-order or second-order theory of mind had
a significant advantage over models using zero-order theory of mind. However,
the advantage of using second-order theory of mind over first-order theory of
mind appears to be not as substantial. Furthermore, this project demonstrated
that an academic Al method like instance-based decision making is suitable for
creating a competitive game Al for a competitive game.

Contents
Abstract

1 Introduction
1.1 Background
1.1.1 Game artificial intelligence
1.1.2 ACT-R architecture
1.1.3 Instance-based decision making
1.1.4 Modelling theory of mind
1.2 Project goals

2 The game of No Thanks!
2.1 Therules e
2.2 User interface design and usability

3 Model implementation
3.1 Zero-order theory of mind model,
3.2 Instance-based decision making
3.3 Partial matching and its mismatch function
3.4 First-order theory of mind model
3.4.1 Predicting actions of opponents
3.4.2 Remembering the token supply of opponents
3.4.3 Keeping track of tokenso
3.5 Second-order theory of mind model

4 Code implementation
4.1 Structure
4.2 NoThanks
4.3 PlayerModel L
4.4 ViewController
4.5 Additional notes

5 Experimental results
5.1 Experiment with human subjects
5.1.1 Methods o
5.1.2 Resultso
5.2 Experiment by simulations 000000
52.1 Methods
522 Results
5.3 Effects of the token memory system

6 Discussion
6.1 Implications of theresults
6.2 Futureresearch

References

Appendices

14
14
15
16
17
17
18
20
21

22
22
23
24
25
26

27
27
27
28
31
31
32
33

35
35
36

39

39

1 Introduction

Humans are capable of not only understanding their own beliefs and intentions,
but are also able to infer these of others and to acknowledge that these can be
different from their own. Theory of mind is the ability for an individual to rea-
son about the mental state of themselves and others (Premack and Woodruff,
1978). An individual can use different orders of theory of mind. One is said to
have zero-order theory of mind (T'oM;) if they cannot reason about the mental
state of others (thus they are not using theory of mind abilities). Whereas an
individual has first-order theory of mind (T'oM;) when they do reason about the
mental state of others. However, an individual using first-order theory of mind
does not recognize that others may have theory of mind as well. Instead they
assume others have zero-order theory of mind.

In contrast, when an individual does recognize the theory of mind abilities of oth-
ers, it is said one uses a higher-order theory of mind approach (i.e. second-order
or higher). When using n-order theory of mind, one assumes others use n-1-
order theory of mind. Therefore, having second-order theory of mind (T'oMs)
assumes others use first-order theory of mind and so on. In other words, an
individual using second-order theory of mind one is able to reason: "I think that
you think that I think...”.

Multiple studies have found that humans are able to use theory of mind re-
cursively and can reason about the theory of mind abilities of others in their
decision making process (i.e. have higher-order theory of mind). Children can
have this ability as early as age 5 to 9 (Perner and Wimmer, 1985; Miller, 2012).
Evidence has also been found of humans using higher-order theory of mind in
playing strategic games (e.g. Hedden and Zhang (2002); Meijering et al. (2011)).

Besides conducting experiments with human subjects, agent-based computa-
tional cognitive models can also be used to study whether using a different order
of theory of mind leads to different outcomes. The aim for this study was to
examine the effects of theory of mind on playing the card game of No Thanks!
by using cognitive models. Multiple cognitive models using different orders of
theory of mind were developed using instance-based decision making and a par-
tial implementation of the cognitive architecture ACT-R, (Gonzalez and Lebiere
(2005); Anderson (2009) respectively). Additionally, the performance of these
models against human players was studied. To that end, an iOS application
was developed for the Apple iPad with which a user can play the game of No
Thanks! in with these models serve as their opponents.

Section 1.1 gives an overview of the game artificial intelligence used in the video
game industry, the ACT-R architecture, instance-based decision making, and
modelling theory of mind. Section 2 explains the game of No Thanks!, its pre-
sentation on the iPad, and why it was chosen for this project. Section 3 explains
how the developed cognitive models were implemented. Section 4 discusses how
the application was coded. The conducted experiments and results are discussed
in section 5. The implications of these results are discussed in section 6.

1.1 Background
1.1.1 Game artificial intelligence

In video games, techniques drawn from the field of artificial intelligence are used
to define the behaviour of non-playable characters (NPCs). A NPC is an agent
in a video game that is not controlled by the human player. Such an agent
can for example serve as an opponent in a game of chess or as an enemy in a
first-person shooter. For game developers, the goal is to program such agents in
a way so they show believable and reasonable behaviour to the player. Multiple
techniques have been applied in the video game industry with varying degrees of
complexity. This section will give an overview of the common techniques used
for game Al in the video game industry.

Finite-state machines

Finite-state machines (FSMs) are one of the most commonly used technique
in game AI (Buckland, 2005). In a FSM, the agent’s behaviour is split into a
collection of discrete states. Each state represents a specific behaviour or internal
configuration. States are connected by transitions. These links are responsible
from switching from one state to another when a certain condition is met. The
agent can only be in one state at a time.

l

Patrol
See enemy \ Hear noise
/ Enemy defeated Search failed
Attack | . seeenemy— | Investigate
enemy 4 9
Health low

\ Flee

Figure 1: FSM diagram showing the behaviour of an agent guarding a castle
(adapted from Dawe et al. (2013).

Figure 1 shows an example of FSM modelling a simple behaviour of an agent
(NPC) that has to guard a castle. This agent patrols the castle until it hears a
noise or sees an enemy. If one of those conditions are met, it will either inves-
tigate the noise or attack the enemy. It will continue attacking until either the
enemy is defeated or its own health drops too low. In case of the former it will

return to its patrol state, while in case of the latter it will flee.

This technique allows a developer to fully specify the agent’s behaviour with
relative ease. However, a downside of FSMs is that they scale poorly due to
its low-level logic. For more complex behaviours a FSM can become very large,
which makes it inflexible and increasingly more difficult for developers to inter-
pret (Rabin, 2000).

Behaviour trees

A behaviour tree consists of nodes that each define a specific behaviour (i.e. an
individual action that the agent can perform) (Isla, 2005). Every decision mak-
ing process starts at the root node of the tree. Each behaviour node can have
one or more child nodes (thus creating a tree-like data structure). Also, each
node in the tree contains a precondition and an action. The agent will only
access a node when its precondition is met and consequently executes the node’s
corresponding action. It then checks whether any precondition of its child nodes
are met. If so, it performs that child node’s action. This process continues until
no child nodes’ preconditions are met or a node does not have any child nodes
left.

Behaviour trees differ from FSMs in that they are stateless and do not require
transitions. This means the algorithm does not need to keep track of what be-
haviours were executed previously for its decision making process. As a result,
behaviour trees do not suffer from the scalability issues of FSMs, because nodes
can be designed independent from each other. Thus, when adding or removing
new nodes in a small part of the tree, it is not required to alter other parts of
the tree. Whereas adding or removing a state in a FSM requires changing the
conditions of all other states that have transitions to that altered state. There-
fore, behaviour trees are more flexible than FSMs overall. However, processing
time can be significantly longer as the decision making process always starts
at the root of the tree regardless of what the agent has executed before. This
issue becomes more severe when the tree is larger and thus more nodes need to
traversed (Rabin, 2000).

Utility-based system

A utility-based system uses a heuristic function to assign a floating-point value
(often referred to as the utility value) to each possible action the agent can per-
form (Dill et al., 2012). This utility value shows the preferability of each action
in the current game state. One approach is to let the agent execute the action
with the highest utility value. Alternatively, one can use the obtained utility
values to seed a weighted random selection, meaning the most preferable actions
have a higher chance of being selected (thus adding more randomness to the
decision making process).

A utility-based system is suitable for games in which an agent needs to make
decision based on multiple continues values (e.g. distance to enemy, number of
bullets left etc.). FSMs and behaviour trees are fundamentally built on Boolean
conditionals, which can quickly results in complicated models when dealing with
many game state parameters. An utility-based system is more suitable for such
situations.

Planners

Planners have a fundamentally different approach in defining the behaviour of
an agent than the aforementioned techniques. Goal-oriented action planners
(GOAP) plan a sequence of actions to achieve a specified goal state (Gorniak
and Davis, 2007). Contrary to FSMs and behaviour trees, the order in which an
agent can execute actions is not directly determined by the scripted transitions
and the fixed structure of the tree respectively. Instead the agent is given the
current state of the game, its available actions and their effects on the game
state, the requirements for each action (i.e. the precondition), and the goal that
needs to be achieved. Given this information, the agent then attempts to chain
the actions together to get from its initial state to the goal state. GOAP applies
backwards chaining to construct this sequence (Feigenbaum et al., 1988). This
method starts with the goal state and works backwards to assert which actions
need to be satisfied so the goal state can be achieved.

Another popular planner applied in game Al is the hierarchical task-network
planner (HTN ; Gorniak and Davis (2007)). Similar to GOAP, this planning
algorithm attempts to build a sequence of actions that will get the agent to the
goal state. However, HTN uses forward chaining as opposed to backward chain-
ing. This method starts with the current world state and asserts which actions
need to be performed to achieve the goal state.

Gap between academic AI and industrial game Al

A common theme among the aforementioned techniques used for game Al in the
video game industry is that these are relatively old AI techniques. Academic
research in game AI has largely shifted focus to topics such as reinforcement
learning, neural networks, and cognitive modelling in games (e.g. Ghory (2004);
Silver et al. (2016); Sanner et al. (2000) respectively). Despite being mature
research subjects in the field of Al, these state of the art tools are rarely used in
the video game industry.

To that end, Yannakakis (2012) and Champandard (2003) state that there is a
considerable gap between academic game Al and industrial game Al. Yannakakis
(2012) argues that "The key message of academic Al has been that industry does
not attempt to use sophisticated Al techniques with high potential (e.g. neural
networks) in their games. On the other end, the central complaint of industrial
game Al has been the lack of domain-knowledge and practical wisdom when it
comes to realistic problems and challenges faced during game production.”

(p- 1).

One of these novel techniques in academic Al is instance-based decision making
(Gonzalez and Lebiere, 2005). This approach has been studied considerably in
the field of cognitive modelling. This technique relies on the cognitive architec-
ture ACT-R, which will now be discussed.

1.1.2 ACT-R architecture

ACT-R is a cognitive architecture consisting of multiple modules that each have a
particular cognitive function (Anderson et al., 2004; Anderson, 2009). Although
there are several modules, the cognitive models developed during this project are
based exclusively on the mechanisms of the declarative module. Therefore only
this module will be discussed. For an extensive overview of the entire ACT-R
architecture, please refer to Anderson (2009).

In ACT-R, declarative memory is used to store facts that can be retrieved upon
request. These facts are stored in chunks. Whether a fact can be retrieved from
declarative memory depends on the activation of the chunk that fact is stored
in. If a chunk has an activation value above the retrieval threshold, it can be re-
trieved and accessed by the model. In other words, that piece of information can
be remembered by the model. The activation of a chunk depends on the time
that has passed since it was stored in declarative memory and how frequently it
has been retrieved. This means that chunks decay in activation over time and
that the speed of this decay depends on how often a chunk has been retrieved
before. This results in model behaviour in which commonly used information is
remembered more easily than information that is rarely utilized.

1.1.3 Instance-based decision making

Instance-based decision making is at the core of the decision making process of
this project’s cognitive models. In instance-based decision making, a cognitive
model makes decisions based on a collection of prior episodes (Gonzalez and
Lebiere, 2005). In other words, an agent chooses its actions through the use of
accumulated experience. This theory is based on evidence that humans use this
approach when under conditions involving uncertainty, stress or task overload
(Pew and Mavor, 1998; Klein et al., 1993; Zsambok and Klein, 2014).

Instance-based decision making has been successfully applied in modelling hu-
man behaviour in a variety of decision making tasks and games, such as the
prisoner’s dilemma (Gonzalez and Lebiere, 2005), backgammon (Sanner et al.,
2000), and the lemonade game (Reitter et al., 2010). The cognitive architecture
ACT-R is used to implement the approach.

In ACT-R, instances are represented as chunks in declarative memory. When
a model encounters a new scenario and has to make a decision, it attempts to
find the instance (i.e. chunk) that is most similar to the current context. Par-
tial matching is used to determine the similarity of each chunk. This process
will be further explained in section 3.3. The idea behind this approach is that
the more similar a past experience is to the current context, the more useful
the corresponding chunk is at that moment. Additionally, an advantage of this
approach is that a model can still make a considered decision if it encounters a
novel situation, because it chooses to perform the action that it did in a previous
situation (i.e. instance) that most closely resembles the current one.

An agent using instance-based decision making does not acquire new informa-
tion and thus does not learn from new experiences. Gonzalez et al. (2003) have
proposed an expansion on IBD referred to as instance-based learning theory
(IBLT), which does provide a framework for agents to acquire and update in-

stances. However, the cognitive models presented in this project do not learn
from new experiences and make their decisions based on a fixed set of prede-
termined instances. Therefore these models make use of instance-based decision
making and not of the instance-based learning theory.

1.1.4 Modelling theory of mind

Agent-based computational models have been used to study theory of mind.
Such models allow researchers to precisely control the mental capabilities of
their test subjects. As such, an agent can be given a particular theory of mind
capacity and compared to another agent with a different capacity.

De Weerd et al. (2013) let such computational models compete against one an-
other in a number of zero-sum games. The goal of this study was to determine
whether the ability to make use of a higher-order theory of mind is advantageous
in a competitive setting. Its results showed that using higher-order theory mind
does indeed benefit agents competitively. However, whereas using both first-
order and second-order theory of mind had a significant advantage over agents
with a lower order of theory of mind, using an order higher than second resulted
in only marginal gains.

Van Maanen and Verbrugge (2010) presented a computational cognitive model
of second-order theory of mind. This model was developed in ACT-R and at-
tempted to model how people apply second-order theory of mind and the cogni-
tive limitations of this task. The model relied on a decision tree strategy to rea-
son about the opponent. This decision tree was implemented by distinguishing
between declarative memory and working memory. The former is responsible for
retrieving successive reasoning steps, whereas the latter is required to temporar-
ily store these reasoning steps while the next step is retrieved from declarative
memory.

In order to test the validity of this model, it was fit on the experimental data
obtained from Meijering et al. (2010). This study let participants play a variant
of the centipede game called Mable Drop. This is a turn-based game in which
it is essential for a player to reason about their opponent and therefore requires
higher-order theory of mind reasoning. The model was able to successfully pre-
dict the participants’ data.

1.2 Project goals

This project attempts to develop a game Al for a strategic turn-based game
using the novel approach of using instance-based decision making models. The
card game No Thanks! is used during the project. Although academic game
AT research has introduced newer methods, the video game industry still very
much relies on traditional game AI methods. Therefore this project attempts to
demonstrate that an academic AI method like instance-based decision making
is suitable for creating a competitive game Al for a competitive game.

Additionally, the effects of theory of mind on playing the game of No Thanks!
is studied by using these cognitive models. Multiple cognitive models using dif-
ferent orders of theory of mind will be introduced. As mentioned before, these
models rely on instance-based decision making and a partial implementation

of the cognitive architecture ACT-R. In doing so, theory of mind is used in a
gaming scenario and the effects of this ability are studied by conducting two
main experiments. The first experiment attempts to study the performance of
the developed cognitive models against human players. The second experiment
focuses on model versus model behaviour by conducting simulations to further
examine whether using a different order of theory of mind has an advantage over
another.

2 The game of No Thanks!

2.1 The rules

No Thanks! is a card filler game which can be played by 3 up to 7 players and
takes about 20 minutes to play. The game is designed by Thorsten Gimmler
and was published in 2004 in more than 15 countries !. The game contains 33
unique cards numbered 3 to 35 and a number of pass tokens. Each card is worth
its face value in points, while a pass token subtracts one point for each token a
player owns (worth -1 point). Each player gets 11 pass tokens at the start of the
game. The goal of the game is to get the fewest points possible.

During each turn, the top card of the shuffled deck of cards is placed face-
up on the playing field (referred to as the playing card). When it is their turn,
a player can choose between two possible actions.

1. Do not pick up the playing card by placing a pass token on it. The turn
then continues to the next player (moving clockwise). If a player does not
have any pass tokens left, they are forced to pick up the playing card.

2. Pick up the playing card, along with any pass tokens that have already
been placed on that card, and turn over the next card from the deck. The
same player then again has to decide which action to take with the new
playing card (it is still their turn).

Picking up a card means its face value is added to the player’s score minus any
number of pass tokens that were on that card. Every card a player takes is
placed face-up on the playing field in front of the player. This means that all
players can see each other’s cards. However, the number of pass tokens that
players own is only visible to the player themselves.

The value of every card owned by a player is added to their score. However, if a
player owns a sequence of cards, then only the value of the lowest card of that
sequence is added to their score. For example, if a player owns the cards 20 and
22, their total score would be 20 + 22 = 42 points. Yet if that player completes
the sequence 20 to 22 by picking up card 21 (thus creating 20, 21, 22), these
cards would only be worth 20 points (21 and 22 are then worth 0 points). A
sequence starts at two cards and has no maximum length. A player can have
multiple separate sequences.

However, 9 random cards are removed from play before the game starts. These
cards are unknown to all players. This means a card that would complete a
player’s sequence may actually not be in the game (unknowingly to the player)
and thus cannot be taken by anyone. The game ends when all 24 cards of the
deck have been taken by the players. The player with the lowest score (cards
points minus number of owned pass tokens) wins the game.

Lhttps://www.boardgamegeek.com/boardgame/12942/no-thanks

10

The simple set of rules of No Thanks! provoke strategic gameplay, as a player
not only needs to keep track of their own cards, but also of those of their oppo-
nents. This means that each player can see if their opponents have any (partial)
sequences of cards and infer how important a specific playing card is for them
to adjust their own strategy accordingly.

Additionally, it is important to predict how many pass tokens each player has
left, as these are private and are vital in the strategy of a player. This is because
a player is forced to pick up a card if they have no tokens left, regardless how
bad that card is for them. Therefore, it can still be good practise to pick up a
high card that no other player wants in order to get the pass tokens that are
placed on them. This is also opens up the possibility to create a sequence with
this high card. More strategies in this game will be discussed in more detail
later in this report.

These set of rules make No Thanks! a suitable game for this project due to
a number of reasons. Firstly, having 9 random cards removed from play and
the opponent’s token supply being unknown, means that uncertainty is always
a significant factor in the player’s decision making process. Instance-based de-
cision making is therefore a suitable approach, as evidence suggests that people
make experience-based decisions when dealing with uncertainty (Pew and Ma-
vor, 1998; Gonzalez and Lebiere, 2005).

Secondly, using theory of mind in playing No Thanks! is vital to one’s strategy,
as it is important for a player to try to predict which action their opponents will
take. A player can predict their opponent’s action by primarily assessing whether
the playing card would be part of sequence if taken. This is possible because
the owned cards of all players are open knowledge. Therefore a cognitive model
should be able to use theory of mind to successfully play the game of No Thanks!.
Additionally, the effect of using different orders of theory of mind can be studied.

Lastly, despite provoking strategic gameplay, the set of rules of No Thanks!
are relatively easy to understand for experimental participants. This makes it
a suitable choice for this project, as a human subject who does not understand
the rules could heavily influence the results. A game with more complex rules
would therefore be undesirable.

11

2.2 User interface design and usability

Figure 2 shows a screenshot of the app at the start of the game. The app is
designed for 4 players, because this number of players makes optimal use of
the iPad’s screen space (one player on every side). Additionally, an online poll
among players of the No Thanks! board game showed a preference for playing
with 4 or 5 players to ensure the best gameplay 2.

ARG NWEVSL 1 TR AN RS P T O

New Game

! R

Figure 2: Screenshot of the app at the start of the game

The user interface (UI) is designed as follows. The four white rectangles repre-
sent the field of each player where they will place their owned cards. The field
turns blue if it is the turn of its corresponding player. The user is the player
at the bottom (their field being blue indicates it is their turn). The card in the
middle of the screen is the current playing card (card 22 in Figure 2). The label
on the bottom right of the screen shows how many tokens the user currently
owns.

At the start of the game, the user is asked to select the order of theory of mind
their opponents should use in the game with their corresponding slider. Three
cognitive models were developed, which each used a different order of theory of
mind: zero-order, first-order or second-order. Their implementation and func-
tionalities will be discussed in the next section. When the user is done selecting
their opponents, they can start the game by performing their action. Further-
more, the user can start a new game at any time by tapping the corresponding
button in the top left corner.

2https:/ /www.boardgamegeek.com/boardgame/12942 /no-thanks

12

New Game

Figure 3: Screenshot of the app midway through the game

In order to pick up the card, the user can swipe down on the playing card. The
playing card is then animated to the user’s field to add the card to their col-
lection. Any pass tokens on the playing card are also animated onto the user’s
token in the bottom right and added to their token supply. Alternatively, the
user can swipe up from the pass token displayed in the bottom right to place a
token on the playing card. This token is also animated onto the playing card.

Figure 3 shows a screenshot of the app midway through a game. The owned

cards of all players are clearly displayed and shown in order. The current card
at play is card 22 with 2 pass tokens on it.

13

3 Model implementation

Three different models were developed for this project, which each used a differ-
ent order of theory of mind (ToM). A model was made using zero-order ToM,
first-order ToM, and second-order ToM. The implementation of each model will
be discussed in this section.

3.1 Zero-order theory of mind model

The zero-order theory of mind model (T'oMj) only looks at its own cards and
its number of owned tokens. It does not take its opponents’ cards into account
nor the number of tokens that they own, as this would be a first-order theory of
mind skill. The model does the following when it is its turn and it has to decide
which action to take.

Firstly, the model interprets the current state of the game by looking at the
card at play, the number of tokens that are on that card, its owned cards, and
its number of owned tokens. Additionally, it checks which sequence category the
card at play belongs to. These sequence categories are a measurement to assess
how valuable a playing card is to a player given the cards they currently own
(not taking the number of tokens on the playing card into account). There are
three different categories:

No sequence

The card at play would not be part of any sequence if taken, thus meaning it is
worth its face value in points (a lonely card).

Scenario:

Cards owned: 4,5 (value: 4 points)

Card 7 is taken

Cards owned: 4,5,7 (value: 11 points)

Sequence extension

The card at play would be part of a sequence if taken and is positioned either
at the start or at the end of the sequence. This means the player would gain a
point if the card belongs at the start of a sequence.

Scenario:

Cards owned: 4,5 (value: 4 points)

Card 3 is taken

Cards owned: 3,4,5 (value: 3 points)

Alternatively, the player can add a card with no gain if the card belongs at
the end of sequence.

Scenario:

Cards owned: 4,5 (value: 4 points)

Card 6 is taken

Cards owned: 4,5,6 (value: 4 points)

Sequence completion

If taken, the card at play would complete a new sequence by adding a card be-
tween two cards. This category reflects the highest gain in points, as completing

14

a sequence means the value of the card(s) on the right side of the taken playing
card are negated.

Scenario:

Cards owned: 8,5,6 (value: 8 points)

Card 4 is taken

Cards owned: 3,4,5,6 (value: 3 points)

Using this criteria, the model assigns a sequence category to the current game
state and uses this information to decide which move to take using instance-based
decision making in the next step.

3.2 Instance-based decision making

Instance-based decision making is at the core of the model’s decision making pro-
cess, meaning the model’s declarative memory contains instance chunks which
define its actions. The instances present in declarative memory are manually
entered beforehand and are grouped by the aforementioned sequence category.
All instance chunks contain the following slots: the sequence category, playing
card value, number of tokens on the playing card, number of tokens owned, and
the action to perform. Table 1 shows the slots present in an instance chunk and
their range of values.

Slot Range

Category no sequence / sequence extension / sequence completion
Playing card value 3 to 35

Tokens on playing card | 0 or higher

Tokens owned 0 or higher

Action to perform take card / place token

Table 1: The slots present in an instance chunk and their range of values

The instances are designed from a zero-order theory of mind perspective. From
this perspective, whenever the card at play belongs to either the sequence ex-
tension or sequence completion category, the model should take the card. This
is because such a card can be added freely or even with a gain in points (i.e. a
lower score). To achieve this behaviour, all instances belonging to these cate-
gories always have the take card action in their corresponding slot. In contrast,
instances belonging to the no-sequence category are much more varied. These
chunks are mainly structured around the playing card value. Generally, how
higher the card value, the more tokens have to be on the card before the model
decides to take it. However, when the model’s token supply is low, less tokens
are needed on the card before the model chooses to take it.

When the model has assessed the game state as described earlier, it creates
a chunk of that current state. This current state chunk contains the same slots
as the instances, excluding the action slot (because this is the thing the model
needs to decide). Partial matching is then used to retrieve the instance chunk
that is most similar to the current state chunk (i.e. has the highest activation =
lowest mismatch penalty). The action present in the corresponding slot of the
retrieved chunk is then executed by the model. Figure 4 shows a flowchart of
the decision making process of the ToM, model.

15

Playing card »[Assign 59““""54_{ Owned cards
value category

Create current
state chunk

Execute
partial matching

Owned tokens

Instance chunk (SEE T Execute action
from slot

Tokens on
playing card

Figure 4: Flowchart of the decision making process of the ToMy model

3.3 Partial matching and its mismatch function

A mismatch function is used to determine which instance chunk is the most
similar to the current state chunk that is given as the partial matching input.
Because all instance chunks have a fixed activation of 0 (thus no decay), the
retrieval activation of a chunk is entirely dependant on the mismatch penalty it
receives. This means that the retrieval activation is always negative, except if the
current state chunk exactly matches an instance chunk (disregarding activation

noise).
Slot ‘ Mismatch penalty
Category -100
Playing card value —|z—yl| / 32
Tokens on playing card | —|z — y| / max(z,y) Weber’s law
Tokens owned —|x —y| / max(x,y) Weber’s law

Table 2: Mismatch penalty per slot as used in the mismatch function

Some aspects of the game state are more important than others. Defining this
distinction is an important task of the mismatch function, because it specifies
the proportional penalty that slots should receive relative to each other. Table
2 shows the mismatch penalty used for each slot. In the case of No Thanks!, the
sequence category is the biggest factor in the decision making process. Therefore,
the category slot has a large mismatch penalty, which in turn always ensures
a chunk of the correct category is retrieved. This is also relevant for the token
chunks used only by the higher order theory of mind models, which will be dis-
cussed later.

As shown in Table 2, a linear mismatch penalty is used for the playing card
value slot by dividing the absolute difference of input z and y by the range of
cards (i.e. 32). However, the tokens on playing card and owned token slots use
a different penalty function based on Weber’s law.

According to Weber’s law, the minimum difference that a human can perceive

between two stimuli is proportional to the size of those stimuli (Whalen et al.,
1999). This means that numbers that are closer together are considered to

16

be more similar, but larger pairs of numbers are considered more similar than
smaller pairs (i.e. the former receive a smaller penalty). This approach is suit-
able for determining the mismatch penalty for the number of tokens on the
playing card and the model’s token supply. This is because a difference between
a smaller number of tokens should have a higher mismatch penalty than that
same difference between a higher amount. For example, owning 1 token in-
stead of 2 should have a bigger impact on a player’s strategy than the difference
between owning 10 or 11 tokens.

3.4 First-order theory of mind model

Tokens play an essential part in No Thanks!, as a token is worth —1 point and
is required for the ability to skip a bad card. Therefore, it is beneficial for the
model to maximize the number of owned tokens. A good strategy for this is to
assess how good or bad the current card at play is for the opponents and thus
to predict how likely it is for an opponent to take the card or not. It can occur
that a particular card is valuable to the model (because it would be part of a
sequence in its collection of cards), while it is a bad card for its opponents (they
cannot place it in a sequence). The model can then decide to place a token on
that card, even though taking the card now would already be profitable. This
way the same card could rotate back to the model with three extra tokens on it
(one from each opponent, as a result of them skipping it).

This ability is a first-order theory of mind skill, as it involves reasoning about
what the opponent would do from a zero-order theory of mind perspective. This
means the model has to make a prediction based on the owned cards of its oppo-
nents and how many tokens they own. While the former is open knowledge (the
cards are on display), the latter is not. However, this knowledge can be fully
tracked, as every player can fully observe the flow of tokens in the game and the
number of starting tokens is equal for all players. This skill involves counting
and memorization, and is not an easy task for humans. In order to let the model
memorize the token flow in a realistic human-like way, a token memory system
was implemented. This system will be explained later in this section.

3.4.1 Predicting actions of opponents

When it is the turn of the model, it attempts to predict the next action of its
opponents first. It does this by projecting the state of the opponent onto itself.
In other words, it decides what it would do if it were in its opponent’s position if
it would apply zero-order theory of mind. Thus it executes the T'oMj-protocol
with the opponent’s current state plus an extra token on the playing card. This
additional token will be on the card if the model decides to skip the card. There-
fore this has to be taken into account.

This procedure continues until a prediction has been made for all opponents
(note an extra token is added for each player). However, if it predicts an oppo-
nent will take the card, it will not make a prediction about the player(s) that
is (are) next in turn. Because the model will not risk placing a token anyway.
Next, the model executes the T'oMy-protocol on its own state. If its best T oM,
action is to take the card, then it looks at the predictions. Only if all players are
predicted to place a token, then the model decides to skip the card in the expec-
tation that the card will come back again with extra tokens on it. Otherwise,

17

the model takes the card (like a ToMy model would do). Note that the ToM;
model still uses the same zero-order ToM instances as the ToMy model. Thus
the fundamental aspect of the first-order ToM model is that it takes its oppo-
nent’s cards and their number of owned tokens into account. Figure 5 shows a
flowchart of the decision making process of the ToM; model.

Retrieve
token chunks
(Figure 5)

!

! Vis

No

\>

Figure 5: Flowchart of the decision making process of the ToM; model

3.4.2 Remembering the token supply of opponents

A human player with perfect memory could in theory derive the exact number of
tokens for every player at any point in the game. However, a human player makes
mistakes and so should the model. Additionally, the model would have an unfair
advantage over human players if it simply logged the token distribution with no
error. Instead, the model uses token chunks stored in declarative memory to
remember the token distribution of the game. These chunks decay over time and
thus it can happen that they cannot be retrieved and thus cannot be remembered
by the model.

Slot Range Slot ‘ Range

Category Leaf Category Root

Player 0-3 Player 0-3

Leaf decay Constant value Token class | Low / Sufficient / Many

Linked root Root that was created or
referenced during leaf creation
Token number | 0 or higher

Table 3: Slots and their content range of Table 4: Slots and their content range of
the token leaf chunk the token root chunk

18

—p| of opponent's

A frequent occurrence for human players is that they are unable to remember
the exact number of tokens, yet are able to remember an approximation. To
model this behaviour, two types of token chunks were implemented: token leaf
chunks and token root chunks. Table 3 & 4 show the slots and their content
range of the token leaf chunk and token root chunk respectively. The model
stores both a root and a leaf chunk for each opponent. The leaf chunk stores an
exact number of tokens, while the root chunk holds a categorical amount (i.e.
token class). The leaf chunk is harder to retrieve than a root chunk, because it
receives an additional mismatch penalty (thus decreasing its activation). This
models the behaviour that a human remembers an approximation easier than
an exact number.

Create and store

Update token new updated
number with the »-| token chunks in
/ retrieved value declarative
Updating memory
Updating or
predicting?
Predicting Run one

Retrieval success prediction with
the retrieved

token value

Retrieval attempt

Update token
number with
default value of
token class

LEAF chunk

Updating

Retrieval failure Updating or

predicting?

Retrieval success Predicting
Retrieval attempt Run two

of opponent's predictions with
Rogg chunk token boundaries
of token class

Retrieval failure Update token
number with
default value of
the sufficient
Updating | token class (8)

Updating or
predicting?

—
Predicting Run three
\ predictions with
the default value
of each token
class

Figure 6: Flowchart of the implementation of the token memory system in
updating the token chunks and determining which token value(s) to use for its
prediction(s).

Figure 6 shows the flowchart of the implementation of the token memory system.
When the model tries to remember the number of tokens of an opponent, it first
attempts to retrieve the opponent’s leaf chunk using partial matching. If this
retrieval is successful, it uses the retrieved number of tokens for its prediction.
However, if the retrieval fails, it attempts to retrieve the root chunk (which is
easier to retrieve). If this does succeed, the model executes two predictions with
the prediction values of the retrieved class (Table 5). In the event the root chunk
can also not be retrieved, the model runs a prediction which the default token
value of each token class as shown in Table 5.

19

Token class Range ‘ Prediction values | Default value

Low 0-5 2,5 3
Sufficient 6-10 6, 10 8
Many 11 and up | 11, 16 11
Default (no retrieval) | N/A 3,8,11 8

Table 5: Properties of each token class.

By using declarative memory, whether a token chunk can be retrieved depends
on the decay. While the base activation of a token chunk is also dependant on
noise, it is primarily determined by the model time that has passed. Thus this
means how longer it takes before a particular chunk needs to be retrieved, how
harder it is to retrieve that chunk. In No Thanks! this translates to how many
turns have passed, because a constant amount of model time is added for every
turn. The minimum number of turns is 3 (if all opponents skip the card), but
can be more if a player decides to take a card. Therefore the chance of a retrieval
failure increases if players take cards during a round (and thus take more time).

3.4.3 Keeping track of tokens

Whereas the ToM, model only attends to the game during its turn, the ToM;
model also needs to perform when it is the turn of others. In order to keep
track of tokens, it has to observe and remember whether an opponent either
receives tokens (by taking the card) or loses a token (by skipping the card). For
it to update the number of owned tokens, it first has to remember the relevant
token chunks. The model uses the same partial retrieval system as previously
explained (Figure 6). If it can retrieve a leaf, it will create a new leaf chunk with
the updated number of tokens and store it in declarative memory. Additionally,
it will create and store a root chunk with the corresponding token class. If it can
only retrieve the root chunk, it will add or subtract the change in tokens to the
default value of that class (shown in Table 5). A new leaf and root chunk are
then created and stored in declarative memory with the new token number and
its associated class respectively. In the case retrieving both the leaf and the root
chunk result in a retrieval failure, the model assumes the player had 8 tokens
(the default value of the sufficient token class) and creates the new chunks using
that value.

Note that the T'oM; model executes this process during every opponent’s turn
and that each opponent has its own set of token chunks. The mismatch penalty
for the player slot is large, which means the model does not mix up the tokens
supllies between players and does not incorrectly retrieve a token chunk belong-
ing to the wrong opponent. This possible confusion was not added to the model,
because it was found to add unnecessary complexity to the model.

Additionally, a result of this token system is that the number of token chunks
in declarative memory increases as the game progresses (because a new chunk is
created with every update). However, because all chunks decay over time, the
model retrieves the most recent chunk (unless in the rare case activation noise
causes an older chunk to have a higher activation).

20

3.5 Second-order theory of mind model

The second-order theory of mind model makes use of the same tools available
to the ToM; model. It also uses the T'oM, instances, the same token memory
system and it makes predictions about its opponents’ move. However, whereas
the T'oM; model assumes its opponents reason with zero-order ToM, the T'oMs
model assumes they possess ToM; reasoning.

When it is the turn of the model, it makes a prediction about the player next
in turn. It projects its own ToM;i-protocol on the current state of that player,
plus an additional token. Just like the T'oM; model, it makes a prediction for
all its opponents and only places a token on a favourable card if it predicts that
all opponents will skip that card. Note that the model still only uses its own
declarative memory for remembering the token chunks. It does not attempt to
make a prediction about how well its opponents remember the token flow of the
game. The reason for this is that there is no reliable way to make a prognosis
about how well an opponent may remember the same thing the model itself
attempts to remember. Additionally, it would add redundant complexity to the
model. Therefore, the main difference with the T'oM; model is that it projects
the ToM; protocol onto its opponents, instead of the T'oM, protocol.

21

4 Code implementation

This section will present an overview of the code implementation and an ex-
planation about a number of features that were not discussed in the previous
section (Model Implementation). Additionally, the most important properties
(instance variables) will be discussed.

4.1 Structure

The entire application has been coded using Swift 4.0 3 and is designed exclu-
sively for the iPad. The app is targeted to run on iOS version 10.3 and higher.
The app has been designed following the Model-View-Controller (MVC) design
pattern as recommended by Apple . The application consists of the following
Swift files, which each represent a class.

Models

e NoThanks.swift: Primary core model class responsible for running the
game of No Thanks!. The game is initialized and run by this class, e.g. it
shuffles the cards, initializes the players, communicates the game state to
the cognitive models, logs the game etc.

o PlayerModel.swift: Core model class responsible for running the cognitive
model used as a player in No Thanks! and thus defines the behaviour of
the model. Inherits from Model, which originates from the ACT-R Core
files. All theory of mind and token memory system functions are present
in this class.

e Log.swift: Class responsible for logging game progress and model be-
haviour for debugging and experimental data analysis. 39 variables are
logged and written to a text file by this class.

o Player.swift: Class which defines the properties of the players in the game.
It stores which cards a player owns, how many tokens they own, what their
current score is, and what model defines its behaviour.

o Card.swift: Class which defines the properties of a playing card in the
game.
Controllers

o ViewController.swift: Primary view controller class responsible for every-
thing Ul related in the app. It manages animations, gestures, displaying
scores etc. Communicates with an instance of NoThanks.

3https://developer.apple.com/documentation /swift
4https://developer.apple.com/library/archive/documentation/General /Conceptual /DevPedia-
CocoaCore/MVC.html

22

Views
o CardView.swift: UIView class to depict a card in the UI.

o CardViewCell.swift: UlCollectionViewCell class to depict a card exclu-
sively in the UlCollectionViews used to depict the players’ owned cards in
the UL

e TokenView.swift: UIView class to depict a token in the Ul

ACT-R Core Swift files

A collection of Swift files which form a partial implementation of ACT-R, created
by Niels Taatgen ®. PlayerModel inherits from the Model class present in these
files. This allows the cognitive model to use ACT-R functionalities such as
declarative memory, chunks and partial matching.

4.2 NoThanks

Key properties

This class has multiple Boolean properties that can be set to change the be-
haviour of the game. Setting modelOnly to true lets the app play the game
with only models and no user involved. The fastMode variable sets the duration
of animations to near 0 time. This was enabled when running model versus
model simulations to significantly decrease game duration. Lastly, when the
debuggingMode is enabled, a more detailed model trace is printed in the Xcode
console. This was very valuable in debugging, because it gives a detailed view
of the model’s decision process. Additionally, a new debugging button is also
displayed in the UI. Pressing this button allows the model that is next in turn
to execute its action. The game will not proceed to the next turn automatically,
allowing the user to debug without time constraints.

The user can also setup an experiment with multiple games from this class.
The property array modelsToMSchedule holds the distribution of which order of
theory of mind each model will use for each game. This can be altered to the
user’s needs. This class is reinitialized to start a new game.

Key functions

The most important task of this class is to control the game. At initializa-
tion, it shuffles the cards, gives out the tokens and assigns an instance of the
PlayerModel class to each of the three players (or four in case of model only
gameplay). During the game it asks the linked model of each player (or human
player) which action it (they) will take when it is their turn. It then communi-
cates to the ViewController what to display on screen.

This class is also responsible to inform the game state to each model (i.e. each
PlayerModel instance) at every turn so the cognitive models can assess the cur-
rent game state to decide on their action or to update their token memory system
(this is done by the giveGameStateToModels function).

Shttps://github.com/ntaatgen/ACT-R.git

23

Additionally, this class also passes logging data to an instance of the Log class at
every turn. The data is written to a dictionary which is a property of that class.
This Log instance is passed as an initialization parameter of the NoThanks class
when it is reinitialized for a new game. This is done so the data of multiple
games can be written to the same log.

4.3 PlayerModel
Key properties

This class has multiple Boolean properties that are primarily intended for debug-
ging. The first- and second order ToM models use their token memory system
when useTokenMemory is set to true. When set to false, the model 'cheats’ by
looking directly at the correct number of tokens its opponents own. This was
used for debugging and testing the model. Furthermore, setting the tokenDe-
bugging and instancesDebugging properties to true results in a more detailed
model trace in the console about the token memory system and instance-based
decision making respectively.

The model’s main ACT-R parameters can also be set here. These are the re-
trieval threshold, baselevel decay, activation noise, and the mismatch penalty.
Many simulations and tests were necessary to set these parameter values, due to
the fact that these parameters have a strong influence on both instance-based de-
cision making and on the token memory system at the same time. For example,
increasing the activation noise leads to more variation in the partial matching
process of retrieving an instance. This also increases the variation of whether
the model can retrieve a leaf chunk, only a root chunk, or neither. Additionally,
more activation noise increases the chance that the model does not retrieve the
most recent token chunk, as noise can cause a more decayed chunk to get a
higher activation value than a less decayed chunk (i.e. the more recent chunk).
Both factors result in the model making more mistakes in remembering token
values. This in turn results again in more variation in instance-based decision
making, as the current state chunk used for partial matching has more varied
token values in it.

Therefore, due to the compounded effect of parameters and the interaction ef-
fects between them, it was challenging to find parameters that lead to the most
realistic model behaviour. It was attempted to balance these parameters in
such a way that the model does make mistakes and has variation in its decision
making process, while also not underutilizing the process by adding too much
randomness.

Key functions

The PlayerModel is responsible for the behaviour of the model. This means
that all theory of mind reasoning and the token memory system are defined by
this class. In other words, everything discussed in the Model Implementation
section is executed by this class. However, the class does inherit from the Model
class of the ACT-R core files. It depends on this superclass, because it makes
use of ACT-R functionalities such as chunks, declarative memory and partial
matching. These are defined in these files.

24

At every turn, the model updates its own game state according to the infor-
mation given by the NoThanks class. It then continues performing the steps as
explained in the Model Implementation section. Note that a higher order the-
ory of mind model not only uses the respective executeToM function, but also
the function(s) of the lower order(s) of theory of mind. For example, the ToMs
model starts by executing the executeSecondOrderToM function. Then it makes
predictions of its opponents by using the executeFirstOrderToM function three
times, which each call the executeZeroOrderToM function three times to make
predictions from that opponent’s perspective. Lastly, it makes a decision based
on its own cards and own tokens collection by calling executeZeroOrderToM one
final time.

4.4 ViewController

The ViewController controls everything that is UI related. It is responsible for
animations, recognizing gestures and thus presenting the game to the player.

An UlCollectionView ¢ was used to display the cards of players on the screen.
This type was found to be very suitable for presenting this data, because an
UlICollectionView provides its own internal animations when adding, deleting or
moving objects of its data source. This means that when adding a new card to
a player’s card collection to, for example, somewhere in the middle, all cards to
the right side of that new card are automatically animated to the right to make
space for that new card. This allowed for a smooth and clear presentation to
the user.

Many functions were needed to smoothly move a playing card into a player’s
card collection. This procedure is done by creating an identical transition card
exactly above the playing card immediately when the card is taken. The original
playing card view is hidden, and the new card is added to the player’s corre-
sponding UlCollectionView as a hidden object. The transition card (which is a
CardView) is animated to the exact position of the (still hidden) card view in the
UlICollectionView. Then the hidden card view is made visible and the transition
card is deleted simultaneously. This procedure results in the ”illusion” that the
same playing card is being moved to a player. It is also dynamic, which means
that elements of the Ul can be moved without breaking any of the animations.
The same process with a transition token is used for moving tokens to a player
and on a playing card .

Additionally, the capabilities of the UlCollectionView were significantly mod-
ified to let cards dynamically shrink in size in case a player has too many cards
to fit on screen in full size. The cards also form rows to optimally make use the
available screen space.

Shttps://developer.apple.com/documentation /uikit/uicollectionview

25

4.5

Additional notes

The instances used by the cognitive model are present in the
Instances_ZeroToM_ Final.actr file. These instances are imported by the
PlayerModel class.

An open-source library was used to create the controls shown at the start
of the game. The user can use these to select which order of theory of
mind its opponent should use during the game (see Figure 2). These were
developed by Tapptitude and are available on Github 7.

The log file which records the game progress is saved locally. When running
the app on a Mac using the simulator, the directory path is shown in
the Xcode console. When using an iPad, the file is located in the app’s
file container. This container can be downloaded from the iPad when
connecting it to Xcode.

"https://github.com/tapptitude/TTSegmented Control

26

5 Experimental results

5.1 Experiment with human subjects

An experiment with human subjects was conducted. The goal of this experiment
was to study the performance of the developed cognitive models against human
players. Its results would give insight into how suitable a model using instance-
based decision making is in a strategic turn-based game such as No Thanks!.
Additionally, the experiment was also meant to examine the effects of theory of
mind and to study whether human players perform differently against models
using different orders of theory of mind.

5.1.1 Methods

30 people participated in this experiment (20 female). Each were given €12 for
their participation. All participants were international students at the Univer-
sity of Groningen.

Before the experiment started, instruction sheets were handed to the partici-
pants who were then given sufficient time to read it through. This instruction
sheet, consisted of a detailed explanation of the rules of No Thanks! an expla-
nation of the user interface of the app, and additional information about the
proceedings of the experiment (Appendix A). After each participant was fin-
ished reading the instructions, the supervisor read the instructions out loud and
the participants were asked to read along. This was done to reduce the chance
of a participant not understanding the rules. Each subject was allowed to ask
questions at any time. Once the instructions were clear, the participants moved
to their own separate room where they would play No Thanks! on an iPad Mini
4 (2015) running i0S 11.3.

Block 1 2 3 4) 6 7 8
Game 1234567 89|10 11 12|13 14 15|16 17 18|19 20 21|22 23 24
Models’ order of ToM|012(000{111|2 2 2|0 0 0|1 1 1{2 2 2|0 1 2

Table 6: Overview of which model type served as the subjects’ opponents during
the 24 games of the experiment

All participants played against the three different ToM models for a total of
24 games; 8 games against each model. Subjects took 72 minutes on average
to complete the experiment. Table 6 shows which type of model served as the
subject’s opponent for each game. All three opponents were always the same type
of model (thus used the same order of theory of mind), meaning different models
types never competed against each other during this experiment. This was done
to prevent any additional interaction effect that the different model types may
have on each other, as the goal of this experiment was to study whether a human
subject performs differently against different order theory of mind models in No
Thanks!. An additional experiment was conducted in which simulations were run
to study the model versus model behaviour. This experiment will be discussed
in the next section.

27

Figure 7: Screenshot of the game when the subject is asked to provide feedback.
The opponent at the top of the screen (player 2) is selected (and thus marked
red).

Additionally, participants were asked to give feedback about the models’ actions.
During each of their turns, participants were asked whether any of their oppo-
nents made a bad move during their last turn (in their opinion). This message
was displayed on screen. If they found that was the case, the subject could tap
on the concerning opponent(s). This marked the opponent(s) red on screen (see
Figure 7). The subjects could then continue with the game. It was noted to the
subjects that it was not required to give feedback during every turn, only if they
found that any opponent made a bad move.

5.1.2 Results

The data of all 30 subjects were used. However, the first three games of the ex-
periment (block 1) were meant as practice games and its results were therefore
omitted in the data analysis. This means the following results are based on 21
games in which each subject played 7 games against each model.

Figure 8 shows the proportional ranking of the human subjects against each
model. Note that a human player always played against three models at the
same time. This means that if a participant won 25% of the games against a
particular model, its proportional winning performance would be equal to that
of the model (because the three models won the remaining 75% of the games;
25% by each player). Therefore, a player ranking above 25% indicates it scored
that ranking more often than the model.

In other words, Figure 8 shows the distribution of where the human subjects
finished at the end of each game against each model type. This means these
plotted frequencies add up to 100% for each model type. For example, the par-
ticipants became first in 17.7% of the games when playing against the ToM;
model. Whereas they became second in 20.5% of the games, and ended up in

28

third and fourth place in 23.3% and 38.5% of the games respectively (summing
to 100%).

Proportional ranking human subjects vs. models

0.5~

0.4

TaM maodel
0.3-
nz2-
0.1-
0.0-
1 2 3 4

Ranking

Frequency

ra

Figure 8: Proportional ranking of the human subjects versus each model over
21 games

Figure 8 shows that the participants won more often against the ToM; model
than versus the ToM; and T'oM> model. The subjects also became second and
last less often than versus the other models. Additionally, subjects won 36.2%
of the games against the ToM; model. This means they won more often from
the ToMjy model than vice versa (because this occurred more often than 25% of
the games).

25

20~
15-
I.D- -

Mean score

0.5~

! ' !
TolMg Taoldy Toly
Model opponent

Figure 9: Boxplots showing the distribution of the mean score of the human
subjects against each model

29

To test the significance of the performance difference between models, subjects
were given a score based on their ranking. 3 points were assigned for winning,
2 for becoming second, 1 for becoming third, and no points for becoming last.
For each subject, the mean scored points against each model was calculated,
thus resulting in three mean scores per subject. The distribution of these mean
scores per model opponent are shown by the boxplots in Figure 9. Similar to
the results of Figure 8, it can be seen that subjects on average score worse when
the model’s order of theory of mind becomes higher.

A paired t-test was run between the subjects’ mean scores against the ToM,
and T'oM; model. The result of this shows that this difference in performance
is significant (¢(29) = 4.63,p < 0.005). The same procedure shows that the
performance difference between the ToM, and ToM,; model is also significant
(t(29) = 5.28,p < 0.005).

Additionally, Figure 8 and 9 show that the participants performed slightly bet-
ter against the ToM; model than against the ToM; model. This is because the
subjects became first, second and third marginally more often versus the ToM;
model, whereas they became fourth considerably more often against the T'oM,
model. However, the overall performance difference between these models ap-
peared to be not significant when assigning a mean score to each participant
(t(29) = 1.55,p = 0.16). Also, it can be derived from Figure 8 that subjects
won less often from both the ToM; and ToM, model than vice versa (17.7%
and 14.8% respectively). This being in contrast with the subjects’ performance
against the ToMy model (subjects winning 36.2%).

Prediction accuracy of human subjects’ actions

1.00-

0.75-

ToM model
| B
B:

Prediction accuracy
f=1
w
[=]

0.25=

0.00-

TakeCard PlaceToken Owerall
Action

Figure 10: Prediction accuracy of the ToM; and ToM> model of the human
subjects’ actions

Figure 10 shows the prediction accuracy of the ToM; and ToMs model of the
human subjects’ actions. Because the ToMy model does not make predictions
about its opponent’s actions, it is not present in this graph. It can be seen that
that both models have almost the same prediction accuracy overall (77.0% and

30

77.9% for ToM; and ToMs respectively). This is significantly above chance.
Both models predicted more accurately when a subject would place a token
than they would take a card. However, the distributions between the two mod-
els are different. Whether a subject would take a card was correctly predicted
in 67.1% of the cases by the ToM; model, compared to 58.0% by the ToMs
model. Whereas the T'oM; model beats out the T'oM; model in predicting more
accurately when a participant will place a token (83.5% over 79.8%). Despite
this smaller margin, the overall prediction accuracy of both models are almost
identical. This is because players place a token significantly more often than
they take a card (approximately 80% of actions on average).

Lastly, 1.18% of the actions made by the ToM; model were regarded as a
bad move by the participants. This was 1.36% and 1.20% for the ToM; and
ToM> model respectively. This might suggest that the T'oM; model received
marginally more negative feedback than the T'oMy model, even though the for-
mer performed significantly better against the participants. However, the differ-
ences are very small thus there is too much margin of error to draw conclusions
from these results. Additionally, further analysis shows that there was a large
variation between subjects. 10% of the participants were responsible for 38%
of the given feedback, while 43% of the participants gave feedback less than 10
times (on £1800 model turns). This undermines the reliability of these results
even further.

5.2 Experiment by simulations

In addition to conducting an experiment with human subjects, an experiment
through simulations was also conducted. The goal of this experiment was to
further examine the effects of theory of mind on playing No Thanks!. Instead of
playing against human players, the different models played against each other in
order study which order of theory of mind has an advantage over the other. It
was hypothesized its results would give further explanation to the results found
in the experiment against human subjects.

Simulation Player 0 | Player 1 | Player 2 | Player 3
ToMgy vs. ToM; ToM, ToM, ToM ToM;
ToMy vs. ToM, ToM, ToMy ToM ToM,
ToM; vs. ToM, ToM; ToM, ToM; ToM,

Table 7: Experimental setup of the run simulations for this experiment

5.2.1 Methods

Three simulations were run in which each model type played against each other.
A similar setup to the experiment with human players was used for these simu-
lations, with one model type taking the role of the human subject. This means
that model type A played against three models of type B during each game. The
experimental setup is shown in Table 7. The models played 500 games against
each other in every simulation. This was done to mitigate the effect of game
randomness, which No Thanks! possesses, as much as possible. Additionally,
the models used in this experiment were identical to the ones in the human ex-

31

periment (using the same parameters etc.).

5.2.2 Results

Figure 11 and 12 show the proportional ranking of the T'oM, model versus the
ToM; and T'oMs model respectively. Analogous to the results of the human ex-
periment, a model ranking above 25% indicates it scored that ranking more often
than the opponent model. Firstly, it can be seen between both figures that the
results are very similar. Both the ToM; and ToM> model perform considerably
better than the ToMy model by winning over 48% of games and becoming sec-
ond, third or last fewer times. These performance differences were both found to
be significant when assigning points to each ranking: ¢(909.8) = —15.8,p < 0.005
and ¢(854.3) = —14.2,p < 0.005 for the T'oM; and ToM, model respectively.

Proportional ranking ToM, model vs. ToM; model Proportional ranking ToM, model vs. ToM, model
0.5- 05~
04- 04~
§‘ 03- ToM model g 0.3~
H | [2
E 02- [§ § 02-
0.1- 0.1~
00- 0.0~
; : : H ; } ; :
Ranking Ranking
Figure 11: Proportional ranking ToM Figure 12: Proportional ranking ToM,
versus T'oM; model over 500 games versus T'oM; model over 500 games

Figure 13 show the proportional ranking of the T'oM; model versus the ToM,
model. It shows that the ToM> model performs slightly better than the ToM;
model, as it ranks first and second more often. Although the performance differ-
ence between these two models is not as substantial as comparing them to the
ToMy model, it does appear to be significant (¢(865.0) = —2.0,p = 0.04).

32

ToM model

| B
| B

Proportional ranking ToM,; model vs. ToM, model

' '
3 4

Ranking

0.4-

o
W
'

ToM model
| B
B:

Frequency
i

0.1-

0.0-

1 2

Figure 13: Proportional ranking T'oM; versus T'oMs model over 500 games

5.3 Effects of the token memory system

Both the T'oM; and ToM,; model use the token memory system to remember
how many tokens their opponents own. Whether the correct number of tokens
can be remembered depends largely on whether the token leaf and token root
can be retrieved. A token chunk can be retrieved if its activation is above the
retrieval threshold (RT). Decreasing the retrieval threshold thus means that a
token chunk can be retrieved more easily and vice versa. Therefore, by adjusting
the retrieval threshold, the effects of correctly remembering the token supply of
opponents can be examined indirectly.

Mean score of model vs. model over retrieval threshold

2.5-

20-
Players

—o— ToM; vs. ToM;
- TolM; vs. ToMp
~#— ToM; vs. ToM,

Mean score

225 -20.0 -17.5 -15.0 125 -10.0
Retrieval threshold

Figure 14: Mean score of both the ToM; and T'oM; model playing against the
ToMy model and one another over the retrieval threshold (RT)

33

Figure 14 shows the mean score of both the ToM; and T'oM; model playing
against the ToMy model and one another over the retrieval threshold. Like the
previous analyses, these mean scores are obtained by assigning points to the
models’ rankings. The mean score of the model using the highest order of the-
ory of mind is plotted (given in bold: ToM; vs. ToMy, ToMs vs. ToM, and
TOM2 VS. TOMl).

It can be seen that the mean score of the ToM; model playing against the
ToMy model (i.e. ToMp) is only slightly affected by the retrieval threshold
(RT) . There appears to be a downward trend when increasing the RT, but this
may be due to the margin of error. In contrast, the mean score of T'oMasq is
decreasing until a RT of -15, but increases again afterwards. The mean score of
ToMs; shows the most evident downward trend. All shown mean scores of the
higher order theory of mind models were significantly higher than the respective
mean scores of their opponents, with the exception of the ToMs; mean scores
with a RT of -13 and -11.

Overall, the mean score appears to decrease when the RT is increased. The
larger effect on the T'oM> model may be caused by the fact that this model uses
the token memory system more often than the ToM; model. This is because
it assumes its opponents use ToM; and thus attempts to retrieve more token
chunks. Therefore, this suggests that a higher RT causes more errors in retriev-
ing token chunks, which leads to worse predictions, which in turn results in a
lower mean score. This may also explain the smaller impact of the RT on the
ToM; model, as it does not rely as much on retrieving tokens.

However, the overall effect of the retrieval threshold was smaller than expected.
Given the impact of the number of owned tokens on which instance is retrieved
(due to its high mismatch penalty), a larger effect on both the ToM; and ToMs
model was anticipated. This may be due to the design of the instances and
that all models use these same instances. The given instances avoid having a
low token supply, as that can have a heavy negative influence in No Thanks!.
The default number of tokens that the model assumes when it cannot retrieve
any token chunks is 8. The results from both experiments show that models on
average own approximately 10 tokens. Therefore, guessing that another model
has 8 tokens is a pretty safe bet, which in turn may be the cause that the
model’s performance does not diminish as much as expected. The effect might
be larger when playing against human players or models which use a different
set of (more risky) instances. However, more research is needed to confirm this
possible explanation.

34

6 Discussion

6.1 Implications of the results

This project attempted to study the effects of theory of mind on playing the
game of No Thanks! using multiple cognitive models. The results of the exper-
iment with human subjects showed that the cognitive models using first-order
and second-order theory of mind performed significantly better against human
players than the model using zero-order theory of mind. This suggests that
making use of theory of mind in No Thanks! has an advantage over using no
theory of mind. These results correspond with the findings of the simulation
experiments, where both the ToM; and ToM; model significantly outperform
the ToMy model. However, the advantage of using second-order theory of mind
over first-order theory of mind appears to be not as substantial. Its performance
against participants showed to be marginally better, although this was found to
be insignificant (p = 0.16). The difference in the simulations was still unsub-
stantial, but larger and also (just) significant (p = 0.04).

Overall, these results suggest that using higher orders of theory of mind are
an advantage in a competitive turn-based game such as No Thanks!. However,
the benefits appear to be diminishing. This partly complies with the findings of
De Weerd et al. (2013), as that study observed diminishing returns on using or-
ders of theory of mind beyond the second. The key difference being here is that
this study observed these diminishing returns earlier; beyond first-order theory
of mind. However, this study did not consider models of third-order theory of
mind and higher, thus no conclusions can be made whether the additional ad-
vantage diminishes even further beyond second order theory of mind.

A possible explanation for why these diminishing returns occurred earlier, is
that these may be caused by the limited action space that No Thanks! pos-
sesses. Because there are only two actions a player can do, there is a limited
amount of influence a model’s strategy can have. However, De Weerd et al.
(2013) also found that their observed diminishing returns were not related to
the available action space. Nevertheless, the rock-paper-scissors variants stud-
ied by De Weerd et al. (2013) had at least three possible actions. Therefore,
it is possible that for games that have a smaller action space than three, like
No Thanks!, the advantage of using higher orders of theory of mind diminishes
earlier. However, future research is needed to verify this possible explanation.

The cause for the observed diminishing returns may also be specific to No
Thanks!. The key advantage that the ToMy model has over the ToM; model,
is that the former can predict when the latter decides to skip a favourable card
in order to collect extra tokens. Although the results show that this 'skipping
strategy’ leads to significantly better performance, the ToM; does not have the
opportunity to execute this strategy often (because such a game state is rela-
tively rare). Therefore there is also a limit to how often the T'oMs model can
exploit the ToM; model. This may be the cause for the marginal advantage
that second-order theory of mind has over first-order theory of mind in playing
No Thanks!.

Additionally, the prediction accuracy results shown in Figure 10 suggest that
the subjects overall did not consistently use either zero-order theory of mind or

35

first-order theory of mind, as the overall prediction accuracy was almost identi-
cal between the ToM; and ToM> model. The lower prediction accuracy of the
ToMs model of taking a card might indicate that the average participant did
not make use of the ’skipping strategy’ The ToM; model assumes the subject
would take a favourable card immediately (i.e. the ToM; strategy), whereas
the ToM> model assumes the subject would skip it to collect more tokens, if
possible (i.e. the ToM; strategy). Therefore the higher accuracy of the ToM;
may be caused by the participants on average using a zero-order theory of mind
approach.

Furthermore, this project has demonstrated that an academic AI method like
instance-based decision making is suitable for creating a competitive game Al
for a competitive game. By using instance-based decision making, competitive
cognitive models were developed without relying on traditional game AI meth-
ods such as finite-state machines or behaviour trees. An added benefit of this
approach is that is allows a developer to change the behaviour of the model by
simply changing the set of instances, without having to modify the architecture.

The experiment with the human participants showed that especially the T'oM;
and ToM, models are a challenging, but not unbeatable opponent. This is an
important balance, as a too easy opponent is not fun to play against for the
player, while an opponent that is too hard to beat is not entertaining either.
Also, because of the performance difference between the different orders of the-
ory of mind, the user has the ability to select the opponent that matches their
own skill as much as possible. This freedom may lead to a better game expe-
rience overall. However, it was not studied how much the participants enjoyed
the game or how they would rate their opponents, as this was not the primary
goal of this project. Future research is needed to study whether the developed
cognitive models are entertaining and challenging opponents to play against in
No Thanks!.

6.2 Future research

As previously mentioned, it would be interesting to study the performance of
models using higher orders of theory of mind than second in playing No Thanks!.
This would provide more insight to whether the advantage over using lower or-
ders of theory of mind diminishes even further as observed by De Weerd et al.
(2013).

Furthermore, for possible follow-up research, the developed models could be
expanded to make use of instance-based learning. The current model has a fixed
set of instances that define its core behaviour. It does not learn from its oppo-
nents (or itself) by dynamically changing its instances. It would be interesting
to develop an instance-based learning model that adapts its strategy to its oppo-
nents by attempting to analyse which actions lead to a successful outcome and
create new instances accordingly. This may lead to a better and more competi-
tive model.

Additionally, it would be interesting to study whether the design of this project’s

cognitive model could be used as an opponent for other games. The combination
of using instance-based decision making and a (token) memory system may be

36

fitting for other games in which memory plays an supporting role. In card games
such as Hearts and Belote for example, it is important to keep track of which
cards have been played and which cards are still part of the game. A memory
system similar to this project’s token memory system may be suitable to model
this behaviour.

37

References

Anderson, J. R. (2009). How can the human mind occur in the physical universe?
Oxford University Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., and Qin, Y.
(2004). An integrated theory of the mind. Psychological review, 111(4):1036.

Buckland, M. (2005). Goal-driven agent behavior. Programming Game Al by
Ezxample, pages 379-414.

Champandard, A. J. (2003). AI game development: Synthetic creatures with
learning and reactive behaviors. New Riders.

Dawe, M., Gargolinski, S., Dicken, L., Humphreys, T., and Mark, D. (2013).
Behavior selection algorithms. Game AI Pro: Collected Wisdom of Game Al
Professionals, page 47.

De Weerd, H., Verbrugge, R., and Verheij, B. (2013). How much does it help to
know what she knows you know? an agent-based simulation study. Artificial
Intelligence, 199:67-92.

Dill, K., Pursel, E. R., Garrity, P., Fragomeni, G., and Quantico, V. (2012).
Design patterns for the configuration of utility-based ai. In Interservice/In-
dustry Training, Simulation, and Education Conference (I/ITSEC), number
12146, pages 1-12.

Feigenbaum, E., McCorduck, P., and Nii, H. P. (1988). The rise of the expert
company, volume 240. Times Books New York.

Ghory, 1. (2004). Reinforcement learning in board games. Department of Com-
puter Science, University of Bristol, Tech. Rep, page 105.

Gonzalez, C. and Lebiere, C. (2005). Instance-based cognitive models of decision-
making.

Gonzalez, C., Lerch, J. F., and Lebiere, C. (2003). Instance-based learning in
dynamic decision making. Cognitive Science, 27(4):591-635.

Gorniak, P. and Davis, I. (2007). Squadsmart: Hierarchical planning and coor-
dinated plan execution for squads of characters. In AIIDE, pages 14—19.

Hedden, T. and Zhang, J. (2002). What do you think i think you think?: Strate-
gic reasoning in matrix games. Cognition, 85(1):1-36.

Isla, D. (2005). Managing complexity in the halo2 ai.

Klein, G. A., Orasanu, J. E., Calderwood, R. E., and Zsambok, C. E. (1993).
Decision making in action: Models and methods. In This book is an outcome
of a workshop held in Dayton, OH, Sep 25-27, 1989. Ablex Publishing.

Meijering, B., Van Maanen, L., Van Rijn, H., and Verbrugge, R. (2010). The
facilitative effect of context on second-order social reasoning. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 32.

38

Meijering, B., Van Rijn, H., Taatgen, N., and Verbrugge, R. (2011). I do know
what you think i think: Second-order theory of mind in strategic games is not
that difficult. In Proceedings of the Annual Meeting of the Cognitive Science
Society, volume 33.

Miller, S. A. (2012). Theory of mind: Beyond the preschool years. Psychology
Press.

Perner, J. and Wimmer, H. (1985). “john thinks that mary thinks that..” attri-
bution of second-order beliefs by 5-to 10-year-old children. Journal of experi-
mental child psychology, 39(3):437-471.

Pew, R. and Mavor, S. (1998). Modeling human and organizational behavior.

Premack, D. and Woodruff, G. (1978). Does the chimpanzee have a theory of
mind? Behavioral and brain sciences, 1(4):515-526.

Rabin, S. (2000). Designing a general robust ai engine. Game Programming
Gems, 1:221-236.

Reitter, D., Juvina, I., Stocco, A., and Lebiere, C. (2010). Resistance is futile:
Winning lemonade market share through metacognitive reasoning in a three-
agent cooperative game. Proceedings of the 19th behavior representation in
modeling & simulation (BRIMS). Charleston, SC.

Sanner, S., Anderson, J. R., Lebiere, C., and Lovett, M. (2000). Achieving
efficient and cognitively plausible learning in backgammon. In ICML, pages
823-830. Citeseer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, .., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
(2016). Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484.

Van Maanen, L. and Verbrugge, R. (2010). A computational model of second-
order social reasoning. In Proceedings of the 10th international conference on
cognitive modeling, pages 259—-264. Citeseer.

Whalen, J., Gallistel, C. R., and Gelman, R. (1999). Nonverbal counting in
humans: The psychophysics of number representation. Psychological Science,
10(2):130-137.

Yannakakis, G. N. (2012). Game ai revisited. In Proceedings of the 9th conference
on Computing Frontiers, pages 285-292. ACM.

Zsambok, C. E. and Klein, G. (2014). Naturalistic decision making. Psychology
Press.

39

Appendix A

Instructions Experiment

Thank you for participating in this experiment. Today you will be playing a
game against three opponents (computer models) on an iPad. The goal of
the game is to get as few points as possible, meaning the player with the
least amount of points at the end wins the game.

The game you will be playing is called No Thanks. The game contains 33
unique cards numbered 3 to 35 and a number of pass tokens. Each card is
worth its face value in points, while a pass token subtracts one point for
each token a player owns (-1 point). Each player gets 11 pass tokens at
the start of the round.

During each turn, the top card from the shuffled deck of cards is put face-
up on the playing field. You always have two possible actions when it’s
your turn:

1. Do not pick up the face-up card by placing a pass token on it. The
turn then continues to the next player (going clockwise). If you do
not have any pass tokens left, you have to pick up the card.

2. Pick up the face-up card (along with any pass tokens that have
already been played on that card) and turn over the next card from
the pile. You can then decide your move with the new card (it is still
your turn).

Picking up a card means its face value is added to your score minus any
number of pass tokens that were on that card. Every card you take will be
placed face-up on the playing field in front of you. This means that all
players can see each other’s cards. However, the number of pass tokens
you own is only visible to you.

The value of every card you own is added to your score. However, if you
own a sequence of cards, only the value of the lowest card of that
sequence is added to your score. For example, if you own the cards 20
and 22 their total score would be 20 + 22 = 42 points. Yet if you complete
the sequence 20 to 22 by picking up card 21 (thus creating 20, 21, 22),
their score would only be 20 points (21 and 22 are then worth 0 points).

However, 9 random cards are removed from play before the game starts.
This means a card that would complete your sequence may actually not be
in the game and thus cannot be picked up by anyone.

The game ends when all 24 cards of the pile have been picked up by a
player. The player with the lowest score (card points — pass tokens) wins
the game.

You will be playing the game against 3 opponents (computer models) on
an iPad. Swipe up on the pass token in the bottom right to place a token
on the face-up card. Swipe down on the card to pick it up (and any pass
tokens on it) and add it to your own cards. You will play 24 games, which
will take about 70 minutes. A button which says ‘start next game’ appears
at the end of each game until the experiment is finished.

Additionally, in this experiment you are also asked to give feedback about
the models’ actions. When it is your turn, you are asked whether any of
your opponents made a bad move in its last turn. If so, you can tap on that
opponent to select it (marking it red). You can then continue by making
your move. Note that it is not at all required to select an opponent on every
turn. Only if you think it made a bad move (you can select multiple
opponents during the same turn).

Try to get as few points as possible!

Good luck!

