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Abstract

In this thesis we discuss the problem of output regulation of nonlinear systems with respect to an equilibrium
of the system. We present conditions on the interconnection of a plant and a controller under which output
regulation is achieved, using a passivity-based approach. In particular, we use the notion of equilibrium
independent passivity, which was defined by Hines et al. in [7]. We review this concept and find general
classes of equilibrium independent passive systems, to gain insight in the type of systems that has this
property. Based on these classes, we provide general forms of controllers that achieve output regulation.
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Chapter 1

Introduction

One of the most important problems in control theory is that of controlling a plant in order to have its
output tracking a reference signal [5], [8]. This problem is known as the problem of output regulation and
has been studied extensively in the past three decades [4], [13], [9], [18]. The reference signal is assumed to be
generated by an external dynamical model, the so-called exosystem. In the most general case, the exosystem
generates a time-varying reference signal, but the special case where the reference signal is constant has
received a lot of attention as well [18], [3], [17]. The output regulation problem has been studied for both
linear systems [5] as well as for nonlinear systems [8].

Many of the existing results on output regulation require detailed analysis of the dynamical model describ-
ing the plant. Especially for high-dimensional nonlinear systems, the storage capacities and computational
requirements that are needed to perform the analysis can be intractable. An approach to control theory
that allows one to avoid analysis of the model is based on the notion of passivity. Using a passivity-based
approach, system properties such as output regulation or stability can be verified, based on knowledge of the
interconnection structure and passivity properties of the plant and the controller, see e.g. [1], [2]. Passivity of
a component can then be viewed as an abstraction of the detailed dynamical model describing the dynamics.

Typically, passivity is referenced to a specific equilibrium of the system, and output regulation with
respect to this particular equilibrium can be verified as a consequence of passivity. If a system is passive
with respect to multiple or even all of its equilibria, this result can be applied to achieve output regulation
with respect to an equilibrium of choice. In the literature, this form of passivity is also used to solve the
output regulation problem while achieving other system specifications. For example, in the paper [9] it
is used to find controllers that solve the output regulation problem while achieving disturbance rejection.
Furthermore, the papers [1], [3], and [17] make the assumption that the system is passive with respect to all
of its equilibria to achieve output regulation in cases where the equilibrium set is uncertain or difficult to
compute. Indeed, the results from these papers do not rely on knowledge of the location of the equilibria.
The paper [7] was the first to give this passivity property the name equilibrium independent passivity.

In this thesis we consider the output regulation problem for constant reference signals by using an
approach that is based on equilibrium independent passivity. Specifically, for a given nonlinear plant and
any of its equilibrium points, we want to control the plant in such a way that its output asymptotically
converges to the corresponding equilibrium output. This design specification is very similar to the objective
that the papers [3] and [17] pursue. The main difference is that we assume explicit knowledge of the
equilibrium set of the plant, whereas these papers do not. As a result, the search for controllers in these
papers is limited and only a specific form of controllers is provided. Shortly put, the aim of this thesis is to
find much richer classes of output regulating controllers, by using a more general approach to the problem.

The outline of this thesis is as follows. In Chapter 2 we provide the mathematical preliminaries. In
Chapter 3 we discuss the notion of equilibrium independent passivity, and we discuss certain classes of
equilibrium independent passive systems. These classes will give insight in the type of systems that are
equilibrium independent passive, and they will prove useful for the design of controllers later on. In Chapter
4 we perform analysis on the interconnection of a plant and a controller, in order to find sufficient conditions
for output regulation. Chapter 5 will be devoted to the design of output regulating controllers, based on the
theory from Chapter 3 and 4. Finally, we provide some concluding remarks in Chapter 6.
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Chapter 2

Preliminaries

In this thesis we work with set-valued maps. A set-valued map is a mapping F : Rn × Rm ⇒ Rn that maps
an element (x, u) ∈ Rn × Rm to a set F (x, u) ⊆ Rn. Set valued maps can be used to describe the dynamics
of a system. This can be done using so-called differential inclusions, which are generalizations of differential
equations [6]. Differential inclusions are inclusions of the form ẋ ∈ F (x, u), where u is the input variable and
F : Rn × Rm ⇒ Rn is a set-valued map.

We also deal with convex sets and functions. A set C ⊂ Rn is called convex if for all α ∈ [0, 1] and
x, y ∈ C we have that αx + (1 − α)y ∈ C. To define the notion of a convex function, let X ⊆ Rn and
consider a function f : X → [−∞,∞], which can take infinite values. The effective domain of f is defined
by dom(f) := {x ∈ X | f(x) <∞}, and the epigraph of f is defined by

epi(f) := {(x,w) ∈ Rn+1 | x ∈ X, w ∈ R and f(x) ≤ w}.

The function f is called convex if the set epi(f) is convex. If f is a finite-valued function, then f is convex
if and only if the following inequality holds for all α ∈ [0, 1] and x, y ∈ X:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

The conjugate function of f is the function f? : Rn → (−∞,∞] defined by f?(y) = supx∈Rn{〈x, y〉 − f(x)}.
We say that a vector g ∈ Rm is a subgradient of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + gT (z − x) for all z ∈ Rn.

The set of all subgradients of f at x is called the subdifferential of f at x, and is denoted by ∂f(x). Notice
that the mapping ∂f : x 7→ ∂f(x) is a set-valued map. For differentiable functions, we have ∂f(x) = {∇f(x)}
for all x ∈ Rn. The following proposition is a well-known result in convex optimization theory [14].

Proposition 1. Let f : Rn → [−∞,∞] be a proper convex function. Then f is minimized at a vector
x∗ ∈ Rn if and only if 0 ∈ ∂f(x∗).

Proof. By definition of the subdifferential it is clear that 0 ∈ ∂f(x∗) if and only if x∗ ∈ dom f and
f(z) ≥ f(x∗) for all z ∈ Rn. Since the latter is equivalent to x∗ being an optimizer of a proper function, this
completes the proof. �

Let M : Rn ⇒ Rn be a set-valued map. The map M is called monotone if for any x1, x2 ∈ Rn and
y1 ∈ M(x1), y2 ∈ M(x2) we have 〈x1 − x2, y1 − y2〉 ≥ 0. The following well-known result states that the
subdifferential of a convex function is a monotone mapping [14].

Proposition 2. Let f : Rn → [−∞,∞] be a convex function. Then the operator ∂f : Rn ⇒ Rn is monotone.

Proof. Let x1, x2 ∈ Rn and g1 ∈ ∂f(x1), g2 ∈ ∂f(x2) be arbitrary. Since g1 ∈ ∂f(x1), we have

f(x2) ≥ f(x1) + 〈g1, x2 − x1〉.
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Similarly, g2 ∈ ∂f(x2) implies that

f(x1) ≥ f(x2) + 〈g2, x1 − x2〉.

Combining these two equations, we get 0 ≥ 〈g1, x2 − x1〉 + 〈g2, x1 − x2〉 = 〈g1 − g2, x2 − x1〉. Hence
〈g2 − g1, x2 − x1〉 ≥ 0, which completes the proof. �

A symmetric matrix A ∈ Rn×n is called positive definite if xTAx ≥ 0 for all x ∈ Rn. It is called positive
semidefinite if xTAx > 0 for all nonzero x ∈ Rn. For positive (semi)definite matrices we write A � 0
(A � 0). We write A � B (A � B) if A−B is positive (semi)definite. Negative (semi)definiteness is defined
analogously.
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Chapter 3

Equilibrium Independent Passive
Systems

One of the very useful concepts in systems theory is the notion of a dissipative system. From the physics
point of view, a dissipative system is one that never produces energy by itself. In other words, the increase
of energy that is stored in a dissipative system is bounded by the amount of energy that is supplied to it
through the input. This idea is formalized using so-called dissipation inequalities. Such inequalities involve
two functions that need to be provided, namely a supply rate and a storage function. The supply rate is a
function of the input and output variables and gives a measure for the amount of energy supplied to the
system per unit time. The storage function is a nonnegative state function and gives a measure for the
energy that is stored inside the system. Then a system is said to be dissipative with respect to a given
supply rate if we can find a storage function for which the dissipation inequality is satisfied. By choosing
different supply rates, many forms of dissipativity can be defined, see [12],[19].

A form of dissipativity that has proven very useful in particular is passivity. One of the problems where
passivity is playing an important role is the problem of stabilization of nonlinear systems [19]. Passivity is
referenced to an equilibrium point of the system, and we can stabilize that specific equilibrium under certain
assumptions. It is possible for a system to be passive with respect to multiple or even all of its equilibrium
points. A system that is passive with respect to all of its equilibrium points is said to be equilibrium
independent passive. This notion was first defined in the paper [7], but it can also be found in earlier works,
see e.g. [1], [9]. The advantage of equilibrium independent passivity is that it does not depend on a specific
equilibrium of the system, but the system can be stabilized with respect to any of its equilibria. In the
literature, this property is often used to prove stability of networks for which the equilibrium set is uncertain
or difficult to compute. For example, the stability results from [1], [3] and [17] do not rely on knowledge of
the location of the equilibria.

In this chapter we study equilibrium independent passive systems. We start by giving a formal definition
together with an illustrative example. After that we provide three classes of equilibrium independent passive
systems. One is a class of port-Hamiltonian systems, and the other two are classes of gradient systems,
involving the subdifferential of a convex function.

3.1 Equilibrium independent passivity

We consider state space systems defined by

Σ :
ż(t) ∈ F

(
z(t), v(t)

)
,

w(t) = G
(
z(t), v(t)

)
,

(3.1)

where F : Rp×Rq ⇒ Rp is a set-valued map, G is a uniformly continuous mapping from Rp×Rq to Rq, and
for all t we have z(t) ∈ Rp and v(t), w(t) ∈ Rq. An elaborate discussion on systems described by differential
inclusions can be found in [6]. Note that it is a generalization of nonlinear state space systems in the classical
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form. All triples (v, z, w) that we regard as a solution of the system Σ are collected in a set, which we refer
to as the behavior of Σ. The behavior of the system (3.1) is given by

B =
{

(v, z, w) ∈ Lq2 × L
p
2 × L

q
2 | (3.1) holds for almost all t ≥ 0 and v, z are Lipschitz continuous

}
. (3.2)

Note that we assume that the input function must be Lipschitz continuous. In that case, the output w is
the composition of two uniformly continuous functions, namely G and (z(t), v(t)). Hence the output w is
uniformly continuous for all trajectories of the system. We will need this property in the next chapter. We
define the equilibrium input-output relation as

Γ =
{

(v̄, w̄) ∈ Rq × Rq | ∃z̄ ∈ Rp such that 0 ∈ F (z̄, v̄) and w̄ = G(z̄)
}
. (3.3)

The relation Γ represents all constant input-output pairs corresponding to an equilibrium solution of (3.1).
We say that w̄ is an equilibrium output of Σ if there exists a constant input v̄ such that (v̄, w̄) ∈ Γ.

On the space of input and output variables, we can define a function s : Lq2 ×L
q
2 → L2 which we call the

supply rate. Then we say that Σ is dissipative with respect to the supply rate s if there exists a function
V : Rp → R+, called the storage function, such that for all trajectories (v, z, w) ∈ B the following dissipation
inequality is satsfied:

Vv̄,w̄(z(t1)) ≤ Vv̄,w̄(z(t0)) +

∫ t1

t0

s(v(t), w(t))dt for all t1 ≥ t0. (3.4)

An important choice for the supply rate is s(u, y) = 〈u, y〉. If the system is dissipative with respect to
this supply rate, then we call the system passive. We call the system equilibrium independent passive if
for each equilibrium pair (ū, ȳ) ∈ Γ, the system is dissipative with respect to the supply rate s(u, y) =
〈u − ū, y − ȳ〉. Moreover, we say that the system is input-strictly equilibrium independent passive if there
exists a constant ρ > 0 such that for all (v̄, w̄) ∈ Γ the system is dissipative with respect to the supply rate
s(u, y) = 〈u− ū, y− ȳ〉 − ρ|u− ū|2. Finally, Σ is said to be output-strictly equilibrium independent passive if
there exists a constant ρ > 0 such that for all (v̄, w̄) ∈ Γ the system is dissipative with respect to the supply
rate s(u, y) = 〈u− ū, y − ȳ〉 − ρ|y − ȳ|2.

Example 1. [15] Consider n masses moving in one-dimensional space interconnected by m springs and p
dampers. Associate the masses to the vertices of a graph, where the edges represent the springs. Denote the
corresponding incidence matrix by Es. Then associate the masses to a graph where the edges correspond to
the dampers, and denote its incidence matrix by Ed. LetD, K andM denote the diagonal matrices containing
the damping coefficients, the spring constants and the masses respectively. Furthermore, collect the momenta

of the masses in a vector p =
[
p1 . . . pn

]T
, and the extensions of the springs in q =

[
q1 . . . qm

]T
.

Then the dynamics of the total system is given by[
q̇
ṗ

]
=

[
0 ETs
−Es −EdDETd

] [
Kq
M−1p

]
.

We can control the system by applying forces to some of the masses, which we call the boundary masses. Let
B be a matrix with as many columns as there are boundary masses; each column consists of zeros except for
exactly one 1 in the row corresponding to the associated boundary mass. Then the dynamics of the system
is given by [

q̇
ṗ

]
=

[
0 ETs
−Es −EdDETd

] [
Kq
M−1p

]
+

[
0
B

]
u.

As output we take the velocities of the boundary masses, that is, we take y = BTM−1p. In that case, the
supply rate s(u, y) = 〈u, y〉 equals the total power of all boundary masses. Hence, the term

∫ t1
t0
〈u(t), y(t)〉dt

in (3.4) is equal to the total externally supplied energy to the boundary masses during the time interval
[t0, t1]. Therefore, an interpretation of passivity for this system is that the energy that is stored at time t1
is bounded by the sum of the energy that was stored at t0 and the total supplied energy. In the next section
we will see that the mass-spring-damper system is indeed equilibrium independent passive.
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3.2 Port-Hamiltonian systems

In the remainder of this chapter we study several classes of equilibrium independent passive systems. In this
section we focus on port-Hamiltonian systems. For an overview of port-Hamiltonian systems we refer to the
paper [15]. In the book [19] we find a chapter on control of port-Hamiltonian systems, where it becomes
clear that port-Hamiltonian systems are equilibrium independent passive under certain assumptions. To put
this observation into our framework, the following theorem discusses a general form of port-Hamiltonian
systems and gives sufficient conditions under which this form is equilibrium independent passive. In this
way, it provides a class of equilibrium independent passive systems.

Theorem 1. Let J , R ∈ Rn×n and S ∈ Rp×p be matrices with J = −JT , R � 0 and S � 0, and let
G ∈ Rn×p, and d ∈ Rp be arbitrary. Let H : Rn → R+ be a differentiable convex function. Then the system

ż(t) = (J −R)
∂H

∂z
(z(t)) +Gv(t)

w(t) = GT
∂H

∂z
(z(t)) + Sv(t) + d

(3.5)

is equilibrium independent passive. Furthermore, if S = 0 and kerR ⊆ kerGT , then the system is output-
strictly equilibrium independent passive. If S � 0, then it is input-strictly equilibrium independent passive.

Proof. Let (v̄, w̄) be an arbitrary steady state input-output pair and let x̄ denote the corresponding steady
state, that is,

0 = (J −R)
∂H

∂z
(z̄) +Gv̄,

w̄ = GT
∂H

∂z
(z̄) + Sv̄ + d.

(3.6)

Define the function Vv̄,w̄ : Rn → R by

Vv̄,w̄(z) = H(z)− ∂TH

∂z
(z̄)(z − z̄)−H(z̄).

We claim that Vv̄,w̄ is a storage function for the supply rate 〈v − v̄, w − w̄〉. Moreover, we will show that
under the assumption kerR ⊆ kerGT , we can find a constant ρ > 0 such that Vv̄,w̄ is a storage function for
the supply rate 〈v − v̄, w − w̄〉 − ρ|w − w̄|. Finally, if G has full column rank and R � 0, we will show that
Vv̄,w̄ is a storage function for the supply rate 〈v − v̄, w − w̄〉 − ρ|v − v̄| for some ρ > 0.

First note that
∂Vv̄,w̄

∂z (z) = ∂H
∂z (z)− ∂H

∂z (x̄). Using this and the fact that S � 0, we can write

〈v(t)− v̄, w(t)− w̄〉 =
〈
v(t)− v̄, GT

(∂H
∂z

(z(t))− ∂H

∂z
(x̄)
)

+ S
(
v(t)− v̄

)〉
=
〈
v(t)− v̄, GT ∂Vv̄,w̄

∂z
(z(t))

〉
+ (v(t)− v̄)TS(v(t)− v̄)

=
〈
Gv(t)−Gv̄, ∂Vv̄,w̄

∂z
(z(t))

〉
+ (v(t)− v̄)TS(v(t)− v̄)

(3.7)

From (3.5) and (3.6) it follows that

Gv(t)−Gv̄ = ż(t) + (R− J)
∂H

∂z
(z(t))− (R− J)

∂H

∂z
(x̄) = ż(t) + (R− J)

∂Vv̄,w̄
∂z

(z(t)). (3.8)

Substituting the above equality into (3.7) yields

〈v(t)− v̄, w(t)− w̄〉 =
〈
ż(t) + (R− J)

∂Vv̄,w̄
∂z

(z(t)),
∂Vv̄,w̄
∂z

(z(t))
〉

+ (v(t)− v̄)TS(v(t)− v̄)

=
〈
ż(t),

∂Vv̄,w̄
∂z

(z(t))
〉

+
∂TVv̄,w̄
∂z

(z(t))R
∂Vv̄,w̄
∂z

(z(t)) + (v(t)− v̄)TS(v(t)− v̄)

=
d

dt
Vv̄,w̄(z(t)) +

∂TVv̄,w̄
∂z

(z(t))R
∂Vv̄,w̄
∂z

(z(t)) + (v(t)− v̄)TS(v(t)− v̄),

(3.9)
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where the second equality follows from the fact that J is skew-symmetric. Since R � 0 and S � 0, this
implies 〈v(t)− v̄, w(t)− w̄〉 ≥ d

dtVv̄,w̄(z(t)). Consequently,∫ t1

t0

〈v(t)− v̄, w(t)− w̄〉dt ≥ Vv̄,w̄(z(t1))− Vv̄,w̄(z(t0)) for all t1 ≥ t0 and (z, v, w) ∈ B.

Hence, Vv̄,w̄ is indeed a storage function for the pair (v̄, w̄), which proves that the system is equilibrium
independent passive.

To prove the second claim, we take S = 0 and we assume that kerR ⊆ kerGT . Notice that

|w(t)− w̄|2 =
∣∣∣GT ∂H

∂z
(z(t))−GT ∂H

∂z
(z̄)
∣∣∣2 =

∣∣∣GT ∂Vv̄,w̄
∂z

(z(t))
∣∣∣2 =

(∂Vv̄,w̄
∂z

(z(t))
)T
GGT

(∂Vv̄,w̄
∂z

(z(t))
)
.

Combining this with (3.9), we get that for any ρ ∈ R,

〈v(t)− v̄, w(t)− w̄〉 − ρ|w(t)− w̄|2 =
d

dt
Vv̄,w̄(z(t)) +

(∂Vv̄,w̄
∂z

(z(t))
)T (

R− ρGGT
)(∂Vv̄,w̄

∂z
(z(t))

)
. (3.10)

Since R is positive semidefinite, it has a square root R
1
2 � 0. Note that kerR

1
2 = kerR ⊆ kerGT , so there

exists a matrix X with GT = XR
1
2 . Hence

R− ρGGT = R
1
2 (I − ρXTX)R

1
2 .

Now define ρ̄ > 0 such that I − ρ̄XTX � 0. By the above equality, this implies R − ρ̄GGT � 0. Then it
follows from (3.10) that all trajectories of the system satisfy

〈v(t)− v̄, w(t)− w̄〉 − ρ̄|w(t)− w̄|2 ≥ d

dt
Vv̄,w̄(z(t)).

Therefore the system is dissipative with respect to the supply rate s(v, w) = 〈v− v̄, w− w̄〉− ρ̄|w− w̄|2, that
is, the system is output-strictly equilibrium independent passive.

Finally, suppose that S is positive definite. Since R � 0, it follows from (3.9) that

〈v(t)− v̄, w(t)− w̄〉 =
d

dt
Vv̄,w̄(z(t)) + (v(t)− v̄)TS(v(t)− v̄). (3.11)

Since S is positive definite, all its eigenvalues are positive. Now define ρ > 0 as the smallest eigenvalue of S.
Then we claim that all eigenvalues of the symmetric matrix S − ρI are nonnegative. To see this, notice that
for any eigenvalue λ ∈ σ(S − ρI) we have λ+ ρ ∈ σ(S). Since ρ is the smallest eigenvalue of S, this implies
λ ≥ 0. Therefore, we have S − ρI � 0 and hence S � ρI. Together with (3.11) this implies

〈v(t)− v̄, w(t)− w̄〉 ≥ d

dt
Vv̄,w̄(z(t)) + (v(t)− v̄)T ρI(v(t)− v̄) =

d

dt
Vv̄,w̄(z(t)) + ρ|v(t)− v̄|2.

It follows that the system is dissipative with respect to the supply rate s(v(t), w(t)) = 〈v(t)− v̄, w(t)− w̄〉 −
ρ|v(t)− v̄|2, which shows that the system is input-strictly equilibrium independent passive. �

In the following example, we illustrate how the mass-spring-damper system from the previous section can
be put into the form (3.5) using a coordinate transformation.

Example 2. Consider again the mass-spring-damper system from Example 1:[
q̇
ṗ

]
=

[
0 ETs
−Es −EdDETd

] [
Kq
M−1p

]
+

[
0
B

]
u,

y = BTM−1p.

(3.12)
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To use the previous theorem, we first have to determine whether we can write this system in the form (3.5).
Consider the following coordinate transformation:

x =

[
K

1
2 0

0 M−
1
2

] [
q
p

]
.

In these coordinates, the system (3.12) is represented by

ẋ =

[
K

1
2 0

0 M−
1
2

] [
q̇
ṗ

]
=

[
K

1
2 0

0 M−
1
2

] [
0 ETs
−Es −EdDETd

] [
K

1
2 0

0 M−
1
2

]
x+

[
K

1
2 0

0 M−
1
2

] [
0
B

]
u,

=

[
0 K

1
2ETs M

− 1
2

−M− 1
2EsK

1
2 −M− 1

2EdDE
T
dM

− 1
2

]
x+

[
0

M−
1
2B

]
u,

y =
[
0 BTM−

1
2

]
x.

Notice that the system is indeed of the form (3.5) with H(x) = 1
2 |x|

2 and

R =

[
0 0

0 M−
1
2EdDE

T
dM

− 1
2

]
, J =

[
0 K

1
2ETs M

− 1
2

−M− 1
2EsK

1
2 0

]
, G =

[
0

M−
1
2B

]
.

From Theorem 1 it follows that the system is equilibrium independent passive. Since kerR ⊆ kerGT if and
only if kerETd ⊆ kerBT , it follows from Theorem 1 that the system is output-strictly equilibrium independent
passive under the condition kerETd ⊆ kerBT .

3.3 Gradient systems

Another class of equilibrium independent passive systems has its origin in so-called gradient systems. In
principle, a gradient system is a system whose dynamics is described by the gradient or subdifferential of a
function, see e.g. [10], [11]. First we discuss the following form of gradient systems:

ż ∈ −∂g(z) + v,

w = z + ρv + d,
(3.13)

where g is a convex function, ρ is a nonnegative constant, and d ∈ Rq is arbitrary. In the following theorem we
show that such systems are always equilibrium independent passive. Here, monotonicity of the subdifferential
is playing a crucial role.

Theorem 2. Let g be a convex function and let ρ ≥ 0 be arbitrary. Then the system (3.13) is equilibrium
independent passive. Moreover, if ρ > 0, then it is input-strictly equilibrium independent passive.

Proof. Let t1 ≥ t0 be arbitrary and let (v, z, w) be any solution of the system on the interval [t0, t1].
Let (v̄, w̄) ∈ Γc be any steady-state input-output pair. According to the dynamics of the system we have
v(t)− ż(t) ∈ ∂g(z(t)) for all t ∈ [t0, t1]. Also, (v̄, w̄) ∈ Γc implies that there exists a steady state z̄ such that
ū ∈ ∂g(z̄). By Proposition 2, we know that ∂g is monotone, so it follows that

〈v(t)− ż(t)− v̄, z(t)− z̄〉 ≥ 0.

Consequently, we have

〈v(t)− v̄, z(t)− z̄〉 ≥ 〈ż(t), z(t)− z̄〉 =
1

2

d

dt
|z(t)− z̄|2. (3.14)
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From (3.13) it follows that w(t)− w̄ = z(t)− z̄ + ρ(v(t)− v̄), and hence

〈v(t)− v̄, w(t)− w̄〉 = 〈v(t)− v̄, z(t)− z̄〉+ ρ|v(t)− v̄|2

≥ 1

2

d

dt
|z(t)− z̄|2 + ρ|v(t)− v̄|2,

as follows from (3.14). Therefore we have∫ t1

t0

〈v(t)− v̄, w(t)− w̄〉dt ≥ 1

2
|z(t1)− z̄|2 − 1

2
|z(t0)− z̄|2 +

∫ t1

t0

ρ|v(t)− v̄|2dt. (3.15)

Since ρ|v(t)− v̄|2 ≥ 0 for all t, this implies that the function Wv̄,w̄(z(t)) = 1
2 |z(t)− z̄|

2 is a storage function for
the supply rate 〈v(t)− v̄, w(t)− w̄〉. Hence the system is equilibrium independent passive. Moreover, notice
that (3.15) implies that Wv̄,w̄(z(t)) is a storage function for the supply rate 〈v(t)− v̄, w(t)− w̄〉−ρ|v(t)− v̄|2
as well, which shows that the system is input-strictly equilibrium independent passive if ρ > 0.

�

Next, we consider a class of systems in which the gradient shows up in the expression for the output:

ż = −z + v,

w = ∇g(z) + ρv + d,
(3.16)

where g is a differentiable convex function, ρ is a nonnegative constant and d ∈ Rq is arbitrary. We show
that also these systems are equilibrium independent passive, using similar ideas as before.

Theorem 3. Let g be a differentiable convex function and let ρ ≥ 0 and d ∈ Rq be arbitrary. Then the
system (3.16) is equilibrium independent passive. Moreover, if ρ > 0, then it is input-strictly equilibrium
independent passive.

Proof. Let (v̄, w̄) be an arbitrary equilibrium input-output pair with corresponding steady state z̄, and let
(v, z, w) denote an arbitrary trajectory of the system. By (3.16) we have w(t) − w̄ = ∇g(z(t)) − ∇g(z̄) +
ρ(v(t)− v̄) and hence

〈w(t)− w̄, v(t)− v̄〉 = 〈∇g(z(t))−∇g(z̄), v(t)− v̄〉+ ρ|v(t)− v̄|2

= 〈∇g(z(t))−∇g(z̄), ż(t) + z(t)− z̄〉+ ρ|v(t)− v̄|2.

Since g is convex, it follows from Proposition 2 that 〈∇g(z(t)) − ∇g(z̄), z(t) − z̄〉 ≥ 0. Consequently, the
above equation implies

〈w(t)− w̄, v(t)− v̄〉 ≥ 〈∇g(z(t))−∇g(z̄), ż(t)〉+ ρ|v(t)− v̄|2

=
d

dt

[
g(z(t))− 〈∇g(z̄), z(t)〉

]
+ ρ|v(t)− v̄|2

(3.17)

Now we take the integral on both sides of (3.17) over an arbitrary interval [t0, t1] use the above equality to
obtain∫ t1

t0

〈w(t)− w̄, v(t)− v̄〉dt = g(z(t1))− g(z(t0)) + 〈∇g(z̄), z(t1)− z(t0)〉+ ρ

∫ t1

t0

|v(t)− v̄|2dt. (3.18)

Finally, consider the function Vv̄,w̄(z(t)) = g(z(t))− 〈∇g(z̄), z(t)− z̄〉 − g(z̄), and notice that

Vv̄,w̄(z(t1))− Vv̄,w̄(z(t0)) = g(z(t1))− g(z(t0)) + 〈∇g(z̄), z(t1)− z(t0)〉

≤
∫ t1

t0

〈w(t)− w̄, v(t)− v̄〉 − ρ|v(t)− v̄|2dt,
(3.19)
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where the inequality follows from (3.18). Since Vv̄,w̄(z(t)) is positive semidefinite, it follows that it is a storage
function for the supply rate 〈v(t) − v̄, w(t) − w̄〉 − ρ|v(t) − v̄|2, and hence that the system is input-strictly
equilibrium independent passive if ρ > 0. Furthermore, since ρ|v(t)− v̄|2 ≥ 0 for all t, the inequality (3.19)
implies that Vv̄,w̄(z(t)) is a storage function for the supply rate 〈v(t)− v̄, w(t)− w̄〉 as well, and hence that
the system is equilibrium independent passive for any ρ ≥ 0. �
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Chapter 4

Passivity-Based Output Regulation

A problem in control theory where a passivity-based approach has proven advantageous is the problem of
output regulation of nonlinear systems [3], [17], [12]. The idea of output regulation is to control a system in
such a way that its output exhibits a desired behavior. The particular behavior that we are interested in is
convergence of the output to an equilibrium output of the system. The papers [3] and [17] deal with the same
problem, but these papers deal with systems for which the equilibrium is uncertain. This leads to a very
particular structure for controllers. Assuming knowledge of the equilibrium set allows us to develop a more
general theory on output regulating controllers, which is precisely the aim of the remainder of this thesis.
The current chapter focuses on finding sufficient conditions on the closed loop system under which output
regulation is achieved. In the next chapter we apply this theory to find general forms of output regulating
controllers.

4.1 Problem formulation

In this section we introduce the output regulation problem. Throughout the remainder of this thesis, we
denote a plant that we want to control by Σp, and a controller by Σc. The corresponding equilibrium
input-output sets, defined by (3.3), will be denoted by Γp and Γc respectively.

Consider a plant Σp with state variable x ∈ Rp, input variable u ∈ Rq and output variable y ∈ Rq, with
dynamics of the form (3.1), given by

Σp :
ẋ(t) ∈ F

(
x(t), u(t)

)
,

y(t) = G
(
x(t), u(t)

)
,

where F : Rp × Rq ⇒ Rp is a set-valued map, and G is a uniformly continuous mapping from Rp × Rq to
Rq. We define the behavior Bp of Σp as in (3.2). We assume that Σp is equilibrium independent passive.
For a given equilibrium output ȳ, we want to control the plant in such a way that the output y(t) converges
to the constant vector ȳ as time tends to infinity. For this, we first specify the form of controllers that we
are interested in, and define the interconnection structure. We consider controllers of the form (3.1) as well.
Specifically, we consider controllers of the form

Σc :
η̇(t) ∈ H

(
η(t), ζ(t)

)
,

µ(t) = J
(
η(t), ζ(t)

)
,

(4.1)

where H and J are set-valued maps, η ∈ Rm and ζ, µ ∈ Rq. Define the behavior Bc of Σc as in (3.2). Given
an interconnection matrix E ∈ Rp×q, the interconnection of Σp and Σc, denoted by Σp × Σc, is given by

u(t) = −Eµ(t),

ζ(t) = ET y(t).
(4.2)

We define the equilibrium input-output relation of the interconnection Σp × Σc by

Γp×c =
{

(ū, ȳ, ζ̄, µ̄) ∈ Rq × Rq × Rp × Rp | ∃x̄ ∈ Rp such that 0 ∈ F (z̄, v̄) and w̄ = G(z̄)
}
.
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If such a controller indeed achieves the objective limt→∞ y(t) = ȳ for any initial condition on the closed-
loop system, we say that it achieves output regulation with respect to ȳ. In the current and the next chapter we
investigate how we can construct controllers that achieve output regulation with respect to any equilibrium
output ȳ. Our aim is captured in the following problem statement.

Problem 1. Consider an equilibrium independent passive plant Σp of the form (3.1) and an interconnection
matrix E. For a given equilibrium output ȳ of Σp, find controllers of the form (4.1) that achieve output
regulation with respect to ȳ in the interconnection defined by (4.2).

4.2 Conditions for output regulation

As mentioned before, the aim of this chapter is to come up with conditions on the closed-loop system under
which output regulation is achieved with respect to the given equilibrium output ȳ. This will then pave the
way for designing output regulating controllers. The results on the closed-loop system are presented in two
separate theorems, stated below. Note that the first theorem can be applied only if the plant Σp is output-
strictly equilibrium independent passive, whereas the second theorem can be applied to any equilibrium
independent passive plant.

Theorem 4. Consider the interconnection given by (3.1), (4.1) and (4.2). Suppose that Σp is output-strictly
equilibrium independent passive and Σc is equilibrium independent passive. If there exists a vector µ̄ such
that (−Eµ̄, ȳ) ∈ Γp and (ET ȳ, µ̄) ∈ Γc, then limt→∞ y(t) = ȳ for any initial condition on Σp and Σc.

Proof. Let (u, x, y) ∈ Bp and (ζ, η, µ) ∈ Bc be arbitrary. We will show that limt→∞ y(t) = ȳ. By assumption
on Σc and Σp, there exist positive semidefinite functions Wζ̄,µ̄ and Vū,ȳ such that for all t ≥ 0 we have

Wζ̄,µ̄(η(t)) ≤Wζ̄,µ̄(η(0)) +

∫ t

0

〈
ζ(t)− ζ̄, µ(t)− µ̄

〉
dt (4.3)

Vū,ȳ(x(t)) ≤ Vū,ȳ(x(0)) +

∫ t

0

〈
u(t)− ū, y(t)− ȳ

〉
− ρ|y(t)− ȳ|2dt. (4.4)

From the equalities u = −Eµ and ζ = ET y it follows that
〈
u(t)− ū, y(t)− ȳ

〉
+
〈
ζ(t)− ζ̄, µ(t)− µ̄

〉
= 0, so

adding (4.3) and (4.4) yields

Wζ̄,µ̄(η(t)) + Vū,ȳ(x(t)) ≤Wζ̄,µ̄(η(0)) + Vv̄,w̄(x(0))− ρ
∫ t

0

|y(t)− ȳ|2dt,

for all t ≥ 0. Since Wζ̄,µ̄ and Vū,ȳ are nonnegative, it follows that

ρ

∫ t

0

|y(t)− ȳ|2dt ≤Wζ̄,µ̄(η(0)) + Vv̄,w̄(x(0)),

for all t ≥ 0. Taking the limit t→∞ yields

ρ lim
t→∞

∫ t

0

|y(t)− ȳ|2dt ≤Wζ̄,µ̄(η(0)) + Vv̄,w̄(x(0)) <∞.

Since y is uniformly continuous for all trajectories of the closed-loop system, it follows from Barbalat’s
lemma that limt→∞ |y(t)−ȳ| = 0. Since we took an arbitrary trajectory of the interconnection, this completes
the proof. �

Theorem 5. Consider the interconnection given by (3.1), (4.1) and (4.2). Suppose that Σp is equilibrium
independent passive, Σc is input-strictly equilibrium independent passive, and E has full row rank. If there
exists a vector µ̄ such that (−Eµ̄, ȳ) ∈ Γp and (ET ȳ, µ̄) ∈ Γc, then limt→∞ y(t) = ȳ for any initial condition
on Σp and Σc.
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Proof. Let (u, x, y) ∈ Bp and (ζ, η, µ) ∈ Bp be arbitrary. We will show that limt→∞ ζ(t) = ζ̄. By assumption
on Σc and Σp, there exist positive semidefinite functions Wζ̄,µ̄ and Vū,ȳ such that for all t ≥ 0 we have

Wζ̄,µ̄(η(t)) ≤Wζ̄,µ̄(η(0)) +

∫ t

0

〈
ζ(t)− ζ̄, µ(t)− µ̄

〉
− ρ|ζ(t)− ζ̄|2dt (4.5)

Vū,ȳ(x(t)) ≤ Vū,ȳ(x(0)) +

∫ t

0

〈
u(t)− ū, y(t)− ȳ

〉
dt. (4.6)

From the equalities u = −Eµ and ζ = ET y it follows that
〈
u(t)− ū, y(t)− ȳ

〉
+
〈
ζ(t)− ζ̄, µ(t)− µ̄

〉
= 0, so

adding (4.5) and (4.6) yields

Wζ̄,µ̄(η(t)) + Vū,ȳ(x(t)) ≤Wζ̄,µ̄(η(0)) + Vv̄,w̄(x(0))− ρ
∫ t

0

|ζ(t)− ζ̄|2dt,

for all t ≥ 0. Since Wζ̄,µ̄ and Vū,ȳ are nonnegative, it follows that

ρ

∫ t

0

|ζ(t)− ζ̄|2dt ≤Wζ̄,µ̄(η(0)) + Vv̄,w̄(x(0)),

for all t ≥ 0. Taking the limit t→∞ yields

ρ lim
t→∞

∫ t

0

|ζ(t)− ζ̄|2dt ≤Wζ̄,µ̄(η(0)) + Vv̄,w̄(x(0)) <∞.

Since ζ is uniformly continuous for all trajectories of the closed-loop system, it follows from Barbalat’s lemma
that limt→∞ |ζ(t) − ζ̄| = 0. Considering that ζ(t) − ζ̄ = ET (y(t) − ȳ) and that the matrix E has full row
rank, we conclude that limt→∞ y(t) = ȳ. Since we took an arbitrary trajectory of the interconnection, this
completes the proof. �

Remark 1. For a given vector ȳ, the existence of a vector µ̄ such that (−Eµ̄, ȳ) ∈ Γp and (ET ȳ, µ̄) ∈ Γc is
in fact equivalent with the existence of a steady-state solution (ū, ȳ, ζ̄, µ̄) of the interconnection Σp×Σc. To
see this, notice that if (−Eµ̄, ȳ) ∈ Γp and (ET ȳ, µ̄) ∈ Γc for some vector µ̄, then a steady-state solution of
the interconnection is given by (−Eµ̄, ȳ, ET ȳ, µ̄). Conversely, any steady-state solution (ū, ȳ, ζ̄, µ̄) satisfies
(ū, ȳ) ∈ Γp and (ζ̄, µ̄) ∈ Γc. Furthermore, according to the definition of the interconnection in (4.2), we must
have ū = −Eµ̄ and ζ̄ = ET ȳ and hence (−Eµ̄, ȳ) ∈ Γp and (ET ȳ, µ̄) ∈ Γc.

Example 3. An example where we encounter the output regulation problem for constant reference signals
can be found in [16]. This paper tries to regulate the output of a certain state space system, in such a
way that the input function converges to the minimizer of a certain cost function. However, we are only
interested in regulating the output, without bothering properties of the corresponding input function. This
gives room for a much simpler and more general approach than the method of Scholting et al. [16]. Here we
show that the theory from the current and previous chapter can be applied to the system that is discussed
in [16]. The system is given by

ẋ = −Bλ+ u

y = x,

where λ and u are the input functions. The interconnection matrix E is chosen to be the identity matrix.

Now consider an additional output w = BTx, and define z :=
[
wT yT

]T
. With this notation and the

additional output, the system can be written as

ẋ =
[
−B I

] [λ
u

]
z =

[
−B I

]T
x.
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Notice that this system is of the form (3.5), with R = J = 0, G =
[
−B I

]
and H(x) = 1

2 |x|
2. Hence we

know from Theorem 1 that the system is equilibrium independent passive. Therefore, Theorem 5 can be
used to solve the output regulation problem for this plant. In the next chapter we discuss how controllers
that meet the demands of this theorem can be designed.
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Chapter 5

Controller Design

Thus far, we have discussed equilibrium independent passive systems, and we have investigated the behavior
of the interconnection of two such systems, namely a plant and a controller. In particular, we have derived
conditions on the closed-loop system under which output regulation is achieved with respect to a given
equilibrium output of the plant. The aim of this chapter is to actually solve Problem 1 for a given plant
and an equilibrium output. In particular, we aim to design controllers in such a way that the conditions
of either Theorem 4 or Theorem 5 are met. Since both theorems require the controller to be equilibrium
independent passive, we will base our controller design on Chapter 3, where we introduced three classes of
equilibrium independent passive systems, namely a class of Port-Hamiltonian systems and two classes of
gradient systems. In Section 5.1 we investigate how systems from the port-Hamiltonian class can serve as
controllers, and in Section 5.2 we will do the same for the two classes of gradient systems.

5.1 Port-Hamiltonian controllers

In this section we investigate controllers from the class of port-Hamiltonian systems given by (3.5). An issue
that we need to address is that the interconnection of the plant and the controller has no equilibrium solution
in general. Making an appropriate choice for the vector d in (3.5), we can shift the equilibria of the controller
in order to make sure such an equilibrium solution exists. This idea is worked out in the following theorems.
Theorem 6 provides controllers that can regulate the output of output-strictly equilibrium independent
passive systems. Theorem 7 solves the problem for equilibrium independent passive systems that are not
necessarily output-strictly equilibrium independent passive.

Theorem 6. Let Σp be an output-strictly equilibrium independent passive plant with a given equilibrium
output ȳ. Suppose that there exists a vector µ̄ such that (−Eµ̄, ȳ) ∈ Γp. Let J , R ∈ Rn×n and G ∈ Rn×p be
matrices with J = −JT and R � 0. Suppose that J − R is invertible. Let H : Rn → R+ be a differentiable
nonnegative strongly convex function. Then a controller that solves Problem 1 is given by

η̇(t) = (J −R)
∂H

∂η
(η(t)) +Gζ(t)

µ(t) = GT
∂H

∂η
(η(t)) + µ̄+GT (J −R)−1GET ȳ.

(5.1)

Proof. First we note that the controller (5.1) is of the form (3.5) with S = 0 and d = µ̄+GT (J−R)−1GET ȳ,
so we know from Theorem 1 that it is equilibrium independent passive. Also, the plant is assumed to be
output-strictly equilibrium independent passive and there exists a vector µ̄ such that (−Eµ̄, ȳ) ∈ Γp. Hence
to apply Theorem 4, it remains to show that (ET ȳ, µ̄) is an equilibrium input-output pair of the controller
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(5.1). Note that this is equivalent to the existence of a vector η̄ ∈ Rn that satisfies

0 = (J −R)
∂H

∂η
(η̄) +GET ȳ, (5.2a)

µ̄ = GT
∂H

∂η
(η̄) + µ̄+GT (J −R)−1GET ȳ. (5.2b)

Since J −R is invertible and H is strongly convex, there indeed exists a unique η̄ ∈ Rn that satisfies (5.2a).
To see that this η̄ solves (5.2b) as well, note that (5.2a) implies GET ȳ = −(J −R)∂H∂η (η̄). Hence,

GT
∂H

∂η
(η̄) + µ̄+GT (J −R)−1GET ȳ = GT

∂H

∂η
(η̄) + µ̄−GT ∂H

∂η
(η̄) = µ̄,

which shows that η̄ satisfies (5.2b) as well. Since η̄ satisfies (5.2), we have that (ET ȳ, µ̄) ∈ Γc. Hence, we
conclude from Theorem 4 that limt→∞ y(t) = ȳ. �

Theorem 7. Let Σp be an equilibrium independent passive plant with a given equilibrium output ȳ. Suppose
that the interconnection matrix E has full row rank, and let µ̄ be such that (−Eµ̄, ȳ) ∈ Γp. Let J , R ∈ Rn×n,
G ∈ Rn×p and S ∈ Rp×p be matrices with J = −JT , R � 0 and S � 0, and suppose that J −R is invertible.
Let H : Rn → R+ be a differentiable nonnegative strongly convex function. Then a controller that solves
Problem 1 is given by

η̇(t) = (J −R)
∂H

∂η
(η(t)) +Gζ(t)

µ(t) = GT
∂H

∂η
(η(t)) + µ̄+GT (J −R)−1GET ȳ + S(ζ(t)− ET ȳ).

(5.3)

Proof. First we note that the controller (5.3) is of the form (3.5) with d = µ̄+GT (J−R)−1GET ȳ−SET ȳ and
that it satisfies the necessary conditions of Theorem 1. Since S � 0, the theorem tells us that the controller
is input-strictly equilibrium independent passive. Furthermore, notice that (ET ȳ, µ̄) is an equilibrium input-
output pair of (5.3) if and only if there exists an η̄ solving (5.2). We already saw that under our assumptions
such η̄ indeed exists. Hence we can apply Theorem 5 to conclude that (5.3) achieves output regulation. �

Remark 2. By choosing G = 0 in the above theorems, the state η of the controller has no influence on
the output µ, so we can leave it out. In that case, the controller (5.1) can be written as a static controller
µ(t) = µ̄, and (5.3) simply becomes µ(t) = µ̄+ S(ζ(t)− ET ȳ).

5.2 Gradient controllers

As one would expect, the ideas from the previous section can also be applied to the two classes of gradient
systems we found in Section 3.3. Again using either Theorem 4 or Theorem 5, it can be shown that both
classes can serve as controllers to solve Problem 1. In this section we present this result in the form of
four theorems. For these controllers, it requires a bit more work to make sure the interconnection has an
equilibrium solution.

Theorem 8. Let Σp be an output-strictly equilibrium independent passive plant with a given equilibrium
output ȳ. Suppose that there exists a vector µ̄ such that (−Eµ̄, ȳ) ∈ Γp. Let g be a convex function that is
minimized at ET ȳ. Then a controller that solves Problem 1 is given by

η̇ ∈ −∂g?(η) + {ζ}
µ = η + µ̄
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Proof. Since g is a convex function, the function g? is convex as well, so the controller is of the form (3.13)
with ρ = 0 and v = µ̄. Hence we know from Theorem 2 that the controller is equilibrium independent
passive. Also, the plant is output-strictly equilibrium independent passive and we have (−Eµ̄, ȳ) ∈ Γp.
Hence, in order to use Theorem 4, it remains to show that (ET ȳ, µ̄) is an equilibrium input-output pair of
the controller. To prove this, we try to find a vector η̄ such that

0 ∈ −∂g?(η̄) + {ET ȳ}
µ̄ = η̄ + µ̄.

(5.4)

Since the function g is minimized at ET ȳ, we have 0 ∈ ∂g(ET ȳ), from which it follows that ET ȳ ∈ ∂g?(0).
Hence, 0 ∈ −∂g?(0) + {ET ȳ}, from which it becomes clear that η̄ = 0 satisfies (5.4), so we indeed have
(ET ȳ, µ̄) ∈ Γc. By Theorem 4 this implies that limt→∞ y(t) = ȳ for any initial condition on Σp and Σc, as
desired. �

Theorem 9. Let Σp be an output-strictly equilibrium independent passive plant with a given equilibrium
output ȳ. Suppose that there exists a vector µ̄ such that (−Eµ̄, ȳ) ∈ Γp. Let g be a differentiable convex
function that is minimized at ET ȳ. Then a controller that solves Problem 1 is given by

η̇ = −η + ζ

µ = ∇g(η) + µ̄.

Proof. Since the controller is of the form (3.16) with ρ = 0 and v = µ̄, we know from Theorem 3 that it is
equilibrium independent passive. Also, the plant is output-strictly equilibrium independent passive and we
have (−Eµ̄, ȳ) ∈ Γp. Hence, in order to use Theorem 4, it remains to show that (ET ȳ, µ̄) is an equilibrium
input-output pair of the controller. To prove this, we try to find a vector η̄ such that

0 = −η̄ + ET ȳ

µ̄ = ∇g(η̄) + µ̄.
(5.5)

Since the function g is minimized at ET ȳ, we know that its derivative vanishes at that point, that is,
∇g(ET ȳ) = 0. Therefore it is clear that η̄ = ET ȳ satisfies (5.5), so we indeed have (ET ȳ, µ̄) ∈ Γc. From
Theorem 4 it follows that limt→∞ y(t) = ȳ for any initial condition on Σp and Σc, as desired. �

Theorem 10. Let Σp be an equilibrium independent passive plant with a given equilibrium output ȳ. Suppose
that the interconnection matrix E has full row rank, and let µ̄ be such that (−Eµ̄, ȳ) ∈ Γp. Let g be a convex
function that is minimized at ET ȳ and let ρ > 0 be arbitrary. Then a controller that solves Problem 1 is
given by

η̇ ∈ −∂g?(η) + {ζ}
µ = η + µ̄+ ρ(ζ − ET ȳ)

Proof. First we note that the controller is of the form (3.13) with v = µ̄−ρET ȳ. Since ρ > 0, we know from
Theorem 2 that the controller is input-stricly equilibrium independent passive. Also, the plant is equilibrium
independent passive and the interconnection matrix has full row rank. Hence, in order to use Theorem 5, it
remains to show that (ET ȳ, µ̄) is an equilibrium input-output pair of the controller. To prove this, we try
to find a vector η̄ such that

0 ∈ −∂g?(η̄) + {ET ȳ}
µ̄ = η̄ + µ̄+ ρ(ET ȳ − ET ȳ) = η̄ + µ̄.

(5.6)

Since the function g is minimized at ET ȳ, we have 0 ∈ ∂g(ET ȳ), from which it follows that ET ȳ ∈ ∂g?(0).
Hence, 0 ∈ −∂g?(0) + {ET ȳ}, from which it becomes clear that η̄ = 0 satisfies (5.6), so we indeed have
(ET ȳ, µ̄) ∈ Γc. �
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Theorem 11. Let Σp be an equilibrium independent passive plant with a given equilibrium output ȳ. Suppose
that the interconnection matrix E has full row rank, and let µ̄ be such that (−Eµ̄, ȳ) ∈ Γp. Let g be a
differential convex function that is minimized at ET ȳ and let ρ > 0 be arbitrary. Then a controller that
solves Problem 1 is given by

η̇ = −η + ζ

µ = ∇g(η) + µ̄+ ρ(ζ − ET ȳ).

Proof. Since the controller is of the form (3.16) with v = µ̄ − ρET ȳ and ρ > 0, we know from Theorem 3
that it is input-stricly equilibrium independent passive. Also, the plant is equilibrium independent passive
and the interconnection matrix has full row rank. Hence, in order to use Theorem 5, it remains to show that
(ET ȳ, µ̄) is an equilibrium input-output pair of the controller. To prove this, we try to find a vector η̄ such
that

0 = −η̄ + ET ȳ

µ̄ = ∇g(η̄) + µ̄+ ρ(ET ȳ − ET ȳ) = ∇g(η̄) + µ̄.
(5.7)

Since the function g is minimized at ET ȳ, we know that its derivative vanishes at that point, that is,
∇g(ET ȳ) = 0. Therefore it is clear that η̄ = ET ȳ satisfies (5.4), so we indeed have (ET ȳ, µ̄) ∈ Γc. From
Theorem 5 we know that limt→∞ y(t) = ȳ for any initial condition on Σp and Σc, as desired. �

Remark 3. Recall from Example 3 that the class of systems discussed in the paper [16] is equilibrium
independent passive. In that paper, the interconnection matrix E is given by the identity matrix. Hence to
solve Problem 1 for this class of systems, the controllers from Theorem 7, Theorem 10 and Theorem 11 suffice.
Furthermore, recall that the mass-spring-damper system from Example 1 and 2 is equilibrium independent
passive as well. Hence, under the condition that the interconnection matrix has full row rank, the controllers
from Theorem 7, Theorem 10 and Theorem 11 also solve Problem 1 for the mass-spring-damper system. In
Example 2 we noted that the mass-spring-damper system is output-strictly equilibrium independent passive
under the assumption kerETd ⊆ kerBT . Hence in that case we can also apply Theorem 6, Theorem 8 or
Theorem 9 to solve Problem 1.

5.3 Example

Consider the one-dimensional mass-spring-damper system that is depicted below. Suppose that we can
control the system by applying inputs to the first and the last cart, and that the measured output is given
by the velocities of these two carts. In this example we aim at constructing a controller that achieves output
regulation with respect to a given equilibrium of the system.

First, let us define the dynamical model. Let p ∈ R4 denote the vector of momenta of the masses, and
let q ∈ R3 denote the vector of elongations of the springs. Denote the damping coefficient by D, and let
K ∈ R3×3 and M ∈ R4×4 denote the diagonal matrices with the spring constants and the masses on the
diagonal. In this example we consider the following values:

D = 2, K =

4 0 0
0 1 0
0 0 1

 , M =


9 0 0 0
0 16 0 0
0 0 4 0
0 0 0 1



m4 m3 m2 m1

k3
k2 k1

u2 u1
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Furthermore, let Es and Ed denote the incidence matrices corresponding to the springs and the dampers
respectively, i.e.,

Es =


1 0 0
−1 1 0

0 −1 1
0 0 −1

 , Ed =


1
−1

0
0

 .
Since we apply inputs to the first and last cart, the input matrix B is given by

B =


1 0
0 0
0 0
0 1

 .
Recall from Example 1 that the dynamics of the system is then given by[

q̇
ṗ

]
=

[
0 ETs

−Es −EdDETd

] [
Kq

M−1p

]
+

[
0
B

]
u.

As outputs we choose the velocities of the masses to which we apply the inputs, that is, y = BTM−1p. For
the interconnection matrix we choose the identity matrix. Then the interconnection of the system with a
controller with input ζ and output µ is given by

u = −µ, ζ = y.

The equilibrium output that we are interested in is the one where the first and last cart have an equal
velocity of 1. It is easily verified that for any constant α ∈ R, an equilibrium with this equilibrium output
is given by

ū = α

[
1
−1

]
, q̄ = α

1/4
1
1

 , p̄ =


9
16
4
1

 ȳ =

[
1
1

]
. (5.8)

The physical meaning of this equilibrium is as follows. The velocity of the carts are given by M−1p, so in
the above equilibrium configuration they are all constant and equal to 1. The elongations of the springs are
distributed according to the spring constants, and are a consequence of the constant inputs that are applied
to the first and last cart. The parameter α gives an indication how much the springs are elongated. To make
sure the velocities of the carts are constant, the inputs are of equal magnitude and act in opposite directions.

As we know from Example 2, mass-spring-damper systems are equilibrium independent passive, which
allows us to use the input-strictly equilibrium independent passive controllers that were presented in this
chapter. As an example, consider a port-Hamiltonian controller of the form (5.3), and let G = 0. As
explained in Remark 2, this yields the static controller

µ(t) = µ̄+ S(ζ(t)− ȳ), (5.9)

where µ̄ = −ū. Theorem 7 tells us that the above controller achieves output regulation with respect to ȳ if
S is positive definite. Hence we take S to be the 4× 4 identity matrix. First, consider the equilibrium (5.8)
with α = 0. Filling in the values for µ̄ and ȳ yields the following controller:

µ(t) = y(t)−
[

1
1

]
.

Using Matlab to plot the resulting output trajectory starting from the initial state x0 = 0, we obtain the
plot that is shown below. We indeed achieve output regulation with respect to ȳ.
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Recall that achieving output regulation does not guarantee convergence of the input and the state to
the equilibrium configuration in general. However, in this example the physical meaning of the equilibria is
rather clear. When the carts start driving, the strings will be stretched out in the first place. The controller
that we constructed focuses on the equilibrium point where the strings return to their initial configuration,
viz. α = 0. Focusing on an equilibrium where the strings are stretched out, i.e. α > 0, might result in
a smoother curve. Here we show the effect of choosing a different equilibrium with the same equilibrium
output.

Consider the equilibrium (5.8) with α = 1. The controller (5.9) corresponding to this choice can be found
by filling in the values for µ̄ = −ū and ȳ again. This gives the following controller.

µ(t) =

[
−1

1

]
+ y(t)−

[
1
1

]
= y(t)−

[
2
0

]
.

The plot of the output is shown below. We see that the curve is indeed smoother than the previous one.
However, note that the time the controller takes to reach the equilibrium output is not improved.
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Chapter 6

Conclusions

In this thesis we discussed the problem of output regulation with respect to an equilibrium of the system. The
approach that we used was based on the notion of equilibrium independent passivity. First we introduced
equilibrium independent passivity, and we provided some classes of equilibrium independent passive systems.
After that, we investigated the interconnection of a plant and a controller, and derived conditions under
which output regulation is achieved. These conditions included equilibrium independent passivity of both
the plant and the controller. Finally, we designed controllers according to these conditions. We presented
three different classes of controllers, based on the classes of equilibrium independent passive systems that we
found in Chapter 3.

The controllers that we designed rely on knowledge of the equilibrium set of the plant. An interesting
problem is to find controllers that do not require this information. Such controllers were already presented
in the papers [3] and [17]. Hence, a topic for further research would be to see if their ideas can be applied
to the controllers that were presented in this thesis.

Another idea for further research is to design the interconnection matrix E to obtain stability results. In
that case, the problem would be to design a controller and an interconnection matrix for a given plant such
that output regulation is achieved.
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