
Separability and Applications
of the Helmholtz Equation
Bachelor Thesis Physics and Mathematics

Gerrit van Tilburg

Supervisors:

prof. dr. H. Waalkens
prof. dr. O. Scholten

December 29, 2018

ABSTRACT

Partial differential equations have different forms for different coordinate systems.
In this thesis the separability of two versions of the Helmholtz equation is studied.
Conditions on the separability of the scalar Helmholtz equation in n dimensions are
given and it is shown that the scalar Helmholtz equation in 3 dimensions separates
in 11 coordinate systems. Furthermore, it is found that the vector Helmholtz
equation has a more complex form and this equation separates only in rectangular
coordinates. Finally, applications of both versions of the Helmholtz equation in
quantum mechanics, electromagnetism and optics are treated.
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Introduction

The Helmholtz equation arises in many problems in physics where waves are involved.
Waves can be described by a wave function ψ(x, t) which satisfies a differential
equation, for example the wave equation or the Schrödinger equation. This is a
differential equation in both space and time, and when separation of variables is used
with ψ(x, t) = X(x)T (t) the Helmholtz equation frequently arises. Namely, the space
part often satisfies (∇2 + k2)X(x) = 0, where ∇2 is the Laplace operator and k is a
constant. This is the Helmholtz equation.

The Helmholtz equation has two forms, the scalar form and the vector form. The
scalar form is given as (∆+k2)f = 0, where ∆ is the scalar Laplacian and f is a scalar
function. The vector Helmholtz equation is given as (N + k2)f = 0, where N is the
vector Laplacian and f is a vector function. Both forms of the Helmholtz equation
are partial differential equations, which are ideally split up into a set of coupled
ordinary differential equations. When the Helmholtz equation can be written as a set
of coupled ordinary differential equations, we say that it is separable.

Depending on the situation, a suitable coordinate system for a problem may be chosen.
For example, when one attempts to calculate the electric field around an elliptically
shaped charged body, elliptic coordinates might be useful. The Laplace operator has
a specific expression for each coordinate system. In this thesis, the separability of the
two forms of the Helmholtz equation in different coordinate systems will be studied.

The mathematical details of separability is studied in chapter 2. The coordinate
systems considered are curvilinear orthogonal coordinate systems, which means that
the coordinate systems are obtained from orthogonally intersecting surfaces. Using
scale factors, one can give expressions for the (vector) Laplace operator in different
coordinate systems. By looking at the (vector) Helmholtz equation in terms of scale
factors, conditions can be given to split up the partial differential equation into a set
of coupled ordinary differential equations. The scalar Helmholtz equation separates
in 11 coordinates, which are degenerate forms of the confocal ellipsoidal coordinate
system. The vector Helmholtz equation has a more complicated form than the scalar
Helmholtz equation and it only separates in one of the 11 above mentioned coordinate
systems, being the rectangular coordinate system.

Once the separability is put in a mathematical framework, in chapter 3 applications
of the Helmholtz equation will be treated. The two forms of the Helmholtz equation
appear in many fields of physics. The Schrödinger equation with zero potential
energy reduces to the scalar Helmholtz equation, and we will see that quantum
scattering and quantum billiard are closely related. Maxwell’s equations and the
vector Helmholtz equation are also related, but separability conditions for the vector
Helmholtz equation do not necesarrily apply to Maxwell’s equation. Furthermore,
light rays obey the scalar Helmholtz equation and using conformal maps we can bend
light around certain regions of space.
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1 Preliminaries

1.1 Orthogonal Coordinate Systems

Depending on the situation, a suitable coordinate system may be chosen. Coordinate
systems can be obtained from orthogonally intersecting surfaces and we will see that
we can specify a point in space by the intersection of these surfaces.

In Euclidean 3-space, the position vector r of a point p can be defined by r = xix +
yiy + ziz where ix, iy, iz are the standard basis vectors. These can be obtained by

ix =
∂r

∂x
, iy =

∂r

∂y
, iz =

∂r

∂z
. (1)

This point can also defined using orthogonal curvilinear coordinates. Curvilinear
coordinate systems are obtained by looking at intersections of surfaces. We talk about
orthogonal curvilinear coordinate systems when the surfaces intersect orhogonally.
For example,the surfaces related to spherical coordinates are spheres, half planes and
cones. Let f(x, y, z) = ξ specify a surface characterized by a constant parameter ξ.
Now define 3 invertible transformation functions which characterize 3 orthogonally
intersecting surfaces.

f1 (x, y, z) = ξ1,

f2 (x, y, z) = ξ2,

f3 (x, y, z) = ξ3.

A point of intersection can be defined by (ξ1, ξ2, ξ3), which are called the orthogonal
curvilinear coordinates. Since we will consider regular surfaces, we can guarentee
the existence of inverse maps gi, i = 1, 2, 3, such that x = g1(ξ1, ξ2, ξ3) and so on.
The space curves formed by the intersection of two surfaces are called the coordinate
curves. The basis vectors of this coordinate system can be obtained using the same
derivatives as above:

h1 =
∂r

∂ξ1
, h2 =

∂r

∂ξ2
, h3 =

∂r

∂ξ3
. (2)

These vectors may not have unit length, so the curvilinear orthonormal basis vectors
can be given by

e1 =
1

h1
h1, e2 =

1

h2
h2, e3 =

1

h3
h3, (3)

where hi = |hi|. The total differential change in r is

dr =
∂r

∂ξ1
dξ1 +

∂r

∂ξ2
dξ2 +

∂r

∂ξ3
dξ3 = h1dξ1e1 + h2dξ2e2 + h3dξ3e3, (4)
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and therefore hi is the so called scale factor for ξi given by

hi =

∣∣∣∣ ∂r∂ξi
∣∣∣∣ =

√(
∂x

∂ξi

)2

+

(
∂y

∂ξi

)2

+

(
∂z

∂ξi

)2

. (5)

The six scalar products gij = hi · hj define the nine entries of the metric tensor
(gij). Since the surfaces considered in this thesis are orthogonal, the metric tensor is
diagonal and g = g11g22g33.

The method above can be generalized to n dimensions and provides us with a way to
describe operators in arbitrary curvilinear coordinate systems.

1.1.1 The Scalar and Vector Laplace Operator

The Laplacian plays a prominent role in the Helmholtz equation and we want to be
able to give an expression for the Helmholtz equation in general coordinate systems.
Therefore, we will now investigate the Laplacian in orthogonal coordinate systems.
The Laplacian of a field gives us a quantitative measure of the ”spreading out” of
the change of the field in space. The Laplacian of any tensor field T is given as the
divergence of the gradient of the tensor

∇2T = ∇ · (∇T). (6)

Whereas the scalar Laplacian and the vector Laplacian are two entirely different
operators, generally the same symbol is used for both. To avoid confusion, we will
denote the scalar Laplacian by ∆ and the vector Laplacian by N. The scalar Laplacian
for a scalar function f is then given by

∆f = ∇2f = ∇ · ∇f. (7)

If the scalar Laplacian gives us a large value, the field is rapidly going from not
changing much at one point to changing a lot at another point. Using vector identities
in three dimensions, one can obtain an expression for the vector Laplacian in terms
of gradient, curl and divergence. Namely, the vector Laplacian of f is the gradient of
the divergence of f minus the curl of the curl of f , where f is a vector function:

Nf = ∇2f = ∇(∇ · f)−∇× (∇× f). (8)

In Cartesian coordinates, this reduces to the scalar Laplacian for each component
of f . Now, we will use scale factors to express these operators in terms of ξi
coordinates. The scalar Laplacian for Euclidean n-space in an orthogonal coordinate
system (ξ1, ξ2, . . . , ξn) can be written as

∆f =
1
√
g

n∑
i=1

∂

∂ξi

(√
g

gii

∂f

∂ξi

)
. (9)
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So, for Euclidean 3-space the scalar Laplacian in terms of scale factors becomes

∆f =
1

h1h2h3

3∑
i=1

∂

∂ξi

[
h1h2h3
gii

∂f

∂ξi

]
. (10)

We see that in rectangular coordinates, (ξ1 = x, ξ2 = y, ξ3 = z), the scale factors

become h1 = h2 = h3 = 1 resulting in ∆f =
[
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

]
f , which is a familiar

expression.

In this thesis, the gradient, the divergence and the curl will only be used in 3
dimensions. We will now give the expressions for these operators in 3 dimensions.
The gradient of a scalar function f(ξ1, ξ2, ξ3) is given as

∇f =
1

h1

∂f

∂ξ1
e1 +

1

h2

∂f

∂ξ2
e2 +

1

h3

∂f

∂ξ3
e3, (11)

where ei is the unit vector corresponding to ξi and so on. The expression for the
divergence of a vector function f(ξ1, ξ2, ξ3) is

∇ · f =
1

h1h2h3

[
∂

∂ξ1
(h2h3f1) +

∂

∂ξ2
(h3h1f2) +

∂

∂ξ3
(h1h2f3)

]
, (12)

where f1 is the first component of f and so on. Finally, the expression for the curl of
a vector function f(ξ1, ξ2, ξ3) is

∇× f =
1

h1h2h3

∣∣∣∣∣∣
h1e1 h2e2 h3e3
∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

h1f1 h2f2 h3f3

∣∣∣∣∣∣ . (13)

Now we are in the position to obtain an expression for the vector Laplacian in 3-
dimensions in terms of scale factors, using equation (8). We redirect interested readers
to [1] for this expression.

1.2 The Quantum Mechanical Scattering Matrix S

In chapter 3 we will look at application of the scalar Helmholtz equation in quantum
mechanical scattering. In the quantum theory of scattering, we imagine an incident
wave |ψin〉 which encounters a scattering potential V producing an outgoing wave
|ψout〉. This is realized by a fixed potential V in some region of space, called the
scattering region. Outside the scattering region, the influence of the potential will be
negligible. Therefore, the wave packets before and after scattering will be expected
to behave freely. So we expect the existence of states |ψin〉 and |ψout〉 in the so called
asymptotic past and future of the state |ψ(t)〉, respectively. Our goal in this section
is to find an operator S such that
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Figure 1: Schematic overview of quantum scattering where |ψout〉 = S |ψin〉.

|ψout〉 = S |ψin〉 . (14)

An important property of the Schrödinger equation is that during the evolution
between two measurements, the norm of the state vector does not change. This
leads to the evolution operator U(t) which relates the initial state |ψ(0)〉 to the state
at time t by

|ψ(t)〉 = U(t) |ψ(0)〉 . (15)

Here U(t) = e−itH/~ and H = p2/2M + V . For |ψin〉 and |ψout〉 the potential is
negligible so if we define H0 = p2/2m, then

‖ψ(t)− e−itH0/~ψ in
out
‖ → 0, t→ ∓∞. (16)

Substituting the expression from equation (15) gives

‖U(t)ψ(0)− e−itH0/~ψ in
out
‖ → 0, t→ ∓∞. (17)

Setting t = 0 in equation (15), we see that U(0) = 1 and since d
dt

[
U(t)†U(t)

]
= 0, we

see that U(t) is unitary:

U †(t)U(t) = I. (18)

This gives us U−1 = U † and therefore

‖ψ(0)− U(t)†e−itH0/~ψ in
out
‖ → 0, t→ ∓∞. (19)

So we see that
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|ψ(0)〉 = lim
t→∓∞

eitH/~e−itH0/~
∣∣∣ψ in

out

〉
= Ω±

∣∣∣ψ in
out

〉
, (20)

where Ω± are the Möller operators, which are also unitary:

Ω± ≡ lim
t→∓∞

U−1(t)eitH0/~. (21)

Using the equation above we see that

|ψout〉 = Ω†− |ψ(0)〉 = Ω†−Ω+ |ψin〉 . (22)

Now, if we define the Unitary Scattering Matrix S

S ≡ Ω†−Ω+, (23)

we see that
|ψout〉 = S |ψin〉 . (24)

So we defined an operator which relates the incoming state to the outgoing state.

1.3 Electromagnetism

Another application of the Helmholtz equation is found in electromagnetism. We will
now look at the relation between Maxwell’s equations and the Helmholtz equation. In
chapter 3, we will take a look at the exact solutions of Maxwell’s equations. Maxwell’s
equations in charge free vacuum are defined as

∇ · E = 0,

∇× E = −∂B
∂t
,

∇ ·B = 0,

∇×B = µ0ε0
∂E

∂t
.

(25)

Taking the curl of the curl equations gives

∇× (∇× E) = ∇×
(
−∂B
∂t

)
= − ∂

∂t
∇×B = −µ0ε0

∂2E

∂t2
,

∇× (∇×B) = ∇×
(
µ0ε0

∂E

∂t

)
= µ0ε0

∂

∂t
∇× E = −µ0ε0

∂2B

∂t2
.

(26)

Now we use the expression for the vector Laplacian in equation (8) to get

∇× (∇× E) = ∇(∇ · E)−∇2E = −µ0ε0
∂2E

∂t2
,

∇× (∇×B) = ∇(∇ ·B)−∇2B = −µ0ε0
∂2B

∂t2
.

(27)
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If we use that ∇·E = 0 and ∇·B = 0, we obtain the so called vector Helmholtz wave
equation for both E and B

∇2E− µ0ε0
∂2E

∂t2
= 0,

∇2B− µ0ε0
∂2B

∂t2
= 0.

(28)

If we assume harmonic time dependence, i.e. E(r, t) = E0(r)e
iωt and B(r, t) =

B0(r)e
iωt both these equations are in the form of the so called vector Helmholtz

equation

(∇2 + k2)E0 = 0,

(∇2 + k2)B0 = 0,
(29)

where k2 = ω2µ0ε0.
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2 Separability of the Helmholtz Equation

In chapter 1 we saw that we can give expressions for the scalar Laplacian and the
vector Laplacian in terms of scale factors. Now we will go a step further and write
both versions of the Helmholtz equation in terms of scale factors. Once this is done,
we can give conditions for the partial differential equation to split in a set of ordinary
differential equations. Using these conditions, we can determine which coordinate
systems allow separability of the Helmholtz equation.

2.1 The Scalar Helmholtz Equation

Separability in Euclidean n-Space

Using the expression for the Laplacian in terms of scale factors as in equation (9),
we see that the Helmholtz equation for an arbirtary orthogonal coordinate system
(ξ1, ξ2, . . . , ξn) in Euclidean n−space can be written as

∇2ψ + k2ψ =
1
√
g

n∑
i=1

∂

∂ξi

(√
g

h2i

∂ψ

∂ξi

)
+ k2ψ = 0, (30)

where ψ = ψ(ξ1, ξ2, . . . , ξn). In this section we will first give conditions for the
Helmholtz equation to separate. This means that the partial differential equation
can be rewritten as a set of coupled ordinary differential equations. The necessary
conditions for the Helmholtz equation to separate will turn out to be also sufficient.
Therefore, one can obtain a theorem which deals with the separability of the
Helmholtz equation [2] and the precise form of this theorem will be given in this
section.

Assume that one can write ψ as a product of n functions Xi depending on coordinate
ξi, so ψ(ξ1, ξ2 . . . ξn) = X1(ξ1)X2(ξ2) . . . Xn(ξn). Here Xi depends on the coordinate
system and on the separation constants α1 = k2, α2, α3, . . . , αn. Substituting this in
equation (30) and multiplying with

√
g gives

n∑
i=1

1

X(ξi)

∂

∂ξi

(√
g

h2i

dX(ξi)

dξi

)
+ k2
√
g = 0. (31)

Here we see that some partial derivatives have disappeared. We now require that
there exist functions fi depending on ξi and Fi independent of ξi such that

√
g

h21
= f1(ξ1)F1(ξ2, ξ3, . . . ξn)

√
g

h22
= f2(ξ2)F2(ξ1, ξ3, . . . ξn)
...√

g

h2n
= fn(ξn)Fn(ξ1, ξ2, . . . ξn−1)

, (32)
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which, in short notation, can be rewritten as
√
g

h2i
= fiFi. Note that g and hi depend

on the chosen coordinate system. This implies that Fi and fi are characteristics of
the coordinate system and independent of k and boundary conditions. Now we see
that equation (31) becomes

n∑
i=1

Fi
Xi

d

dξi

(
fi
dXi

dξi

)
+ k2
√
g = 0. (33)

Note that there are no partial derivatives in this equation. We now differentiate
equation (33) with respect to αi to obtain n equations:



∂
∂α1

[
F1

X1

d
dξ1

(
f1

dX1

dξ1

)
+ F2

X2

d
dξ2

(
f2

dX2

dξ2

)
+ · · ·+ Fn

Xn
d
dξn

(
fn

dXn
dξn

)]
= − ∂

∂α1
k2
√
g

∂
∂α2

[
F1

X1

d
dξ1

(
f1

dX1

dξ1

)
+ F2

X2

d
dξ2

(
f2

dX2

dξ2

)
+ · · ·+ Fn

Xn
d
dξn

(
fn

dXn
dξn

)]
= − ∂

∂α2
k2
√
g

...
∂
∂αn

[
F1

X1

d
dξ1

(
f1

dX1

dξ1

)
+ F2

X2

d
dξ2

(
f2

dX2

dξ2

)
+ · · ·+ Fn

Xn
d
dξn

(
fn

dXn
dξn

)]
= − ∂

∂αn
k2
√
g.

(34)

This can be written more conveniently if we introduce factors φij(ξi) defined as

φij(ξi) = − 1

fi(ξi)

∂

∂αi

[
1

Xi

d

dξi

(
fi
dXi

dξi

)]
, (35)

as equation (34) becomes
f1F1φ11(ξ1) + f2F2φ21 + · · ·+ fnFnφn1(ξn) =

√
g

f1F1φ12(ξ1) + f2F2φ22 + · · ·+ fnFnφn2(ξn) = 0
...

f1F1φ1n(ξ1) + f2F2φ2n + · · ·+ fnFnφnn(ξn) = 0.

(36)

We can solve this linear system of n equations and n unknowns (fiFi) by use of the
so called Stäckel determinant Ŝ

Ŝ =

∣∣∣∣∣∣∣∣∣
φ11(ξ1) φ12(ξ1) · · · φ1n(ξ1)
φ21(ξ2) φ22(ξ2) · · · φ2n(ξ2)

...
...

. . .
...

φn1(ξn) φn2(ξn) · · · φnn(ξn)

∣∣∣∣∣∣∣∣∣ (37)

=
n∑
i=1

φijMij, j = 1, 2, . . . , n. (38)

To find the solution of equation (36), we take a look at the minors of the elements
in the first column denoted by Mi1. Since a minor Mi1 is obtained by deleting the
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ith row and first column, Mi1 is independent of ξi. Next we use the orthogonality
property of determinants [3]:

n∑
i=1

Mi1φi1 = Ŝ,

n∑
i=1

Mi1φim = 0; m = 2, 3, . . . n. (39)

We see that, if Ŝ 6= 0, equation (36) has solution

fiFi =

√
g

Ŝ
Mi1. (40)

From equation (32) and equation (40) one can conclude that one condition for
separability is that

gii =
Ŝ

Mi1

. (41)

Also from equation (40), we see that

√
g

Ŝ
= fi

Fi
Mi1

, (42)

where fi = fi(ξi) and Fi and Mi1 are functions independent of ξi. So one can write,
for Gi = Fi

Mi1
,

√
g

Ŝ
= f1(ξ1)G1(ξ2, ξ3, . . . , ξn)

= f2(ξ2)G2(ξ1, ξ3, . . . , ξn)

...

= fn(ξn)Gn(ξ1, ξ2, . . . .ξ
n−1).

Therefore it must be that

√
g

Ŝ
=

n∏
i=1

fi(ξi), (43)

which is the second condition for separability. Now we have introduced the necessary
terminology to state Theorem 1:

Theorem 1. The Helmholtz equation ∇2ψ + k2ψ = 0 in Euclidean n-space with
orthogonal coordinates (ξ1, ξ2, . . . , ξn) and ψ = ψ(ξ1, ξ2, . . . , ξn) can be reduced to n
ordinary differential equations if and only if the metric coefficients satisfy the two
equations
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1. h2i = Ŝ
Mi1

2.
√
g

Ŝ
=

n∏
i=1

fi(ξi)

We have already shown that the Helmholtz equation separates only if conditions 1
and 2 hold. What is left to show is that if conditions 1 and 2 hold, the Helmholtz
equation separates.

Combining condition 1 and 2 gives

√
g

h2i
=

[
n∏
i=1

fi(ξi)

]
Mi1. (44)

Substituting this in the Helmholtz equation (31) with k2 = α1 and
√
g = Ŝ

∏
fi(ξi)

gives

n∑
i=1

1

X(ξi)

∂

∂ξi

([
n∏
i=1

fi(ξi)

]
Mi1

∂X(ξi)

∂ξi

)
+ α1

√
g = 0

⇒ 1

Ŝ

n∑
i=1

Mi1

X(ξi)fi(ξi)

∂

∂ξi

(
fi(ξi)

∂X(ξi)

∂ξi

)
+ α1 = 0

⇒
n∑
i=1

1

h2iX(ξi)fi(ξi)

∂

∂ξi

(
fi(ξi)

∂X(ξi)

∂ξi

)
+ α1 = 0. (45)

Combining the definition of the determinant with condition 1 gives us

Ŝ =
n∑
i=1

φi1Mi1 ⇒ 1 =
n∑
i=1

φi1
Mi1

Ŝ
=

n∑
i=1

φi1
h2i
. (46)

Using the orthogonality property from equation (39), we see that for j ∈ {2, . . . , n}

n∑
i=1

φij
h2i

=
1

Ŝ

n∑
i=1

φijMi1 = 0. (47)

So we may write

α1 = α1

n∑
i=1

φi1
h2i

+ α2

n∑
i=1

φi2
h2i

+ · · ·+ αn

n∑
i=1

φin
h2i
. (48)

Substituting this in equation (45) gives

n∑
i=1

1

h2i

{
1

fiXi

d

dξi

(
fi
dXi

dξi

)
+

n∑
j=1

αjφij(ξi)

}
= 0, (49)
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which, in general, means that

1

fiXi

d

dξi

(
fi
dXi

dξi

)
+

n∑
j=1

αjφij(ξi) = 0, (50)

or, equivalently,
1

fi

d

dξi

(
fi
dXi

dξi

)
+Xi

n∑
j=1

αjφij(ξi) = 0. (51)

The first term consists of derivatives of functions dependent on ξi with respect to
ξi and the second term is only dependent on ξi and the separation constants. This
means that, starting from conditions 1 and 2, we have obtained n coupled ordinary
differential equations. Therefore conditions 1 and 2 are sufficient for separability.

Example 2.1. Elliptic coordinates are defined as

x = coshµ cos θ,

y = sinhµ sin θ,

θ ∈ [0, 2π), µ ∈ [0,∞).

(52)

These coordinates and an application of the scalar Helmholtz equation in these
coordinates will be treated in chapter 3. For these coordinates, h21 = h22 = cosh2 µ −
cos2 θ and

√
g = h1h2 = cosh2 µ− cos2 θ. Some attempts for the Stäckel matrix show

us that if we take

Ŝ =

∣∣∣∣cosh2 µ 1
cos2 θ 1

∣∣∣∣
then conditions 1 and 2 are satisfied, namely:

√
g

Ŝ
= 1, h21 =

Ŝ

M11

= 1, h22 =
Ŝ

M21

= 1.

So we can use equation (51) to find the separated equations:

d2M

dµ2
+M(α1 cosh2 µ− α2) = 0, (53)

d2φ

dθ2
+ φ(α1 cos2 θ − α2) = 0, (54)

where X1(ξ1) = M(µ) and X2(ξ2) = φ(θ). So the Helmholtz equation in elliptic
coordinates can be separated.
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2.1.1 Separability in Euclidean 3-Space

We now have a theorem which deals with the separability of the scalar Helmholtz
equation, so we can determine which coordinate systems actually do separate. In
R3, i.e. when taking n = 3 in the discussion above, Eisenhart [4] showed that the
Helmholtz equation separates only in eleven coordinate systems, which sometimes are
called the Eisenhart Coordinate Systems :

1. Rectangular coordinates

2. Circular-cylinder coordinates

3. Elliptic-cylinder coordinates

4. Parabolic-cylinder coordinates

5. Spherical coordinates

6. Prolate spheroidal coordinates

7. Oblate spheroidal coordinates

8. Parabolic coordinates

9. Conical coordinates

10. Ellipsoidal coordinates

11. Paraboloidal coordinates

In fact, Morse and Feshbach [3] showed that the scalar Helmholtz equation separates
for ellispoidal coordinates, and that the other coordinate systems are degenerate forms
of this system. Namely, the equation

x2

ξ2 − a2
+

y2

ξ2 − b2
+

z2

ξ2 − c2
= 1; a ≥ b ≥ c ≥ 0, (55)

for different values of the parameter ξ, represents three families of confocal quadric
surfaces.

• ξ > a Gives a complete family of confocal ellipsoids

• a > ξ > b Gives a complete set of confocal hyperboloids of one sheet.

• b > ξ > c Gives a complete set of confocal hyperboloids of two sheets.
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The three families of surfaces are mutually orthogonal, so one can consider the three
ranges for the parameter ξ to correspond to three families of coordinate surfaces.
From this, coordinates (ξ1, ξ2, ξ3) can be deduced. ξ1 > a corresponds to ellipsoids,
a > ξ2 > b corresponds to hyperboloids of one sheet and b > ξ3 > c corresponds to
hyperboloids of two sheets. When taking the ξi in the following way, this gives the
so called ellipsoidal coordinates:

x =

√
(ξ21 − a2)(ξ22 − a2)(ξ23 − a2)

a2(a2 − b2)
,

y =

√
(ξ21 − b2)(ξ22 − b2)(ξ23 − b2)

b2(b2 − a2)
,

z =
ξ1ξ2ξ3
a

,

ξ1 > a > ξ2 > b > ξ3 > 0.

(56)

The scale factors h1, h2 and h3 follow easily, and the conditions given in Theorem
1 can be satisfied, so the scalar Helmholtz equation separates. The 10 degenerate
coordinate systems can be obtained by stretching, compressing and translating the
coordinate surfaces. This is done by letting a, b, c go to zero or infinity. The
coordinates (ξ1, ξ2, ξ3) behave nicely with respect to these transformations, and the
scalar Helmholtz equation separates for all coordinate systems. Therefore, the scalar
Helmholtz equation separates also in these 10 coordinate systems.

2.2 The Vector Helmholtz Equation

We will now look at the seperability of the vector Helmholtz equation

(N + k2)ψ = 0, (57)

where N is the vector Laplacian as discussed in chapter 1. The vector Helmholtz
equation is most often used in R3 so we will take n = 3 in the following discussion. So
we will take ψ(ξ1, ξ2, ξ3) = ψ1e1+ψ2e2+ψ3e3, where ei is the unit vector corresponding
to coordinate ξi. Using the expression Nψ = ∇2ψ = ∇(∇ · ψ) − ∇ × (∇ × ψ) and
the expressions for the curl, the gradient and the divergence in terms of scale factors,
we can write out the vector Helmholtz equation. Equating the components of this
equation gives
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(
1

gii

) 1
2
(
∂

∂ξi

)[(
1

g

) 1
2
(
∂

∂ξi

)(
g

gii

) 1
2

(ψ)i

]
+

(
gii
g

) 1
2
(
∂

∂ξj

)[(
gkk

g
1
2

)(
∂

∂ξj

)
(gii)

1
2 (ψ)i

]
+

(
gii
g

) 1
2
(
∂

∂ξk

)[(
gjj

g
1
2

)(
∂

∂ξk

)
(gii)

1
2 (ψ)i

]
+

(
1

gii

) 1
2
(
∂

∂ξi

)[(
1

g

) 1
2
(
∂

∂ξj

)(
g

gjj

) 1
2

(ψ)j

]
+

(
1

gii

) 1
2
(
∂

∂ξi

)[(
1

g

) 1
2
(
∂

∂ξk

)(
g

gkk

) 1
2

(ψ)k

]
−
(
gii
g

) 1
2
(
∂

∂ξj

)[(
gkk

g
1
2

)(
∂

∂ξi

)
(gjj)

1
2 (ψ)j

]
−
(
gii
g

) 1
2
(
∂

∂ξk

)[(
gjj

g
1
2

)(
∂

∂ξi

)
(gkk)

1
2 (ψ)k

]
+k2(ψ)i = 0, (58)

where i, j, k = 1, 2, 3 and i 6= j 6= k. So, this is the Helmholtz equation for one
component (ψ)i. For the equation of component i to separate, we first note that it is
necessary that components j and k drop out. So we require that

(
1

gii

) 1
2
(
∂

∂ξi

)[(
1

g

) 1
2
(
∂

∂ξj

)(
g

gjj

) 1
2

(ψ)j

]

−
(
gii
g

) 1
2
(
∂

∂ξj

)[(
gkk

g
1
2

)(
∂

∂ξi

)
(gjj)

1
2 (ψ)j

]
= 0, (59)

because then equation (58) becomes

(
1

gii

) 1
2
(
∂

∂ξi

)[(
1

g

) 1
2
(
∂

∂ξi

)(
g

gii

) 1
2

(ψ)i

]

+

(
gii
g

) 1
2
(
∂

∂ξj

)[(
gkk

g
1
2

)(
∂

∂ξj

)
(gii)

1
2 (ψ)i

]
+

(
gii
g

) 1
2
(
∂

∂ξk

)[(
gjj

g
1
2

)(
∂

∂ξk

)
(gii)

1
2 (ψ)i

]
+k2(ψ)i = 0. (60)
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We are now able to make a comparison with the scalar Helmholtz equation, which in
three dimensions can be written as

(∆ + k2)ψ =

1
√
g

(
∂

∂ξ1

)[√
g

g11

∂ψ

∂ξ1

]
+

1
√
g

(
∂

∂ξ2

)[√
g

g22

∂ψ

∂ξ2

]
+

1
√
g

(
∂

∂ξ3

)[√
g

g33

∂ψ

∂ξ3

]
+k2ψ = 0. (61)

Equation (60) contains terms ∂
∂ξi

(gjj)
1
2ψj and and ∂

∂ξi

(
g
gii

) 1
2

(ψ)i in the places where

equation (61) has terms ∂ψ
∂ξi

. Therefore, we see that there are less coordinate systems
in which the vector Helmholtz equation separates.

In order that equation (60) separates we need that
(g11)

1
2 = f1(ξ1)f2(ξ2)f3(ξ3)

(g22)
1
2 = g1(ξ1)g2(ξ2)g3(ξ3)

(g33)
1
2 = h1(ξ1)h2(ξ2)h3(ξ3)

(62)

such that the terms with the partial derivatives with respect to ξi do not contain the
coordinates ξj and ξk. Equation (60) then becomes

(
1

fif 2
j f

2
k

)(
∂

∂ξi

)[(
1

fi

)(
∂

∂ξi

)
gihi(ψ)i

]
+

(
1

g2i gjg
2
khj

)(
∂

∂ξj

)[
hj
fjgj

(
∂

∂ξj

)
fj(ψ)i

]
+

(
1

gkh2ih
2
jhk

)(
∂

∂ξk

)[
gk
fkhk

(
∂

∂ξk

)
fk(ψ)i

]
+k2(ψ)i = 0, (63)

which in some cases can be separated. Now we obtained two conditions for separability
of the vector Helmholtz equation. One can calculate the scale factors hi for the
Eisenhart coordinate systems and compare it with the conditions given above. The
condition imposed in equation (59) is satisfied in only three of the eleven Eisenhart
coordinate systems: rectangular, circular-cylinder and spherical coordinates. The
condition imposed in equation (62) is satisfied for rectangular coordinates only.
Therefore, the rectangular coordinate system is the only coordinate system in
which all equations for all components separate. In circular-cylinder and spherical
coordinates equation (62) is satisfied only if the components ψi, ψj, ψk satisfy certain
conditions [5].
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3 Applications of the Helmholtz Equation

If the Helmholtz equation separates, we can solve the ordinary differential equations
individually and combine the results to find the exact solution of the Helmholtz
equation. So for a given problem involving the Helmholtz equation, we can find a
suitable coordinate system which allows separability and therefore we can find the
exact solution the the problem. We will now use this methodology in problems arising
in quantum mechanics, electromagnetism and optics.

3.1 Quantum Billiard

3.1.1 The Inside-Outside Duality

The separability of the scalar Helmholtz equation can be used in the inside-outside
duality for planar billiards. The duality is about the strong link between the so
called interior and exterior problem. In the interior problem, we consider a quantum
particle inside a convex region in the plane. The particle is trapped inside this region,
which means that the potential is zero inside and infinite outside this region. The
interior problem is also called the billiard problem because of the similarities with
the game going with same name. On the other hand, in the exterior problem we
scatter waves on the same region of the plane. Now, the potential is constant outside
and infinity in the scattering region. The scattering is characterized by the scattering
matrix S, and it turns out that the eigenvalues of this matrix are related to the
eigenenergies E of the particles trapped inside the billiard. This was stated by Pillet
[6], which comes down to the following (leaving aside some details regarding the
boundary):

Theorem 2. E is a Dirichlet eigenvalue of the interior problem if and only if the
on-shell scattering matrix S has an eigenvalue equal to 1.

Here, a Dirichlet eigenvalue refers to Dirichlet boundary conditions for the billiard,
which means that the wavefunction of the particle vanishes on the boundary of
the billiard. In this section we will show that this statement holds for an ellipse.
We will do this by first giving the wavefunction corresponding to an eigenvalue E
for ellipsoidal billiard with Dirichlet boundary conditions. Then, we will use the
asymptotic behavior of the wave function to determine the scattering matrix S and
take a look at its spectral properties. We will look at eigenvalues of S− I being equal
to 0, which correspond to S having an eigenvalue equal to one, namely:

0 is an eigenvalue of S − I
⇔ det((S − I)− 0I) = 0

⇔ det(S − I) = 0

⇔ 1 is an eigenvalue of S.
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3.1.2 Elliptic Billiard

We will now solve the billiard problem for the case of an ellipse, and therefore it is
convenient to introduce elliptic coordinates (θ, µ) given by

x = coshµ cos θ,

y = sinhµ sin θ,

θ ∈ [0, 2π), µ ∈ [0,∞).

(64)

Figure 2: Coordinate lines for elliptic coordinates.

The coordinate lines are ellipses for constant µ and hyperbolae for constant θ, both
with focal points on the y-axis at x = 1 and x = −1. This is illustraded in figure 2.

To find the eigenstates of the elliptic billiard, we need to solve the stationary
Schrödinger equation in elliptic, coordinates

Ĥ(µ, θ)Ψ(µ, θ) = EΨ(µ, θ). (65)

Here Ĥ is the Hamiltonian, which in this case is equal to the sum of the kinetic and
potential energy,

Ĥ(µ, θ) = − ~2

2m
∇2 + V (µ, θ). (66)

If we denote the boundary of the ellipse by a positive constant µ0, the potential energy
V (µ, θ) is given by
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V (µ, θ) =

{
0 if µ ≤ µ0

∞ if µ > µ0
, (67)

and the Dirichlet boundary condition is given by Ψ(µ0, θ) = 0. In the billiard, the
Schrödinger equation reduces to the scalar Helmholtz equation:

(∇2 + k2)Ψ(µ, θ) = 0, (68)

where k2 = 2m
~2 E is the rescaled energy. In section 2 we saw that the Helmholtz

equation separates in elliptic coordinates. In this case, it can also easily be seen by
using the expression for the Laplacian in elliptic coordinates:

∇2Ψ =
1

cosh2 µ− cos2 θ

(
∂2Ψ

∂µ2
+
∂2Ψ

∂θ2

)
. (69)

Then, equation (68) becomes

∂2Ψ

∂µ2
+
∂2Ψ

∂θ2
+ k2(cosh2 µ− cos2 θ)Ψ = 0. (70)

Rewriting gives

∂2Ψ

∂µ2
+ k2 cosh2 µΨ = −∂

2Ψ

∂θ2
+ k2 cos2 θΨ, (71)

and using the ansatz Ψ = Φ(θ)M(µ) gives

1

M

∂2M

∂µ2
+ k2 cosh2 µ = − 1

Φ

∂2Φ

∂θ2
+ k2 cos2 θ. (72)

We are now in the position to obtain two ordinary differential equations with
separation constant b. The right hand side of equation (72) gives us the so called
standard Mathieu equation:

∂2

∂θ2
Φ(θ) + (b− k2 cos2 θ)Φ(θ) = 0, (73)

and the left hand side of equation (72) gives us the so called modified Mathieu equation.

− ∂2

∂µ2
M(µ) + (b− k2 cosh2 µ)M(µ) = 0. (74)

These ordinary differential equations have solutions which are widely discussed in the
literature. Equation (73) has solutions Φ

e(o)
2n(+1)(k; θ) [7], which are even or odd about

θ = 0 :
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Φe
2n(k; θ) =

∞∑
r=0

A2n
2r (k) cos(2rθ), (75)

Φe
2n+1(k; θ) =

∞∑
r=0

A2n+1
2r+1 (k) cos[(2r + 1)θ], (76)

Φo
2n(k; θ) =

∞∑
r=0

B2n
2r (k) sin(2rθ), (77)

Φo
2n+1(k; θ) =

∞∑
r=0

B2n+1
2r+1 (k) sin[(2r + 1)θ], (78)

where the index 2n or 2n + 1 indicates the periodicity of the cosine or sine in the
respectively even or odd solution. The coefficients A2n(+1) and B2n(+1) follow from
recurrence relations involving b and k. The obtained functions all satisfy the following
orthogonality relation

1

π

∫ π

−π
Φe(o)
m (k; θ)Φe(o)

n (k; θ)dθ = δnm. (79)

Equation (74) has even solutions M e±
2n(+1) and odd solutions M o±

2n(+1). The expressions

for M e±
2n are [7]:

εmM
e+
2n (k, µ) =

∞∑
r=0

i2n(−1)r
A2n

2r (k)

A2n
2m(k)

(
H+
r+m(

k

2
eµ)Jr−m(

k

2
e−µ) +H+

r−m(
k

2
eµ)Jr+m(

k

2
e−µ)

)
,

M e−
2n (k, µ) =

∞∑
r=0

i2n(−1)r
A2n

2r (k)

A2n
2m(k)

(
H−r+m(

k

2
eµ)Jr−m(

k

2
e−µ) +H−r−m(

k

2
eµ)Jr+m(

k

2
e−µ)

)
,

where

εm =

{
2 if m = 0
1 if m 6= 0.

(80)

Here H±` (x) and J`(x) are Bessel functions of integer order. The solutions M e±
2n+1,

M o±
2n(+1) have similar forms. We will use these solutions to obtain the scattering

matrix S. The total wave function at large distances is given as the sum of a plane
wave and a scattered wave

Ψ = eik coshµ cos(θ−θi) + Ψscat. (81)

The plane incoming wave can be given in terms of the solutions Φm and Mm [3]

eik coshµ cos(θ−θi) =
√

8π
∞∑
n=0

{Φe
m (k; θi) Φe

m(k; θ)MJem(k;µ) + Φo
m (k; θi) Φo

m(k; θ)MJom(k;µ)} ,

(82)
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where

MJe(o)m (k;µ) =
M

e(o)+
m (k;µ) +M

e(o)−
m (k, µ)

2
. (83)

Since we are dealing with a second order differential equation, we will have two linearly
independent solutions which will be denoted as the even and odd solutions. The even
solution will be denoted as ψe and the odd solution as ψo. Using the expansion of
the Bessel functions for large arguments one can obtain

Ψe(o)(θ, µ) =
√

8π
∞∑
m=0

imΦe(o)
m (k; θi) Φe(o)

m (k; θ)MJe(o)m (k;µ)

+
√

2π
∞∑

m,m′=0

(
S
e(o)
mm′ − δmm′

)
im

′
Φ
e(o)
m′ (k; θi) Φ

e(o)
m′ (k; θ)M

e(o)+
m′ (k;µ).

(84)

Now we are in the position to obtain expressions for the scattering matrix. Imposing
the Dirichlet boundary condition gives us

0 =
√

8π
∞∑
m=0

imΦe(o)
m (k; θi) Φe(o)

m (k; θ)MJe(o)m (k;µ0)

+
√

2π
∞∑

m,m′=0

(
S
e(o)
mm′ − δmm′

)
im

′
Φ
e(o)
m′ (k; θi) Φ

e(o)
m′ (k; θ)M

e(o)+
m′ (k;µ0).

(85)

Multiplying by Φ
e(o)
` (k;µ0), integrating over θ and using the orthogonality property

gives m = m′ = ` and therefore

0 = 2MJ
e(o)
` (k;µ0) +

(
S
e(o)
`` − 1

)
M

e(o)+
` (k;µ0). (86)

Now we see that the scattering matrix is diagonal and is equal to

S
e(o)
mm′ = −δmm′

M
o(o)−
m (k;µ0)

M
e(o)+
m (k;µ0)

. (87)

Because S is diagonal, S − I is also diagonal. S − I has an eigenvalue equal to zero
if and only if one of its diagonals is equal to zero:

−M
e(o)−
m (k;µ0)

M
e(o)+
m (k;µ0)

− 1 = 0 for some m,m′ (88)

⇔MJm(k;µ0) = 0. (89)

So 1 is in the spectrum of S if and only if MJm(k;µ0) = 0. Actually, the quantization
condition for the elliptic billiard is that MJm(k;µ0) = 0, so we can conclude that E
is an eigenvalue for the billiard problem if and only if 1 is an eigenvalue of S.
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3.2 Exact Solution of the Vector Helmholtz Equation

In this section, we will see that the constraints placed on the separability of the vector
Helmholtz equation do not necessarily limit the separability of Maxwell’s equations.
If we use the expressions E(r, t) = E0(r)e

iωt and B(r, t) = B0(r)e
iωt, Maxwell’s

equations read

∇×H = iωε0E,

∇× E = −iωµ0H,
(90)

where, for readability we wrote E instead of E0(r), H instead of H0(r) and we used
B = µ0H. In prolate spheroidal coordinates, we saw that the vector Helmholtz
equation does not but the scalar Helmholtz equation does separate. However,
we will see that the set of equations given above allows separabilty under certain
transformations.

Prolate spheroidal coordinates are obtained by rotating the two dimensional elliptic
coordinates about the focal axis of the ellipse. Prolate spheroidal coordinates(ξ, η, φ)
and focal distance f are given by:

x = f
√

(ξ2 − 1) (1− η2) cosφ,

y = f
√

(ξ2 − 1) (1− η2) sinφ,

z = fξη,

ξ ∈ [1,∞), η ∈ [−1, 1], φ ∈ [0, 2π].

(91)

Surfaces of constant ξ are prolate spheroids and surfaces of constant η are hyperboloids
of revolutions. The scale factors are given by

hξ = f

(
ξ2 − η2

ξ2 − 1

)1/2

, hη = f

(
ξ2 − η2

1− η2

)1/2

, and hφ = f
[(
ξ2 − 1

) (
1− η2

)]1/2
.

(92)

Using the expression for the vector Laplacian in terms of scale facors gives

1

hηhφ

[
∂

∂η
(hφHφ)− ∂

∂φ
(hηHη)

]
îξ +

1

hφhξ

[
∂

∂φ
(hξHξ)−

∂

∂ξ
(hφHφ)

]
îη

+
1

hξhη

[
∂

∂ξ
(hηHη)−

∂

∂η
(hξHξ)

]
îφ = iωε0

(
îξEξ + îηEη + îφEφ

) (93)

and

1

hηhφ

[
∂

∂η
(hφEφ)− ∂

∂φ
(hηEη)

]
îξ +

1

hφhξ

[
∂

∂φ
(hξEξ)−

∂

∂ξ
(hφEφ)

]
îη

+
1

hξhn

[
∂

∂ξ
(hηEη)−

∂

∂η
(hξEξ)

]
îφ = −iωµ0

(
îξHξ + îηHη + îφHφ

)
,

(94)
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Figure 3: Prolate spheroidal coordinates with the coordinate surfaces given corre-
sponding to constant ξ, η and φ.

where îη is the unit vector in the η direction and so on. Now, if we let{
Eξ

Hξ

}
= hηhφ

{
Eξ
Hξ

}
,

{
Eη

Hη

}
= hξhφ

{
Eη
Hη

}
,

and

{
Eφ

Hφ

}
= hφ

{
Eφ
Hφ

}
,

(95)

then equating the vector components gives us the following six equations:

∂

∂η
Hφ −

∂

∂φ

(
hη
hξhψ

Hη

)
= iωε0Eξ, (96)

∂

∂φ

(
hξ
hηhφ

Hξ

)
− ∂

∂ξ
Hφ = iωε0Eη, (97)

∂

∂ξ

(
hη
hξhφ

Hη

)
− ∂

∂η

(
hξ
hηhφ

Hξ

)
= iωε0

hξhη
hφ

Eφ, (98)

∂

∂η
Eφ −

∂

∂φ

(
hη
hξhφ

Eη

)
= −iωµ0Hξ, (99)

∂

∂φ

(
hξ
hηhφ

Eξ

)
− ∂

∂ξ
Eφ = −iωµ0Hη, (100)
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∂

∂ξ

(
hη
hξhφ

Eη

)
− ∂

∂η

(
hξ
hηhφ

Eφ

)
= −iωµ0

hξhη
hφ

Hφ. (101)

Now we use equation (99),(100) and (101) to get expressions for Hξ, Hη, Hφ:

Hξ =
i

ωµ0

[
∂

∂η
Eφ −

∂

∂φ

(
hη
hξhφ

Eη

)]
, (102)

Hη =
i

ωµ0

[
∂

∂φ

(
hξ
hηhφ

Eξ

)
− ∂

∂ξ
Eφ

]
, (103)

Hφ =
i

ωµ0

hφ
hξhη

[
∂

∂ξ

(
hη
hξhφ

Eη

)
− ∂

∂η

(
hξ
hηhφ

Eφ

)]
. (104)

Adding equation (96) and equation (97), substituting Hξ, Hη, Hφ and using k20 =
ω2ε0µ0 gives

∂

∂η

hφ
hξhη

[
∂

∂ξ

(
hη
hξhφ

Eη

)
− ∂

∂η

(
hξ
hηhφ

Eφ

)]
− ∂

∂φ

(
hη
hξhψ

[
∂

∂φ

(
hξ
hηhφ

Eξ

)
− ∂

∂ξ
Eφ

])
+
∂

∂φ

(
hξ
hηhφ

[
∂

∂η
Eφ −

∂

∂φ

(
hη
hξhφ

Eη

)])
− ∂

∂ξ

hφ
hξhη

[
∂

∂ξ

(
hη
hξhφ

Eη

)
− ∂

∂η

(
hξ
hηhφ

Eφ

)]
=

k20(Eξ + Eη).

Using that hη
hξhφ

= M(η),
hξ
hηhφ

= N(ξ), we can take some terms out of the derivatives.

Furthermore, noting that

1

h2ξ
+

1

h2η
=

1

f 2
, and

∂

∂η

[
1

h2η

]
=

∂

∂η

[
1

h2ξ

]
, (105)

one can obtain

1

h2ξ

(
∂2F

∂ξ2

)
+

1

h2η

(
∂2F

∂η2

)
+

1

h2φ

(
∂2F

∂φ2

)
+

[
∂

∂ξ

(
1

h2ξ

)
+

∂

∂η

(
1

h2η

)][
∂F

∂ξ
+
∂F

∂η

]
+k20F = 0,

(106)

where F = Eξ + Eη. In a similar manner, one can obtain for G = Eξ − Eη
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1

h2ξ

(
∂2G

∂ξ2

)
+

1

h2η

(
∂2G

∂η2

)
+

1

h2φ

(
∂2G

∂φ2

)
+

[
∂

∂ξ

(
1

h2ξ

)
− ∂

∂η

(
1

h2η

)][
∂G

∂ξ
− ∂G

∂η

]
+k20G = 0.

(107)

Now as ansatz for F and G we take F = (ξ − η)K(ξ, η, φ) and G = (ξ + η)L(ξ, η, φ).
This gives

1

h2ξ

(
∂2F

∂ξ2

)
=

1

f 2

ξ2 − 1

ξ2 − η2

(
2(1− η)∂K

∂ξ
+ (ξ − µ)

∂2K

∂ξ2

)
, (108)

1

h2η

(
∂2F

∂η2

)
=

1

f 2

1− η2

ξ2 − η2

(
2(ξ − 1)K + (ξ − η)

∂2K

∂η2

)
, (109)

1

h2φ

(
∂2F

∂φ2

)
=

1

f 2

1

(ξ2 − 1)(1− η2)
(ξ − η)

∂2K

∂φ2
. (110)

Substituting these expressions in equation (106) and equation (107) gives us the same
partial differential equation for K and L(

ξ2 − 1
) ∂2K
∂ξ2

+
(
1− η2

) ∂2K
∂η2

+
ξ2 − η2

(ξ2 − 1) (1− η2)
∂2K

∂φ2
+ (111)

2ξ
∂K

∂ξ
− 2η

∂K

∂η
+ k2of

2
(
ξ2 − η2

)
K = 0. (112)

The equation for L is identical but with K replaced by L. Now if we use the ansatz

K = (ξ2 − 1)
m/2

U(ξ) (1− η2)m/2 V (η)ψ(φ), we see that equation (111) separates into
3 coupled ordinary differential equations:

d2ψ

dφ2
+m2ψ = 0, (113)

(
ξ2 − 1

) d2U
dξ2

+ 2ξ(m+ 1)
dU

dξ
−
(
b− k2of 2ξ2

)
U = 0, (114)

(
1− η2

) d2V
dη2
− 2η(m+ 1)

dV

dη
+
(
b− k20f 2η2

)
V = 0. (115)

The equation for L separates in the exact same manner. So we see that using a couple
of suitable transformations, Maxwell’s equations in prolate spheroidal coordinates do
separate. One can compute the exact solutions of the vector Helmholtz once it has
separated. For example, one can solve (113), (114) and (115) individually and do
reverse transformations. Then, one has to satisfy the periodicity condition, make
the solution regular, impose boundary conditions and add the time factor eiωt to
obtain expressions for E = (Eξ, Eη, Eφ)eiωt and H = (Hξ, Hη, Hφ)eiωt [8]. Maxwell’s
equations and the vector Helmholtz equation are closely related, but the separability
conditions for Maxwell’s equations are not the same as those for the vector Helmholtz
equation.
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3.2.1 Lightning Inception by Ice Particles

For a physical problem, we can find a suitable coordinate system and write down the
equations in this coordinate system. If the equations separate, we may find exact
solutions for the problem and give accurate results for the physical problem. An
example of this is found in lightning research. In lightning research, one of the main
points of focus is to find out how lightning is originated. Observations of lightning
show that theoretically the electric field in thunderclouds is too small for lightning
to kick-off. The presence of ice particles in this electric field might be the solution to
this problem.

A so called hydrometeor in a background electric field can enhance this electric field
due to its high dielectric permittivity. These airborne particles, at an altitude of
about 5.5 kilometer, can for example be droplets, snowflakes, graupel or hail. The
enhanced electric field can accelerate electrons and the accelerated electrons strike air
molecules and knock off electrons and other particles. These knocked off secondaries
strike more air molecules, creating a chain reaction and an ionized path in space.
This mechanism is believed to be one of the candidates for lightning inception.

Hydrometeors can come in lots of shapes, but their shape in the direction perpen-
dicular to the background electric field does not contribute much to the enhanced
electric field. However, the shape of the tip parallel to the background electric field
is what is believed to determine the enhanced electric field strength. Therefore we
consider a tip as a prolate ellipsoid of revolution with length ` and radius of curvature
R. For a prolate ellipsoid, the enhanced electric field can be calculated exactly [9].
This field depends on the size of the hydrometeor, and therefore we can calculate the
size needed to accelerate electrons fast enough to initiate lightning [10].
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3.3 Invisibility Devices

The Helmholtz equation is encountered in optics where it can be used to describe
the trajectory of light rays. We will now globally give the methodology that can be
used to create invisibility devices. These devices are obtained by creating a refractive
index profile that can bend light around regions of space, making it invisible within
the accuracy of geometrical optics.

In the regime of geometrical optics, light propagation can be described by light rays.
Light rays behave according to Fermat’s principle, which states that light follows the
shortest optical path in a medium. The optical path length is given as an integral over
the refractive index n, and therefore light can be bend in media by manipulating the
refractive index profile. We will consider a two-dimensional situation with refractive
index profile given by n = n(x, y).

Consider a dielectric medium that is uniform in one direction and light of wavenumber
k that propagates orthogonal to that direction. Both amplitudes ψ of the polarizations
satisfy the two-dimensional Helmholtz equation with constant n2k2:(

∂2

∂x2
+

∂2

∂y2
+ n2k2

)
ψ = 0. (116)

To describe the behaviour of light we will use complex numbers z = x + iy with its
conjugate z = x− iy. The partial derivatives are ∂

∂x
= ∂

∂z
+ ∂

∂z
and ∂

∂y
= i
(
∂
∂z
− ∂

∂z

)
.

In these coordinates equation (116) becomes(
4
∂

∂z

∂

∂z
+ n2k2

)
ψ = 0. (117)

Now suppose that we introduce an analytic function w(z) that is independent of z.
This function is a conformal map, so it preserves angles. In w space with refractive
index n′ the Helmholtz equation becomes(

4
∂

∂w

∂

∂w
+ n′2k2

)
ψ = 0. (118)

It is not difficult to see that ∂
∂z

∂
∂z

=
∣∣dw
dz

∣∣2 ∂
∂w

∂
∂w

, so by equation (117) and
equation (118) we can find the relation between n and n′:

n = n′
∣∣∣∣dwdz

∣∣∣∣ . (119)

Now as an example, we take the refractive index profile to be n(x, y) =
∣∣∣1− a2

z2

∣∣∣,
where a is a constant. If we then define the analytic map w to be
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Figure 4: The rays in physical space are mapped to straight lines in w space. The
exterior of a circle is mapped to the upper Riemann sheet, the interior is mapped to
the lower Riemann sheet and the boundary of the circle is represented as a branch
cut in w space. (Figure taken from [11])

w = z +
a2

z
, which implies

z =
1

2

(
w ±
√
w2 − 4a2

)
. (120)

We see that
∣∣dw
dz

∣∣ =
∣∣∣1− a2

z2

∣∣∣, and by equation (119) we see that n′ = 1, which implies

that the light rays are mapped to straight lines in w space. The map w maps to two
Riemann sheets [11] , which is illustrated in figure 4.

Now, we will give a method to make a region of the circle with radius a inpenetrable
for light rays. The green and blue lines in figure 4 do not enter the circle, so we only
need to consider lines such as the red one. In w space, these lines are the ones that
go from the exterior sheet to the interior sheet. This is possible because the lines go
through the branch cut between the two branch points −2a and 2a.

Inside the circle of radius a, we will impose a new refractive index profile. This is done
to guide the lines back through the branch cut to the exterior sheet. Therefore we
require a closed trajectory in w space such that the lines return to the same location
and in the same direction. This is realized by either a so called Harmonic oscillator
profile or a Kepler profile, respectively given by

n′2 = 1− |w − w1|2

r20
or n′2 =

r0
|w − w1|

− 1. (121)

Now, in both cases r0 defines a circle on the interior w sheet in which lines cannot
enter. This means that light rays in physical space are not able to access this region.
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So, using a conformal map w which is related to the refractive index profile through
its derivative, we were able to ”steer” light through a medium. This can also be done
for other maps w, as well, as for other types of waves. However, one should keep in
mind the conditions for optical geometry as well as the imperfections in the refractive
index profile for the medium.
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4 Conclusion

In this thesis, literature regarding the separability and application of the Helmholtz
equation has been reviewed. The Helmholtz equation appears frequently when solving
problems in physics involving waves. Depending on the problem, a suitable coordinate
system can be chosen. The Helmholtz equation has a different form for each
coordinate system. Using scale factors, one can give conditions on the separability
of the Helmholtz equation. In Euclidean 3-space the scalar Helmholtz equation
separates in 11 coordinate systems and the vector Helmholtz equation separates only
in rectangular coordinates.

The separability of the Helmholtz equation allows us to find exact solutions to
problems. Using the exact solutions of the scalar Helmholtz equation in 2 dimensions
we can solve the Schrödinger equation for elliptic quantum billiards. It can be shown
that Maxwell’s equations and the vector Helmholtz equation in Euclidean 3-space
have similarities, but that the separability conditions are not the same. Finally,
using the separability of the scalar Helmholtz equation with complex variables we
can construct a refractive index profile such that a design for invisibility devices can
be made.
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