faculty of science
and engineering

university of
groningen

SYNDROME DETECTION USING KINSHIP VERIFICATION

Bachelor’s Project Thesis

Arianne Meijer - van de Griend
Supervisors: Marco Wiering, Jayne Hehir-Kwa & Hamdi Dibeklioglu

Abstract: Neural developmental disorders are often associated with dysphomic facial features.
Currently, dysmorphic features are diagnosed by clinicians observing patients. Computer image
analysis can be use to automatically identify these features, but that requires a large dataset
for training. This paper investigates the use of a kinship verification classifier to automatically
diagnose a rare neural developmental disorder called Koolen-de Vries Syndrome (KdVS). Since
it is not possible to build a large enough dataset, this is done using type II errors as a basis for
syndrome detection.

First, the UB KinFace dataset was split into different train and test sets such that these subsets
contained different properties and can be used as train and test set interchangeably. Then, several
SVM classifiers were trained on these constructed subsets and evaluated on three tasks: kinship
verification, identification and syndrome detection. The tasks were separated into a genderless
and gender-specific version.

Unfortunately, no conclusions can be drawn on the applicability of this approach due to short-
comings in the KdVS dataset. We did obtained evidence of a problem with the UB KinFace
dataset. There exists a possibility that the dataset contains father-child pairs where the father
is not the biological father of the child. This unreliable labeling can be the cause of poor perfor-

mance on the kinship verification task.

In the future computer image processing may be able to aid the diagnosis of patients, however
significant technical limitations need to be overcome.

1 Introduction

In clinical genetics, clinicians need expert knowl-
edge for correct diagnosis. However, it is impracti-
cal, if not impossible, for every clinician to be an
expert on every rare syndrome. Thus, it is desir-
able to design an algorithm that can help clinicians
diagnose rare cases of neural developmental disor-
ders.

In this study, an approach is proposed for the
automatic diagnosis of a rare syndrome called
Koolen - de Vries Syndrome (KdVS). KdVS is a
genetic disorder characterized by moderate intel-
lectual disability and characteristic facial dimor-
phism, among other symptoms (Koolen, Pfundt,
Linda, Beunders, Veenstra-Knol, Conta, Fortuna,
Gillessen-Kaesbach, Dugan, Halbach, et al.| |2016]).
In general, the parents of someone with KdVS do
not have the syndrome (Koolen et all [2016), this is
called a de novo mutation. KAVS belongs to a set
of neural developmental disorders whereby the pa-
tients normal development is severely affected, both

neurological and physical. Other, more frequently
occurring examples include Down Syndrome.

Since KdVS is a rare syndrome, it is not possible
to create a large enough dataset that is suitable for
training a classifier directly. Instead, it is proposed
to use kinship verification to indicate a suspicion of
neural developmental disorders. This could then be
used by clinicians as a basis for testing someone for
KdVS.

This approach is possible because neural devel-
opmental disorders are characterized by abnormal
brain development. It is possible to detect this us-
ing facial analysis, because the development of the
brain of a fetus is linked to the development of
its head and face (Aldridge, George, Cole, Austin,
Takahashi, Duan, and Miles| [2011; [Ferry, Stein-
berg, Webber, FitzPatrick, Ponting, Zisserman,
and Nellaker] [2014} |Obafemi-Ajayi, Miles, Taka-
hashi, Qi, Aldridge, Zhang, Xin, He, and Duan),
2015). Thus, kinship verification can be used to
identify facial dimorphism by looking at false neg-
atives (type II errors). In other words, if a true

parent-child pair is misclassified, it might indicate
that the child has some unexpected facial features
that could be caused by a neural developmental
disorder.

However, it remains the question if it is even pos-
sible to use this approach. The aim of this study is
to research the possibility of using kinship verifica-
tion for this detection task and to identify what its
limitations are.

This is done by training a simple classifier for
kinship verification first. Then, it is tested on a
KdVS dataset. The pictures were preprocessed and
transformed into feature vectors using Local Binary
Patterns (LBP) (He and Wang, [1990) and then
classified using a Support Vector Machine (SVM)
(Cortes and Vapnik, [1995). Additional test sets are
constructed to test whether the classifier can gen-
eralize and to identify whether it is good enough to
transfer its decision model to a different domain.

It should be noted that this method of automatic
syndrome detection for diagnosis is aimed to be a
tool to aid clinicians in conjunction with existing
molecular genetic tests. A lot more factors play a
role in diagnosis than our classifier takes into ac-
count. Only trained professionals who are aware of
the nuances of clinical diagnosis should use it.

2 Related Work

Our approach to syndrome detection lends from
previous work in syndrome classification and kin-
ship verification.

2.1 Syndrome classification

This is not the first investigation of the use of arti-
ficial intelligence in clinical diagnosis. |Zhu, Shang,
Shao, and Guo| (2017) used a Deep Convolutional
Neural Network (DCNN) to detect depression in
video data. |Obafemi-Ajayi et al.| (2015)) identified
clusters of facial features that correlate to the
symptoms of Autistic Spectrum Disorder (ASD)
and built classifiers to test their distinctiveness.
Ferry et al.| (2014)) built a system that could di-
agnose eight different developmental disorders.
Although these few examples show that auto-
matic diagnosis is feasible, they had access to a
substantial amount of data. The novelty in the pro-
posed approach lies in that it does not need any

syndrome-specific data to train on.

2.2 Kinship verification

Kinship verification was first introduced by |Fang,
Tang, Snavely, and Chen| (2010). They used differ-
ent facial and textural features and used a k- Nearest
Neighbors (kNN) and an SVM as classifier to get
a 70.67% and 68.60% accuracy, respectively, on a
handmade dataset.

Afterwards, many more algorithms have been
proposed that increased performance, aided by
the competition for kinship verification in 2014
(Lu, Hu, Zhou, Zhou, Castrillén-Santana, Lorenzo-
Navarro, Kou, Shang, Bottino, and Vieiral [2014a)).
Several benchmark datasets were created to allow
better comparison between the different techniques,
some of these datasets will be discussed in section
Unfortunately, all these new techniques adhere to
the specific nature of kinship verification data and
are not used in other domains. A selection of them
will be named here briefly, but the reader is referred
to the original papers for a detailed description.

The approaches to kinship verification can be
summarized in three categories; improved feature
selection, improved learning algorithms and im-
proved use of data.

Feature selection was improved by (Alirezazadeh,
Fathi, and Abdali-Mohammadi) [2018) with an al-
gorithm called Kinship Feature Selection (KinFS)
that specifically selects facial features relevant
for kinship verification. Similarly, [Zhou, Hu, Lu,
Shang, and Guan| (2011 and |Zhou, Lu, Hu, and
Shang (2012) created Software Product Line En-
gineering (SPLE) and Gabor-based Gradient Ori-
entation Pyramid (GGOP) features, respectively.
SPLE and GGOP had a human-like accuracy of
67.72% and 69.75% with an SVM on an in-house
kinship verification dataset.

The learning algorithms can be grouped into
three approaches: metric learning, strategy learn-
ing and similarity learning.

Metric learning algorithms focus on learning a
measurement that describes the kinship relation.
These algorithms include Neighborhood Repulsed
Metric Learning (NRML), Multiview NRML (MN-
RML) (Lu, Zhou, Tan, Shang, and Zhoul [2014b)),
Discriminative Deep Metric Learning (DDML)
and Discriminative Deep Multi-Metric Learning

(DDMML) (Lu, Hu, and Tanl [2017)).

Strategy learning focuses on finding the right
strategy of classifying kinship. An example of this
is Online Strateqy Learning with Average strategy
(OSL-A) (Xu and Shang), 2016)).

Similarity learning is similar to metric learn-
ing, but it does not find an explicit metric. In-
stead, the algorithms learn the metric implicitly.
This approach has been used in Ensemble Similar-
ity Learning (ESL) (Zhou, Shang, Yan, and Guo,
2016) and Self-Similarity Representation of Weber
faces (SSRW) (Kohli, Singh, and Vatsal [2012).

The usage of data in kinship verification can also
increase its performance. By using supplementary
data, it is possible to leverage the specific dynamics
of kinship features.

Xia, Shao, and Fu| (2011)) leveraged the dynamic
that children often have similar facial features as
the parents when they were young. The UB Kin-
Face dataset was specifically created with pictures
of the parents when they were young and old. This
allows the use of transfer learning to account for the
age gap between parent and child and improve clas-
sification accuracy up to 60.0% (Xia et al.| 2011)).
This is better than the reported human accuracy of
53.7% and 56.0% on the same dataset (Shao, Xia,
and Fu, 2011]).

Dibeklioglu, Salah, and Gevers| (2013)) had the
insight that family members seem to have simi-
lar smiles and smile dynamics. They used videos
of smiles for kinship verification. In a later study,
they went beyond kinship verification and created
a generator that could generate the smile of the po-
tential offspring of someone (Ertugrul and Dibekli-
oglu), 2017]).

Although these methods are not directly used in
our approach, which is described in section [} they
do form its basis and they can be applied to it. The
latter will be discussed in section [

3 Data

Data is not only necessary for training any classi-
fier, it usually constrains the classifier as well. This
is because a classifier can only learn patterns that
are present in the data it is trained on. Thus, it may
learn undesired patterns that are in the dataset
and it cannot learn desired patterns that are ab-
sent from the dataset. Hence, this section will not
only explain why the UB KinFace dataset was cho-

sen and give a description of the Koolen-de Vries
(KdVS) dataset that is used for syndrome detec-
tion, it will also discuss the effects of the datasets
on the expected performance of the classifiers.

Several kinship verification datasets have been
developed for benchmarking. However, most of the
datasets are created by cropping faces out of fam-
ily pictures. This introduces an extreme bias into
the datasets, as is discussed by [Lépez, Boutellaa,
and Hadid| (2016). These biased datasets are not
suitable for transfer learning. Thus our choice of
dataset was restricted to only 3 options: the UB
KinFace dataset, the Familyl01 dataset and the
Smile DB. The latter only consists of videos and is
therefore unsuitable. Since the Family101 dataset is
smaller than the UB KinFace dataset, it was chosen
to use the UB KinFace dataset.

3.1 UB KinFace dataset

The UB KinFace dataset consists of 200 positive
parent-child pairs and is created by searching with
Google image search for pictures of public figures
(Xia et al., |2011} Xia, Shao, Luo, and Fu, 2012).
The parents have two pictures: one when they were
young and one when they were older. This means
that the dataset contains both gray-scale and color
images. The children have one picture each. This
creates a dataset with 600 images in total. Each
image has a resolution of 127x100 pixels and is an-
notated with the locations of the eyes, nose and
mouth. The dataset was manually extended with
gender annotations that can be found in appendix
[C] and on GitHulf for further use. Unfortunately,
several biases exist in this dataset. Aside from the
selection bias introduced by searching for celebri-
ties on Google, the dataset is skewed towards Asian
father-child pairs. Half of the parent-child pairs are
of Asian descent and mothers are underrepresented.
The latter can be seen in table [3.1al that shows the
gender distribution of the UB KinFace dataset.

3.2 UB KinFace split

Usually, a dataset consists of a train and a test
set with positive and negative examples. However,
the UB KinFace dataset does not contain a pre-
defined train-test split nor any predefined negative

*https://github.com/Aerylia/UBKinFaceGender

https://github.com/Aerylia/UBKinFaceGender
https://github.com/Aerylia/UBKinFaceGender

Table 3.1: Distribution of genders in the orig-
nal UB KinFace (a) (before creation of negative
pairs) and KdVS (b)) datasets.

(a) Ub KinFace dataset

UB KinFace | Son | Daughter || Total
Father 93 7 170
Mother 12 18 30
Total | 105 | 95 Il 200
(b) KdVS dataset
KdVS | Son | Daughter || Total
Father | 4 4 8
Mother | 15 13 28
Total |19 |17 | 36

instances; this had to be created manually. It was
also necessary to define the use of the old or young
images for the parents, because they could each be
used. This situation has been leveraged by defining
several datasets that can be used interchangeably.
This allowed the classifiers to be tested on their
generalizability.

First, the train-test split was defined in an ab-
stract way. The participants (parent-child pairs) in
the dataset were randomly split into a train and
test set. This is done before the creation of the neg-
ative pairs to remove the possibility of information
bleed between the sets. The split ratio is 80% train
data and 20% test data.

Then, each parent-child pair is assigned a
negative parent-child pair, creating the positive-
negative pairs. They can be used to define the nega-
tive instances for kinship verification, but also allow
the creation of negative instances for other tasks
(e.g. using both parent images for identification).
The positive-negative pairs are created by assign-
ing each parent-child pair another parent-child pair
in their respective train or test set using a random
permutation. The permutation is adjusted to re-
move any positive pairs. The positive and negative
pairs of the train and test set, respectively, are con-
catenated and shuffled. The train and test sets can
be recreated using the instructions in appendix
The resulting dataset sizes can be seen in table [3.2]

Using the predefined train-test split and the pre-
defined positive-negative pairs, the UB KinFace
dataset is split into 4 different datasets: old-child,

Table 3.2: Number of parent-child pairs in the
train and test sets for each gender group of the
UB KinFace dataset after creation of negative
pairs.

Train/Test split | Train | Test || Total
Father - son 145 30 175
Father - daughter | 125 36 161
Mother - son 23 8 31
Mother - daughter | 27 33
Total \ 320 \ 80 H 400

young-child, any-child and old-young. The old-child
and young-child datasets are created by combining
the old, respectively young, parent images and the
child images. The any-child dataset is the concate-
nation of the old-child and young-child datasets.
The old-young dataset is created by combining the
old parent images with the young parent images.
The old-young dataset cannot be used for kinship
verification and therefore its train set is not used.
Negative instances of these datasets are created
by combining the parent images with correspond-
ing negative images from the respective positive-
negative pair. The creation process of the different
train and test sets is shown schematically in figure

51

3.3 KdVS dataset

For syndrome classification, a dataset of images
was collected by the Human Genetics Department
of the RadboudUMC. The pictures in the dataset
were taken at a conference for parents of children
with KdVS. The gender distribution of the parent-
child pairs is shown in table [3:I5] All pictures are
of caucasians and taken under the same conditions.
Due to the nature of the conference, most subjects
wore the same t-shirt. All children in the dataset
have been diagnosed with KdVS and a paternity
test was performed to ensure soundness of the data.

The choice of the UB KinFace dataset for kinship
verification and the KdVS dataset for syndrome de-
tection has a significant effect on the results. This
will be discussed in section [7} Suggestions for im-
provement to the construction process of the KdVS
dataset are given in section @

B _l old
images
Images ——“ Young
g images
L
@
.\Q(g Train
,\{b parent-child Child
pairs +|l images
UB KinFace -
—_II old
)é’s(images
‘?@(‘ | —I Young
mages !
images
Test .
parent-child —l _Ch'ld
pairs C+ images
Legend:

1a: any-child train set
1b: any-child test set
2a: old-child train set
2b: old-child test set
3a: young-child train set
3b:young-child test set
4b: old-young test set

combine

®

combine

hild

o

random
est
- child

parent of
random
_[test chil

o

Bl)|l

I>40 >0 >0 ><o! o >0 S«

Figure 3.1: A visualization of how the different train and test sets are created from the UB KinFace
dataset. The parent-child pairs are split into a train and test set with their corresponding old
parent images (O4), young parent images (Y+) and child images (C.). Negative pairs are created
by assigning each parent-child pair a fixed random parent-child pair (O_, Y_, C_). The images are
paired to create the old-child train (2¢) and test (2b) set, the young-child train (3a) and test (3b)

set, and the any-child train (1a) and test (1b) set.

The positive pairs in the old-young test set (4b)

are created by pairing the old image of each parent to its young image. The negative pairs are
created by coupling the old images with the young image of the assigned random parent.

4 Methods

A key component in this research is that the ap-
proach needs to be able to perform well with little
training data. Even the existing kinship verification
datasets are too small to properly train a neural
network. The use of a state-of-the-art algorithm for
our kinship verifier would be premature optimiza-
tion, because it is not clear if the transfer learning
approach could work. Instead, a proof-of-concept
is created using a simple algorithm that can be ex-
tended in future research once its effectiveness is
determined.

4.1 Preprocessing

The kinship classifier needs the input images to be
comparable. This is done by preprocessing the im-
ages first. The faces on the images are made to be
equal size by normalizing the images on eye dis-
tance and rotating them such that the eyes are
aligned horizontally. Then, the images are cropped
to have the same size. Lastly, all color images are
converted to gray-scale to make the color space uni-
form across all images.

4.2 Feature selection

The pictures are transformed into a feature vec-
tor using a technique called Local Binary Patterns
(LBP) (He and Wang} |1990). LBP can describe the
texture of a face (Ahonen, Hadid, and Pietikainen),
2006) and has been used in other kinship verifica-
tion algorithms for obtaining features (Fang et al.)
2010; [Lu et al., |2014b; [Zhou et al., |2016; [Lu et al.,
2017, among others), as well as for a baseline for
comparison (Zhou et al.l 2011} 2012, among oth-
ers).

LBP uses the difference of pixel intensity in the
(e.g. 3x3) neighborhood of each pixel to encode the
local texture in an image into a pattern. These pat-
terns are then grouped per block of n by m pixels
to create a histogram of their occurrences. Each
histogram is represented in a feature vector. These
feature vectors are then concatenated to create a
single feature vector (Ahonen et al., 2006).

LBP, in its pure form, will create a very sparse
feature vector, because the amount of different pat-
terns is 28 = 256 and the blocks generally do not
have that many pixels. To solve this, two exten-
sions to LBP have been proposed: rotation invari-
ant and uniform patterns (Ojala, Pietikainen, and
Maenpaal, 2002]).

Rotation invariant (ri) patterns are patterns that
stay the same regardless of rotation. This means
that the original local binary patterns are grouped
in the histogram when they would be the same if
a different neighborhood pixel was chosen to start
with. Rotation invariance reduces the number of
histogram bins to 36.

Uniform patterns (u2) are defined to be pat-
terns with at most 2 transitions from 0 to 1 and
vice versa. The histogram is created with a bin for
each unique uniform pattern and a bin for all non-
uniform patterns, that is 58 4 1 = 59 bins in total.

The two extensions can also be combined (riu2)
by creating a histogram with bins for each rotation
invariant uniform pattern and a bin for the remain-
ing patterns. This reduces the histogram to a mere
10 bins.

A parent-child pair is a combination of the fea-
ture vectors of the parent image and the child im-
age. The features vectors can be combined by con-
catenating them or by calculating their difference.
Using the difference of feature vectors should im-
prove performance as the classifier would not need

to learn the 1:1 correspondence between the fea-
tures in the vectors. However, if kinship is not de-
scribed by the difference between the same features,
the classifier would perform better when concate-
nating the feature vectors, as it could find new fea-
ture relations.

If the resulting feature vector dimension is larger
than 200, it is reduced using Principal Component
Analysis (PCA) to a 200 dimensional feature vec-
tor.

It was empirically chosen to use 8x8 blocks, the
rotation invariant LBP patterns and the difference
of feature vectors using a 3-fold cross validated grid
search. This results in a feature vector with a di-
mension of 8%8x36 = 2304, which is reduced to 200
with PCA. The results on which these decisions are
based can be found in appendix [A]

4.3 Classifier

The obtained feature vectors are classified using
a set of Support Vector Machines (SVM), which
have been shown to perform well on kinship ver-
ification (Yan, Lu, Deng, and Zhou, [2014). The
SVM uses a Radial Basis Function (RBF) kernel,
since the difference of kin versus non-kin relations
in the face is most likely non-linear. The 'C’ and
v’ hyper parameters of the SVMs are chosen us-
ing a 3-fold cross validated grid search over the sets
[10¢]i € [-10,...,3]] for C and [10%]i € [-10,...,3]]
for «. The results can be found in appendix [A] The
parameters were picked based on the highest aver-
age performance of the five classifiers.

This approach has similarities with the first kin-
ship verification work (Fang et al.| |2010) and the
approach of one of the participants of the kin-
ship verification competition (KVW14) (Lu et al.l
2014a).

5 Experiments

In order to make any conclusions about the per-
formance of the kinship verification classifiers and
their usefulness for syndrome detection with the
proposed method, several experiments have been
carried out.

All classifiers in the experiments have the struc-
ture as described in section 4} They were trained

using the different UB KinFace sub-datasets as de-
tailed in section [

Due to the nature of the construction of these
sets, they can be used interchangeably for training
and testing without the risk of information bleed or
selection bias. This allows an investigation of the
classifiers that goes beyond the accuracy on a held-
out validation set through different experiments.

These experiments can be separated into 3 dis-
tinct tasks: kinship verification, identification and
syndrome detection. Where each task can be per-
formed with gender information (gender-specific) or
without gender information (genderless).

Separate classifiers were trained on the any-child,
old-child and young-child subsets of the UB Kin-
Face dataset, as explained in section [3| These clas-
sifiers are called the any-child classifiers, old-child
classifiers and young-child classifiers, respectively,
for ease.

For each (sub)dataset, 5 SVMs are trained, one
SVM for the genderless kinship verification task
(parent-child) and four SVMs for each gender spe-
cific task (father-son (f-s), father-daughter (f-d),
mother-son (m-s), mother-daughter (m-d)). This
separation of gender is made with the idea that
fathers and sons look alike in a different way than
fathers and daughters, etcetera. To generalize over
this difference, a lot of training data is needed.

5.1 Kinship verification task

The goal of this research is to use kinship verifica-
tion for syndrome detection. To do this, it is nec-
essary that the used kinship verifier has a high ac-
curacy. This measure is obtained by testing each
trained classifier on their respective test set.

It is also possible to investigate if the classifiers
generalize well to a slightly different dataset due
to the method of construction of the different train
sets. This means that the old-child classifiers can
be tested on the young-child data, and vice versa,
to see if they can generalize of age.

Similarly, a sanity-check can be performed by
testing the any-child classifiers on the old-child and
young-child data. The average performance on the
old-child and and young-child data should be equal
to the performance on the any-child data, since it
is the same data.

5.2 Identification task

Another way of using the UB KinFace dataset is
to use the kinship verifier to do facial identification
of the parents. A kinship verifier should be able to
match facial features of the parent to those of the
child. Because these facial features are genetically
caused, it should also be able to match these fea-
tures of a parent to those of a younger version of
the parent.

It may be possible that a kinship verifier finds
a different pattern to distinguish the parent and
child. Although this can still be a good classifier
for kinship verification, this classifier would not be
suitable for syndrome detection using our transfer
learning approach.

The performance of the classifiers on the identi-
fication task is investigated by testing them on the
old-young dataset.

5.3 Syndrome detection task

Traditionally, transfer learning is done by contin-
ued training of the classifier with a new dataset.
However, this technique is not suitable for SVMs.
Instead, the trained kinship verification classifiers
are used directly for the syndrome detection task.

The ability of the classifiers to perform this
task is investigated by testing them on the KdVS
dataset. To this end, the used annotation for each
KdVS parent-child pair is the ground truth: True.
The goal of this experiment is that the classifiers
have a low accuracy.

6 Results

This section discusses the performance of the dif-
ferent classifiers on the different tasks in relation to
each other.

6.1 Kinship verification results

The results are shown in table At first glance,
the classifiers do not have a state-of-the-art accu-
racy on the kinship verification task. However, most
of them do seem to perform slightly better than
chance.

All genderless classifiers were unable to distin-
guish the kinship relation. Although their perfor-
mance is the same, the any-child classifier (see ta-

Table 6.1: Accuracy of the classifiers trained on
the any-child @, old-child (]ED and young-child
train sets, respectively.

(a) any-child classifiers

Test set ‘ all H f-s f-d m-s m-d ‘ mean
any-child | 0.5000 || 0.5333 0.5278 0.6250 1.0000 | 0.6715
old-child 0.5000 || 0.5333 0.5278 0.6250 1.0000 | 0.7028
young-child | 0.5000 || 0.5333 0.5278 0.6250 1.0000 | 0.6403
old-young 0.5000 || 0.5593 1.0000 0.5714 0.8571 | 0.7470
KdVSs 0.0000 || 1.0000 0.0000 0.2500 0.6154 | 0.4664
(b) old-child classifiers
Test set ‘ all H f-s f-d m-s m-d ‘ mean
old-child 0.5000 || 0.5333 0.5278 0.6250 0.6667 | 0.5882
young-child | 0.5000 || 0.5333 0.5278 0.6250 0.6667 | 0.5882
old-young 0.5000 || 0.5593 1.0000 1.0000 1.0000 | 0.8898
KdVSs 1.0000 || 1.0000 0.0000 0.0000 1.0000 | 0.5000
(¢) young-child classifiers
test set ‘ all H f-s f-d m-s m-d ‘ mean
young-child | 0.5000 || 0.5333 0.5278 0.6250 0.6667 | 0.5882
old-child 0.5000 || 0.5333 0.5278 0.6250 0.6667 | 0.5882
old-young 0.5000 || 0.5593 1.0000 1.0000 1.0000 | 0.8898
KdVs 1.0000 || 1.0000 0.0000 0.0000 1.0000 | 0.5000

ble found a different relation than the other
classifiers (table and since its accuracy
on the KdVS data is different.

The average of the any-child classifier on the old-
child and young-child test sets is indeed the average
of its performance on the any-child test set, as ex-
pected.

The average accuracy of the gender-specific clas-
sifiers, regardless of training set (column mean in
the tables of table , is better than the accuracy
of the respective genderless classifiers on kinship
verification. This confirms that the assumption that
the facial features that indicate kinship are different
depending on gender. Similarly, the gender-specific
classifiers perform better if the child has the same
gender as the parent (f-s, m-d) compared to having
the opposite gender (f-d and m-s, respectively).

Noticeably, most gender-specific classifiers per-
form the same on the test sets, respectively, as can
be seen in the tables of table [6.1] This may be
caused by the small size of their respective train
and test sets. However, he confusion matrices of all
classifiers, in appendix show that all classifiers
learned to map all image pairs to either True or
False, except for the m-s and m-d any-child classi-
fiers. This is peculiar since mothers are underrepre-

sented in the data, thus these classifiers are trained
on very little data. A possible explanation of these
results will be discussed in section [Tl

The generalizability of the classifiers on kinship
verification can also be seen in tables [6.10 and
The accuracy of the old-child classifiers on the
young-child test set does not drop in accuracy and
vice versa. This would have implied that the classi-
fiers are able to generalize over age, if the classifiers
had learned a pattern.

6.2 Identification results

On the identification task, the lower accuracy shows
that none of the genderless classifiers generalize well
over age. Since this task is very similar to the kin-
ship verification task, it may imply that the gen-
derless classifiers perform at chance level. This is
visible from the results on the old-young test set in
each table in table [6.1]

Since the confusion matrices in appendix [B]show
that most classifiers map all images pairs to only
one of the two classes, only the results of the any-
child m-s and m-d classifiers is discussed.

Although the performance of the classifiers on
the identification task drops with respect to the
kinship verification task, the accuracy is still above
chance level. Their confusion matrices can also be
found in appendix [B] in table This shows that
the classifiers that were able to do kinship verifi-
cation, were also able to generalize over age. Note
that this may be due to the presence of both the
young and old parent images in the training data.

6.3 Syndrome detection results

On the KdVS data, the two any-child m-d and m-
s classifiers have a worse accuracy on the KdVS
dataset than the different kinship verification sets.
As can be seen in the results on the KdVS dataset
for each classifier (table [6.1a)). This is desired, be-
cause it is desired that the classifiers have a lower
accuracy. The performance of the m-s classifier is
even better than on the kinship data (1 — 0.25 =
0.75). This does not hold for the m-d classifier
(1 —0.6154 = 0.3846). The confusion matrices can
be found in appendix [B] as well, in table [B.7]

This may imply that the genderless classifiers
were able to learn facial features that are relevant
for kinship verification, but those features are less

present in parent-child pairs where the child has
KdVS. However, it could also be the case that
this missing feature from the KdVS data repre-
sents something unrelated to kinship, like the back-
ground. The latter option is very plausible be-
cause the better kinship verifier (m-d classifier) per-
formed worse on the KdVS data.

7 Discussion

It can be observed from the results that there is
room for improvement in our approach. This sec-
tion will discuss the effects of some of our decisions
in five components of our method: the UB KinFace
dataset, the KdVS dataset, the method of feature
selection, the viability of transfer learning and the
limitations of our approach.

7.1 UB KinFace dataset

The performance of our classifiers depends heavily
on the quality of their training data. Unfortunately,
the results seem to indicate some problem in the UB
KinFace dataset. Only the any-child m-d and m-s
classifiers were able to learn the kinship relation,
even though they were trained on the smallest any-
child datasets. This could imply that father-child
kinship verification is more difficult than mother-
child verification, possibly because a child’s face has
more female features. Similarly, the genderless kin-
ship verification task is difficult as well due to the
lack of gender information. However, it could also
be caused by false-positives in the dataset. The
parent-child pairs were added to the dataset be-
cause it is common knowledge that they are parent
and child, but this was not genetically confirmed.
It is possible that some of the ”fathers” are in fact
not the biological father of the children. Assuming
that the gender effect on children and parents is
the same, it is reasonable to expect that the father-
son and father-daughter classifiers perform similar
to the mother-daughter and mother-son classifiers,
respectively, but this is not visible in the results.
Another possible problem with the data labeling
is due to the absence of negative parent-child pairs.
Negative pairs are needed for training the classi-
fiers and had to be constructed randomly. Since the
dataset is not annotated with the identity of the
parents and children, it cannot be checked if some

parent-child pairs are related to other pairs. If such
relationships exist in the UB KinFace dataset, it is
possible that the dataset contains false negative in-
stances. This would make it more difficult to train
a classifier while already having so little data.

7.2 KdVS dataset

Similarly, the KdVS dataset constrains the conclu-
sions that can be drawn about the performance of
the classifiers for two reasons. First, the images are
taken in a highly controlled environment. And sec-
ond, there is no control group of images of children
without KdVS that were taken under the same con-
ditions. This combination of uniform images and
the lack of a control group does not allow con-
clusions to be made about whether the results are
caused by KdVS or the controlled environment. Al-
though it is understandable that the clinicians that
built this dataset wanted to control as many vari-
ables as possible, this situation was avoidable.

When creating a new dataset, it should be dis-
cussed what the implications are of the acquisition-
method on the nature of the data and their usabil-
ity in machine learning applications. It is possible
that the way in which the dataset is obtained intro-
duces a bias (see |Lopez et al.| 2016) or limits the
usability of that data, as in this case. However, as
datasets are generally created for some purpose, it
should be stressed how important it is to consider
these effects in advance.

In section [0.1] a different acquisition method will
be discussed as well as another approach to KAVS
detection that can be done using this new dataset.

7.3 Feature extraction

In addition to the possible problems with the used
datasets, the way in which the images were treated
could also have implications on their performance.

The images were normalized on the eye distance.
However, eye distance is not the same for everyone.
Since one of the facial features of KAVS is that the
eyes are further apart (Koolen et al.; [2016]), such
a normalization method introduces a bias in the
KdVS data. This causes all other facial features to
be closer to each other in the normalized KdVS
data and thus makes the kinship verification task
harder. As this difference in facial features was the
starting point of the approach, this effect is desired,

but it should be taken into consideration as it might
have ripple effects.

An example of such a ripple effect can be found
in the decision to take the difference of the feature
representations of the two images of a parent-child
pair. The values in the feature vectors correspond
to the same area in the image, but this may not be
the same area in the face. Although it was empiri-
cally found that the classifiers performed better on
the difference than the concatenation of the feature
vectors (see appendix , this performance differ-
ence was very small. So it could be the case that
the difference of the feature vectors is not represen-
tative for the difference between the facial features.

Then again, for this to be the case, the feature
vectors themselves need to be representative for the
facial features in the first place and LBP may not
be the best descriptor for that. LBP was chosen
because it can describe the texture of the face very
well (Ahonen et al.| 2006]), but it is very sensitive to
noise, rotation and lighting (Nava, Cristébal, and
Escalante-Ramirez, |2012), which can be problem-
atic when training on images taken under uncon-
trolled conditions. Another shortcoming of LBP is
that the aggregation of the patterns in histograms
loses some of the spacial information that may
be important for kinship verification (Zhou et al.,
2011]).

7.4 Kinship verification for
drome detection

syn-

It is imperative for this application that the kin-
ship verification classifiers have high accuracy and
sensitivity. Otherwise, the patterns learned by the
classifiers are not generalizable enough to be trans-
ferred into a new domain. However, kinship veri-
fication is a very difficult problem. The reported
human performance on the UB KinFace dataset is
53.7% and 56.0% (Shao et al.,|2011)), which is only
slightly better than chance. When taking in con-
sideration that the UB KinFace dataset consists of
public figures, it is very possible that some of the
participants actually recognized some of the pub-
lic figures and knew who their parent or child was.
That would mean that the actual human perfor-
mance on kinship verification may be even lower,
i.e. at chance level.

Kinship verification is not only difficult for hu-
mans, but also for computers. It is an under-

sampled problem (Yan et al., [2014), the datasets
are too small and the variation in facial images
is caused by more than genetics alone (Lu et al.
2014b)). At best, simple kinship verification algo-
rithms perform just above chance on the UB Kin-
Face dataset (Shao et all [2011). A lot needs to
improve in the domain of kinship verification to be
able to use it for transfer learning, especially for
our intended application.

However, even if a good kinship verification algo-
rithm existed, it may not be suitable for syndrome
detection. The performance of the classifiers on the
KdVS data has a strong dependence on how repre-
sentative the UB KinFace dataset is of the KdVS
data. The KdVS data contains only Caucasian sub-
jects and most of the parents are mothers, whereas
less than half of the UB KinFace dataset is Cau-
casian and most of the parents are fathers, as can
be seen in table[3.1] (Shao et all, 2011)). This could
cause that the classifiers are less good at kinship
verification on Caucasians than Asians or better
on fathers than mothers.

Another difference with the KdVS data is that
the UB KinFace dataset consists of pictures of pub-
lic figures (e.g. celebrities and politicians, see [Shao
et all [2011). Aside from the possibility that these
people may not have a representative appearance,
the images themselves may not be representative ei-
ther. They may have been adjusted, e.g. with tools
like Photoshop, or the subjects took more care to
look good on the pictures. This could introduce an-
other bias into the classifiers.

7.5 Unsuitable for diagnosis

In the end, the results show that most kinship ver-
ification classifiers are not accurate enough for di-
agnostic purposes. All genderless, father-son and
father-daughter classifiers, as well as the old-child
and young-child classifiers, were not able to learn
any kinship relation.

The any-child mother-daughter and mother-son
classifiers were able to learn a pattern. The mother-
daughter classifier was even able to distinguish the
two classes with perfect accuracy. However, their
results on the KdAVS data is inconclusive. Since
there is no control group, it is not possible to iden-
tify whether the classifiers misclassifications are
due to KdAVS itself or due to some other factor that
causes them.

10

The latter is very likely because the better classi-
fier makes less type II errors, indicating that the low
accuracy of the mother-son classifier on the KdVS
data is caused by a poor classifier. This is substan-
tiated by the confusion matrix in table that
shows that most misclassifications of the any-child
mother-son classifier are false-negatives; the clas-
sification mistakes that are desired for syndrome
detection.

However, the biggest shortcoming of our ap-
proach, by far, is that it will never be able to detect
KdVS on its own. It might be able to indicate if the
child phenotype is different from what is expected
given the phenotype of the parent, but this is the
case for many syndromes (e.g. Down Syndrome).
Thus this approach to syndrome detection gives an
ambiguous indication.

8 Conclusion

The goal of this research was to identify if it is
possible to use a kinship verification classifier for
diagnostic purposes.

The UB KinFace dataset was used to train clas-
sifiers for kinship verification and tested on three
tasks: kinship verification, facial identification and
syndrome detection.

The classifiers were trained on two versions
of the kinship verification task: genderless and
gender-specific. Only the any-child mother-son and
mother-daughter classifiers were able to learn the
kinship relation with an accuracy of 62.50% and
100.00%, respectively. The conclusions are based
on the results from only these two classifiers.

The performance of the two classifiers on the
identification task shows that the classifiers may
be able to generalize the kinship relation over age,
as they perform almost the same on the old-young
test set.

However, it is curious that the two classifiers,
trained on the smallest dataset, were the only clas-
sifiers that learned a pattern in the data. This
could be evidence of a problem in the UB Kin-
Face dataset. It is possible that the UB KinFace
dataset contains father-child pairs where the father
is not genetically related to the child, since this
was assumed and not genetically confirmed. If this
is the case, then the classifiers trained with father-
child pairs would have more difficulty learning the

kinship relation, because the two classes cannot be
separated. That would result in the observed dif-
ference between the any-child classifiers.

The results of the classifiers on the syndrome de-
tection task are inconclusive. This is due to the na-
ture of the KdVS dataset. The images were taken
in a highly controlled environment and are not rep-
resentative of the UB KinFace pictures, which has
an effect on the performance of the classifiers on
the KdVS dataset. The strength of this effect could
have been seen in a control group of pictures, but
that data was not available.

Unfortunately, even if the results on the KdVS
data were conclusive, the classifier would still not
be able to perform the syndrome detection task.
The used approach, by definition, is only able to
identify deviation from the expected differences of
facial features of parents and children. This devi-
ation can be caused by numerous factors, thus it
cannot be used for diagnostic purposes.

9 Future work

Although our results may not seem promising at
first glance, three approaches are proposed that
could be used in a future study.

9.1 Creation of new KdVS dataset

First of all, a new KdVS dataset needs to be cre-
ated. The conditions of images should not be con-
trolled. However, the pictures do need to adhere to
some constraints. To avoid the bias that is present
in the KinFaceW I/II datasets (Lépez et al.| [2016)),
the parent and child should not be in the same pic-
ture.

This dataset can be created by asking the parents
of children with KdVS for personal images (e.g. self-
ies) of four people: the two (genetically confirmed)
parents, the child with KdVS and a sibling who
does not have KdVS (if possible).

It is possible that parents impose their own re-
strictions on this task, which could introduce an-
other bias. This new bias could be identified by
adding an image from a fifth and sixth person: an
unrelated healthy child and an unrelated healthy
adult. This unrelated child could be a friend or
neighbor and the adult could be their parent. These

11

unrelated images can then be used as negative kin-
ship pairs.

Because facial features are strongly influenced by
the age of the individual (Xia et al.l [2011)), it might
be an improvement to ask for images of the parents
and unrelated adult when they were children.

All pictures should preferably be taken on dif-
ferent dates using different devices and on different
locations, as far as this is possible.

This acquisition method should be easier to exe-
cute than the original method as older pictures can
be used and sent from home.

If these 5 pictures are obtained for each of the 28
children in the original KdVS dataset, then the new
dataset would have 28 4+ 28 = 56 kin + KdVS pairs
(parents and child with KdVS), 28428 = 56 kin +
nonKdVS pairs (parents and sibling), 28 4+ 28 = 56
nonkin + nonKdVS pairs (parents and unrelated
child) and 28 nonkin + KdVS pairs (unrelated
adult and child with KdVS). This dataset would
be almost as large as the UB KinFace dataset itself.
Although only half of this new dataset can be used
for kinship verification, the dataset doubles in size
if the nonkin parent and nonkin child are parent
and child themselves. It would double in size again
when adding the young parent images aswell. With
this new dataset, our research could be repeated
and improved with better algorithms.

9.2 Statistical diagnosis using deep
neural networks

Another, more generalizable, approach could also
be tried. The starting point of our research was that
individuals with KdVS have different facial features
than those without KdVS. It might be possible to
identify this difference using a combination of a
deep neural network (DNN) and statistical meth-
ods.

Deep convolutional neural networks have been
used for facial identification with a 97% accuracy
(Taigman, Yang, Ranzato, and Wolf, 2014; [Sun,
Wang, and Tang} 2014)). These neural networks are
able to identify the key facial features in images
that make a person unique. This DNN-knowledge
can also be leveraged using transfer learning. This
is done by using one (or more) of the hidden layers
in the trained DNN as feature vector for another
classifier. This approach has been used for facial

identification (Sun et al.,[2014) and achieved a sim-
ilar performance as the method without transfer
learning (Taigman et al., [2014). Hence, the hidden
layers in a trained DNN contain the key facial fea-
tures and it might be possible to use them for other
tasks.

The proposed new approach is to use a hidden
layer of a trained deep convolutional neural net-
work, that has state-of-the-art performance on fa-
cial identification benchmarks, like Labeled Faces
in the Wild (LFW), as feature vector of an im-
age. This representation can be created for pictures
of healthy individuals and pictures of those with
KdVS. Then, it should be possible to calculate if
an image of someone is more likely to belong to the
distribution of images of individuals with or with-
out KdVS using statistical methods. It is also pos-
sible to use a (statistical) classifier to distinguish
the two cases.

This new approach should be usable for syn-
drome diagnosis and has two additional benefits.
One benefit of this approach is that it should be
possible to identify which facial features are specific
to which class (syndrome). This could help with
identifying the typical phenotype of a syndrome.
The other benefit is that it is easily extensible to
diagnose other syndromes; only a set of examples is
needed to indicate its distribution of facial features.

This new approach will work better with more
data, but when using pure statistical methods, a
small set of examples may already be enough to
give an indication.

9.3 Other applications

Both (an adjusted version of) the proposed ap-
proach in this paper and the neural feature vec-
tor approach could also be used for detecting other
syndromes because about 30-40% of all genetic dis-
orders are visible in the face (Ferry et al., 2014).
This does not only include disorders that are com-
monly known to be visible, like Down Syndrome,
but also disorders that are more subtly visible, like
Autism Spectrum Disorder (Aldridge et al.l 2011]).

Although these first results do not seem very
promising, much can be learned from this research
for future studies and applications. It is one more
step towards a time where doctors and clinicians
need less time for diagnosis, giving them more time
to treat their patients.

12

References

Timo Ahonen, Abdenour Hadid, and Matti
Pietikainen. Face description with local binary
patterns: Application to face recognition. IEEE

transactions on pattern analysis and machine in-
telligence, 28(12):2037-2041, 2006.

Kristina Aldridge, Ian D George, Kimberly K Cole,
Jordan R Austin, T Nicole Takahashi, Ye Duan,
and Judith H Miles. Facial phenotypes in sub-
groups of prepubertal boys with autism spectrum
disorders are correlated with clinical phenotypes.
Molecular Autism, 2(1):15, 2011.

Pendar Alirezazadeh, Abdolhossein Fathi, and
Fardin Abdali-Mohammadi. Effect of purpose-
ful feature extraction in high-dimensional kinship
verification problem. Journal of Computing and
Security, 3(3), 2018.

Corinna Cortes and Vladimir Vapnik. Support-
vector networks. Machine learning, 20(3):273—
297, 1995.

Hamdi Dibeklioglu, Albert Ali Salah, and Theo
Gevers. Like father, like son: Facial expression
dynamics for kinship verification. In Computer
Vision (ICCV), 2013 IEEE International Con-
ference on, pages 1497-1504. IEEE, 2013.

Itir Onal Ertugrul and Hamdi Dibeklioglu. What
will your future child look like? Modeling and
synthesis of hereditary patterns of facial dynam-
ics. In Automatic Face & Gesture Recognition
(FG 2017), 2017 12th IEEE International Con-
ference on, pages 33—40. IEEE, 2017.

Ruogu Fang, Kevin D Tang, Noah Snavely, and
Tsuhan Chen. Towards computational models of
kinship verification. In Image Processing (ICIP),
2010 17th IEEE International Conference on,
pages 1577-1580. IEEE, 2010.

Quentin Ferry, Julia Steinberg, Caleb Webber,
David R FitzPatrick, Chris P Ponting, Andrew
Zisserman, and Christoffer Nellaker. Diagnosti-

cally relevant facial gestalt information from or-
dinary photos. FElife, 3, 2014.

Dong-Chen He and Li Wang. Texture unit, texture
spectrum, and texture analysis. IEEFE transac-
tions on Geoscience and Remote Sensing, 28(4):

509-512, 1990.

Naman Kohli, Richa Singh, and Mayank Vatsa.
Self-similarity representation of Weber faces for
kinship classification. In Biometrics: Theory,
Applications and Systems (BTAS), 2012 IEEE
Fifth International Conference on, pages 245-
250. IEEE, 2012.

David A Koolen, Rolph Pfundt, Katrin Linda, Gea
Beunders, Hermine E Veenstra-Knol, Jessie H
Conta, Ana Maria Fortuna, Gabriele Gillessen-
Kaesbach, Sarah Dugan, Sara Halbach, et al. The
Koolen-de Vries syndrome: a phenotypic compar-
ison of patients with a 17q21. 31 microdeletion
versus a KANSL1 sequence variant. Furopean
Journal of Human Genetics, 24(5):652, 2016.

Miguel Bordallo Loépez, Elhocine Boutellaa, and
Abdenour Hadid. Comments on the kinship face
in the wild data sets. IEEFE transactions on pat-
tern analysis and machine intelligence, 38(11):
2342-2344, 2016.

Jiwen Lu, Junlin Hu, Xiuzhuang Zhou, Jie Zhou,
Modesto Castrillén-Santana, Javier Lorenzo-
Navarro, Lu Kou, Yuanyuan Shang, Andrea Bot-
tino, and Tiago Figuieiredo Vieira. Kinship ver-
ification in the wild: The first kinship verifica-
tion competition. In Biometrics (IJCB), 201/
IEEE International Joint Conference on, pages
1-6. IEEE, 2014a.

Jiwen Lu, Xiuzhuang Zhou, Yap-Pen Tan,
Yuanyuan Shang, and Jie Zhou. Neighborhood
repulsed metric learning for kinship verification.
IEEFE transactions on pattern analysis and
machine intelligence, 36(2):331-345, 2014b.

Jiwen Lu, Junlin Hu, and Yap-Peng Tan. Discrim-
inative deep metric learning for face and kinship
verification. ITEFE Transactions on Image Pro-
cessing, 26(9):4269-4282, 2017.

Rodrigo Nava, Gabriel Cristébal, and Boris
Escalante-Ramirez. A comprehensive study of
texture analysis based on local binary patterns.
In Optics, Photonics, and Digital Technologies
for Multimedia Applications II, volume 8436,
page 84360E. International Society for Optics
and Photonics, 2012.

Tayo Obafemi-Ajayi, Judith H Miles, T Nicole
Takahashi, Wenchuan Qi, Kristina Aldridge,

13

Mingi Zhang, Shi-Qing Xin, Ying He, and
Ye Duan. Facial structure analysis separates
autism spectrum disorders into meaningful clin-

ical subgroups. Journal of autism and develop-
mental disorders, 45(5):1302-1317, 2015.

Timo Ojala, Matti Pietikainen, and Topi Maenpaa.
Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns.
IEEFE Transactions on pattern analysis and ma-

chine intelligence, 24(7):971-987, 2002.

Ming Shao, Siyu Xia, and Yun Fu. Genealogical
face recognition based on UB kinface database.
In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2011 IEEE Computer
Society Conference on, pages 60—65. IEEE, 2011.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep
learning face representation from predicting
10,000 classes. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recog-
nition, pages 1891-1898, 2014.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ran-
zato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In
Proceedings of the IEEE conference on computer
viston and pattern recognition, pages 1701-1708,
2014.

Siyu Xia, Ming Shao, and Yun Fu. Kinship ver-
ification through transfer learning. In IJCAI
Proceedings-international joint conference on ar-
tificial intelligence, volume 22, page 2539, 2011.

Siyu Xia, Ming Shao, Jiebo Luo, and Yun Fu. Un-
derstanding kin relationships in a photo. IFEE
Transactions on Multimedia, 14(4):1046-1056,
2012.

Min Xu and Yuanyuan Shang. Kinship verifi-
cation using facial images by robust similarity
learning. Mathematical Problems in Engineering,
2016, 2016.

Haibin Yan, Jiwen Lu, Weihong Deng, and Xi-
uzhuang Zhou. Discriminative multimetric learn-
ing for kinship verification. IEEE Transac-
tions on Information forensics and security, 9(7):

1169-1178, 2014.

Xiuzhuang Zhou, Junlin Hu, Jiwen Lu, Yuanyuan

Shang, and Yong Guan. Kinship verification
from facial images under uncontrolled conditions.
In Proceedings of the 19th ACM international
conference on Multimedia, pages 953-956. ACM,
2011.

Xiuzhuang Zhou, Jiwen Lu, Junlin Hu, and

Yuanyuan Shang. Gabor-based gradient orien-
tation pyramid for kinship verification under un-
controlled environments. In Proceedings of the
20th ACM international conference on Multime-
dia, pages 725-728. ACM, 2012.

Xiuzhuang Zhou, Yuanyuan Shang, Haibin Yan,

and Guodong Guo. Ensemble similarity learn-
ing for kinship verification from facial images in
the wild. Information Fusion, 32:40-48, 2016.

Yu Zhu, Yuanyuan Shang, Zhuhong Shao, and

Guodong Guo. Automated depression diagno-
sis based on deep networks to encode facial ap-
pearance and dynamics. IEEE Transactions on
Affective Computing, 2017.

14

A Results parameter search

This appendix contains the gridsearch results for the kinship verification classifiers on the UB KinFace
dataset. The best results are given for each LBP mapping and block size. The results contain a validation
accuracy (Val score) as well as a cross-validated accurcay (CV score). The column ”"best params” shows
the C parameter and kernel for the SVM that would give the best accuracy according to the gridsearch.
For every experiment, the kernel was set to 'rbf’.

The first section shows the results when the feature vectors of parent and child are concatenated and
the second section uses the difference of these features.

A.1 Results concatenation

Table A.1: Gridsearch results for genderless kinship verification on KinFace (Concatenated).

Mapping | Block | Val score | CV score Best params
riu2 1x1 0.5 0.5 7’(C’: 1e-10, 'gamma’: 0.1, "kernel’: 'rbf””
riu2 4x5 0.5 0.5 7'C’: 1e-10, 'gamma’: 0.1, "kernel’: 'rbf””
riu2 7x5 0.5 0.5078125 7'C’: 1e-10, 'gamma’: 0.01, ’kernel’: 'rbf””
riu2 8x8 0.5 0.5015625 7’C’: 10, 'gamma’: 0.001, "kernel’: 'rbf””
riu2 10x10 0.5 0.509375 7'C’: 10, 'gamma’: 0.001, "kernel’: 'rbf””
ri 1x1 0.5 0.5 7’C’: 1e-10, 'gamma’: 0.1, 'kernel’: 'rbf””
ri 4x5 0.5 0.503125 7'C’: 1e-07, 'gamma’: 0.01, ’kernel’: "rbf””
ri x5 0.5 0.509375 7C’: 1e-10, 'gamma’: 0.01, kernel’: 'rbf””
ri 8x8 0.49375 | 0.5046875 7’C’: 1, ‘gamma’: 0.001, "kernel’: 'rbf””
ri 10x10 0.5 0.509375 7’C’: 10, 'gamma’: 0.001, ’kernel’: 'rbf””
u2 1x1 0.5125 0.50625 7°C’: 1e-05, 'gamma’: 0.001, "kernel’: 'rbf””
u2 4x5 0.48125 0.525 7’C’: 10, 'gamma’: 0.0001, ’kernel’: 'rbf””
u2 7x5 0.5 0.5265625 7'C’: 1e-10, 'gamma’: 0.01, ’kernel’: "rbf””
u2 8x8 0.5 0.521875 | 7’C’: 1e-10, ’gamma’: 0.0001, "kernel’: 'rbf’”
u2 10x10 0.5 0.5140625 7’C’: 10, 'gamma’: 0.001, "kernel’: 'rbf””
all all 0.5 0.5 7C’: 1e-10, ’gamma’: 0.001, "kernel’: 'rbf””

15

Table A.2: Gridsearch results for kinship verification on the father-son pairs of KinFace (Concate-

nated).
Mapping | Block Val score CV score Best params
riu2 1x1 | 0.5166666666666667 | 0.5172413793103449 | ”’C’: 100, 'gamma’: 1e-10, ’kernel’: 'rbf””
riu2 4x5 0.55 0.5172413793103449 7’C’: 10, 'gamma’: 1e-08, ’kernel’: 'rbf””
riu2 7x5 | 0.5333333333333333 | 0.5103448275862069 | ”’C’: 1e-10, 'gamma’: 1e-10, ’kernel’: 'rbf””
riu2 8x8 | 0.5333333333333333 | 0.5137931034482759 | ”’C’: 10, ’gamma’: 0.0001, 'kernel’: rbf’”
riu2 10x10 | 0.5333333333333333 | 0.5172413793103449 7C’: 1, ‘gamma’: 0.0001, ’kernel’: 'rbf””
ri 1x1 | 0.5166666666666667 | 0.5172413793103449 7'C’: 1, 'gamma’: 1e-08, "kernel’: 'rbf™
ri 4x5 | 0.5333333333333333 | 0.5103448275862069 | 7’'C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf’
ri 7x5 | 0.5333333333333333 | 0.5103448275862069 | ”’C’: 1e-10, 'gamma’: 1le-10, ’kernel’: 'rbf””
ri 8x8 | 0.5333333333333333 | 0.5241379310344828 | "’C’: 10, 'gamma’: 0.0001, ’kernel’: 'rbf””
ri 10x10 | 0.5333333333333333 | 0.5241379310344828 7’C’: 1, ‘gamma’: 0.0001, ’kernel’: 'rbf””
u2 1x1 | 0.5333333333333333 | 0.5172413793103449 7’C’: 1, ’gamma’: 1e-08, ’kernel’: 'rbf’””
u2 4x5 | 0.5333333333333333 | 0.5103448275862069 | 7’C’: 1e-10, 'gamma’: 1e-10, "kernel’: 'rbf™
u2 7x5 | 0.5333333333333333 | 0.5103448275862069 | "’C’: 1le-10, 'gamma’: le-10, 'kernel’: 'rbf””
u2 8x8 | 0.5333333333333333 | 0.5448275862068965 | ”’C’: 10, 'gamma’: 0.0001, ’kernel’: 'rbf””
u2 10x10 | 0.5333333333333333 | 0.5586206896551724 | "’C’: 10, 'gamma’: 0.0001, ’kernel’: 'rbf””
all all 0.5166666666666667 | 0.5206896551724138 7C’: 10, 'gamma’: 1e-09, ’kernel’: 'rbf””

Table A.3: Gridsearch results for kinship verification on the father-daughter pairs of KinFace

(Concatenated).
Mapping | Block Val score CV score Best params
riu2 1x1 0.5277TTTTTITTI778 0.512 7°C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
riu2 4x5 0.52777T7TITI7T7778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
riu2 7x5 0.5277T7TTTTITTI778 0.512 7°C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
riu2 8x8 0.52777T7TIT7T7778 0.512 7C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
riu2 10x10 | 0.5277777777777778 0.512 7°C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
ri 1x1 0.52777T7TTTTTT778 0.512 7°C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf™”
ri 4x5 0.5277777TIT7T7778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
ri x5 | 0.527T7TTTTITIITITS 0.512 7C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf™”
ri 8x8 | 0.527T7TTITITTI77778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
ri 10x10 | 0.5277777777777778 0.52 7’C’: 1, ’gamma’: 0.0001, “kernel’: rbf””
u2 1x1 0.5416666666666666 0.516 7’C’: 100, 'gamma’: 1e-07, ’kernel’: 'rbf””
u2 4x5 0.5277777TTTTT7778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
u2 x5 | 0.527TTTTITITIITI78 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
u2 8x8 0.5277777TIT7T7778 0.528 7’C’: 10, 'gamma’: 0.0001, ’kernel’: rbf””
u2 10x10 | 0.5277777777T777778 0.536 7'C’: 1, ’gamma’: 0.0001, ’kernel’: rbf””
all all 0.527777TTTTTT7T7778 0.512 7°C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””

16

Table A.4: Gridsearch results for kinship verification on the mother-son pairs of KinFace (Con-

catenated).
Mapping | Block | Val score CV score Best params
riu2 1x1 0.75 0.6956521739130435 | ”’C’: 1000, ’gamma’: 1e-09, ’kernel’: rbf””
riu2 4x5 0.6875 0.782608695652174 | ”’C’: 1000, 'gamma’: 1e-07, ’kernel’: 'rbf””
riu2 x5 0.6875 0.7391304347826086 | ”’C’: 100, 'gamma’: 1e-07, ’kernel’: rbf””
riu2 8x8 0.625 0.8478260869565217 | 7’C’: 1000, ’'gamma’: 1e-07, "kernel’: 'rbf’”
riu2 10x10 0.6875 0.8043478260869565 | 7’C’: 1000, 'gamma’: 1e-07, kernel’: rbf’”
ri 1x1 0.6875 0.6956521739130435 | 7’C’: 1000, ’'gamma’: 1e-08, "kernel’: 'rbf’”
ri 4x5 0.6875 0.7608695652173914 | 7’C’: 1000, ’'gamma’: 1e-07, kernel’: rbf’”
ri x5 0.6875 0.7391304347826086 | ”’C’: 100, 'gamma’: 1e-07, ’kernel’: 'rbf””
ri 8x8 0.625 0.8478260869565217 | ”’C’: 1000, ’'gamma’: 1e-07, ’kernel’: rbf””
ri 10x10 0.75 0.8043478260869565 | ”’C’: 1000, ’'gamma’: 1e-07, "kernel’: 'rbf’”
u2 1x1 0.625 0.6521739130434783 | 7’C’: 10, ’'gamma’: 1e-06, 'kernel’: 'rbf’”
u2 4x5 0.625 0.7391304347826086 | ”’C’: 1000, ’'gamma’: 1e-07, "kernel’: 'rbf’”
u2 x5 0.5 0.7391304347826086 | ”’C’: 1000, 'gamma’: 1e-07, "kernel’: 'rbf’”
u2 8x8 0.625 0.7608695652173914 | ”’C’: 100, 'gamma’: 1e-06, ’kernel’: rbf””
u2 10x10 0.5625 0.7608695652173914 | ”’C’: 100, 'gamma’: 1e-06, ’kernel’: rbf””
all all 0.6875 0.6956521739130435 | ”’C’: 100, ’'gamma’: 1e-08, ’kernel’: 'rbf’”

Table A.5: Gridsearch results for kinship verification

on the mother-daughter

pairs of KinFace

(Concatenated).
Mapping | Block Val score CV score Best params
riu2 1x1 0.75 0.6111111111111112 7°C’: 10, 'gamma’: 1e-07, 'kernel’: 'rbf””
riu2 4x5 | 0.6666666666666666 | 0.6111111111111112 | ”’C’: 10, 'gamma’: 1e-05, 'kernel’: 'rbf’”
riu2 7x5 | 0.6666666666666666 | 0.5740740740740741 7’C’: 1, 'gamma’: 1e-05, 'kernel’: 'rbf””
riu2 8x8 1.0 0.6111111111111112 | 7’C’: 10, 'gamma’: 1e-06, 'kernel’: 'rbf’”
riu2 10x10 0.75 0.6111111111111112 | 7’C’: 100, ’'gamma’: 1e-06, 'kernel’: 'rbf’””
ri 1x1 0.75 0.5925925925925926 7’C’: 10, 'gamma’: 1e-07, 'kernel’: 'rbf””
ri 4x5 | 0.6666666666666666 | 0.5925925925925926 | ”’C’: 10, 'gamma’: 1e-05, 'kernel’: 'rbf™
ri 7x5 | 0.6666666666666666 | 0.5925925925925926 7'C’: 1, ‘gamma’: 1e-05, kernel’: 'rbf””
ri 8x8 1.0 0.6111111111111112 7’C’: 10, 'gamma’: 1e-06, 'kernel’: 'rbf””
ri 10x10 | 0.6666666666666666 | 0.6111111111111112 | ”’C’: 10, 'gamma’: 1e-05, ’kernel’: rbf””
u2 1x1 0.6666666666666666 | 0.6296296296296297 | ”’C’: 100, 'gamma’: 1e-07, ’kernel’: 'rbf””
u2 4x5 | 0.6666666666666666 | 0.6296296296296297 | 7’C’: 10, 'gamma’: 1e-06, "kernel’: 'rbf™
u2 7x5 | 0.8333333333333334 | 0.6666666666666666 | ”’C’: 100, ‘gamma’: 1e-07, "kernel’: 'rbf™
u2 8x8 1.0 0.6666666666666666 | ”’C’: 1000, 'gamma’: 1e-07, kernel’: rbf’”
u2 10x10 | 0.6666666666666666 | 0.6481481481481481 7’C’: 10, 'gamma’: 1e-05, 'kernel’: 'rbf””
all all 0.6666666666666666 | 0.5925925925925926 7'C’: 1, 'gamma’: 1e-07, kernel’: 'rbf™”

17

A.2 Results difference

Table A.6: Gridsearch results for genderless kinship verification on KinFace (Difference).

Mapping | Block | Val score | CV score Best params
riu2 1x1 0.5 0.5015625 | 7’C’: 1e-10, ’'gamma’: 0.0001, "kernel’: 'rbf””
riu2 4x5 0.5 0.5 7C’: 1e-10, 'gamma’: 0.1, "kernel’: 'rbf””
riu2 7x5 0.5 0.5125 7’C’: 1, 'gamma’: 0.01, "kernel’: 'rbf””
riu2 8x8 0.5 0.503125 7’C’: 10, 'gamma’: 0.001, ’kernel’: 'rbf””
riu2 10x10 0.5 0.5015625 7’C’: 10, 'gamma’: 0.001, "kernel’: 'rbf””
ri 1x1 0.5 0.503125 7’C’: 10, 'gamma’: 0.001, "kernel’: 'rbf””
ri 4x5 0.5 0.5 7'C’: 1e-10, 'gamma’: 0.1, 'kernel’: 'rbf””
ri x5 0.5 0.5078125 | 7’C’: 1le-10, ’gamma’: 0.01, ’kernel’: 'rbf””
ri 8x8 0.5 0.503125 7’C’: 10, 'gamma’: 0.001, "kernel’: 'rbf””
ri 10x10 0.4875 0.5046875 7’C’: 10, 'gamma’: 0.001, ’kernel’: 'rbf””
u2 1x1 0.49375 0.503125 | 7’C’: 1e-10, 'gamma’: 0.001, ’kernel’: rbf””
u2 4x5 0.51875 0.53125 7’C’: 10, 'gamma’: 0.0001, ’kernel’: ’rbf””
u2 x5 0.5 0.525 7’C’: 1, 'gamma’: 0.0001, "kernel’: 'rbf””
u2 8x8 0.5 0.5203125 | 7’C’: 1le-10, ’'gamma’: 0.0001, "kernel’: 'rbf’”
u2 10x10 0.5 0.525 7’C’: 10, 'gamma’: 0.001, "kernel’: 'rbf””
all all 0.5 0.5 7C’: 1e-10, ’gamma’: 0.001, "kernel’: 'rbf™”

Table A.7: Gridsearch results for kinship verification on the father-son pairs of KinFace (Differ-

ence).
Mapping | Block Val score CV score Best params
riu2 1x1 | 0.5333333333333333 | 0.5103448275862069 | "’C’: 1le-10, ‘gamma’: le-10, ’kernel’: 'rbf’”
riu2 4x5 | 0.5833333333333334 | 0.5241379310344828 7’C’: 1, 'gamma’: 1e-07, ’kernel’: 'rbf’””
riu2 7x5 | 0.5333333333333333 | 0.5103448275862069 | "’C’: 1e-10, ’'gamma’: 1e-10, ’kernel’: 'rbf””
riu2 8x8 | 0.5333333333333333 | 0.5103448275862069 | "’C’: 1e-10, 'gamma’: 1le-10, ’kernel’: 'rbf””
riu2 10x10 | 0.5333333333333333 | 0.5137931034482759 7’C’: 1, ‘gamma’: 0.0001, ’kernel’: 'rbf””
ri 1x1 0.55 0.5137931034482759 7’C’: 10, 'gamma’: 1e-08, "kernel’: 'rbf””
ri 4x5 0.6 0.5310344827586206 7’C’: 10, ’gamma’: 1e-08, ’kernel’: 'rbf””
ri 7x5 | 0.5333333333333333 | 0.5103448275862069 | ”’C’: 1e-10, 'gamma’: 1e-10, ’kernel’: 'rbf””
ri 8x8 | 0.5333333333333333 | 0.5103448275862069 | ”’C’: 1e-10, ’'gamma’: 1e-10, ’kernel’: 'rbf””
ri 10x10 | 0.5333333333333333 | 0.5275862068965518 7’C’: 1, 'gamma’: 0.0001, "kernel’: 'rbf””
u2 1x1 0.55 0.5241379310344828 7’C’: 10, 'gamma’: 1e-09, "kernel’: 'rbf””
u2 4x5 | 0.5333333333333333 | 0.5103448275862069 | ”’C’: 1e-10, ’'gamma’: 1le-10, ’kernel’: 'rbf””
u2 7x5 | 0.5333333333333333 | 0.5103448275862069 | "’C’: 1e-10, 'gamma’: 1le-10, ’kernel’: 'rbf””
u2 8x8 | 0.5333333333333333 | 0.5241379310344828 | ”’C’: 10, ’'gamma’: 0.0001, "kernel’: 'rbf’”
u2 10x10 | 0.5333333333333333 | 0.5482758620689655 | ”’C’: 10, 'gamma’: 0.0001, ’kernel’: 'rbf””
all all 0.5666666666666667 | 0.5275862068965518 7’C’: 10, ’gamma’: 1e-10, ’kernel’: 'rbf””

18

Table A.8: Gridsearch results for kinship verification on the father-daughter pairs of KinFace

(Difference).
Mapping | Block Val score CV score Best params
riu2 1x1 0.5416666666666666 0.516 ”’C’: 100, 'gamma’: 1e-07, ’kernel’: 'rbf””
riu2 4x5 | 0.52777TTITIITT778 0.516 7’C’: 1, 'gamma’: 1e-07, "kernel’: 'rbf””
riu2 7xH 0.527777T7TITI7T7778 0.512 7C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf™
riu2 8x8 | 0.5277TTTTTITTIIT778 0.512 7C: 1e-10, 'gamma’: 1le-10, "kernel’: 'rbf””
riu2 10x10 | 0.5277777777777778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
ri 1x1 0.5 0.532 7’C’: 100, 'gamma’: 1e-07, ’kernel’: 'rbf””
ri 4x5 0.5277777TIT7T7778 0.516 7’C’: 1, 'gamma’: 1e-07, ’kernel’: 'rbf’”
ri x5 | 0.527TTTTTITIITTT8 0.512 7C’: 1e-10, 'gamma’: 1le-10, 'kernel’: 'rbf””
ri 8x8 0.5277777T7T7T7778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
ri 10x10 | 0.5277777777777778 0.512 7C’: 1e-10, 'gamma’: 1e-10, "kernel’: 'rbf””
u2 1x1 | 0.4583333333333333 0.536 7’C’: 1, 'gamma’: 1e-06, kernel’: ‘rbf””
u2 4x5 | 0.52777TTTTII77778 0.512 7°C’: 1e-10, 'gamma’: 1e-10, "kernel’: 'rbf””
u2 7x5 0.527777TTTTITTI778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
u2 8x8 | 0.52777TTTITTITT78 0.512 7C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””
u2 10x10 | 0.5277777777777778 0.528 7'C: 1, ’gamma’: 0.0001, ’kernel’: 'rbf””
all all 0.5277777TTTTTTT778 0.512 7’C’: 1e-10, 'gamma’: 1e-10, 'kernel’: 'rbf””

Table A.9: Gridsearch results for kinship verification on the mother-son pairs of KinFace (Differ-

ence).
Mapping | Block | Val score CV score Best params
riu2 1x1 0.4375 0.6956521739130435 | 7’C’: 1000, ’'gamma’: 1e-07, ’kernel’: rbf””
riu2 4x5 0.5625 0.6956521739130435 | ”’C’: 100, ’'gamma’: 1e-07, ’kernel’: 'rbf’”
riu2 x5 0.625 0.6521739130434783 | 7’C’: 100, ’'gamma’: 1e-06, ’kernel’: 'rbf’”
riu2 8x8 0.5625 0.7608695652173914 | ”’C’: 1000, ’'gamma’: 1e-07, ’kernel’: ’rbf"”
riu2 10x10 0.5625 0.6739130434782609 | ”’C’: 1000, ’'gamma’: 1e-07, ’kernel’: 'rbf"”
ri 1x1 0.5625 0.6521739130434783 | ”’C’: 100, 'gamma’: 1e-07, ’kernel’: 'rbf’”
ri 4x5 0.6875 0.6739130434782609 | ”’C’: 100, ’'gamma’: 1e-06, ’kernel’: 'rbf’”
ri x5 0.625 0.6521739130434783 | ”’C’: 100, 'gamma’: 1e-06, ’kernel’: 'rbf’”
ri 8x8 0.625 0.717391304347826 | ”’C’: 1000, ’‘gamma’: 1e-07, 'kernel’: 'rbf””
ri 10x10 0.625 0.6521739130434783 | 7’C’: 100, 'gamma’: 1e-06, ’kernel’: rbf””
u2 1x1 0.5625 0.6086956521739131 7’C’: 10, 'gamma’: 1e-06, "kernel’: 'rbf””
u2 4x5 0.625 0.6956521739130435 7’C’: 10, ’'gamma’: 1e-06, ’kernel’: 'rbf””
u2 7x5 0.625 0.6521739130434783 7’C’: 10, 'gamma’: 1e-05, "kernel’: 'rbf””
u2 8x8 0.625 0.6956521739130435 7’C’: 10, 'gamma’: 1e-05, ’kernel’: 'rbf””
u2 10x10 0.6875 0.717391304347826 7’C’: 10, 'gamma’: 1e-05, "kernel’: 'rbf””
all all 0.5 0.6956521739130435 7’C’: 10, 'gamma’: 1e-07, "kernel’: 'rbf””

19

Table A.10: Gridsearch results for kinship verification on the mother-daughter pairs of KinFace

(Difference).
Mapping | Block Val score CV score Best params
riu2 1x1 | 0.6666666666666666 | 0.55555555555555656 | 7’C’: 1le-10, 'gamma’: 1e-10, ’kernel’: rbf””
riu2 4x5 | 0.6666666666666666 | 0.5555555555555556 | 7’C’: 1le-10, 'gamma’: 1le-10, "kernel’: 'rbf’”
riu2 7x5 | 0.6666666666666666 | 0.5555555555555556 | ”’C’: 1e-10, 'gamma’: 1le-10, ’kernel’: 'rbf””
riu2 8x8 1.0 0.6111111111111112 | ”’C’: 100, ’'gamma’: 1e-06, "kernel’: 'rbf™”
riu2 10x10 0.75 0.6296296296296297 | ”’C’: 100, 'gamma’: 1e-06, 'kernel’: 'rbf™”
ri 1x1 | 0.6666666666666666 | 0.5555555555555556 | 7’C’: 1le-10, 'gamma’: 1e-10, ’kernel’: rbf””
ri 4x5 | 0.6666666666666666 | 0.5555555555555556 | 7'C’: 1e-10, 'gamma’: 1le-10, "kernel’: 'rbf™”
ri 7x5 | 0.6666666666666666 | 0.5555555555555556 | 7’C’: 1le-10, 'gamma’: 1le-10, ’kernel’: 'rbf””
ri 8x8 1.0 0.6296296296296297 | 7’C’: 100, ’'gamma’: 1e-06, 'kernel’: 'rbf””
ri 10x10 | 0.8333333333333334 | 0.6296296296296297 | ”’C’: 100, ’'gamma’: 1e-06, ’kernel’: 'rbf””
u2 1x1 | 0.6666666666666666 | 0.5555555555555556 | 7’C’: le-10, 'gamma’: 1e-10, kernel’: 'rbf””
u2 4x5 0.75 0.6296296296296297 | ”’C’: 1000, 'gamma’: 1e-08, ’kernel’: 'rbf””
u2 7x5 | 0.6666666666666666 | 0.6666666666666666 | ”’'C’: 100, 'gamma’: 1e-06, 'kernel’: 'rbf””
u2 8x8 | 0.6666666666666666 | 0.6296296296296297 | ”’C’: 1000, 'gamma’: 1e-07, ’kernel’: rbf””
u2 10x10 0.75 0.6851851851851852 | "’C’: 100, ’'gamma’: 1e-06, 'kernel’: 'rbf””
all all 0.6666666666666666 | 0.5555555555555556 | 7’C’: le-10, 'gamma’: 1e-10, ’kernel’: rbf””

20

B Confusion matrices

This appendix contains the confusion matrices for all classifiers whose performance is discussed in sec-
tion [6] The matrices are separated into kinship verification results, identification results and syndrome

detection results.

B.1 Kinship verification task

Table B.1: Confusion matrices of the genderless classifiers on their respective kinship verification

test set.

(a) any-child genderless classifier

Classification

True False
Ground Kin 0 80
truth — Kin || 0 80

(b) old-child genderless classifier

Classification
True False

Ground Kin 40 0

(¢) young-child genderless classifier

Ground Kin
truth — Kin

truth — Kin || 40 0
Classification
True False
40 0
40 0

Table B.2: Confusion matrices of the f-s classifiers on their respective kinship verification test set.

(a) any-child f-s classifier
Classification
True False

Ground Kin 32 0
truth — Kin || 28 0

(b) old-child f-s classifier

(¢) young-child f-s classifier

Ground Kin
truth — Kin

Classification
True False
Ground Kin 16 0
truth — Kin || 14 0
Classification
True False
16 0
14 0

21

Table B.3: Confusion matrices of the f-d classifiers on their respective kinship verification test set.

(a) any-child f-d classifier

Classification

True False
Ground Kin 0 34
truth - Kin || O 38

(b) old-child f-d classifier

(c) young-child f-d classifier

Ground
truth

Kin
- Kin

Classification
True False
Ground Kin 0 17
truth - Kin || 0 19
Classification
True False
0 17
0 19

Table B.4: Confusion matrices of the m-s classifiers on their respective kinship verification test

set.

(a) any-child m-s classifier

Classification

True False
Ground Kin 2 4
truth — Kin || 2 8

(b) old-child m-s classifier

(¢) young-child m-s classifier

Ground
truth

Kin
- Kin

Classification
True False
Ground Kin 0 5
truth = Kin || 0 3
Classification
True False
0 5
0 3

Table B.5: Confusion matrices of the m-d classifiers on their respective kinship verification test

set.

(a) any-child m-d classifier

Classification

True False
Ground Kin 8 0
truth — Kin || 0 4

(b) old-child m-d classifier

(¢) young-child m-d classifier

Ground Kin

truth

- Kin

Classification
True False
Ground Kin 4 0
truth — Kin || 2 0
Classification
True False
4 0
2 0

22

B.2 Identification task

Table B.6: Confusion matrices of the m-d and m-s any-child classifiers on the identification task

(old-young test set).

(a) identification any-child m-s classifier

Classification

True False
Ground Kin 1 2
truth — Kin || 2 3

B.3 Syndrome detection task

(b) identification any-child m-d classifier

Classification

True False
Ground Kin 6 1
truth = Kin || 0 0

Table B.7: Confusion matrices of the m-d and m-s any-child classifiers on the syndrome detection

task (KdVS test set).

(a) m-s classifier

Classification

True False
Ground Kin 1 3
truth - Kin || O 0

(b) m-d classifier

Classification

True False
Ground Kin 8 5
truth - Kin || 0 0

23

C KinFace gender annotation

This appendix contains the manually annotated gender of the UB KinFace dataset that was used for
this research. It can also be found on GitHub: |https://github.com/Aerylia/UBKinFaceGender!

Table C.1: Gender annotation for the parent and child in KinFace.

Id (resp. file) | Parent gender | Child gender
L.jpg
2.jpg
3.Jpg
4.jpg
5.jpg
6.Jpg
7.jpg
8.jpg
9.jpg
10.jpg
11.jpg
12.jpg
13.jpg
14.jpg
15.jpg
16.jpg
17.jpg
18.jpg
19.jpg
20.jpg
21.jpg
22.jpg
23.jpg
24.jpg
25.jpg
26.jpg
27.jpg
28.jpg
29.jpg
30.jpg
31.jpg
32.jpg
33.jpg
34.jpg
35.jpg
36.jpg
37.jpg
38.jpg
39.jpg
40.jpg
41.jpg

E|E|=|E|E|=|E|E|E|E|E|E|B|E|~=|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|™E|—|E|E|~E
Bl =|E|=|=|E|E|E|=E|=|B|E|=|E|=|=E|~=E|E|E|E|E|=E|~=E|B|E|E|E|E|E|=|~=|E|E|E

24

https://github.com/Aerylia/UBKinFaceGender

... continued

Id (resp. file)

Parent gender

Child gender

42.jpg

43.jpg

Hjpg

45.jpg

16.jpg

47.jpg

48.jpg

49.jpg

50.jpg

51.jpg

52.jpg

93.pg

54.jpg

55.jpg

56.jpg

57.jpg

58.jpg

59.jpg

60.jpg

61.jpg

62.jpg

63.jpg

64.jpg

65.jpg

66.jpg

67.jpg

68.jpg

69.jpg

70.jpg

71.jpg

72.jpg

73.jpg

74.jpg

75.jpg

76.jpg

77.jpg

78.jpg

79.jpg

80.jpg

81.jpg

82.jpg

83.jpg

S1jpg

85.jpg

86.jpg

87.jpg

~| = E|E|E|E|E|E|E|E|E|E|E|B|E|E|E|IE|E|EB|B|E|=|E|E|E|[=E|=|=|—=|—=|E|E|EIE|E|E|E|—=|E|E|=E|IE|—

BB E|BIEIE|B|=|E[B|[= = B|=|E|=E|=E|=|EIE|E|E|==|=|=|E|EE|=|==E|=E|E|=E|==E|™

25

... continued

Id (resp. file)

Parent gender

Child gender

88.jpg

89.jpg

90.jpg

91.jpg

92.jpg

93.jpg

94.jpg

95.jpg

96.jpg

97.jpg

98.jpg

99.jpg

100.jpg

101.jpg

102.jpg

103.jpg

104.jpg

105.jpg

106.jpg

107.jpg

108.jpg

109.jpg

110.jpg

111.jpg

112.jpg

113.jpg

114.jpg

115.jpg

116.jpg

117.jpg

118.jpg

119.jpg

120.jpg

121.jpg

122.jpg

123.jpg

124.jpg

125.jpg

126.jpg

127.jpg

128.jpg

129.jpg

130.jpg

131.jpg

132.jpg

133.jpg

BIE|E|E|E|EB|E|E|IEB|IE|E|E|E|—=|E|E|=E|=|E|EB|E|E|E|E|E|E|=|B|E|E|E|—=|E|E|E|E|E|E|E|E|E|E|E|~|—

EIE|=E|=|=E|E|=E|E[E|[=E|=E|=|==|=|=E|=E|E|E|E|E|E|=|=|==|E|E|=—=|E|=|—=E|E|E|E||E

26

... continued

Id (resp. file)

Parent gender

Child gender

134.jpg

135.jpg

136.jpg

137.jpg

138.jpg

139.jpg

140.jpg

141.jpg

142.jpg

143.jpg

144.jpg

145.jpg

146.jpg

147.jpg

148.jpg

149.jpg

150.jpg

151.jpg

152.jpg

153.jpg

154.jpg

155.jpg

156.jpg

157.jpg

158.jpg

159.jpg

160.jpg

161.jpg

162.jpg

163.jpg

164.jpg

165.jpg

166.jpg

167.jpg

168.jpg

169.jpg

170.jpg

171.jpg

172.jpg

173.jpg

174.jpg

175.jpg

176.jpg

177.jpg

178.jpg

179.jpg

E|E|E|EB|E|B|E|E|E|E|E|E|E|B|E|E|E|E|E|E|E|E|B|E|E|E|E|E|E|™|EB|E|E|~|E|E|=|E|E|E|E|E|E|E|E|E

27

... continued

Id (resp. file)

Parent gender

Child gender

180.jpg

181.jpg

182.jpg

183.jpg

184.jpg

185.jpg

186.jpg

187.jpg

188.jpg

189.jpg

190.jpg

191.jpg

192.jpg

193.jpg

194.jpg

195.jpg

196.jpg

197.jpg

198.jpg

199.jpg

200.jpg

~|=|E|E|E|B|E|E|E|=|E|=|E|—=|E|E|E|E|E|E|E

28

D Train - test split description

This appendix contains the python code for creating the different train and test sets that can be combined
to create the old-child, young-child, any-child and old-young datasets. The shuffling is given explicitly
to allow for perfect replication. Note that shuffling the test set is not strictly necessary.

Python code for creating the sub datasets of UB KinFace.

1 # Definition of the indexes

2

train_idxs = [139, 90, 182, 58, 5, 94, 37, 22, 193, 51, 21, 161, 63, 34, 1, 97, 87, 75,

91, 176, 164, 54, 33, 29, 138, 15, 166, 135, 189, 102, 123, 36, 198, 50, 13, 55, 76,
120, 184, 152, 134, 47, 88, 65, 199, 89, 20, 163, 30, 84, 0, 78, 148, 155, 130,

180, 185, 9, 160, 142, 126, 25, 175, 68, 107, 95, 100, 143, 72, 122, 48, 42, 157,
181, 79, 156, 62, 32, 177, 67, 172, 2, 147, 11, 41, 8, 117, 44, 17, 115, 118, 12,
45, 10, 127, 61, 171, 151, 70, 188, 112, 24, 141, 121, 38, 144, 186, 96, 4, 39, 92,
85, 149, 131, 53, 192, 28, 103, 168, 59, 108, 27, 93, 165, 174, 194, 64, 16, 190,
125, 60, 43, 52, 145, 71, 137, 98, 14, 19, 195, 187, 114, 3, 49, 128, 86, 18, 111,
169, 154, 173, 56, 162, 69, 106, 73, 99, 167, 133, 196]

s test_idxs = [153, 46, 132, 170, 119, 101, 6, 23, 77, 183, 197, 104, 83, 35, 191, 140, 7,

179, 40, 124, 159, 150, 81, 113, 116, 82, 80, 158, 110, 57, 26, 66, 109, 146, 105,
136, 129, 178, 74, 31]

neg-train_children = [25, 145, 64, 120, 164, 37, 115, 28, 32, 180, 12, 53, 162, 1, 187,

172, 20, 73, 59, 114, 84, 111, 55, 89, 2, 118, 17, 138, 156, 54, 141, 39, 22, 95,
49, 135, 24, 60, 195, 196, 38, 92, 94, 137, 51, 127, 198, 97, 76, 13, 173, 199, 142,
123, 56, 190, 98, 152, 177, 193, 42, 58, 93, 103, 63, 181, 143, 33, 69, 14, 188,
79, 70, 131, 27, 0, 108, 100, 9, 154, 10, 16, 52, 184, 130, 41, 44, 144, 87, 175,
155, 106, 168, 102, 8, 186, 99, 176, 107, 72, 194, 3, 90, 117, 85, 182, 19, 165, 86,
30, 133, 29, 78, 139, 5, 43, 122, 148, 65, 126, 147, 128, 71, 47, 75, 88, 18, 68,
161, 149, 67, 11, 125, 21, 169, 171, 91, 157, 62, 185, 50, 192, 15, 36, 48, 134,
174, 189, 34, 61, 4, 160, 96, 151, 163, 167, 45, 121, 112, 166]

neg-test_children = [178, 35, 31, 105, 159, 132, 191, 136, 83, 109, 46, 7, 23, 129, 183,

66, 101, 74, 81, 104, 179, 153, 57, 124, 80, 197, 26, 116, 146, 140, 82, 110, 113,
77, 40, 6, 170, 158, 119, 150]

train_shuffle = [323, 172, 627, 534, 254, 432, 566, 203, 603, 593, 101, 107, 179, 509,

512, 344, 244, 246, 383, 303, 563, 29, 562, 397, 266, 446, 19, 571, 294, 316, 567,
569, 497, 173, 293, 309, 598, 180, 450, 614, 158, 589, 18, 427, 104, 594, 171, 123,
343, 336, 81, 322, 635, 62, 47, 393, 39, 333, 149, 31, 514, 296, 226, 302, 193, 11,
241, 306, 170, 255, 455, 638, 615, 115, 235, 466, 40, 165, 92, 69, 133, 319, 291,
227, 408, 281, 353, 378, 586, 198, 508, 116, 349, 422, 375, 464, 518, 592, 240, 125,
150, 341, 576, 539, 232, 304, 236, 108, 145, 328, 470, 345, 377, 248, 229, 192,
477, 570, 498, 416, 476, 284, 267, 68, 431, 606, 212, 357, 190, 494, 493, 275, 280,
515, 204, 220, 436, 315, 478, 30, 79, 505, 368, 490, 468, 417, 146, 106, 22, 412,
544, 607, 24, 35, 262, 467, 67, 358, 348, 633, 418, 103, 156, 399, 365, 484, 75, 84,
411, 580, 120, 196, 385, 433, 588, 391, 482, 465, 113, 536, 53, 245, 234, 549, 16,
325, 230, 622, 251, 491, 76, 122, 137, 530, 58, 109, 277, 276, 168, 318, 605, 428,
23, 507, 177, 425, 324, 600, 272, 506, 577, 337, 216, 147, 33, 290, 46, 454, 552,
548, 613, 388, 575, 487, 522, 222, 335, 199, 525, 619, 134, 414, 483, 28, 72, 618,
312, 537, 415, 210, 243, 152, 400, 545, 80, 578, 38, 200, 205, 488, 264, 342, 438,
326, 298, 111, 144, 558, 409, 233, 381, 148, 191, 579, 286, 228, 444, 535, 217, 503,
102, 495, 71, 407, 632, 153, 117, 584, 384, 295, 214, 352, 159, 20, 27, 623, 480,
460, 59, 631, 66, 195, 499, 531, 329, 60, 340, 213, 64, 360, 4, 164, 462, 118, 132,
361, 140, 129, 51, 299, 183, 85, 347, 26, 207, 176, 597, 612, 305, 582, 583, 481,
372, 591, 403, 442, 287, 32, 206, 98, 346, 97, 610, 215, 288, 390, 386, 105, 114,
338, 225, 625, 223, 380, 1, 307, 160, 599, 268, 10, 501, 486, 239, 492, 41, 83, 285,
471, 630, 231, 45, 617, 188, 99, 13, 572, 387, 88, 561, 211, 70, 556, 313, 9, 63,
44, 249, 413, 174, 269, 138, 565, 472, 405, 189, 73, 517, 93, 331, 520, 419, 394,
36, 396, 317, 43, 437, 392, 382, 628, 185, 550, 475, 554, 447, 0, 379, 456, 91, 181,
42, 389, 52, 135, 474, 143, 524, 540, 263, 221, 169, 274, 453, 161, 17, 136, 258,
110, 511, 332, 259, 452, 89, 90, 194, 224, 373, 354, 401, 15, 187, 602, 516, 424,
369, 8, 590, 626, 513, 54, 175, 541, 426, 163, 608, 3, 457, 459, 166, 479, 208, 321,

29

9

20
2
2

1
>

219, 327, 124, 574, 555, 55, 197, 261, 112, 157, 529, 355, 242, 37, 131, 596, 178,
441, 130, 500, 637, 141, 448, 458, 485, 573, 320, 445, 609, 201, 252, 250, 34, 95,
151, 351, 449, 519, 402, 253, 311, 126, 142, 87, 289, 620, 616, 528, 366, 439, 5,
595, 551, 463, 543, 636, 370, 601, 435, 398, 49, 527, 553, 489, 350, 271, 339, 533,
301, 356, 167, 237, 292, 260, 430, 611, 25, 367, 238, 639, 202, 61, 404, 538, 121,
182, 279, 634, 74, 420, 371, 314, 423, 629, 406, 461, 128, 443, 624, 568, 48, 127,
7, 56, 2, 154, 300, 559, 184, 585, 77, 6, 395, 57, 265, 496, 96, 560, 421, 604, 621,
273, 473, 186, 162, 374, 504, 362, 542, 330, 410, 434, 218, 440, 364, 510, 502, 86,
119, 139, 359, 65, 523, 521, 247, 376, 564, 155, 283, 581, 547, 12, 256, 557, 270,
278, 308, 429, 526, 100, 310, 78, 94, 469, 82, 334, 546, 363, 587, 14, 21, 209, 532,
50, 451, 282, 257, 297]
test_shuffle = [80, 56, 152, 138, 40, 68, 155, 66, 13, 130, 47, 60, 129, 73, 5, 114,
139, 18, 79, 65, 19, 110, 143, 48, 57, 49, 104, 137, 46, 127, 43, 107, 118, 51, 28,
109, 136, 94, 74, 131, 39, 151, 132, 121, 72, 62, 24, 37, 25, 6, 58, 52, 78, 16,
122, 145, 153, 150, 113, 141, 142, 35, 61, 84, 105, 36, 108, 96, 64, 148, 30, 3, 10,
42, 44, 32, 0, 85, 146, 100, 125, 135, 140, 154, 147, 97, 7, 67, 21, 38, 31, 27,
82, 99, 81, 93, 86, 14, 22, 9, 126, 89, 101, 11, 144, 88, 119, 117, 83, 158, 149,
33, 115, 54, 156, 70, 45, 134, 69, 34, 92, 77, 8, 71, 128, 12, 4, 53, 90, 26, 29,
106, 17, 133, 120, 41, 55, 91, 1, 20, 124, 50, 75, 116, 157, 2, 87, 102, 98, 23,
111, 59, 95, 15, 103, 123, 76, 159, 112, 63]
Get the preprocessed features for the old parent, young parent and child pictures.
The list index is the id of the parent/child.
old_features = get_old_features ()
young_features = get_young_features()
child_features = get_child_features ()

Define the old, young and all train dataset.

old_train_set = combine_pair(old_-features[train_idxs], child_-features[train_idxs]) +
combine_pair (old_features[train_idxs], child_features|[neg_train_children])

young_train_set = combine_pair(young_features|[train_idxs], child_-features[train_idxs]) +
combine_pair (young_features [train_idxs|, child_features|[neg_train_children])

all_train_set = old_train_set 4+ young_train_set

Define the old, young and all test dataset.
old_test_set = combine_pair(old_-features|[test_idxs], child_features[test_-idxs]) +
combine_pair (old_features[test_idxs], child_features|[neg_test_children])

; young_test_set = combine_pair(young_features|[test_idxs], child_features[test_idxs]) +

combine_pair (young_features|[test_idxs], child_features|[neg_test_children])
all_test_set = old_-test_set + young_test_set

define the old—young test dataset
old_young_test_set = combine_pair(old_features[test_-idxs], young-_-features[test_-idxs]) +

combine_pair (old_features|[test_idxs], young_features|[neg_test_children])

Shuffle the different train and test sets.

old_train_set = old_-train_set [[i for i in train_shuffle if i < len(old_train_set)]]

young_train_set = young_train_set [[i—len(young_train_set) for i in train_shuffle if i >=
len (young_train_set)]]

all_train_set = all_train_set[train_shuffle]

old_test_set = old_-test_set [[i for i in test_-shuffle if i < len(old_test-set)]]

young_test_set = young_test_set [[i—len(young_test_set) for i in test_shuffle if i >= len
(young_-test_set)]]

all_test_set = all_test_set[test_shuffle]

old_young_test_set = old_young_test_set[[1 for i in test_shuffle if i < len(old_test_set

)11

Define the sub datasets: (train, test)
old_child = old_train_set , old_test_set
young_child = young_train_set , young_test_set
any_child = all_train_set , any_test_set

; old_young = None, old_young_test_set

30

	Introduction
	Related Work
	Syndrome classification
	Kinship verification

	Data
	UB KinFace dataset
	UB KinFace split
	KdVS dataset

	Methods
	Preprocessing
	Feature selection
	Classifier

	Experiments
	Kinship verification task
	Identification task
	Syndrome detection task

	Results
	Kinship verification results
	Identification results
	Syndrome detection results

	Discussion
	UB KinFace dataset
	KdVS dataset
	Feature extraction
	Kinship verification for syndrome detection
	Unsuitable for diagnosis

	Conclusion
	Future work
	Creation of new KdVS dataset
	Statistical diagnosis using deep neural networks
	Other applications

	Results parameter search
	Results concatenation
	Results difference

	Confusion matrices
	Kinship verification task
	Identification task
	Syndrome detection task

	KinFace gender annotation
	Train - test split description

