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“The divergent series are the invention of the devil, and it is a shame to base
on them any demonstration whatsoever.”

Niels Henrik Abel

“If you know the restrictions, you can operate unrestrictedly within them.”

Justus Anton (Jules) Deelder

“God is a mathematician of a very high order, and He used very advanced
mathematics in constructing the universe.”

Paul Adrien Maurice Dirac

“I find it difficult to be afraid of something I cannot imagine.”

Justus Anton (Jules) Deelder

“May not music be described as the mathematics of the sense, mathematics as
music of the reason? the soul of each is the same! Thus the musician feels
mathematics, the mathematician thinks music, - music the dream, mathematics
the working life - each to receive its consummation from the other when the hu-
man intelligence, elevated to its perfect type, shall shine forth glorified in some
future Mozart-Dirichlet or Beethoven-Gauss - a union already not indistinctly
foreshadowed in the genius and labours of a Helmholtz!”

James Joseph Sylvester



Abstract

In order to assign a finite value to a divergent series in a useful and mathematically justified
way, it turns out that we can ‘extend’ the notion of the convergence of an infinite series by
introducing so-called summation methods. After we have explained the basic principles of
summability theory (the mathematical subfield concerning summation methods and their
interrelationships), we will focus on a particular type of summation methods: Cesàro
summation. We will show various properties of Cesàro summation accompanied with
examples in which we apply the methods for assigning finite values to divergent series.
Thereafter, we will construct a full generalization of Cesàro summation which seems to
be able to sum more ‘wildly’ divergent series. Furthermore, for the defining series of the
Riemann zeta function, the generalized method corresponds with the analytic continuation
of this function. In conclusion, we show that the assigned values are not completely picked
out of thin air and we will see which insights summability theory can give us in (pure)
mathematics as well as other sciences.
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1 Introduction

1.1 Motivation

Although no one expects it at first sight, the investigation of divergent series leads to
many insightful and useful results in mathematics. According to the now general accepted
definition given by Augustin-Louis Cauchy (1789-1857), an (infinite) series is called con-
vergent if the sequence of partial sums converges to a finite limit; the series is divergent
when this is not the case. Some examples of divergent series are:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · =

∞∑
k=1

1

k
, (1.1)

1− 1 + 1− 1 + 1− · · · =
∞∑
k=0

(−1)k, (1.2)

1 + 1 + 1 + 1 + 1 + · · · =
∞∑
k=0

1, (1.3)

1 + 2 + 3 + 4 + 5 + · · · =
∞∑
k=1

k. (1.4)

It turns out that by performing simple manipulations on a given divergent series,
there can be assigned a (finite) limit to it. For the geometric series,

∑∞
k=0 cr

k, one can for
example say that

∞∑
k=0

crk = c+
∞∑
k=1

crk = c+
∞∑
k=0

crk+1 = c+ r
∞∑
k=0

crk

in which one would say that
∑∞

n=0 cr
k = c

1−r whenever r 6= 1. Actually, this series
only converges (to c

1−r ) whenever |r| < 1 and hence the performed manipulations and
derivated result are only valid whenever |r| < 1. It is however possible to extend or
generalize the notion of ordinary summation to a more general notion so that, in this
generalized framework, it holds that the ‘sum’ of

∑∞
k=0 cr

k does follow to be equal to c
1−r

whenever r 6= 1.
In this thesis we will explain the process of assigning sums by generalized notions

of summation in more detail. After this we assess its veracity and state results which
unexpectedly might lead to deep mathematical insights. In order to properly state research
questions and formulate the essential theory, we will first give some historical background.

1.2 Historical background

According to [3], till up to the 19th century divergent series were merely used. It is known
that Newton and Leibniz used them in some of their computations and Euler used it as
well. Mostly, divergent series were being treated as if they were convergent and this led to
many contradictions and confusion. In the beginning of the 19th century, things became
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Introduction

to be rigorously defined by mathematicians such as Cauchy and Niels Henrik Abel (1802-
1829) and the use of divergent series became somewhat ‘forbidden territory’. Ironically
though, Cauchy made one exception for the use of divergent series (the application of
Stirling’s formula to approximate the Gamma function) and Abel has given results to his
name which are central in the study of divergent series.

At the end of the 19th century, when the concepts and results in mathematics became
being defined in a rigorously and almost purely symbolic way, the act of performing math-
ematics matured. Mathematics became more and more being grounded on precisely stated
definitions in which theorems were proposed as logical consequences of these definitions.
People again started thinking about divergent series and posed new questions: In which
ways can we alternatively define the ‘sum of a series’? What are desirable properties for
our ‘sum’? What are the relations between the different approaches?

After 1890, Ernesto Cesàro (1859-1906) gave the first explicit definition of a summation
method ; shortly therafter, various other mathematicians begun to construct summation
methods and built generalizations upon them. Also, people started to develop new meth-
ods for the investigation of divergent integrals (in some sense the uncountable version of the
sum of a series), divergent products and multiplication of divergent series. Nowadays, the
subject of assigning values to divergent series has been developed into a well-acknowledged
field of mathematics (called summability theory) and can be stated in terms of functional
analytic theory among other branches of modern mathematics. Also, it is widely applied
within other subfields of mathematics (e.g. analytic number theory, differential equations
and Fourier analysis) and in other sciences such as theoretical physics (e.g. regularization
methods for vacuum energy calculations in quantum field theory, mathematical derivation
of the Casimir effect and the calculation of the critical dimension in bosonic string theory).

According to [6], the usage of summation methods for divergent series can merely be
seen as a ‘tool’ which sometimes just happens to work and there always have to be taken
considerations regarding the context of the situation in order to apply the tool. That
is to say, the use of summation methods which in general not comply with some of the
most elementary properties of ordinary summation could possibly lead to inconsistent
results and false interpretations. This is especially made clear when we reason in terms of
extended number systems such as the hyperreal numbers, in which according to e.g. [4] we
get a better picture of the nature of divergent series and conditions on when to use them.
We can thus say that the veracity in the assigned value to some divergent series is greatly
dependent on the particular summation method and the context in which one applies it.

1.3 Research questions

In order to properly conduct a meaningful and well-directed research, it may be useful to
state a research question. Below, we will state the main research question which will be
answered after giving the answers to three appropriate subquestions.

Which insights does the assignment of finite values to divergent series give
us?

1. How can we extend the notion of convergence of an infinite series?
2. How can we assign finite values to divergent series in a justified way?
3. What is the veracity of the assigned values?
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2 Summability theory

2.1 Desirable axioms

In order to give an answer to subquestion 1, we have to dive deeper into the theory of
summability and develop a mathematical framework in which we can state alternative
definitions of series’ convergence. For this, we will mainly follow [3] and [2] and initially
state our theory in the context of real analytic and linear algebraic theory so we restrict
ourselves mainly to series with terms in the real numbers (although many of the statements
hold valid when replacing R with C).

Recall the classical notion of convergence of an infinite series a =
∑∞

k=0 ak with partial
sums sn =

∑n
k=0 ak: The series a converges to L ∈ R if its sequence of partial sums s = (sn)

(with n ∈ N, N will include 0 throughout this text unless stated otherwise) converges to
L. We immediately see that it is valid to perform linear manipulations on convergent
series and its limiting values and that both adding or subtracting terms from a convergent
series will lead to the limiting value plus or minus those subtracted terms. We can thus
regard these properties (from now on called linearity and stability) as quite essential and
candidates for the axioms of the to be defined summation methods (also, following [6],
we can regard these properties as essential in order to bear properly ‘signification’ in the
interpretation of the summation method connected to the material world).

Up till now, we have only informally spoken about “summation methods”. In order to
make more precise statements regarding the axioms and properties of summation methods,
we first have to give the mathematical definition of a summation method.

Definition 1. Let us consider the series a with the corresponding sequence of partial
sums s. On the set (or vector space) of sequences where it attains a finite value, S, we
define a summation method as a transformation T : S → R. We say that a is T -summable
to L ∈ R if T (s) = L.

Remark 1. Often, T can be written as a composition T2 ◦ T1 with T1 : S → S being a
sequence-to-sequence transformation (or operator) and T2 : S → R being the ‘limiting
procedure’. For instance, in a method called Cesàro summation (which we will discuss
more detailed in the next chapter) the operator T1 can be seen as a matrix which maps the
sequence vector s = (sn) to the sequence vector σ = (σm) (in which σm = s0+s1+···+sm

m+1 )
and T2 takes the limit of σm for m → ∞. In ordinary summation, T2 is equally defined
and T1 can now in fact be seen as the identity matrix.

Remark 2. For some methods it is more convenient to state this in terms of the set of
appropriate series1 A and say that T = T2 ◦ T1 with T1 : A → A and T2 : A → R. We
now say that a is T -summable to L if T (a) = L. For instance, in a method called Abel
summation the operator T1 can be seen as a linear transformation which maps the series
a =

∑∞
k=0 ak to the series ã(x) =

∑∞
k=0 akx

k and T2 takes the limit of ã(x) for x→ 1−.

Now that we have more precisely stated the notion of a summation method, we can
state the as earlier described properties which could be regarded as desirable axioms in
constructing our summation methods.

1Note that there exists a one-to-one correspondence between the elements of S and A, we namely have
that a0 = s0 and ak = sk − sk−1, k ∈ N+.
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Summability theory

Definition 2 (Linearity). A summation method T is linear if T (αs + t) = αT (s) +
T (t), for all α ∈ R and s, t ∈ S. Note that this is also well-defined if we replace R with
the complex numbers C.

Remark. When T is linear, T1 it may be viewed as a linear operator and hence it can be
represented by an (infinite) matrix (with respect to the standard basis by convention);
with this in mind, we can apply linear algebraic and functional analytic arguments to it.
The operator T1 is sometimes also called the summability kernel.

The second desirable property for T to have will be defined below. Sometimes, this is
also called the ‘shifting’ property.

Definition 3 (Stability). Let us give a summation method T and some s = (sn) ∈ S.
Now define s′ as the sequence with s′n = sn+1 − s0; this can also be interpreted in the
sense that the corresponding series a is ‘shifted’ to the left (i.e. a′k = ak+1). We now say
that T is stable if s′ ∈ S and T (s′) = T (s)− s0.

Remark. The method T is also said to be stable if we can appropriately make a ‘shift to the
right’ and ‘plug in the term’ a′0 = s′0; i.e. a′k+1 = ak, s

′
n+1 = sn+ s′0 and T (s′) = T (s) + s′0.

Of course, a summation method has preferably be as compatible possible to ‘ordinary’
summation. For this reason we define the notion of regularity of a summation method;
when we argument in the perspective of an e.g. hyperreal or extended real codomain of T
(where ±∞ are included as well-defined objects) and the method is still regular, we will
say it is totally regular.

Definition 4 (Regularity & Total Regularity). A summation method T is called
regular if, for all s = (sn) ∈ RN, it holds that limn→∞ sn = L ∈ R implies s ∈ S and
T (s) = L. We can furthermore say that T is totally regular whenever, for all s ∈ RN, it
holds that limn→∞ sn = ±∞ implies T (s) = ±∞.

The regularity of a method is (by historical reasons) called an Abelian theorem; in gen-
eral, Abelian theorems will state the ‘compatibility’ between different summation methods.
Abelian theorems also have converse statements (Tauberian theorems); such statements
assert that whenever the summation method assigns a (finite) value and some case-specific
side condition holds (often regarding the asymptotic nature of the terms in the series),
the series was summable in its ‘ordinary’ (or initially defined) manner anyway and the
corresponding limits coincide. When one considers the negation of a Tauberian theorem,
it can be in some way regarded as a ‘limitation theorem’; it turns out that all summa-
tion methods in principle fail to sum series which diverge too rapidly or too slow. In the
next section we will talk more about the compatibility between summation methods and
sufficient and necessary conditions for T to be (totally) regular.

2.2 Compatibility of methods

Let us give two methods T (with domain S) and T ′ (with domain S ′). The methods are
said to be consistent if T (s) = L and T ′(s) = L′ implies L = L′ for each s ∈ S ∩S ′, this in
fact means that the two methods ‘sum’ the same series to the same value. In the following
definition, we will give a more precise meaning to the relationships between S and S ′.
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Summability theory

Definition 5 (Compatibility, Strength & Equivalence). Let us give two consistent
methods T and T ′ with domains S and S ′ respectively. We say T is compatible to T ′ if
S ⊇ S ′, T is stronger than T ′ if S ⊃ S ′ and T is equivalent to T ′ if S = S ′.

Since we can also regard ‘ordinary summation’ as a summation method, we can derive
the needed properties for T in order to be regular (or compatible/stronger than ordinary
summation). As stated earlier we prefer that T is linear; in this case the following theorem
holds (considering the scope of this thesis, only the sufficiency will be proven here).

Theorem 1 (Silverman-Toeplitz, one-sided proof). The linear summation method
T with operator T1 = (tmn) is regular if and only if the following holds:

(i) sup{
∑∞

n=0 |tmn| : m ∈ N} <∞,

(ii) limm→∞ tmn = 0 for all n ∈ N,

(iii) limm→∞
∑∞

n=0 tmn = 1.

Proof. Let us give the convergent series a with its sequence of partial sums (sn) converging
to L. By the convergence of (sn) we know it is bounded, hence there exists a K > 0 such
that each |sn| ≤ K. Now

(T1s)m =

∞∑
n=0

tmnsn ≤
∞∑
n=0

|tmnsn| ≤
∞∑
n=0

|tmn||sn| ≤ K
∞∑
n=0

|tmn| <∞

where the last inequality follows by (i). Hence each (T1s)m is well-defined and we can
write

(T1s)m =

∞∑
n=0

tmn(sn − L) + L

∞∑
n=0

tmn. (2.1)

By (i) and the boundedness and convergence of (sn), we can introduce some I > 0 such
that each

∞∑
n=0

|tmn| < I and |sn − L| < I. (2.2)

By the convergence of (sn), we see furthermore that for each ε > 0 there exists a N ∈ N
such that n > N implies

|sn − L| <
ε

2I
. (2.3)

For the first term in the right hand side of (2.1) we see that∣∣∣∣∣
∞∑
n=0

tmn(sn − L)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=0

tmn(sn − L) +
∞∑

n=N+1

tmn(sn − L)

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
n=0

tmn(sn − L)

∣∣∣∣∣+

∣∣∣∣∣
∞∑

n=N+1

tmn(sn − L)

∣∣∣∣∣
≤

N∑
n=0

|tmn||(sn − L)|+
∞∑

n=N+1

|tmn||(sn − L)|.
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Summability theory

Using (2.3) and (2.2) we see that

∞∑
n=N+1

|tmn||(sn − L)| < ε

2I

∞∑
n=N+1

|tmn| ≤
ε

2I

∞∑
n=0

|tmn| <
ε

2
.

Moreover, by (ii), we see that there exists a N ′ ∈ N such that for each n = 0, . . . , N and
m > N ′ it holds that |tmn| < ε

2I(N+1) which in turn implies (using (2.2))

N∑
n=0

|tmn||(sn − L)| < I

N∑
n=0

|tmn| < I(N + 1)
ε

2I(N + 1)
=
ε

2

for m > N ′. Consequently, for every ε we now have that m > N ′ implies∣∣∣∣∣
∞∑
n=0

tmn(sn − L)

∣∣∣∣∣ < ε

2
+
ε

2
= ε,

hence

lim
m→∞

∞∑
n=0

tmn(sn − L) = 0. (2.4)

Now by (2.4), our assumption (iii) and applying the limiting operator T2 to (2.1) we get

T (s) = lim
m→∞

(T1s)m = L.

This proves the regularity of T . For a proof of the necessity, we refer to theorem 1.1 in
[2].

We can also impose further conditions on T to let it be a totally regular method. In
this sense one might say that T can be seen as a proper extension of ordinary summation
which will give us an answer to subquestion 1.

Corollary 1. The linear summation method T with operator T1 = (tmn) is totally regular
if it is regular and it holds that all tmn ≥ 0.

Proof. Let us give the series a with sequence of partial sums (sn) such that limn→∞ sn =
∞. We can now say that for each L > 0 there exists some N ∈ N such that n > N implies
sn > L. Now

(T1s)m =

∞∑
n=0

tmnsn =

N∑
n=0

tmnsn +

∞∑
n=N+1

tmnsn >

N∑
n=0

tmnsn + L

∞∑
n=N+1

tmn.

The first term in the most right hand part is a finite quantity and the second term can
be made sufficiently large by considering the fact that all respective tmn are nonnegative
where at least one tmn > 0. This concludes that

T (s) = lim
m→∞

(T1s)m =∞.

The case in which limn→∞ sn = −∞ is similar.
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Summability theory

In the next chapter we wil dive deeper into a particular type of summation methods
which one in an unified way could call Cesàro summation. After giving the most elemen-
tary variant, we will gradually generalize it and show that this Cesàro type of methods
possess nice properties (such as linearity and regularity) which makes it a good alternative
to ordinary summation. There are in fact many types of methods which possess this nice
properties, notable mentions are Abel, Borel and Euler summation. Due to the fact that
we simply cannot explain the whole mathematical field of summability theory in one thesis,
we tend to only focus on the theory of Cesàro summation. Furthermore, we can say that
Cesàro summation is an interesting choice due to its historical relevance and applicability.
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3 Cesàro summation

3.1 (C, 1)-method

In the late 19th-century, Cesàro proposed a summation method which is now generally
accepted to be the first rigourous defined summation method in history; it could even be
seen as the starting point of summability theory. We will see that this method provides
a good alternative to ordinary summation. Furthermore, (generalizations of) the method
has a lot of applications in other subfields of mathematics such as Fourier analysis and, as
we will see, surprising connections with open questions within the field of analytic number
theory.

Definition 6 ((C, 1)-method). Let us give some series a =
∑∞

k=0 ak with an associated
sequence of partial sums s = (sn). Now let σ = (σm) represent the sequence of arithmetic
means of (sn), i.e.

σm =
s0 + s1 + · · ·+ sm

m+ 1
.

If limm→∞ σm exists and is equal to L ∈ R, we say that the Cesàro sum (C,1) of a is
defined by (C, 1)(s) = L.

Strictly spoken, the (C, 1)-method is a special case of a so-called Nörlund mean method,
we will however not discuss this in further detail. It is easy to see that (C, 1) is a linear
summation method, the proof of its stability will be postponed to the next section. By
its linearity, we may regard (C, 1) as a composed linear transformation: The first part can
be seen as an infinite matrix (that maps the ‘vector’ s to the ‘vector’ σ) and the second
part as the limiting procedure (limm→∞ σm). Especially the infinite matrix will be of
importance in our further analysis and therefore we will from now on call it the Cesàro
operator C. Note that the elements in its matrix representation are given by

cmn =
1

m+ 1
(0 ≤ n ≤ m), cmn = 0 (n > m). (3.1)

We also note that σm = (Cs)m and it thus essentially boils down to a matrix and vector
multiplication. By using the matrix representation of the Cesàro operator we can now
show that the (C, 1)-method is (totally) regular.

Proposition 1. The (C, 1)-method is totally regular.

Proof. Consider the matrix representation of the Cesàro operator as given in (3.1). In
order to show regularity, we have to check whether the conditions of the Silverman-Toeplitz
theorem are satisfied:
(i) Consider, for some m ∈ N, the series

∑∞
n=0 |cmn|. We see that they are all equal to∑m

n=0
1

m+1 +
∑∞

n=m+1 0 = 1 <∞ and hence sup{
∑∞

n=0 |cmn| : m ∈ N} <∞.
(ii) Consider, for some n ∈ N, limm→∞ cmn. We see that this expression is either equal to
limm→∞

1
m+1 or limm→∞ 0 and both are equal to 0.

(iii) Consider the sequence of series (
∑∞

n=0 cmn)m for m ∈ N. We immediately see that
each term in the sequence is equal to

∑m
n=0

1
m+1 +

∑∞
n=m+1 0 = 1 hence it is a sequence

of 1’s which obviously converges to 1.
Now that we have proven regularity, we immediately see that the (C, 1)-method is

totally regular since all cmn ≥ 0.
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Cesàro summation

We can also give an example of how the (C, 1)-method ‘extends’ the notion of summa-
tion to a series which is not convergent in its ordinary sense. This, in fact, gives an answer
to subquestion 2; namely that we have found a method which can assign finite values to
divergent series in a quite justified way.

Example 1. Consider the series g =
∑∞

k=0(−1)k as written in (1.2), this series is also
known as Grandi’s series. One sees that the accompanying sequence of partial sums is
(sn)∞n=0 = (1, 0, 1, 0, . . . ). Since this sequence does not converge to a finite limit, g is a
divergent series. Now let σ = (σm)∞m=0 be the sequence of arithmic means as given in
definition 4, i.e. σ = (1

1 ,
1
2 ,

2
3 ,

2
4 ,

3
5 ,

3
6 ,

4
7 ,

4
8 , . . . ). It follows that limm→∞ σm = 1

2 and hence
the Cesàro sum (C,1) of g is defined and equal to 1

2 .

3.2 (C, α)-method

Later, Cesàro generalized his (C, 1)-method to a method we will call the (C,α)-method,
we initially assume that α ∈ N.

Definition 7 ((C,α)-method). Let us give some series a =
∑∞

k=0 ak with an associated

sequence of partial sums s = (sn). Now define s
(0)
n = sn and in general s

(α)
n =

∑n
k=0 s

(α−1)
k

for α ∈ N+. Aditionally, let e
(α)
n represent s

(α)
n in the special case where a0 = 1 and ak = 0

for k = 1, 2, . . . . If limn→∞
s
(α)
n

e
(α)
n

exists and is equal to L ∈ R, we say that the Cesàro sum

(C,α) of a is defined by (C,α)(s) = L.

In order to make more sense of this definition, we state (without derivation) two useful

equations. These equations reveal the underlying relationships between s
(α)
n and ak and

give us a nice ‘tool’ for applying the (C,α)-method. The derivation of these equations is
based on a so-called binomial expansion and is written in §5.4 of [3] (the relevant equations
are (5.4.5) and (5.4.6)).

s(α)
n =

n∑
k=0

(
n− k + α

α

)
ak, (3.2)

e(α)
n =

(
n+ α

α

)
∼ nα

(α)!
(3.3)

where ∼ means is asymptotic to1.
Due to these facts and the definition of the (C,α)-method, one thus also says that the

series a =
∑∞

k=0 ak is (C,α)-summable to L if and only if

lim
n→∞

1

nα

n∑
k=0

(n− k + α)!

(n− k)!
ak = L. (3.4)

One observes that this generalization reduces to ordinary summation when α = 0 and
complies with the (C, 1)-method when α = 1. Since the (C, 1)-method can be seen as
an ‘extension’ of ordinary summation, one can hypothesize that the method becomes
more powerful each time we increase α; as we will see later, this indeed is partially true.
Although one might expect that, for example, the (C, 1 000 000)-method is a very strong
method, it is still not able to sum all divergent series; see the next example.

1i.e. f(n) ∼ g(n) if and only if limn→∞
f(n)
g(n)

= 1.

9
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Example 2. Consider the series a =
∑∞

k=0 1, as written in (1.3). In order to determine

the (C, 1 000 000)-sum of it, we have to check whether limn→∞ s
(1 000 000)
n /e

(1 000 000)
n exists

and is equal to a finite value. This task can be made more efficient by checking, according
to (3.4), whether

lim
n→∞

1

n1 000 000

n∑
k=0

(n− k + 1 000 000)!

(n− k)!
= lim

n→∞

n∑
k=0

(k + 1 000 000)!

n1 000 000(k)!

exists and approaches a finite value. Since the last term of the series in the RHS of the
equation is equal to

(n+ 1 000 000)(n+ 999 999) · · · (n+ 1)

n1 000 000

which for any n is larger than 1 and thus is not equal to 0 whenever n→∞, we see that
the above series is not convergent. Hence the series a is not (C, 1 000 000)-summable.

We can even further extend the definition of (C,α)-method to the case where α can
be any real number greater than −1. Due to some technicalities, it is proven infeasible
that we include negative integers α or more generally that α ≤ −1 (see also §5.5 of [3]).
Also, the to be stated definition will in principle make sense when we regard α ∈ C (with
<(α) > −1) but according to the literature and the results we shall prove we will restrict
α to be a real number larger than −1. First we note that the combinations and factorials
appearing equations (3.2) and (3.3) can be rewritten and hence extended in terms of the
gamma function:

s(α)
n =

n∑
k=0

Γ(n− k + α+ 1)

Γ(α+ 1)Γ(n− k + 1)
ak, (3.5)

e(α)
n =

Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
∼ nα

Γ(α+ 1)
. (3.6)

Definition 8 ((C,α)-method, revisited). Let us give some series a =
∑∞

k=0 ak with an

associated sequence of partial sums s = (sn) and let α > −1. If limn→∞
s
(α)
n

e
(α)
n

exists and is

equal to L ∈ R, or rather using (3.5) and (3.6) if

lim
n→∞

1

nα

n∑
k=0

Γ(n− k + α+ 1)

Γ(n− k + 1)
ak = L,

we say that the Cesàro sum (C,α) of a is defined by (C,α)(s) = L.

It is easy to see that the (C,α)-method is linear. Its stability will be shown below.

Proposition 2. For each α > −1 we have that the (C,α)-method is stable.

Proof. Let us give two sequences s, s′ and the associated series a, a′ where s′n = sn+1 − s0

and a′k = ak+1. It suffices to prove that a is (C,α)-summable (s ∈ S) implies s′ ∈ S
and (C,α)(s′) = (C,α)(s) − s0; the proof that s′ ∈ S implies s ∈ S and (C,α)(s) =
(C,α)(s′) + s0 is essentially the same.

10
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We note that limn→∞ s
′(α)
n = limn→∞ s

′(α)
n−1 with

s′
(α)
n−1 =

n−1∑
k=0

Γ((n− 1)− k + α+ 1)

Γ(α+ 1)Γ((n− 1)− k + 1)
a′k

=

n−1∑
k=0

Γ(k + α+ 1)

Γ(α+ 1)Γ(k + 1)
a′n−1−k

=
n−1∑
k=0

Γ(k + α+ 1)

Γ(α+ 1)Γ(k + 1)
an−k

=
n∑
k=0

Γ(k + α+ 1)

Γ(α+ 1)Γ(k + 1)
an−k −

Γ(n+ α+ 1)

Γ(α+ 1)Γ(n+ 1)
a0.

We can thus say that

(C,α)(s′) = lim
n→∞

s′(α)
n

e
(α)
n

= lim
n→∞

∑n
k=0

Γ(k+α+1)
Γ(α+1)Γ(k+1)an−k −

Γ(n+α+1)
Γ(α+1)Γ(n+1)a0

Γ(n+α+1)
Γ(α+1)Γ(n+1)

= lim
n→∞

s
(α)
n − e(α)

n s0

e
(α)
n

= (C,α)(s)− s0

and thus s′ ∈ S.

In order to show that the (C,α)-method, like the (C, 1)-method, can in general be
regarded as a proper extension to the notion of ordinary summation (i.e. the (C, 0)-
method!) we state two interesting results. This furthermore leads to the conclusion that
the introduction of the (C,α)-method, when taking α arbitrarily large enough, opens
indeed to some new possibilities in the assigning of finite values to divergent series. First
we state a useful equation:

s(α)
n =

n∑
k=0

Γ(n− k + α− β)

Γ(α− β)Γ(n− k + 1)
s

(β)
k , (α > β > −1). (3.7)

Although we not will derive this equation here, we remark it is written in a slightly different
form in equation (5.4.8) of [3] and can be derived along the same way as (3.5).

Proposition 3. For α ≥ 0 we have that the (C,α)-method is totally regular.

Proof. If α = 0 we have that the (C,α)-method reduces to ordinary sumation hence the
statement is trivial; therefore we consider α > 0. To show that the (C,α)-method is
regular, it suffices to verify the three conditions of the Silverman-Toeplitz theorem. In
order to verify this, we must know the matrix representation of the concerning operator

Cα := (cmn) (note that C1 = C). Keeping in mind the fact that α > 0 and s
(0)
n = sn we

see that (3.7) reduces to

s(α)
m =

m∑
n=0

Γ(m− n+ α)

Γ(α)Γ(m− n+ 1)
sn. (3.8)

11
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Hence

s
(α)
m

e
(α)
m

=
Γ(α+ 1)Γ(m+ 1)

Γ(m+ α+ 1)

m∑
n=0

Γ(m− n+ α)

Γ(α)Γ(m− n+ 1)
sn

and thus the matrix representation is given by

cmn =
Γ(α+ 1)Γ(m+ 1)Γ(m− n+ α)

Γ(α)Γ(m+ α+ 1)Γ(m− n+ 1)
(0 ≤ n ≤ m), cmn = 0 (n > m). (3.9)

It is easy to see that, when α > 0, each (cmn) ≥ 0; in order to prove the proposition we
therefore, according to corollary 1, only have to show that the method is regular. We can
indeed verify the three conditions:
(i) Consider, for some m ∈ N, the series

∑∞
n=0 |cmn|. We see that each

∞∑
n=0

|cmn| =
Γ(α+ 1)Γ(m+ 1)

Γ(m+ α+ 1)

m∑
n=0

Γ(m− n+ α)

Γ(α)Γ(m− n+ 1)
.

Now we remark from (3.6) that

Γ(α+ 1)Γ(m+ 1)

Γ(m+ α+ 1)
=

1

e
(α)
m

and from (3.8) and (3.6) that

e(α)
m =

m∑
n=0

Γ(m− n+ α)

Γ(α)Γ(m− n+ 1)
e(0)
n =

m∑
n=0

Γ(m− n+ α)

Γ(α)Γ(m− n+ 1)
.

Combining these two expressions we see that each
∑∞

n=0 |cmn| = 1 < ∞ and hence
sup{

∑∞
n=0 |cmn| : m ∈ N} <∞.

(ii) Consider, for some n ∈ N, limm→∞ cmn. We see that this expression is either equal to
limm→∞ 0 or

lim
m→∞

Γ(α+ 1)Γ(m+ 1)Γ(m− n+ α)

Γ(α)Γ(m+ α+ 1)Γ(m− n+ 1)
.

From (3.6), we note that
Γ(m+ 1)

Γ(m+ α+ 1)
∼ 1

mα

and
Γ(m− n+ α)

Γ(m− n+ 1)
∼ mα−1

which concludes that

lim
m→∞

Γ(α+ 1)Γ(m+ 1)Γ(m− n+ α)

Γ(α)Γ(m+ α+ 1)Γ(m− n+ 1)
= lim

m→∞

Γ(α+ 1)

Γ(α)m
= 0.

The expression must in any way thus to be equal to zero.
(iii) In (i) we saw that each

∑∞
n=0 cmn = 1 which defines (

∑∞
n=0 cmn)m to be a sequence

of 1’s which obviously converges to 1.

Proposition 4. For α > β > −1 we have that the (C,α)-method is compatible to the
(C, β)-method.
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Proof. Consider some series a with an associated sequence of partial sums s such that

(C, β)(s) = limn→∞
s
(β)
n

e
(β)
n

= L. Note from (3.6) and (3.7) that

s
(α)
m

e
(α)
m

=
m∑
n=0

Γ(α+ 1)Γ(m+ 1)Γ(m− n+ α− β)

Γ(m+ α+ 1)Γ(α− β)Γ(m− n+ 1)
s(β)
n

=
m∑
n=0

Γ(n+ β + 1)Γ(α+ 1)Γ(m+ 1)Γ(m− n+ α− β)

Γ(β + 1)Γ(n+ 1)Γ(m+ α+ 1)Γ(α− β)Γ(m− n+ 1)

s
(β)
n

e
(β)
n

.

Since by our assumption that s
(β)
n

e
(β)
n

is a convergent sequence to L and the fraction inside the

summation term reduces to elements in the matrix representation of the Cα−β operator as
described in (3.9) (which is in the previous proposition shown to be regular if α− β > 0),

we see that (C,α)(s) = limn→∞
s
(α)
n

e
(α)
n

= limn→∞
s
(β)
n

e
(β)
n

= L.

In some cases we even have that the (C,α)-method is stronger than the (C, β)-method
(α > β); i.e. there exists a series which is (C,α)-summable but not (C, β)-summable. The
following gives an example for the case α = 2 and β = 1.

Example 3. Consider the series

a = 1 +

∞∑
k=1

2k(−1)k

with sequence of partial sums s = (1,−1, 3,−3, 5,−5, · · · ), we clearly see that a is a
divergent series.
Now we try to apply the (C, 1)-method on it and hence we multiply the Cesàro operator
C (actually its matrix representation as given in (3.1)) with s:

1 0 0 0 0 · · ·
1
2

1
2 0 0 0 · · ·

1
3

1
3

1
3 0 0 · · ·

1
4

1
4

1
4

1
4 0 · · ·

1
5

1
5

1
5

1
5

1
5 · · ·

...
...

...
...

...
. . .





1
−1
3
−3
5
...


=



1
0
1
0
1
...


.

As we saw in example 1, the obtained sequence (vector) is divergent hence the (C, 1)-
method can not assign a finite value to a.
When we try to apply the (C, 2)-method on a, we can check whether there can be assigned
a finite value by checking whether the limit(s) as stated in the according definitions will
converge. Since this is a bit of a tedious computation, it is more efficient to multiply
the square of the Cesàro operator, C2, with it and check whether the obtained sequence
converges; as will be made clear in theorem 2 of the next section, multiplying the Cesàro to
the α-power and taking the limit of the obtained sequence gives (in general) equal results
as applying the (C,α)-method through the definition. Since we have already calculated
Cs = σ, we note that C2s = Cσ = u where u is in fact the same sequence as σ of example
1 and hence converges to 1

2 . This concludes that the Cesàro sum (C, 2) of a is well-defined
and is equal to 1

2 .
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Although the (C,α)-method is stronger than the (C, 1)-method (for at least α ≥ 2), it
can undoubtly still not sum all possible divergent series; we in some way also concluded
this in example 2. Besides the series (1.3) from example 2, we can also show that the
series (1.4) is, for each α > −1, not summable by the (C,α)-method. Furthermore, as we
will see in chapter 4, the harmonic series (written in (1.1)) will shown to be unsummable
by the (C,α)-method.

Example 4. Consider the series a =
∑∞

k=0(k+1) which is also written in (1.4) in a slightly
different form. Now we try to apply the (C,α)-method on it (α > −1); by definition we
have that there must be assigned a finite value to

lim
n→∞

1

nα

n∑
k=0

Γ(n− k + α+ 1)

Γ(n− k + 1)
(k + 1) = lim

n→∞

1

nα

n∑
k=0

Γ(k + α+ 1)

Γ(k + 1)
(n− k + 1) (3.10)

which equals

lim
n→∞

(
1

nα−1

n∑
k=0

Γ(k + α+ 1)

Γ(k + 1)
− 1

nα

n∑
k=0

Γ(k + α+ 1)

Γ(k)
+

1

nα

n∑
k=0

Γ(k + α+ 1)

Γ(k + 1)

)
.

Noting the similar work we did in proposition 3 to sum fractions of gamma functions and
looking to the “asymptotic expansion” (i.e. Γ(n+a)

Γ(n+b) ∼ na−b) as written in equation (3.6),
we see that:

lim
n→∞

1

nα−1

n∑
k=0

Γ(k + α+ 1)

Γ(k + 1)
= lim

n→∞

1

nα−1

(n+ 1)Γ(n+ α+ 2)

(α+ 1)Γ(n+ 2)
= lim

n→∞

n2 + n

α+ 1
,

lim
n→∞

−1

nα

n∑
k=0

Γ(k + α+ 1)

Γ(k)
= lim

n→∞

−1

nα
nΓ(n+ α+ 2)

(α+ 2)Γ(n+ 1)
= lim

n→∞

−n2

α+ 2

and

lim
n→∞

1

nα

n∑
k=0

Γ(k + α+ 1)

Γ(k + 1)
= lim

n→∞

1

nα
(n+ 1)Γ(n+ α+ 2)

(α+ 1)Γ(n+ 2)
= lim

n→∞

n+ 1

α+ 1
.

Hence (3.10) reduces to

lim
n→∞

(
n2 + n

α+ 1
− n2

α+ 2
+
n+ 1

α+ 1

)
= lim

n→∞

(
n2 + 2n+ 1

α+ 1
− n2

α+ 2

)
= lim

n→∞

(n2 + 2n+ 1)(α+ 2)− n2(α+ 1)

(α+ 1)(α+ 2)

= lim
n→∞

(n2 + 2n+ 1)(α+ 2)− n2(α+ 1)

(α+ 1)(α+ 2)

= lim
n→∞

n2 + (α+ 2)2n+ (α+ 2)

(α+ 1)(α+ 2)

=∞

by our assumption of α > −1. This leads to the conclusion that (3.10) tends to infinity and
the (C,α)-method is therefore incapable to assign a finite value to the concerned series.

This concludes that we have to find even more general methods which can ‘sum’ this
series.
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Cesàro summation

3.3 Further generalization

3.3.1 Hölder summation

In 1882, Otto Hölder (1859-1937) proposed a method similar to the (C,α)-method (where
α ∈ N). This method, now called Hölder summation (abbevriated as the (H,α)-method),
is almost equally defined as the (C, 1)-method but in this case the Cèsaro operator is
matrix-multiplied α times; i.e. we define the Hölder operator by Hα := Cα. After proving
the following lemma and theorem, we will immediately see that properties such as linearity,
stability, (total) regularity and compatibility will carry over to the (H,α)-method.

Lemma 1. Let us give the sequences s = (sn) and σ = (σn) with σn = s0+s1+···+sn
n+1 . Then,

for α ∈ N, we have that (C,α)(s) = L if and only if (C,α− 1)(σ) = L.

Proof. According to definition 7, equation (3.6) and the nature of the operator Cα we can
write

s
(α)
k =

(
k + α

α

)
(Cαs)k and σ

(α)
k =

(
k + α

α

)
(Cασ)k (3.11)

and in particular s
(1)
k = (k + 1)σ

(0)
k = (k + 1)σk. We know by the method of ‘summation

by parts’ (the discrete analogue of integration by parts and sometimes also called the Abel
transformation) that

n∑
k=0

(k + p)uk = (n+ p)u(1)
n −

n−1∑
k=0

u
(1)
k = (n+ p+ 1)u(1)

n − u(2)
n

for any p, uk ∈ R and k, n ∈ N. Therefore we see that

s(2)
n =

n∑
k=0

s
(1)
k =

n∑
k=0

(k + 1)σk = (n+ 2)σ(1)
n − σ(2)

n

and successively

s(3)
n = (n+ 3)σ(2)

n − 2σ(3)
n , · · · , s(α)

n = (n+ α)σ(α−1)
n − (α− 1)σ(α)

n . (3.12)

From (3.11) we now see that(
n+ α

α

)
(Cαs)n = (n+ α)

(
n+ α− 1

α− 1

)
(Cα−1σ)n − (α− 1)

(
n+ α

α

)
(Cασ)n

=⇒ (n+ α)!

α!n!
(Cαs)n = (n+ α)

(n+ α− 1)!

(α− 1)!n!
(Cα−1σ)n − (α− 1)

(n+ α)!

α!n!
(Cασ)n

=⇒ (n+ α)!(Cαs)n = (n+ α)α(n+ α− 1)!(Cα−1σ)n − (α− 1)(n+ α)!(Cασ)n

which eventually implies

(Cαs)n = α(Cα−1σ)n − (α− 1)(Cασ)n. (3.13)

Since the (C,α)-method is stronger (or becomes at least compatible) whenever α in-
creases, we know that limn→∞(Cα−1σ)n = L implies limn→∞(Cασ)n = L and therefore
by (3.13) also limn→∞(Cαs)n = L.
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Cesàro summation

Secondly, suppose that limn→∞(Cαs)n = L. Since σ
(α−1)
n = σ

(α)
n − σ

(α)
n−1, equation

(3.12) reduces to

s(α)
n = (n+ α)(σ(α)

n − σ(α)
n−1)− (α− 1)σ(α)

n = (n+ 1)σ(α)
n − (n+ α)σ

(α)
n−1.

By doing the same steps as we did to go from equations (3.11) and (3.12) to (3.13) we
now get

(Cαs)n = (n+ 1)(Cασ)n − n(Cασ)n−1.

From this, it follows that

(Cασ)n =
n(Cασ)n−1 + (Cαs)n

n+ 1

=
(Cαs)0 + (Cαs)1 + · · ·+ (Cαs)n

n+ 1
(3.14)

by the relation between σ and s and the linearity of the Cα-operator. Hence limn→∞(Cαs)n =
L implies limn→∞(Cασ)n = L and by (3.13) we now see that limn→∞(Cα−1σ)n = L.

Theorem 2. The (C,α)-method (with domain S) and the (H,α)-method (with domain S ′)
are equivalent; this means that S = S ′ and, for each α ∈ N, that (C,α)(s) = (H,α)(s) =
L ∈ R.

Proof. Take some s ∈ S such that (C,α)(s) = L. By lemma 1 we see that this is equivalent
to saying that (C,α−1)(H1s) = L where H1 = C is the Cesàro operator/matrix. This, in
turn, is equivalent to (C,α−2)(H2s) = L and gradually this turns out to be equivalent to
saying that (C, 0)(Hαs) = L hence (H,α)(s) = limm→∞(Hαs)m = L. Furthermore, every
(C,α)-summable series is thus (H,α)-summable and vice-versa, hence S = S ′.

Although the (C,α)- and (H,α)-methods are equivalent, they do not behave in the
same way when the ‘sums’ ought to be infinite (i.e. at series/sequences on which the
methods are not defined). We refer to theorem 54 in [3] for a proof on this matter. More
precisely, we have that (C,α)(s) = ±∞ implies (H,α)(s) = ±∞ but the converse is false
when α > 1. It is true that this statement can conjectured to be valid when one observes
the according operators Cα (as described in (3.9)) and Hα = Cα (the matrix as described
in (3.1) multiplied α times) which are not necessarily equal.

3.3.2 (Ck, g)-method

By considering the equivalence between the (C,α)- and (H,α)-methods and the fact that
they are both linear, stable, and totally regular, we can now introduce an even more
general summation method. By making use of polynomials p(C) in terms of the operator
C, we can obtain a method which we call from now on Generalized Cesáro summation
(abbevriated as the (C, g)-method); see also [8] and [9] (in the second reference, it is ‘more
naturally’ called “Remainder Cesáro summation”). It is true indeed that the naming is
not very convenient and “Generalized Hölder summation” seems in technical perspective
to be a better choice of the name; to be consistent with the literature we however keep
calling it Generalized Cesáro summation.

For practical and conventional reasons, we initially consider the soon to be defined
summability kernel Ck and the corresponding (Ck, g)-method (in a sense the ‘uncountable’
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variant of the (C, g)-method). The summability kernel Ck is used in the determination of
the Cesàro (or Hölder) limit of divergent functions s : [0,∞) → C (and thus also the by
s defined divergent improper integrals s(t) =

∫ t
0 a(t̃)dt̃). Since the sequence-to-sequence

operator C has the matrix representation (3.1), it becomes naturally that we define the
function-to-function operator Ck as

(
Ck(x)

)
[s] :=

1

x

∫ x

0
s(t)dt

and say that s has Cesáro limit L if limx→∞
(
Cαk (x)

)
[s] = L for some positive integer α.

If we now let s be in the function space F in which

F :=

{
s :

∫ x

0
|s(t) ln(t)m|dt <∞ for all x ≥ 0 and m ∈ N

}
,

we are ensured that Ck sends F to itself and hence Cαk becomes in turn a well-defined
operator from F to F ; see page 333 in [8]. Concludingly, we remark that each Cαk is a
linear, stable and totally regular operator2 and can be used to sum divergent series in the
case we introduce the partial sum function s(t) :=

∑
k≤t ak.

Definition 9 ((Ck, g)-method). Let us give some series a with an associated partial sum
function s ∈ F . If there exists some polynomial of the operator Ck, p(Ck), such that
p(1) = 1 and

lim
x→∞

(
p(Ck)(x)

)
[s] = L

we say that the generalized Cesàro sum (Ck, g) of a is defined by (Ck, g)(s) = L.

Remark. The condition p(1) = 1 ensures that the method is regular (although, as we will
see later on, it is not totally regular!). This can be verified by the fact that the coefficients
of the polynomial terms must sum to 1 and by the regularity of all the Cαk operators it will
turn out that p(Ck) will give the exact same values as the individual Cαk do in the case
of convergent series. The imposed condition on the polynomial furthermore implies that
L is uniquely determined hence (Ck, g) summmation can said to be well-defined; namely,
if we have for two concerning polynomials p1, p2 that limx→∞

(
p1(Ck)(x)

)
[s] = L1 and

limx→∞
(
p2(Ck)(x)

)
[s] = L2 we see that

L2 = lim
x→∞

(
p1(Ck)(x)

)
[
(
p2(Ck)(x)

)
[s]]

= lim
x→∞

(
p1(Ck)p2(Ck)(x)

)
[s]

= lim
x→∞

(
p2(Ck)p1(Ck)(x)

)
[s]

= lim
x→∞

(
p2(Ck)(x)

)
[
(
p1(Ck)(x)

)
[s]] = L1

since each of the transformations of s is convergent in the usual sense. Furthermore we
note, without giving the proof3, that the (Ck, g)-method is linear.

2For the linearity and stability we refer to §5.15 in [3] and for the total regularity one can verify the
conditions stated in theorems 6 and 11 of [3].

3The proof relies on commutativity properties of polynomials and can be found in lemma 3 of [8].
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Cesàro summation

Since Ck is a linear operator, we can consider its eigenvalues and eigenfunctions; the
reason why this is interesting will soon become clear. If λ ∈ C is an eigenvalue of Ck with
eigenfunction f ∈ F , we see that

(
(Ck−λ)(x)

)
[f ] = 0 for all x ≥ 0. Although the operator

(Ck − λ) will not give us a regular summation method, the ‘scaled’ operator 1
1−λ(Ck − λ)

with λ 6= 1 does indeed give us a regular method (since 1
1−λ(1− λ) = 1). We can thus say

that for any eigenfunction f with eigenvalue λ 6= 1 it holds that (Ck, g)(f) = 0 by taking
p(Ck) = 1

1−λ(Ck − λ) as the concerned polynomial. Note that the only f ’s which satisfy
1
x

∫ x
0 f(t)dt = f(t) are the constants and hence these are the eigenfunctions associated

with λ = 1; their (Ck, g)-sums are simply their values. We can also, for each eigenvalue
λ 6= 1, consider the notion of a generalized eigenfunction; this is a function f̃ ∈ F such
that

(
(Ck − λ)m(x)

)
[f̃ ] = 0 for all x ≥ 0 and some integer m ≥ 1. The set spanned

by all generalized eigenfunctions for a given λ, forms the generalized eigenspace for that
λ. Since the polynomials 1

(1−λ)m (Ck − λ)m are regular, we see that for each generalized

eigenfunction f̃ it holds that (Ck, g)(f̃) = 0. If we can now write a function s ∈ F in the
form (ignoring the trivial and useless case that s = R)

s(t) = R(t) +
n∑
i=1

cifi(t), (3.15)

in which ci ∈ C, fi is some (generalized) eigenfunction and R is a ‘remainder’ function
satisfying limx→∞

(
Cαk (x)

)
[R] = L, it holds by the linearity of the (Ck, g)-method that

(Ck, g)(s) = L. To make more sense of this, we can explicitely identify some (generalized)
eigenfunctions.

Theorem 3. Let us give the operator Ck with an eigenvalue of the form 1
ρ+1 (ρ ∈ C \ {0}

and <(ρ) > −1). The corresponding eigenfunction is given by

(i) f(t) = tρ.

Moreover, the generalized eigenspace is spanned by the generalized eigenfunctions

(ii) f̃(t) = tρ ln(t)m, m ∈ N.

Proof. (i) It is easy to see that f(t) = tρ is an eigenfunction since

(
Ck(x)

)
[f ] =

1

x

∫ x

0
tρdt =

1

x

1

ρ+ 1
xρ+1 =

1

ρ+ 1
xρ =

1

ρ+ 1
f(x).

To see that f must explicitely be given in the stated form, we have to check whether
the dimension of the eigenspace is 1. Consider some function g : [0,∞) → C such
that

(
Ck(x)

)
[g] = 1

ρ+1g which means that
∫ x

0 g(t)dt = 1
ρ+1xg(x). Differentiating

both sides with respect to x gives us g(x) = 1
ρ+1(g(x) + xg′(x)) which implies that

xg′(x)− ρg(x) = 0.

Since this is a homogeneous first-order linear ODE, its solution space must be one-
dimensional hence the dimension of the eigenspace is 1 and indeed g = f .
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(ii) First we check whether each f̃(t) = tρ ln(t)m (m ∈ N) satisfies
(
(Ck− 1

ρ+1)m+1(x)
)
[f̃ ] =

0 and hence is a generalized eigenfunction; this can be verified by an induction ar-
gument. For m = 0 this is indeed true, as we have seen in (i). Now assume it holds
for m = m′, hence (

(Ck −
1

ρ+ 1
)m
′+1(x)

)
[t̃ρ ln(t̃)m

′
] = 0 (3.16)

where the variable t̃ is written here to make notation more convenient later on. Now
we will check for m = m′ + 1. We note that(

(Ck −
1

ρ+ 1
)m
′+2(x)

)
[tρ ln(t)m

′+1]

=
(
(Ck −

1

ρ+ 1
)m
′+1(x)

)
[
(
(Ck −

1

ρ+ 1
)(t̃)
)
[tρ ln(t)m

′+1]] (3.17)

whereas

(
(Ck −

1

ρ+ 1
)(t̃)
)
[tρ ln(t)m

′+1] =
1

t̃

∫ t̃

0
tρ ln(t)m

′+1dt− 1

ρ+ 1

(
t̃ρ ln(t̃)m

′+1
)
. (3.18)

Evaluating the integral using integration by parts now gives us∫ t̃

0
tρ ln(t)m

′+1dt =
1

ρ+ 1

(
t̃ρ+1 ln(t̃)m

′+1
)
− m′ + 1

ρ+ 1

∫ t̃

0
tρ+1 ln(t)m

′

t
dt

hence we see that (3.18) reduces to

(
(Ck −

1

ρ+ 1
)(t̃)
)
[tρ ln(t)m

′+1] = −1

t̃

m′ + 1

ρ+ 1

∫ t̃

0
tρ ln(t)m

′
dt

and thus (3.17) gives us(
(Ck −

1

ρ+ 1
)m
′+2(x)

)
[tρ ln(t)m

′+1]

=
(
(Ck −

1

ρ+ 1
)m
′+1(x)

)
[−1

t̃

m′ + 1

ρ+ 1

∫ t̃

0
tρ ln(t)m

′
dt] (3.19)

=
(
(Ck −

1

ρ+ 1
)m
′+1(x)

)
[−1

t̃

m′ + 1

ρ+ 1

( 1

ρ+ 1
t̃ρ+1 ln(t̃)m

′ −
∫ t̃

0

1

ρ+ 1
tρ+1m′

ln(t)m
′−1

t
dt
)

]

=
(
(Ck −

1

ρ+ 1
)m
′+1(x)

)
[− m′ + 1

(ρ+ 1)2
t̃ρ ln(t̃)m

′
+

1

t̃

(m′ + 1)m′

(ρ+ 1)2

∫ t̃

0
tρ ln(t)m

′−1dt]

by using integration by parts. In conclusion, we see by using (3.16) that

(
(Ck −

1

ρ+ 1
)m
′+1(x)

)
[− m′ + 1

(ρ+ 1)2
t̃ρ ln(t̃)m

′
] = 0
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and in addition using the same methodology to derive (3.19) we see that

(
(Ck −

1

ρ+ 1
)m
′+1(x)

)
[
1

t̃

(m′ + 1)m′

(ρ+ 1)2

∫ t̃

0
tρ ln(t)m

′−1dt]

=
(
(Ck −

1

ρ+ 1
)m
′+2(x)

)
[−m

′ + 1

ρ+ 1
tρ ln(t)m

′
]

=
(
(Ck −

1

ρ+ 1
)(x)

)
[
(
(Ck −

1

ρ+ 1
)m
′+1(t̃)

)
[−m

′ + 1

ρ+ 1
tρ ln(t)m

′
]]

=
(
(Ck −

1

ρ+ 1
)(x)

)
[0] = 0.

Hence (
(Ck −

1

ρ+ 1
)m
′+2(x)

)
[tρ ln(t)m

′+1] = 0

and the statement holds.

To see that this are all generalized eigenfunctions and therefore span the generalized
eigenspace, we have to check whether the solution space of

(
(Ck − 1

ρ+1)d(x)
)
[g̃] = 0

(d ∈ N+) is d-dimensional and g̃(t) can be written as a linear combination of d
independent terms tρ ln(t)m (m = 0, . . . , d−1). We do this by an induction argument
as well. For d = 1 this is indeed true, as we have seen in (i). Assume it is true that
for d = d′ ∈ N+ the solution space of

(
(Ck − 1

ρ+1)d
′
(x)
)
[g̃] = 0 is d′-dimensional and

that g̃(t) can be written as a linear combination of d′ independent terms tρ ln(t)m

(m = 0, . . . , d′ − 1). Now we will check for d′ + 1 and note that(
(Ck −

1

ρ+ 1
)d
′+1(x)

)
[g̃] =

(
(Ck −

1

ρ+ 1
)d
′
(x)
)
[
(
(Ck −

1

ρ+ 1
)(t̃)
)
[g̃]] (3.20)

where we again take t̃ in order to retain convenient notation. From this we see,
by our induction hypothesis, that

(
(Ck − 1

ρ+1)(t̃)
)
[g̃] must be equal to an arbitrary

linear combination of d′ independent terms t̃ρ ln(t̃)m (m = 0, . . . , d′ − 1) which we
will briefly call I(t̃). Reordering terms and differentiating both sides with respect to
t̃ gives rise to the differential equation

g̃′(t̃)− ρ

t̃
g̃(t̃) = Ĩ(t̃)

with Ĩ(t̃) being derived from I(t̃) and is an addition of d′ linear independent loga-
rithmical terms with exponent up to d′ − 1. We see that this is an inhomogeneous
first-order linear ODE hence its solution space must be of one dimension higher than
the vector space spanned by the terms in Ĩ(t) (hence is equal to d′ + 1); this proves
the statement.

By using the previous theorem and the observation that for <(ρ) ≤ −1 it holds that
limt→∞ t

ρ ln(t)m = 0, we see that (3.15) translates to

s(t) = R(t) +

n∑
i=1

cit
ρi ln(t)mi (3.21)
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with ρi ∈ C\{0} and mi ∈ N. It is also interesting to explore the relationship between the
collection of constants ρi,mi and the (simplest) concerning polynomial p(Ck) such that
(Ck, g)(s) = limx→∞

(
p(Ck)(x)

)
[s] = L. This polynomial has to be chosen in order to

ensure that the (generalized) eigenfunctions cit
ρi ln(t)mi are assigned 0 and the remainder

function R(t) is assigned L. We do this as follows:

1. Take the list ρ1, . . . , ρn. For each distinct ρ in this list consider those ρi with ρi = ρ
and let m be the largest of the corresponding values of mi.

2. Consider, for each distinct ρ and the corresponding chosen m, terms of the form
(ρ+1
ρ )m+1(Ck − 1

ρ+1)m+1.

3. Construct the polynomial p(Ck) by the multiplication of all the terms from step
2 in addition with the factor Cαk (with α being the smallest integer such that
limx→∞

(
Cαk (x)

)
[R] = L). Since p(1) = 1, we are ensured that the summation

method is regular.

After this introduction of a more generalized Cesàro summation scheme, we can now
return to our original motivation and try to assign a finite value to the series as described
in (1.4).

Example 5. Consider the series a =
∑∞

k=1 k with partial sums up till n1 equal to n1(n1+1)
2 .

In order to obtain the partial sum function s(t1) we note that the continuous variable t1 ≥ 1
can be written as t1 = n1 + γ1 with n1 = bt1c and γ1 ∈ [0, 1) as a ‘saw-tooth’ function of
t1. In this example, we write subscripts 1, 2, 3 in order to retain convenient notation (i.e.
t2 = n2 + γ2 and t3 = n3 + γ3); this is similar with the reason why we wrote t̃ earlier on.
We now see that s(t1) can be explicitly written as

s(t1) =
n2

1 + n1

2
=

(n1 + γ1)2

2
+
(1

2
− γ1

)
n1 −

γ2
1

2
=
t21
2

+R(t1)

with R(t1) = R(n1 + γ1) =
(

1
2 − γ1

)
n1− 1

2γ
2
1 . Since t21 is an eigenvalue of the operator Ck,

we see by (3.21) that (Ck, g)(s) = limx→∞
(
Cαk (x)

)
[R] for some α ∈ N. We note that

(
Ck(t2)

)
[R] =

1

t2

∫ t2

0

((1

2
− γ1

)
n1 −

1

2
γ2

1

)
dt1

=
1

n2 + γ2

(∫ n2

0

((1

2
− γ1

)
n1 −

1

2
γ2

1

)
dt1

+

∫ n2+γ2

n2

((1

2
− γ1

)
n1 −

1

2
γ2

1

)
dt1

)

=
1

n2 + γ2

(∫ n2

0

((1

2
− (t1 − bt1c)

)
bt1c −

1

2
(t1 − bt1c)2

)
dt1

+

∫ n2+γ2

n2

((1

2
− (t1 − bt1c)

)
bt1c −

1

2
(t1 − bt1c)2

)
dt1

)
.

The first integral can be ‘split up’ into n2 subsequent integrals and we observe that the
according bt1c’s in each subsequent integral can be regarded as a constant. Moreover, we
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Cesàro summation

see that t1 − bt1c is periodic with period 1 and hence for j ∈ N and τ ∈ R we get that∫ j+τ

j
(t1 − bt1c)dt1 =

∫ τ

0
t1dt1.

By this observations we see that
(
Ck(t2)

)
[R] is equal to

1

n2 + γ2

(
n2−1∑
j=0

(1

2
−
∫ 1

0
t1dt1

)
j − 1

2
n2

∫ 1

0
t21dt1

+ n2

∫ γ2

0

(1

2
− t1

)
dt1 −

1

2

∫ γ2

0
t21dt1

)

=
1

n2 + γ2

(
− n2

6
+
n2γ2

2
− n2γ

2
2

2
− γ3

2

6

)
= −1

6
+
γ2

2
− γ2

2

2
+O

( 1

n2

)
.

Applying again the Ck operator on the above expression we get that

(
C2
k(t3)

)
[R] =

(
Ck(t3)

)
[−1

6
+
γ2

2
− γ2

2

2
+O

( 1

n2

)
]

= −1

6
+

1

t3

∫ n3+γ3

0

(γ2

2
− γ2

2

2

)
dt2

= −1

6
+

1

n3 + γ3

(1

2
n3

∫ 1

0
(t2 − t22)dt2 +

1

2

∫ γ3

0
(t2 − t22)dt2

)
= −1

6
+

1

n3 + γ3

(1

2
n3(

1

2
− 1

3
) +

1

2
(
γ2

3

2
− γ3

3

3
)
)

= −1

6
+

1

1 + γ3
n3

(1

4
− 1

6
+

1

2

( γ2
3

2n3
− γ3

3

3n3

))
.

Taking α = 2 and x = t3 we now see that the generalized Cesàro sum of the concerning
series is (Ck, g)(s) = limt3→∞

(
C2
k(t3)

)
[R] = limn3→∞

(
C2
k(t3)

)
[R] = − 1

12 ; this makes the
(Ck, g)-method stronger than the (C,α)-method.

In the next chapter we will see that there is a deeper reason why the (Ck, g)-sum of (1.4)
equals − 1

12 ; this furthermore might lead to very surprising applications of summability
theory within other fields of mathematics. Although the value of − 1

12 definitely equals not
the ‘true’ value of (1.4) (which ought to be ∞), we will see that there might be hidden
relationships between this assigned value and the limiting value obtained from ordinary
summation. This observations may provide insights into the nature of our summation
methods and the conditions on which to apply them in other fields of mathematics and
science/engineering in general.
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4 Epilogue

4.1 Connections with the Riemann zeta function

4.1.1 Zeta function regularization

In the previous chapter, we saw that the series (1.2) can be reasonable summed by the
(C,α)-method. We were, however, not able to assign a finite value to the series (1.4) by
this method; also it seemed that (1.3) is unsummable using this method. Later on we
saw that we in fact, using the (Ck, g)-method, can assign a finite value to the series (1.4);
namely, the (rather unexpected) value of − 1

12 . In order for a method to assign a finite
value to this kind of series, it has to have weakened properties in comparison to ordinary
summation. Obviously, such a method would not be totally regular. In order to retain
consistency with the existing ‘mathematical building’, we have the following observation.
Note that this is in principle related to the negation of theorem 2 in [6].

Proposition 5. Any summation method T which assigns a finite value L to a =
∑∞

k=1 k

(with corresponding sequence of partial sums s = (sn) = (n(n+1)
2 ), n ∈ N+) is either not

linear or not stable.

Proof. Assume the opposite, that is that T is linear and stable. Since s, by assumption,
is in the domain S of T and considering the fact that T is stable we see that we can ‘shift’
a to the right and ‘plug in’ the term 0, i.e. s′ = (s′n) = (sn−1 + s′1) ∈ S (with s′1 = 0) and
T (s′) = T (s) + s′1 = T (s). By the linearity of T we have that T (s− s′) = T (s)−T (s′) and

so T (s̃) = 0 with s̃ := s− s′ = (sn − sn−1) = (n(n+1)
2 − (n−1)n

2 ) = (n).
Now we again shift the corresponding series of s̃, ã, to the right and plug in the term 0.
We get that s̃′ = (s̃′n) = (s̃n−1 + s̃′1) ∈ S (with s̃′1 = 0) and T (s̃′) = T (s̃) + s̃′1 = T (s̃). Now
by the linearity of T we get that both

0 = T (s̃)− T (s̃′) = T (s̃− s̃′) = T ((n− (n− 1))) = T ((1))

and
0 = T (s̃′)− T (s̃) = T (s̃′ − s̃) = T (((n− 1)− n)) = T ((−1)).

Now, concludingly, it is by the stability of T easy to see that

−1 + T ((0)) = T ((−1)) = 0 = T ((1)) = 1 + T ((0))

hence −1 = 1. This leads to a contradiction since it is inconsistent with the existing
building of mathematics and therefore T must either be nonlinear or unstable.

Since in subsection 3.3.2 we said that the (Ck, g)-method is linear, it follows from the
above proposition that this method must be unstable. We can thus conclude that this
method, by its non-total regularity and unstability, does not possess all properties which
are at least required in order to have a very nice alternative to ordinary summation.

We can now pose the question whether there exists other summation methods which
assigns a finite value, preferably − 1

12 , to the series (1.4). The answer to this question is in
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fact positive and one of these methods is called zeta function regularization which is based
on the Riemann zeta function. Zeta function regularization can in general be regarded
as a somewhat different method to the methods we discussed earlier; namely, there is no
use of a linear operator and there is even no ‘limiting procedure’. Although zeta function
regularization in general not bears the desirable properties from ordinary summation (such
as linearity and total regularity) we can however say that zeta function regularization in
conjuction with so-called ‘renormalization’ offers a great tool within theoretical physics;
see also the next section.

To see how zeta function regularization assigns a value to a =
∑∞

k=1 k, note that this
series is equal to

∑∞
k=1

1
k−1 . We then consider the Riemann zeta function

ζ(s) =

∞∑
k=1

1

ks
s ∈ C, <(s) > 1 (4.1)

and, although the defining series diverges when <(s) ≤ 1, we ‘in some way’ could say that
a is equal to ζ(−1). Bernhard Riemann (1826-1866) derived a functional equation for the
zeta function in which it was showed that the function could be analytically continued to
the whole complex plane with the exception of a simple pole with residue 1 at s = 1. We
namely have that (see also [7])

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s). (4.2)

If we now let s = −1, we see that indeed

ζ(−1) = 2−1π−2 sin(−π
2

)Γ(2)
∞∑
k=1

1

k2

= 2−1π−2(−1)(1)
π2

6

= − 1

12
.

Besides this series, we can now in fact show that (1.3) is also summable but the series
(1.1) will however still remain unsummable by using zeta function regularization.

Example 6. Consider the series
∑∞

k=1 1 and we see that if we let s = 0 in (4.1), the series
becomes ‘equal‘ to ζ(0) (remind that this formally is not permitted!). By substituting
s = 0 in the functional equation (4.2) we now see that we have to deal with the simple
pole at s = 1. We can however make use of the Taylor and Laurent expansions for the
sine and Riemann zeta functions respectively, by using the fact that the Riemann zeta
function is analytic hence continuous at s = 0 we get that

ζ(0) = 20π−1Γ(1) lim
s→0

sin(
πs

2
)ζ(1− s)

= π−1 lim
s→0

(πs
2
− π3s3

48
+ · · ·

)(
− 1

s
+ γ − · · ·

)
= −1

2

where γ = 0.57721... is the Euler-Mascheroni constant. Furthermore, we see that the
series

∑∞
k=1

1
k is not ‘summable’ since it corresponds to the pole at s = 1. There do
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however exist alternative methods (also strongly incomparable with ordinary summation)
which can assign a finite value to this series. One of these methods, called Ramanujan
summation, assigns the Euler-Mascheroni constant γ to it, as was slightly expected from
the Laurent series of the Riemann zeta function.

We saw that both the (Ck, g)-method and zeta function regularization assigned the
value − 1

12 to the series
∑∞

k=1
1
k−1 . This leads us to pose the question whether the (Ck, g)-

method does assign exactly the same values on the series
∑∞

k=1
1
ks (s ∈ C) as zeta function

regularization does, i.e. that

(Ck, g)((

n∑
k=1

1

ks
)) = ζ(s)

for all s ∈ C \ {1} and has a simple pole with residue 1 at s = 1 (and therefore (1.3) is
summable and (1.1) is unsummable by the (Ck, g)-method)? According to §3 in [8], this
indeed follows to be true; here the link is made between the (Ck, g)-sum of the defining se-
ries

∑n
k=1

1
ks and the Riemann zeta function by considering the respective Euler-Maclaurin

expansion and the (generalized) eigenvalues of the Ck-operator. Furthermore, when one
considers the in §3.3.2 introduced discrete version of generalized Cesàro summation, (C, g)
(a polynomial of the operator C instead of Ck), it is in §4 of [8] proven that

(C, g)((
n∑
k=1

1

ks
)) =

{
1, s ∈ Z≤0

ζ(s), otherwise
.

The reason that the (C, g)-sum of the defining series does not equal the (Ck, g)-sum of this
series (and in fact ζ(s)) for all s ∈ C can be explained by the fact that the eigenvectors
of C are of a different nature than the eigenvectors of Ck.

Since the Riemann zeta function, and especially its distribution of zeroes, is an im-
portant object of study within pure mathematics (analytic number theory) it comes to
an unexpected surprise that we can now evaluate values of the zeta function using our
generalized Cesàro method. In the next subsection we will learn more about the impor-
tance of knowing the zeroes of the zeta function and we will see how generalized Cesàro
summation might provide a helping hand in this.

4.1.2 Riemann hypothesis

In 1859, Riemann published the article “Ueber die Anzahl der Primzahlen unter einer
gegebenen Grösse” (“On the Number of Primes Less Than a Given Magnitude”); see [7].
In this article, Riemann considers the relationship between the prime counting function
and the zeroes of the zeta function and mentions that the zeroes of the zeta function
must have an as ‘tight’ possible structure in order for the prime numbers to be ‘nicely’
distributed. The zeroes of the zeta function can in fact be divided into two types: trivial
and nontrivial zeroes. The trivial zeroes are easily obtained from the functional equation
(4.2) and are in fact all negative even integers. Riemann hypothesizes that the nontrivial
zeroes all lie on the so-called trivial line (all complex numbers with real part 1

2), this is
now called the Riemann hypothesis and remains after 160 years still unproven despite the
efforts of the best mathematicians in the world. Since a large part of the mathematical
community believes the hypothesis is true, a lot of future results are based upon its validity.
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It is currently known that all zeros s = σ+ it must lie within the critical strip (0 < σ < 1)
and that there are in fact infinitely many zeroes on the critical line. Also it is known that,
for s = σ + it to be a zero, we have that s = σ − it, s = (1− σ) + it and s = (1− σ)− it
are zeroes as well; this is due to symmetrical properties of the functional equation (4.2).

Now it is interesting to observe that (C, g)((
∑n

k=1
1
ks )) is equal to 1 if s is a neg-

ative even integer, hence the set of nontrivial zeroes s correspond to all s for which
(C, g)((

∑n
k=1

1
ks )) is equal to 0. Since we know that both the (C, g)- and the (Ck, g)-

methods assign the same values on the concerned series when we regard s to be in the
critical strip, it does not matter which particular method we are using; for practical reasons
we will however use the (C, g)-method. In example 5 we used an expression for the partial
sums of the concerned series; for general s, the partial sums

∑n
k=1

1
ks (also called the gen-

eralized harmonic numbers) do however not possess such a closed-form expression (or they
are at least not simply to be found). In [8] it is furthermore made clear that for some other
sequence r = (rn) such that

∑n
k=1

1
ks ∼ rn we have that (C, g)((

∑n
k=1

1
ks )) = (C, g)((rn))

but it is not easy to find such an r without using the Euler-Maclaurin expansion of the
defining series and therefore obtaining the zeta function itself (see also theorem 2 of [8]).

What the (C, g)-method can however do, is to give an equivalent formulation of the
Riemann hypothesis in terms of (real analytic) summability theory. Suppose s = σ+ it is
a zero of ζ(s), hence

(C, g)((
n∑
k=1

1

kσ+it
)) = (C, g)((

n∑
k=1

1

ks
)) = ζ(s) = 0

but by symmetry of the zeroes also

(C, g)((
n∑
k=1

1

kσ+it
)) = (C, g)((

n∑
k=1

1

kσ−it
)) = 0

and (C, g)((
n∑
k=1

1

k(1−σ)+it
)) = (C, g)((

n∑
k=1

1

k(1−σ)−it )) = 0.

By the linearity of the (C, g)-method we now see that

(C, g)((

n∑
k=1

1

kσ

( 1

kit
+

1

k−it

)
)) = (C, g)((

n∑
k=1

1

kσ

( 1

kit
− 1

k−it

)
))

= (C, g)((

n∑
k=1

1

kσ

(
k−it + kit

)
)) = (C, g)((

n∑
k=1

1

kσ

(
k−it − kit

)
)) = 0,

this holds as well for (1−σ) instead of σ and −t instead of t. By considering the fact that
the cosine and sine functions can be written in terms of complex exponentials and using
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again the linearity of the method we now have that

0 = (C, g)((

n∑
k=1

1

kσ

(
kit + k−it

)
)) = (C, g)((

n∑
k=1

1

kσ

(
kit − k−it

)
))

= (C, g)((

n∑
k=1

1

kσ

(
eln(k)ti + e− ln(k)ti

)
)) = (C, g)((

n∑
k=1

1

kσ

(
eln(k)ti − e− ln(k)ti

)
))

= (C, g)((

n∑
k=1

2 cos(t ln(k))

kσ
)) = (C, g)((

n∑
k=1

2i sin(t ln(k))

kσ
))

= (C, g)((
n∑
k=1

cos(t ln(k))

kσ
)) = (C, g)((

n∑
k=1

sin(t ln(k))

kσ
)),

this is also true when we consider−t and (1−σ). Note that all variables and function-values

in the partial sums
∑n

k=1
cos(t ln(k))

kσ and
∑n

k=1
sin(t ln(k))

kσ are real-valued. If we can now find
closed-form expressions of the partial sums (which is not known to be easier/harder than
deriving closed-form expressions for the generalized harmonic numbers) and apply the
(C, g)-method on the according sequences we hopefully arrive at the necessary conditions
that σ = 1

2 (hence the Riemann hypothesis would be proved).
In the first three figures of Appendix A, we show some plots of the partial sum sequences

(
∑n

k=1
cos(t ln(k))

kσ ) for several values of σ and t. It seems that there are ln(n) and cos(t ln(n))
terms involved in its growth; also the growth is larger when both σ and t are smaller
and there seems to be a higher vertical displacement when t is larger. Furthermore we
may hypothesize that all partial sum sequences are divergent and are not (C,α)-summable
because of its unbounded nature. If it is true that the partial sum sequences are of a simple
form containing ln(n) and cos(t ln(n)) terms, we can apply the (C, g)-method in a clever
way: By considering their respective Taylor series and the fact that the eigensequences of
the C-operator are of the form na ln(n)b (a, b ∈ C with a /∈ N, see also §4.1 of [8]), we are
potentially be able to arrive at sequences on which we can apply ordinary summation or
the (C,α)-method and thus eventually retrieve the necessary value(s) of σ.

In conclusion, it is interesting to consider the defining partial sums of − ζ(s)′

ζ(s) , namely

n∑
k=1

Λ(k)

ks
s ∈ C, <(s) > 1 (4.3)

with Λ(k) being the von Mangoldt function given by

Λ(k) =

{
ln(p), k = pr with p prime and r ∈ N
0, otherwise

.

It turns out that the nontrivial zeroes of ζ(s) correspond to the simple poles of − ζ(s)′

ζ(s)

in the critical strip 0 < <(s) < 1. Without giving the full explanation, in §6.2 of [8]
it is stated that poles of order m̃ at s of a function that is equal to the (C, g)-limit of
a certain defining partial sum sequence (restricting only to certain classes of Dirichlet
series) correspond to the s values for which the partial sums or the m-th derivatives of
them contain pure logarithmic terms of power m̃ + m. Since the von Mangoldt function
has quite irregular behaviour, it is uncertain whether the (C, g)-method is able to assign
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a limit to the defining series (4.3) outside its classical domain of convergence; furthermore
it is not known whether the series (4.3) is contained in one of the restricted classes of
Dirichlet series. If we assume for the moment this is true, we see that the nontrivial
zeroes of ζ(s) should precisely occur at the s-values for which the closed-form expression
of the partial sums

(−1)m
n∑
k=1

ln(k)mΛ(k)

ks

for some m ∈ Z≥0 contain a pure logarithmic term.
Note that this is all highly speculative and there is no guarantee given that the staten

assumptions are satisfied, moreover the real difficulty is again to obtain closed-form ex-
pressions of the according partial sum sequences. What is interesting, though, is that we
see surprising connections between summability theory and other fields of mathematics
and hence the investigation of divergent series might not be meaningless at all. Finally it is
possible that (an extension of) generalized Cesàro summation might disprove the Riemann
Hypothesis; see [9], the author leaves some open questions concerning the rigourness of
the article however and moreover the article is not peer-reviewed at the moment of writing
this thesis.

4.2 Assessing the veracity and applicability

We have seen that we can ‘sum’ a series such as (1.2) using linear, stable and totally regular
methods; a method which is linear and stable complies in great extent with ordinary
summation and can thus according to [6] be seen as a quite ‘natural’ extension of it.
Moreover it turns out that, due to their linearity and stability, methods that possess this
properties often will assign the same value to the same series. In order to sum a series
such as (1.3) and (1.4) we however have to use a summation method which is either
nonlinear or nonstable. Since these methods are to certain extent incomparable with
ordinary summation, we expect that there is little applicability in assigning values to
divergent series using these methods. It turns out to be, surprising enough, that this is
generally not the case.

In theoretical physics, (zeta function) regularization is often used in conjuction with
so-called renormalization. To give an example: One could come across upon two diver-
gent series (or integrals) which represent energy-levels at unobservable high scales, he/she
however only has to determine their difference which ought to be an observable quantity.
One can then introduce a so-called cutoff term to make the series/integrals finite, subtract
the finite series/integrals and hope to arrive at an (observable) quantity which is in turn
independent of the cutoff term. In particular, one could come across upon an infinite
determinant/trace of a certain matrix/operator but to know this determinant/trace is in
fact not the ‘end-goal’ (it can indeed merely be seen as an ‘immediate’ value representing
a quantity at unobservable scales and not the ‘final’ quantity which eventually has to be
observed). The determinant/trace can then be ‘zeta regularized’ and act like the series
(4.1) at some specific s and by using (4.2) one could consequently assign the correspond-
ing function-value to this infinite determinant/trace. Since the eventually to be observed
quantity must again be independent of the determinant/trace itself, there do not occur
mathematical/physical inconsistencies and thus zeta function regularization is in fact a
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very powerful method to apply; see also §2.3, §4 and §5 of [5]. The assigned value of − 1
12

to (1.4) is for example used within the calculation of the critical dimension 26 of bosonic
string theory and one can assign the value of ζ(−3) = 1

120 to
∑∞

k=1 k
3 in order to derive

the (experimentally verifiable) Casimir effect in 3-dimensional space.
Of course there is zero truth in the statement that e.g. 1− 1 + 1− · · · will tend to 1

2
and 1 + 2 + 3 + · · · will tend to − 1

12 . The reason that precisely these values are assigned
to the according series is however not completely arbitrary. For this to see, it can make
sense to shift our reasoning from the context of real numbers to the context of hyperreal
numbers. Within the hyperreal number system, the (smallest) infinity that is larger than
any finite quantity is being handled as a well-defined object (we call this object ω); note
that ε := 1

ω represents the infinitesemal object that is smaller than any positive number
but larger than 0. When we substitute ω for ∞ within the calculations with divergent
series, these infinite series may be regarded as finite series. According to [4] it now makes
sense that linear and stable summation methods assign the value of 1

2 to (1.2) (by using
the fact that ordinary summation is also linear and stable together with ‘probabilistic’
arguments) and that (1.4) remains unsummable when using a linear and stable method.

Referring to [1] and figure A.4 however, we see that a ‘perturbed’ variant of (1.4) does
tend to − 1

12 (in its ordinary sense!); namely

ω∑
k=1

ke−ε̃k cos(ε̃k) = − 1

12
(4.4)

where the infinitesemal quantity ε̃ can accordingly be expressed in terms of ε. If we
indeed can solve ε̃ in terms of ω (or ε), we would arrive at sufficient conditions for which
a perturbed variant of (1.4) would be equal to − 1

12 . Unfortunately, despite numerous
efforts, we are not able to give a closed-form expression of ε̃. It is interesting though to
see for which values of ε̃, given ω, the perturbed sum converges to − 1

12 (see figure A.5
and the corresponding R-code in appendix B from which it looks like that 20ε < ε̃ < 0.5).
Furthermore it is interesting that, since ε̃ can in theory be regarded as an infinitesemal
quantity, the terms in

∑ω
k=1 ke

−ε̃k cos(ε̃k) are in the same halo as the terms of
∑ω

k=1 k
(this means that, in theory, the terms in both series have an arbitrarily small difference
since taking the limit to 0 with respect to ε̃ inside the series yield equal terms). We can
thus say that, although both terms represent different hyperreal numbers, the terms are
approximately equal in the real number system. Because within physics and other sciences
there is often dealt with perturbed series, we might have another good explanation why
it ‘works’ that e.g. the value − 1

12 can be assigned to (1.4). Of course one has to really
know what he/she is doing before he/she assigns a finite value to a divergent series but
when one can replace the series (1.4) with (4.4) and knows an appropriate value of ε̃,
the assignment of − 1

12 is completely valid; for this reason it is also interesting to find out
which other terms in the halo of k yield the according finite value of − 1

12 .
It is also interesting to consider the smoothed version of (1.4), namely

lim
N→∞

∞∑
k=0

kη(
k

N
),

where η is a so-called cutoff function such that η(0) = 1 and is required to be smooth,
bounded and compactly supported. It is fairly easy to deduce the asymptotic properties
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of this sum, according to [10] it namely turns out that

∞∑
k=0

kη(
k

N
) = − 1

12
+ CN2 +O(

1

N
)

with C being a constant dependent on the choice of η. One can subsequently interpret this
asymptotic expression as a parabola with y-intercept − 1

12 and note that the partial sum
function of the smoothed series has this y-intercept as well. More generally, the smoothed
sums limN→∞

∑∞
k=0

1
ks η( kN ) have the asymptotic expansion

∞∑
k=0

1

ks
η(
k

N
) = ζ(s) + CN1−s +O(N−B) ∼ ζ(s) + CN1−s (4.5)

with B > 0 and C a constant depending on η and s. From these observations we see
that the values ζ(s) assigned to the series

∑∞
k=0

1
ks (by zeta function regularization as well

by (Ck, g)-summation) are nothing more than just the constant values of their (smoothed
or Euler-Maclaurin) asymptotic expansion and are in the hyperreal setting equal to the
infinitely large object obtained by ordinary summation ‘modulo’ matching infinitely large
object(s) (i.e. the eigenvectors of the Ck operator in the case of (Ck, g)-summation);
they can furthermore also be perceived as the y-intercept of the partial sum function
corresponding to the smoothed series. Moreover, in [10], we see that the asymptotic
expression of the smoothed variant of Grandi’s series (1.2) is equal to 1

2 +O( 1
N ) and hence

(as expected) agrees with the, through Cesàro methods, assigned value of 1
2 .

Since we now see that the assigned values of a divergent series, by totally regular as
well as not totally regular methods, are not completely picked out of thin air, we have a
decent answer to subquestion 3 of this thesis: They arise naturally (by linearity/stability
as well as analytic continuation) from the values of related convergent series, are equal to
the constant term in its (smoothed) asymptotic expansion and can in fact be perceived
as the y-intercept of the partial sum function obtained by smoothing the corresponding
series.

4.3 Concluding remarks

We have seen that there is a good reason for applying summation methods to assign a
finite value to divergent series of oscillatory nature (in which case we assign the ‘average
value’). Besides this, particularly in the case of series which tend to infinity, we saw that
there is a good reason for assigning the constant term arising in its asymptotic expansion;
this especially proves useful within various applications in which there is a need to cancel
the arising infinities. In a unified sense, we thus say that summation methods ‘extend’ the
notion of convergence in a simply logical (i.e. linear/stable or analytic) manner although
one does always has to ensure that using a particular summation method is appropriate
for the given context.

Besides applications to other sciences, we have seen that summability theory can also
prove useful within other fields of (pure) mathematics; this is as well by the creation of
new mathematical techniques as the obtained insights into deep relationships between
seemingly different objects of study. Such a relationship, for example, is that it turns
out that the harmonic series (1.1) can be shown (generalized) Cesàro unsummable by
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observing the fact that ζ(s) has a simple pole at s = 1. The reason that the harmonic
series turns out to be difficulty summable can be explained by the fact that it diverges
‘too slow’, this is also observable when we let s = 1 in (4.5) from which we see that this
series just ‘falls in between’ ordinary convergent series and divergent series which can be
assigned the constant value from its smoothed asymptotic expansion.

The answer to our main question of this thesis is thus that assigning finite values
to divergent series gives rise to a whole new mathematical field called summability theory
which not only provides us a nice ‘tool’ in mathematical applications but also gives insight
into the nature of divergent series, a better guidance of handling infinite(simal) objects and
reveals deep relationships between seemingly different mathematical topics. It is therefore
ironically that we can assign an unexpected veracity to the famous quote of Abel that
“The divergent series are the invention of the devil, and it is a shame to base on them
any demonstration whatsoever.”; summability theory might in potential, according to [9],
namely give us a disproof to the Riemann hypothesis hence the prime numbers would not
be as perfectly distributed as one would wish. Nevertheless we have seen that closed-form
expressions of the sequences of partial sums

n∑
k=1

cos(t ln(k))

kσ
,

n∑
k=1

sin(t ln(k))

kσ
(4.6)

are potentially be able to give a proof of the Riemann hypothesis in which it also possibly
reveals deep connections between the respective theories of divergent series and prime
numbers. Due to these obervations that, in the end, all turns out to be connected we
can thus say that Dirac’s statement “God is a very skilled mathematician” bears a lot
of significance. To however obtain the, seemingly impossible, closed-form expressions of
(4.6) from which we might prove the Riemann hypothesis, could require stuff even God
does not know its existence of.

31

https://www.nu.nl/100662/video/in-de-auto-met-jules-deelder-ik-heb-drugs-gebruikt-die-god-niet-kent.html
https://www.nu.nl/100662/video/in-de-auto-met-jules-deelder-ik-heb-drugs-gebruikt-die-god-niet-kent.html


A Numerical observations: Plots
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Figure A.1: Plots of (
∑n

k=1
cos(t ln(k))

kσ ) for several values of σ with t = 0.
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Numerical observations: Plots
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Figure A.2: Plots of (
∑n

k=1
cos(t ln(k))

kσ ) for several values of σ with t ≈ 14.1 (the middle
one corresponds to a nontrivial zero of ζ(s)).
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Numerical observations: Plots
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Figure A.3: Plots of (
∑n

k=1
cos(t ln(k))

kσ ) for several values of σ with t = 25.
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Figure A.4: Plot of the convergence of
∑ω

k=1 ke
−ε̃k cos(ε̃nk) to − 1

12 when taking sufficient
large ω = 100000 and small ε̃ = 0.001.
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Figure A.5: The convergence values of
∑ω

k=1 ke
−ε̃k cos(ε̃k) as a function of ε̃ with ω =

10000 and ω = 100000 respectively.

36



B Numerical observations: Code

R-code to reproduce the plots of the partial sum sequences (
∑n

k=1
cos(t ln(k))

kσ ):

1 o ld . par = par (mfrow=c (3 , 1) )
2 N = 10000
3 s igmavector = c ( 0 . 2 , 0 . 5 , 0 . 9 9 )
4 t v e c t o r = c (0 ,14 .134725142 ,25)
5 t = tve c t o r [ 3 ] # Can a l s o be s e t to 1 or 2
6 f o r ( sigma in s igmavector ) {
7 part ia l sum = vector ( )
8 part ia l sum [ 1 ] = cos ( t ∗ l og (1 ) )
9 f o r ( i in 2 :N) {

10 part ia l sum [ i ] = part ia l sum [ i −1] +cos ( t ∗ l og ( i ) ) / ( i ˆ( sigma ) ) }
11 p lo t ( part ia lsum , type = ” l ’ , x lab = ”n” , ylab = ” Pa r t i a l sum value ” ,main =

paste ( ” sigma =” , sigma , ” , t =” , t ) ) }
12 par ( o ld . par )

R-code to evaluate the convergence of
∑ω

k=1 ke
−ε̃k cos(ε̃k) for sufficient large ω and small

ε̃:

1 omega = 40000
2 eps = 0.001
3 a i = seq ( from=1, to=omega , l ength . out = omega )
4 perturb = exp(−eps ∗a i ) ∗ cos ( eps ∗a i )
5 a i perturb = a i ∗ perturb
6 part ia l sum = vector ( l ength = omega )
7 part ia l sum [ 1 ] = a i perturb [ 1 ]
8 f o r ( i in seq ( from = 2 , to = omega ) ) {
9 part ia l sum [ i ] = part ia l sum [ i −1] + a i perturb [ i ]}

10 p lo t ( part ia lsum , type = ” l ” , main = ”The convergence o f the ’ perturbed ’
Riemann zeta func t i on eva luated at s=−1” , xlab = ”Number o f terms in the
s e r i e s ” , ylab = ” Pa r t i a l sum value ” )

11 part ia l sum [ omega ]

R-code to evaluate, for several magnitudes of ω, the convergence values of
∑ω

k=1 ke
−ε̃k cos(ε̃k)

as a function of ε̃:

1 omega = 100000 # Can a l s o be s e t to 10000 or anything e l s e
2 l ength = 1000
3 epsvec to r = seq ( from = 0.0002 , to = 10 , l ength . out = length ) # I f omega

=10000 s e t the l e f t −bound to 0 .002
4 perturbsum = vecto r ( l ength = length )
5 a i = seq ( from=1, to=omega , l ength . out = omega )
6 f o r ( i in seq ( from = 1 , to = length ) ) {
7 perturb = exp(− epsvec to r [ i ] ∗a i ) ∗ cos ( epsvec to r [ i ] ∗a i )
8 a i perturb = a i ∗ perturb
9 perturbsum [ i ] = sum( a i perturb ) }

10 p lo t ( epsvector , perturbsum , type = ” l ” , main = ”The value o f the ’ perturbed ’
Riemann zeta func t i on at s=−1 f o r d i f f e r e n t va lue s o f e p s i l o n ” , xlab = ”

Eps i lon ” , ylab = ”Convergence value ” )

37



References

[1] MATLAB Divergent Series investigations. https://en.wikiversity.org/wiki/
MATLAB/Divergent series investigations. Accessed: 2018-10-1.

[2] H. Dutta A. Aasma and P.N. Natarajan. An Introductory Course in Summability
Theory. John Wiley & Sons, Inc., 2017.

[3] G.H. Hardy. Divergent Series. Clarendon press, Oxford, 1949.

[4] L. Gaastra J. Bartlett and D. Nemati. Hyperreal Numbers for Infinite Divergent
Series. https://arxiv.org/abs/1804.11342, 2018. Accessed: 2018-11-22.

[5] A. Monin. Partition function on spheres: how (not) to use zeta function regularization.
Physical Review D, 94, october 2016.

[6] M. Natiello and H. Solari. On the Removal of Infinities from Divergent Series. Phi-
losophy of Mathematics Education Journal, 29:13–27, 2015.

[7] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monats-
berichte der Berliner Akademie, pages 671–680, november 1859.

[8] R. Stone. Operators and divergent series. Pacific journal of mathematics, 217(2):331–
374, 2004.
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