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INTRODUCTION

Radiofrequency (RF) ablation is a minimally invasive technique broadly
used for treating tumors in a wide variety of biological tissues (liver
[1], kidney [2], bone [3], prostate [4], and breast [5]). RF ablation is
used when the surgical removal of the tissue is unfeasible due to the
location of the tissue or the collateral damage in the surgical pro-
cess. RF ablation involves the placement of a needle-like electrode at
the target tissue, combined with ground pads attached to the patient.
When a voltage is applied to the needle, an electrical potential will be
established, and therefore current will flow. The current flow results
in resistive heating, due to the resistance of the tissue in the vicinity
of the needle. This, in turn, will induce thermal necrosis in the target
tissue. The volume to which the thermal necrosis extends is known as
the ablation zone. The success of this treatment depends on the extent
of the temperature field and the minimization of damage to healthy
tissue with a reasonable margin prescribed by an oncologist or sur-
geon.

For providing optimal treatment, it is highly desired to have a pre-
dictive value over the ablation volume after ablation. However, this
is highly non-trivial as the ablation volume is not only dependent on
treatment parameters, such as duration of ablation, needle placement
and applied voltage, but also on patient-specific parameters, such as,
blood flow [6], electrical conductivity of the target tissue [7], and the
presence of major vascular structures, which can act as heat sinks [8].
Therefore, there is a risk that not all target cells will be destroyed, and
treatment is ineffective. Recurrence rates of tumors after RF ablation
have been reported up to 60% [9].

The target temperature of RF ablation is usually between 9o - 105
°C. At around 100 °C water content of tissue starts to evaporate and
carbonization of tissue occurs [10]. As a result, the power deposited
in the tissue is sub-optimal. To achieve and optimize the temperature
profile, different kinds of RF ablation systems exist. These include
monopolar electrodes, bipolar electrodes, multi-prong ("'umbrella type’),
and Cool-Tip electrodes. In the latter, the electrode is actively cooled
during the process to avoid carbonization at the electrode.

Furthermore, the regulation of the power delivery can be adjusted
too. In general, two different types of control are used, temperature
and impedance control. Temperature controlled electrodes monitor
the temperature at the tip of the electrode and adjust the delivered
power according to a preset target temperature, whereas an impedance
control system monitors the impedance of the system, which will
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Figure 1: Example distributions of quantities associated with RF ablation.
The black outline denotes the electrode. (a) The heat generated
due to resistive heating. (b) A temperature distribution. (c) A cell
death distribution

show an increase when tissue carbonizes. If this impedance reaches a
threshold, the system will stop delivering power for some time; usu-
ally a couple of seconds, to let the tissue cool before power is resumed
[11].

Further examples of what the model should contain are given in
figure 1. First, due to the resistive heating of the electrode, heat is
continuously generated as seen in figure 1(a). Then, the accumulation
and diffusion of this heat must be modeled by a form of the heat
equation, which will give us the temperature distribution, as seen in
figure 1(b). However, secondary effects such as cooling due to blood
perfusion and phase change phenomena should be accounted for too.
Last, for there to be a predictive value of the ablation zone, we need
the inclusion of a cell death model. Such a model should be able to
relate the temperature history to a quantity which can tell if a cell has
died. The result is a cell death distribution, as seen in 1(c).

The objective of this thesis is to provide a model that can describe
the different processes involved in RF ablation, including different
geometries and different patient-specific properties. In the end, a sim-
ulation model has been created, which can handle the RF ablation
process for three-dimensional models, as well as, two-dimensional,
axisymmetric models. Furthermore, the model includes; temperature-
dependent material properties, handling of phase-change phenom-
ena, different power control schemes, different cell death models and
two time stepping schemes. The details of the above are given in
chapter 3. Furthermore, figure 12 shows a simplified schematic of the
model.

Cell Death




INTRODUCTION

It is, however, always important to verify the implementation of the
model. A simple coding mistake can give entirely different results.
Therefore, chapter 4 has been dedicated to various tests which show
if various parts of the model have been implemented correctly.

After the model has been verified, simulations have been performed
on models of Atypical Cartilaginous Tumors (ACTS). Furthermore,
pre- and post-procedure image-data was available for four patient
cases having such a tumor. Patient-specific models were created from
the pre-procedure image-data on which simulations were performed
and the results compared against the post-procedure image-data.

However, before we can proceed, we need to know how to obtain
results as seen in figure 1. As it turns out, these processes are gov-
erned by (non-)linear partial differential equations. A finite element
approach has been chosen, as it allows for the approximation of par-
tial differential equations, on a predefined model. In the following
chapter, the basis of this method will be explained.






THE FINITE ELEMENT METHOD

The Finite Element Method (FEM) has been an active field of research
since the 1940s [12]. As such, there is a plethora of literature on the
topic. The following chapter is influenced by a number of authors
and acts as a short introduction to the fundamentals, and concepts
which are used to validate the model.

In particular, Introduction to Numerical Methods for Variational Prob-
lems by Langtangen and Mardal [13], which has an excellent introduc-
tion to the variational method from a general point of view. Also, Li et
al. gives a great overview of the function spaces relevant to the finite
element method in Theoretical Foundations of the Finite Element Method
[14]. Lecture notes of Flaherty [15] on the finite element method con-
sist of a concise write-up of the errors associated with the finite el-
ement method, and in particular, the convergence of the error with
respect to the types of elements and basis functions used. These lec-
ture notes have been of tremendous help in understanding the a-priori
error-analysis. As such, a similar route is taken with regards to the
explanation of the relevant results for our model, glancing over many
details found in the original notes. Finally, Advanced Finite Element
Methods by Sonnendriicker and Ratnani [16] gave insight in the prac-
tical implementation of different boundary conditions.

2.1 APPROXIMATION OF VECTORS

FEM is a method for obtaining numerical solutions to partial differ-
ential equations (PDE) on a given domain. Within the FEM, approx-
imate solutions are found on sub-domains, known as finite elements.
The collection of all elements within a domain is known as a mesh.
The mesh allows for the calculation of approximate solutions on com-
plex geometries, including geometries consisting of more than one
material type. The goal of FEM is to find an approximate solution to
a PDE in the form of

u(x) ~ Z ciN;i(x) (2.1.1)
i=0

Where N(x) are predefined functions and c; are unknown coefficients
to be determined. To illustrate how one arrives at such a solution it is
more intuitive to look at the approximation of vectors. This introduc-
tory will then be generalized to the approximation of functions and
finally to the FEM.
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Figure 2: Approximation of a vector u by a vector uy,, which is constrained
to lie along (a, b). Finding the best approximation requires mini-
mizing the distance between u and uy,.

2.1.1  One-dimensional vector space

The simplest vector approximation problem is one where a vector
is approximated by another, which is restricted to be aligned with
another vector. To demonstrate this, let u = (4,3) be a vector in the
xy plane and uy our approximation which is confined to be aligned
with a vector (a,b), see figure 2. First we define a vector space V
spanned by the vector Ny = (a, b):

V = span{Ny} (2.1.2)

Here Ny is the basis vector of space V. Next, our goal is to find the
best approximation, uy, to w:

Up =cgNo eV (2.1.3)

To arrive at a best approximation we have to define a metric which
assesses the quality of the approximation in some way. A method is
to require the length of the difference, the error, to be minimized. The
length of the error is given by the norm:

llell =+/(e, e) (2.1.4)

where < a,b > denotes the inner product of vector a and b.

2.1.1.1 Least squares method.

Now that we have defined an error norm, we can derive the coef-
ficient co for which uy is optimal. This is done by minimizing the
error-norm, ||el|, or rather, the square of the error-norm llel|2.



2.1 APPROXIMATION OF VECTORS
First we define the error as the difference between the actual solu-

tion and the approximate solution:
e(co)=u—up =u—coNy (2.1.5)

then, the squared norm is:

lle(co)ll* = ((u—coNo,u—coNo)) (2.1.6)
=u-u—2co(u-Ng)+c3(No-No) (2.1.7)
Minimizing lle(co)l? is equivalent to requiring the derivative to be
Zero: 5
dlle(co)ll”
oo 0 (2.1.8)

Substituting eq. 2.1.7 into 2.1.8 we arrive at:
—2(uw+-Np)+2co(Npo-Npg) =0 (2.1.9)
Which is equivalent to:
{u—coNo,No) ={e,Ny) =0 (2.1.10)

Rearranging the terms in 2.1.9 leads to:

U-No

= W (2.1.11)

co
Substituting our vectors, u = (4,3),No = (a,b), into the expression

above leads to:
~ 4a+3b

0= 2 b2

(2.1.12)

2.1.1.2 The Galerkin method

Here Now we show that minimizing |le||? is the same as demanding
that:
(e,v) =0 V veV (2.1.13)

In other words, e must be orthogonal to any vector v in V. Referring

back to figure 2 we see that this makes sense in a geometric way, as

the orthogonal vector, e, has the shortest distance between the two.
Any v € V can be written as v = cNy, and thus we demand that:

(e,cNp) =c(e,v) =0 (2.1.14)

Which reads that the error must be orthogonal to the basis function in
V:

(e,No) =0 (2.1.15)
which we also found by the least squared method in eq. 2.1.10. This

method of minimization is referred to as projection or the Galerkin
method

7
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2.1.1.3 The Galerkin method in higher-dimension vector spaces

The previous section was valid for a one-dimensional vector space.
Here we will generalize the Galerkin method to arbitrary dimensions.
The goal is to find the best approximation to a vector u in the space
V, spanned by basis-functions, Nj :

V =span{Ny, -+ ,Nn} (2.1.16)

It is assumed that the dimension of V is n + 1 and that the basis
vectors are linearly independent. Now we can write any u, € V as a
linear combination of the basis vectors:

n
up = Z ¢jN; (2.1.17)
j=0
with ¢; € R. Then for the Galerkin method we require that the error,
e, is orthogonal to all v € V:
(e,v) =0 V veV (2.1.18)

And since any v € V can be rewritten as the sum of its basis vectors
(eq. 2.1.17) we end up with:

<e,ZciNi> = Zci<e,Ni> =0 (2.1.19)
i=0 i=0

To find an optimum value of ci, we must require that the individual
contributions to the sum vanish, i.e.:

(e,Ni) =0, i=0,---,m (2.1.20)

Remembering that e = u—uy, and using equation 2.1.17 we can write
that:

n
chNl,N Z Ni, Nj)c; =0 (2.1.21)
j=0
concluding;:
n
Z(Ni,N]—>cj = (u, Ny), i=0,---,n (2.1.22)
j=0

Which is a linear system of n + 1 equations and n + 1 unknowns and

can be written as: N
Z = (2.1.23)

where

Aij = (Ni, Nj) (2.1.24)
j = (Niuw) (2.1.25)
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2.2 APPROXIMATION OF FUNCTIONS

Analogous to approximating vectors, we can extend the Galerkin
method to deal with the approximation of functions. Instead of a
vector space , let V be a function space spanned by a set of basis
functions Ng,---,Np

V =span{Ny, -+ ,Nn} (2.2.1)

such that any function u € V can be written as a linear combination
of the basis functions: N
u= Z ciNj (2.2.2)
j=0
Now let us find the best approximation, un(x) € V, of an arbi-
trary function u(x). Analogous to the previous section, we have to
minimize the error, e(x), which is equivalent to minimizing the dis-
tance u(x) —up(x), previously expressed through the inner product
of two vectors. This leaves us with finding the equivalent of the inner
product for functions. Where the inner product of two discretized vec-
tors involved pairwise summation, the inner product of two arbitrary
functions, g(x) and f(x), is conceptually similar. In this case we inte-
grate the product of both functions on their shared domain, denoted
by Q:

(t,9) = jf(x)g(x)dx (2.23)
Q

Now that we have defined the inner product for functions, the mini-
mization problem can be stated as:

(e,v) =0, V veV (2.2.4)

or:
J e(x)v(x)dx =0, vV veV (2.2.5)

Which is also known as the projection of a function on a subspace V.
Again since any v € V can be written in the form of equation 2.2.2,
we can write

(e, Y ciNy) =0, (2.2.6)
i—0

Once more, to find an optimum value for c;, we require that the
individual contributions vanish

(e, Ni) =0, 1i=0,---,n (2.2.7)
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rewriting the left hand side

n n
(e, Z Ni) = [ e(x) Z Nidx (2.2.8)
i=0 f) i=0
= Z cjN; )Nidx (2.2.9)
f)
= | uN; — Z NiNjcjdx (2.2.10)
o j=0
and requiring it to be zero leads to:
n
Z J NiNjcjdx = JuNidx (2.2.11)
=00 O
or:
n
Z Ni, Nj) (u, Ny) (2.2.12)

And we end up with a smmlar linear system of equations for approx-
imating functions as in the vector case (equation 2.1.23).

2.2.1 Lagrange polynomials

As stated in the previous section, we need to use basis-functions for
the construction of the approximation. Let us take a look at the most
simple basis-function, the family of linear functions.

For that, let QO = [xg,x1] be an interval on the real axis and V(Q)
the function space of linear functions on Q, defined by:

V(Q)={v:v(x) =co+cix} with x €0 (2.2.13)

Co, C1 € R

In other words, V(Q) contains all functions of the form v(x) = co +
c1x on Q. In this case v has two degrees of freedom, as every function
can be uniquely determined by its coefficients, co and c1. However, it
is also possible to define v by another set of degrees of freedom.

Every linear function can be uniquely defined by a set of points that
satisfy that function. In fact, any pair of points within Q will function
as degrees of freedom for v. To this end, we claim that function v can
be uniquely determined by the values at its endpoints of Q, 3o =
v(xo) and B1 = v(x1).

proof: Let the end-points of v on Q = [x(, x1] be defined as:

co+c1xo = Po (2.2.14)
co+cixy =B (2.2.15)
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Figure 3: A piecewise continuous function constructed from a Lagrangian
nodal basis of degree one. Note how each N in the bulk
(N1, N3, N3) forms a triangular structure, from which it derives its
nickname of "hat-functions’. Similarly, functions at the boundaries
(No, Ny), only form "half-hat-functions’.

Writing it as a linear system:

EEE
T x1] [c B

The determinant of this system equals x; —xo, which is nothing
but the length of the interval Q. The determinant is positive, and thus
there exists a unique solution to the linear system. The end-points of
Q (xp,x1) are referred to as nodes within the context of the FEM.

The next step is to define a new basis for our function space V(Q),
the so called nodal-basis shown in figure 3. From this figure it is seen
that a piecewise continuous function can be uniquely defined by its
nodal values. Consequently, for each set of nodal values, there exists
one unique function v € V, where each basis function can now be
written as

0 X < Xi_1,

— X s — X . < < i,
N; (%) (x—=xi-1)/(xi =x4-1)  Xi—1 SX< X4 (2.2.17)

T—(x—x)/(xie1 —%i1) X <X < X{a1

0 X > Xit1
which has the property
i i=i
Nj(xi) = ot ], ,j=0,1,---,n (2.2.18)
0, if i#j

This nodal basis is orthogonal as it takes on the value of unity at its
own index, and zero everywhere else. This allows us to write our
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function v as a linear combination of the nodal basis and its coeffi-
cients:

v= Z ciNi(x) (2.2.19)
i=0

In fact, the above nodal basis is known as a Lagrange polynomial,
of degree one. We can extend the notation to an arbitrary degree of
n:

n .

P(x) = H x7% (2.2.20)
j=0j1 T

All IP are polynomials of various degrees, usually denoted IP™, and
all exhibit the property as in equation 2.2.18.

The orthogonal properties of the basis functions within the finite
element method is a desired one, but not required. As we will show
in the next section, the use orthogonal basis functions will lead to a
strictly tridiagonal coefficient matrix. In practice, these kinds of matri-
ces are much easier to handle as they often require less computational

operations due to the sparsity of the matrix.

2.2.2  One dimensional approximation

In this section, we will demonstrate how we use the nodal basis to
find an approximation.

To this end, let u be the function to be approximated and uy, our
approximation, both on an interval Q. Let this interval be divided
into n non-overlapping sub-intervals e.g.:

Q=09n...noM (2.2.21)

Each sub-interval, Q(™) is known as an element which can be uniquely
numbered. Now each sub interval contains a number of points, the
so called nodes. Together they form a mesh.

Let the exact solution be 1 = x? and uy, its approximation, based
on the Lagrangian basis functions of degree one, P'!). In the previ-
ous sections, it was derived that finding the best approximation is
requiring that the inner product of the error w.r.t some function ba-
sis vanishes. Since these basis functions can only retrieve the exact
solutions of polynomials up to its order (in this case one), we expect
there to be an error. For the approximation, we will use a uniform
partitioned mesh of three elements, on the interval Q € [0, 3].

Figure 3 shows our basis functions. Here the advantage of the
orthogonality property of the basis-functions, as stated in equation
2.2.18, becomes apparent. The basis functions associated with each
node, i.e., Ni, only overlap their adjacent elements. This means that
most of the entries of A will be zero. In fact, A will form a tridiag-
onal matrix. Such a matrix is in practice much easier to work with
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and limits the number of calculations compared to a non-orthogonal
basis-function.

To demonstrate this, we assemble the coefficient matrix A, also
known as the stiffness matrix within FEM. We will use the fact that the
length of the interval of a uniform partitioned mesh is the same as,
h = x; —x4_1 and our formulation of the basis as in equation 2.2.17.

We first start with assembling the matrix for nodes not associated
with a boundary. As seen in figure 3 we see that these form so-called
"hat-functions” due to their shape, and overlap with their neighbors.
Lastly, we consider the two special cases at the boundary, which only
form ’half-hat” functions and only overlap with one other function.
For the non-boundary nodes

Aii = J Nizdx (2.2.22)

Q
Xi Xi+1

= J (X;}?i_])zdx—i- J (1—7X_§i+1)2dx (2.2.23)

Xi—1 Xi
_

3 (2.2.24)

For the integrals involving the function basis at the edges, we denote
that in this case there is only one element involved and thus:

h
A0 0 =Ann = 3 (2.2.25)
Now for the off diagonal indices:
Avic1=Ai,= J NiN;i_7dx (2.2.26)
Q
xi+1
= J NiN;i_1dx (2.2.27)
Xifz
xi—1 Xq xi+1
= J NiNi_q + J NiNi_1 + J NiNi_;
xi—2 xi—1 Xi
(2.2.28)
= J NiN;i_; (2.2.29)
Xi—]

— J (1- X_Eiq )(X;Xi)dx (2.2.30)
hq
< (2.2.31)

13
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Now we assemble the tridiagonal matrix A for our mesh with 3
elements on Q, and thus 4 nodes:

A =

o=

(2.2.32)

S — RN -
N = © O

2 0
1 1
0 4
0 1
Now for b; we denote that the product of Nib; # 0 only over the

interval of the basis. And thus for the node basis not associated with
the boundary, (i # 0,1 # n), we have:

Xi Xi+1
b; = J (X;Xi)u(x)dx+ J (1 — %)u(x)dx, 1#£0,i#n
Xi1 xi
(2.2.33)
and for basis on the boundary:
Xi+1
X
by = J (1- E)u(x)dx (2.2.34)
0
and respectively,
Xn
X—X
by = J ( - u(x)dx (2.2.35)
Xn—1

Assembling b is a bit more cumbersome as it requires the integral of
the function u(x) over different sub-intervals. Nevertheless, for our
example we end up with:

1 T
b= [1 14 50 43 (2.2.36)

Now substituting 2.2.32 and 2.2.36 into 2.2.11 we end up with:

21 0 0 |co 1
hilt 4 1 0f jer| _T1]14 (2237)
610 1 4 1| |cz| 12150
0 0 1 2] [c3 43
Solving the above system leads to our best approximation:
1 T
c=§[—z 10 46 106 (2:2.38)

The result is shown in figure 4.

The results of this approximation, is just that, an approximation.
It should be intuitive that splitting the domain into more elements
yields a better result, and that the approximate solution should con-
verge to the analytic solution as the number of elements is increased.
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10
—_— X2
—— approximation (N=4)
8
6
4
2
0 1 O 1 Q; 1 Q3 '
0 h 3

Figure 4: The approximation to x? over the domain Q € [0,3] by the
Galerkin method, using Lagrangian basis functions of order one.
The mesh consisted of four equally spaced nodes (N=4), and three
sub-intervals Q;,1=1,2,3.

However, knowing the convergence of the solution with respect to
some mesh parameter gives valuable insight into the error of the
method, also known as the a-priori error estimation. To arrive at an ex-
act convergence rate for the Galerkin projection is not trivial. Instead,
we look for an upper bound of the error in some norm. For this we
need the interpolation, or collocation method.

2.2.3 Linear interpolation

The simplest linear approximation of a function f based on a mesh of
n nodes is the piecewise continuous function where the coefficients
are defined by the function values evaluated at the node coordinates.
This is known as interpolation.

To define how well our interpolant approximates the real function,
we have to define the error, e , in some norm. To this end we use the
[2(Q)-norm, provided that v is a square integrable function, meaning
that;

JQ |v|2 < o0 (2.2.39)

Then the L2(Q)-norm is defined as:

M) = | P (2.2.40)

15
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2.2.4 Error of interpolation

In this section we will make some preliminary claims on the error of
our interpolation. To this end we will use the fundamental theorem

of calculus [17]
X1

f(x1) = f(x0) +J f/(x)dx (2.2.41)

X0

and the Cauchy-Schwartz inequality [18]

2
H flx)glx)dx
Q

< J |f(x)|2dxj 1900 Pdx (22.42)
Q Q

Now let f be a continuous function on Q = [xg, x] and g the linear
interpolant of f with nodes at the end-points of Q:

g(x) = f(xp)Ao + f(x1)A\1 (2.2.43)

Then let the interpolation error be defined as:

e(x) = f(x) —g(x) (2.2.44)

Now using equation 2.2.41 we can write the error of any x; € Q as:

Xi

e(xi) = e(xo) —i—J e/ (x)dx (2.2.45)

X0

Using the fact that linear interpolation is exact at the mesh nodes, e.g.
e(xo) =0

e(xi) =] e'(x)dx (2.2.46)
< ~Xi|e’(x)|dx (2.2.47)
< h 1-]e(x)]dx (2.2.48)

Ja
= | V-l dx (2.2.49)

Jo
é\/J 12de e’2(x)dx (eq. 2.2.42) (2.2.50)

Q Q

=Vhle' X)ll2(q) (2.2.51)

Where h is the length of domain Q. Thus we obtain:
e(xi)? < h||€/||%z(Q) (2.2.52)

First integrating the left hand side over Q:

|, etxaxs = et o (2.253)



2.2 APPROXIMATION OF FUNCTIONS

For the right hand side of equation 2.2.52, as it does not depend on
xi, we end up with:

J hlle’ (X)IIF2 o) dxi = W2 lle’ (X112 ) (2:2.54)
Q

Combining the two results in our first expression for the interpolation
error:

le()llL2(a) < hlle’ (¥ll2(a) (2.2.55)

Next we want to make a preliminary claim on the estimate of
e’ (¥)llL2(q)- First, let us start again by stating:
Xi
e’(xi) =e’(x0) —I—J e’ (x)dx (2.2.56)

X0

However, this won't allow us to make a simplification as e’(x) gen-
erally does not equal zero. Now remember that our approximation at
nodes was exact, in other words e(xg) = e(x7) = 0. Then, there must
be a point y ={y € Q: e’(y) = 0}. Thus, allowing us to write

e/(x) = e'(y) +J " (x)dx = J " (x)dx (2.2.57)
Y Y

Following the same steps as our first claim, we end up with:

le’ (Xl 2(a) < hlle” (¥ll2(a) (2.2.58)

Combining equation 2.2.55 and 2.2.58:

le(¥)llL2(q) < hlle’(X)lz(q) < h2lle” (2 (q) (2.2.59)

Since our interpolation is linear in nature, the second derivative of the
error is nothing but the second derivative of our original function:

R ()2 (q) (2.2.60)
hlIf” (x )”LZ(Q) (2.2.61)

le()ll2 (o)

le’ ()2 ()

//\ //\

Extending this we can make a similar claim to the interpolation error
of a piecewise continuous function, g € V:

n
If—glli2(q) :ZHf_gHI_Z(Q) (2.2.62)

ZhZIIf” MLz (2.2.63)

And since we know that the Galerkin method retrieves the best ap-
proximation we have

2
€Galerkin < €collocation K Zh |f// HL (2-2~64)

17
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h | Iue—uhlle Ir2
1 2.36x10! -

T 433x10° 2,00
T 943x1071 2,00
¥ 221x107T 2,00

Table 1: Convergence rates (r2) of the error (|lue —upll;2) of the Galerkin
approximation on the Lagrangian basis functions of degree one.
With the exact solution, ue = x%, and h denoting the element size.
The domain of interest was Q € [0, 3].

In other words, the error converges quadratically w.r.t the mesh size
when Lagrangian basis functions of order one are considered.

We can test this result by reconsidering the problem as in figure
4, refining the mesh, i.e., adding more elements, and calculating the
convergence rate. Doing so should retrieve the quadratic convergence
as stated in equation 2.2.64. The convergence rate between two subse-
quent solutions can be calculated as

T=——tC (2.2.65)

where e;;1,e; are the errors, and hi;1, h; the element length of the
two solutions respectively.

The resulting convergence rates are shown in table 1. The expected
quadratic convergence results are retrieved, meaning that we have a
correct implementation of the Galerkin method. As we will see later
on, testing the finite element method w.r.t the expected convergence
is a powerful method for validating the implementation of finite ele-
ment method.

2.3 THE FINITE ELEMENT METHOD

In this section, we will see that the finite element method follows the
same principles as in the sections mentioned above. To make proper
claims we have to introduce more rigorous definitions of the tech-
niques used in the previous sections. To this end, we start with the
definition of function spaces. One of these is the Sobolev space, funda-
mental for the finite element method. If a solution to a partial differ-
ential equation exists, it will belong to some Sobolev space.
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2.3.1  Function spaces

A function space is a topological space whose points are functions. A
most basic function space is the function space of continuous func-
tions on the domain Q:

C(Q) = C°(Q) ={f, f is continuous on Q} (2.3.1)

This function space is said to be linear as any combination of «, 3 €
R and f; € C(Q),f, € C(Q) can be written as «f; + pfy, € C(Q).
Further, the function space of functions of multiple variables with
continuous derivatives up to order m can be written as:

C™(Q) =f(x1,%x2, - ,%xn), D*fare continuousonQ,|o] <m
(2.3.2)
where D *f is the partial derivative written in multi-index notation [19],
ie.
plolt
5x {1 ox5% - - dxpn

D*f(x) = o = 1 + o2+ -+ O, 0 2 0

(23:3)
A function space which has a distance defined is known as a met-
ric space. The distance in C™(Q), between two functions f, g can be
defined as:

d(f, g) = maxogjal<m (23.4)
Similarly to the space of continuous functions, we can define spaces

for integrable functions. These are known as the LP(Q) spaces, or the
Lebesque spaces, and is defined as:

o=

LP(Q) = { f(x), J )P dx (2.3.5)
Q

The distance in an LP(Q) space is defined as:

d(f,g) = ( j f— glPdx)? (23.6)
Q

The special case of p = 2 results in a Hilbert space. Hilbert spaces are
function spaces which have a corresponding inner product defined.

2.3.2  Weak derivative and Sobolev spaces

The weak derivative is a generalization for functions who are not
differentiable but are locally integrable, that is to say f € L] . Then
the definition is as follows:

Letu € L] , and « be a multi-index. A function v € L

loc”
be an «-th weak derivative of u if:

JuD“tbdx = (=1)l«l Jwbdx, v € C3(Q) (2.3.7)
Q Q

1

loc 18 said to

19
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1.00

0.75

0.50

0.00
-0.25
—0.50

-0.75 — x|
— sgn(x)

-1.00
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 5: The function |u(x)| and its weak derivative sgn(x)

For example, consider the absolute function u(x):

u(x) = (2.3.8)

Which has no classical derivative as the function is not differentiable
at x = 0. However it does have a weak derivative, known as the sign
function:

-1, x<0,
sgn(x) =40, x=0, (23.9)
1, x>0

which is a function not in C, but rather in H', a Sobolev space. Sobolev
space is the space of functions possessing weak derivatives such as
above. The Sobolev space for functions without a derivative is:

HO(Q) =L?(Q) = { f(x), J If]2dx < oo (2.3.10)
Q

and involving first order derivatives:

H'(Q) = {v(x),D* € L2(Q), |« < 1} (2.3.11)
and of general dimension:

H™(Q) {v(x), D% € L*(Q), |af < m} (2.3.12)

These Sobolev spaces are important as it will allows us to find the
solution to a partial differential equation in the weak sense. The term
weak can be understood as a loosening of the restrictions on the ap-
proximation. This in turn allows for the search of the solution in terms
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of continuous functions on elements, instead of the whole domain, as
seen in figure 5. The need for this requirement arises naturally in
the finite element method as the geometry is divided into domains.
Furthermore, since H™(Q)) is a Hilbert space, it is equipped with the
inner product. In particular, the inner product of H°(Q) is the same
as for L2(Q):

(WV)no(a) = (WV)12(0) = Juvdx (2.3.13)
Q
and for H' (Q):
WV () = J(uv—i—ulv/)dx (2.3.14)
Q

The Sobolev space has also a norm defined from its inner product.
The H° norm is defined as:

1
oo = hullizga) = (j uPdx)? (23.15)
Q

the H! semi-norm:

ot () = (J(Wu)zdx)i (2.3.16)
Q

These norms will be useful when analyzing the convergent properties
of the finite element method.

2.3.3 The variational method

Now that we have introduced the various function spaces, we show
how they arise within the Finite element method using the variational
method. To this end, consider Poisson’s equation.

Let f € L%(Q), then:

—Au=f €Q (2.3.17a)
u=0, on 5Q (2.3.17b)

where A is the Laplace operator. The first step in the variational
method is to transform the above strong form into its corresponding
weak form. This is achieved by multiplying eq. 2.3.17a by a test-function
v € H'(Q) on both sides

J Auvdx = J fvdx (2.3.18)
Q Q
And redistributing the second-order derivative to both u and the test-
function. This can be achieved by a use of Greens formula, or integra-
tion by parts
J Vu - Vvdx — J é—uvds = J fvdx (2.3.19)

on
Q 50 Q

21
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Where n is the outward normal at any point of the boundary.

By redistributing the derivatives, we have 'weakened’ the require-
ments imposed on the solution, u, and we can search for the solution
in H'(Q). Also, the above problem showcases essential boundary con-
ditions, as u does not appear directly in the boundary integral as
opposed to v. Since ultimately u and v will be in the same function
space, we can incorporate the boundary condition directly in the test
space where we only consider functions of v vanishing on the bound-

ary e.g.:
HA(Q) ={v(x), v=0 on 8Q, veH'(Q)} (2.3.20)

Then the variational formulation reads:
Find u € Hé(Q) such that

J Vu - Vvdx = J fvdx, W e H)(Q) (2.3.21)
Q Q

Once again we arrive at the Galerkin problem:
find u € H(‘)(Q) such that:

A, v) = (f,v) (2.3.22)
where
(f,v) = vadx (2.3.23)
Q
Alu,v) = JVu-Vvdx (2.3.24)
Q

Existence and uniqueness of the solution are shown by the Lax-
Milgram theorem [20], which states:

Let V be a Hilbert space equipped with the norm || - |ly.. Let A(u, v) be a
continuous, symmetric and coercive bilinear form on V x 'V, i.e.

1. Continuity: there exist C such that Yu,v € V

IA(w, V) < Cliullviiviiv (2.3.25)

2. Coercivity: there exists a constant « > 0 such that Vu € V

Alu,u) > offully, (2.3.26)

Let f(.) be a continuous linear form on V, i.e. there exists C such that ¥v € V
[f)I < Cllully (2.3.27)
Then there exists a unique w € V such that

Alu,v)="Ff(v), WweV (2.3.28)
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2.3.4 Finite element approximation

To arrive at a computable solution, we want to have a finite number
of equations. To this end, we have to look for the solution in a finite
dimensional space Vy, which should be a subspace of Hé(Q). For
example, we can take the subspace of piecewise continuous functions
which vanish on the boundary

Vi ={vh, vA=00ndQ, vy ispiecewise continuous} (2.3.29)

Now reconsider the Galerkin problem stated in equation 2.3.22. To
transform it into a finite element problem consider any finite dimen-
sional space Vi, € Hg) spanned by a set of basis functions No,---, Ny,

Vh = Span(NO/ Tty Nn) (2330)

such that any function u € V}, can be written as a linear combination
of the basis functions, i.e.

n
u= chNj (2.3.31)
j=0
Since any function can be written in the above form, we can write the
approximate solution, uy, accordingly

n
Up = Z ¢iNj (2.3.32)
j=0

where the coefficients, c;, are chosen such that

A(un,vh) = (f,vh), Yvh € Vp (2.3.33)

Here we enforce the weak form in the space of V}, instead of H}. In
general, this will lead to an approximation error. This is conceptually
similar to the vector approximation in figure 2, where the approx-
imated solution was constrained by another vector and also intro-
duced an approximation error. Still, it can be shown that the finite
element solution is the best solution with respect to some norm.

Realizing that a linear combination of basis functions can represent
any element, we arrive at a linear system of equations

n
A() Ny, Ny) = (f,Ny) (2.3.34)
j=0
or written in matrix form
A(No,No) A(No,N7) -+ A(No,Nyn)| |co (f,No)
A(N1,No) A(Ny,Ni) -+ ANy, Nn)| [er| | (f,Ny)
_A(Nn/NO) A(anNl) A(Nn/Nn)_ _Cn_ _<f/Nn>_

23
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To prove the existence and uniqueness of the problem of equations
we have to show that this system adheres to the Lax-Milgram theorem,
as stated in the previous section. That is to say, A must be symmetric,
continuous and coercive.

It is obvious that the coefficient matrix A is symmetric, i.e., Ayj =
Aji. Continuity can be proved using the Cauchy-Schwarz inequality
which states for any vectors, u,v, of an inner-product space

[(w,v)| < (u,u) + (v,v) (2.3.36)

Applying it to equation 2.3.24

A(u,v)| =| J Vu - Vvdx| < [[Vullollll Vo (2.3.37)
Q
Using that [|[Vulljjo < [lullyy1, we can conclude that A is continuous in
H', ie.
IA(w, V)] < [l [Vl (2.3.38)
Coercivity of A in H' can be proved using Friedrichs’s first inequality
which states that there is a constant o« > 0 such that

IVullfe = adiullfo (2.3.39)

Using that

1 1
Alw,u) = [Vullfe = EHVullﬁo + EHVuHﬁo (2.3.40)

Combining the two we obtain

1 max{1, o}

Aluw,u) = —
(ww) .

X
IVullfo + Ellulhﬂo > Il (2.3.41)

N

And thus A is coercive in H'. These three properties of A lead to the
existence of a unique solution to the Galerkin problem provided that
f is a smooth continuous function.

Next, we need to prove that the solution is the best approximation
to the problem in an appropriate norm, thus showing that

lu—unll < fu—wnll, Vvn € Vn (2.3.42)
To this end we introduce the energy norm
e = v A(w,u) (2.3.43)

The energy norm is only well-defined when A is symmetric, i.e, the
problem is self-adjoint. We state that finite element solution is the best
approximation in the energy norm, i.e

lu—unlla < llu—vhlla, Vvh € Vi (2.3.44)



2.4 BOUNDARY CONDITIONS
First we proof that uy, is the projection of u onto V}, through the inner
product A(u,v). We have
Alu,v) = (f,v), WYve Hg) (2.3.45)
Introducing the finite element space Vi, C H}
A(w,vn) = (f,vn), YVh € Vi (2.3.46)

The solution can be expressed as a linear combination of the basis of
Vh, thus we replace u by uy

A(un,vh) = (f,vn), Yvn € Vi (2.3.47)
subtracting equation 2.3.47 from equation 2.3.46 we end up with
Alu—un,vp) =0, WY, €V (2.3.48)

Now to show that uy, is the best approximation in Vj,

25

u—vrllg = Aluw—vp,u—vp) (2.3-49)
=Au—Uup+Un —Vr,U— U +Up —VR) (2.3.50)
=A(u—up, u—Up +Unh —Vr) + AU — VR, U —Up + U — Vi)

(2.3.51)
= [l —unll +un —vrll (2.3.52)
> lu—unl (2.3.53)

Taking the square root on both sides concludes the proof.

Ilu—unlla < llu—vnlla,  Vvn € Vi (2.3.54)

2.4 BOUNDARY CONDITIONS

The previous section dealt with a case of homogeneous boundary con-
ditions, conditions which are explicitly imposed on the solution. How-
ever, within the finite element method, different types of boundary
conditions need to be handled differently.

One form of boundary conditions correspond to the Dirichlet bound-
ary conditions which specify the solution, u, on some part of the do-
main, Q, and are of the form of

u=g on d&Q (2.4.1)

Homogeneous boundary conditions arise when g = 0, these are dealt
with easily as we can restrict the test function to v € H}, the family of
functions vanishing on the boundary. For non-homogeneous conditions,
i.e, g # 0, this condition is not met. The right approach is splitting
the solution into u = ug +ug where uy is the solution to the problem
with homogeneous boundary conditions and u4 corresponds to the
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boundary conditions. Using this we can restate the Galerkin problem
(equation 2.3.45) as:
find ugy € H(]) such that

Alug,v) = (f,v) — Alug,v), Yve&H] (2.4.2)

In practice, these conditions can be satisfied by modification of the
coefficient matrix, ai; and the load vector b;. To demonstrate this,
consider a 3x3 system, e.g.

Qoo Qo1 ao2| |co bo
ajp ai1 aj2 c1| — b1 (2-4'3)
azo a1 az| |c2 b2

Now let a Dirichlet condition be specified on the domain correspond-
ing to the node c; = «;. Then the augmented system can be system-
atically implemented by first subtracting the product of ajjx; from
every f;. Then assign zero to both row and column ai; = aj; =0 and
replace aj; with 1. Finally, set the corresponding r.h.s to alpha;. Re-
peat for all applicable conditions. For example, letting co = oo leads
to the augmented system

1 0 0 Co (0.%)
0 a1 anz| [e1| = |br—ajoxo (2.4.4)
0 a1 az| |c2 by —azoxp

And the boundary condition is satisfied.

Another type of boundary conditions is the so-called natural con-
ditions. These conditions arise naturally within the weak formula-
tion and present itself in the form of Neumann boundary conditions,
which have the form

du
5 gon Q) (2.4.5)

A special variant occurs when g = 0, as it is handled "automatically”’
within the Galerkin formulation. These are called homogeneous Neu-
mann conditions. To see this we restate the result obtained in equa-
tion 2.3.19, i.e.

J Vu-Vvdx — J %vds = J fvdx (2.4.6)
Q Ye! Q

Now instead of finding the solution in a restricted function space,
we see immediately that the second term vanishes and is therefore
‘automatically” handled trough the Galerkin method.

Non-homogeneous, i.e. g # 0, Nuemann conditions are explicitly han-
dled trough the weak formulation. Knowing the value for g and sub-
stituting it in equation 2.4.6 we end up with

J Vu - Vvdx — J gvds = vadx (2.4.7)
Q Yol Q
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Figure 6: Example of one-dimensional quadratic Lagrangian basis (p=2)
with three elements, ;. Only basis functions, Ni, belonging to
Q, are shown. Each element has three nodes, i; denotes a global
node number, whereas 1; is a local node number. Note how each
basis function takes the value of unity only at its corresponding
node. Furthermore, see that the functions still overlap only their
own element, and its neighbour.

2.5 CONSTRUCTION OF FINITE ELEMENT SPACES

Up to now, we have seen how to derive a weak formulation and im-
pose different types of boundary conditions. However, we are also
interested in the error introduced by a finite element space. In partic-
ular, we are interested in the convergence of this error as we refine
the mesh, i.e., we are looking for the finite element equivalent of the
convergence results we found for the one-dimensional case (see eq.
2.2.64). However, finite element models are rarely one-dimensional.
Furthermore, until now, we have restricted ourselves to linear basis
functions. The following sections serve to explain higher-order ba-
sis functions, as well as elements associated with two- and three-
dimensional models. In the end, we find the desired convergence
rates. Knowing these convergence rates is of importance, as it will
allow us to validate the implementation of our model.

The construction of the basis functions of finite element spaces re-
quires a mesh. For the one-dimensional piecewise-linear basis it led to
the so-called hat-functions (see fig. 3). One method of improving the
accuracy of the finite element method is the so-called p-refinement,
where we increase the order of the finite element basis. For example,
increasing the order to two, or three would lead to a quadratic and
cubic piecewise Lagrangian basis respectively. Increasing the order
does come at a cost, as increasing the order of the basis increases

27
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the degrees of freedom, or nodes, associated with each element. For
the one-dimensional piecewise linear basis there were two degrees
of freedom, each associated with one end of the element, whereas a
quadratic function will have three.

Constructing higher-order basis functions become increasingly more
complicated, as more nodes are associated with each element. From
the second order and upwards, it is common to refer to nodes with a
global and local number. The global number is a unique number com-
pared to all other nodes in the mesh, whereas a unique local number
is given for each node pertaining to an element.

Considering the above, let each local node number, 1, in element
Q., where e is the number associated with the element, correspond
to a global node number i. Then, the construction of the Lagrangian
basis Ni(x) of degree p is as follows;

If the node with local number 1 is located within Q., Ni(x) is the
Lagrange polynomial of degree p that is 1 on 1 and zero at all other
nodes in Q.. If the node is located on the boundary of Q., Ni(x)
is the Lagrange polynomial of degree p that is one over element Q.
combined with the polynomial of the adjacent element which is also
one at the same node. An example of the one-dimensional quadratic
Lagrangian basis can be seen in figure 6. Due to the distinct shapes
the basis functions produce, they are also known as shape functions.

2.5.1  Two-dimensional Lagrangian basis

In two dimensions the mesh has to be partitioned into a collection of
simple geometric shapes, usually triangles or rectangles. Here we will
restrict ourselves to the use of triangular meshes. The most simple
two-dimensional Lagrangian finite element space involves the con-
struction of piecewise linear polynomials on a mesh of triangular el-
ements. This is analogous to the one-dimensional hat functions. In
addition to nodes, triangular elements are also associated vertices and
edges. To construct this basis, consider Q. a triangular element asso-
ciated with domain Q, with its vertices numbered 1 to 3, where each
vertex j has a coordinate (x;,y;). Furthermore, the Lagrangian shape
functions belonging to vertex j are only non-zero on its index, e.g.

Nj(xi,yi) =94, §,i1=1,23 (2.5.1)

To the end of Nj(x,y) being a piecewise linear polynomial let N;(x,y)
be of the form

Nj(x,y) = a1 +oox + a3y, (x,y) € Qe (2.5.2)
Writing the system of equations for the three basis functions N1, N, N3
T x1 yi| |« Ny

1 X2 Y2 o2 | = |N2 (2-5-3)
T x3 y3| |3 N3
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Figure 7: Nodes and their local numbering for triangular elements using La-
grangian basis functions of order one, two and three respectively.
which can be solved for a particular «, using Cramer’s rule e.g.
: N1 X1 yi
x = Edet N2 x2 y2 (2.5.4)
N3 x3 Y3
1
= clx2ys —x3y2)N1 + (xay1 —x1y3)N2 + (x1y2 —x2y1)N3}
(2:5.5)
] T Ny yi :
ap=cdet |1 Ny y; | = Gllv2—ysINi+(ys —y1) N2+ (Y1 —y2)N3}
[T Nk yx
i i (2.5.6)
1 1 Xi Ni. 1
a3 = zdet |1 x5 Nj| == {(x3=x2)Ny+ (x1 =x3)N2 + (x2 —x1)N3}
_] Xk Nk_
(25.7)
where
T xi Y
C =det |1 Xj Yj (2.5.8)

T Xk Yk
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With the o coefficients determined we can write any linear func-
tion over a triangular element as

uiy) = l0ays —xsy2 + 2~y (s N (259)

+ (x3y1 —x1Y3 + (Y3 —y1)x + (x1 —x3)y)N2 (2.5.10)
+ (x1y2 —x2y1 + (Y1 —y2)x + (x2 —x1)y)N3} (2.5.11)

3
= Z cjN; (2.5.12)

j=1

To ensure a continuous basis, a node is places at each vertex of the
element, see figure 7.

Higher-order basis functions of degree p are constructed similarly.
A basis of degree p has

1 2
np = (p—i—)z(p—i-) (2.5.13)

nodes associated with each element. A second-degree polynomial
would result in elements with n, = 6 nodes and would form a com-
plete polynomial of order 2, e.g.

Nj(x,y) = a1 + o2x + a3y + x4x? + osxy + oy’ (2.5.14)

The construction of the triangular element involves placing node points
at the vertices, as in the piecewise linear case, with the addition of
nodes at the middle of the edges of the triangle (see figure 7. This
basis is also continuous due to the dependence of the nodes on ad-
jacent elements. Increasing the order of the polynomial will result in
additional nodes placed on the edges, as well as in the center of the tri-
angle. For example, a cubic polynomial would result in 10 nodes, one
on each vertex, two on each edge and one in the center of the element.
The construction of higher-ordered elements proceeds similarly. How-
ever, computations with these elements become increasingly complex.
A transformation of the coordinate system can reduce the complexity
of the algebraic equations involved, which will be beneficial in our
search for the finite element convergence rates.

2.5.2  The barycentric coordinate system

In general we want to map an arbitrary triangle from the physical
domain (x,y) to a more computational favourable domain. One such
transformation is the transformation to the barycentric, or triangular
coordinate system. Every point, P(x,y), inside a triangle with ver-
tices numbered 1, 2, 3 located on (xi,yi) and area Aq;3, divides this
triangle into three sub-triangles namely P2, P13, P23. Where each
sub-triangle has a corresponding area Ap1z, Ap13, Ap23, as seen in
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3 (X3, ¥3)

(X2, ¥2)

1
(X1, ¥1)
Figure 8: The relation of the Cartesian coordinate system to the Barycen-
tric coordinate system. The point P, divides the triangle into three

sub-triangles. The area of each sub-triangle is used to define the
Barycentric coordinate system.

figure 8. Then the barycentric coordinate €; is defined as the ratio of
the area of the sub-triangle to the whole, i.e.

Ap23

€1 = 2.5.15a

"= Ay (2.5.15a)
AP13

€y = 2.5.15b

2 Al2s (2.5.15b)
A

€3 = P12 (2.5.15¢)
A123

However, the area of a triangle with vertices (xi,yi),i=1,2,3 can be
determined by

: x1 yr |1
A2z = Edet x2 yz |1 (2.5.16)
x3 Yz 1

substituting this into each equation for €; will yield the same result
as obtained in equation 2.5.12. For example, €7 leads to:

A 1 Xy
P23
= —det 5.
Al C et |1 x, Y2 (2 5 17)
T x3 y3

= %((Xzyz. —x3Y2) + (Y2 —y3)x + (x3 —x2)y) (2.5.18)

Thus the shape functions are obtained by a transformation to barycen-
tric coordinates.
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€3

(0, 1)

X 1 2 &
(0, 0) (1, 0)

Figure 9: Mapping of an arbitrary triangle in the (x,y) plane to a canonical
triangle in the (e, €3)-plane

To transform from barycentric coordinates (€1, €2, €3) to Cartesian
coordinates, let (xi,yi) be the Cartesian coordinates of vertex 1.

X =X1€1 +X2€2 +X3€3 (2.5.19a)
Y =Yi1€1 +Yy2€2 +Y3€3 (2.5.19b)
l=e14+ex+e3 (2.5.19¢)

Where the last relation is easily verified, as the summation of the
area of each sub-triangle is, of course, the area of the whole triangle.
Writing it in matrix form

X1 X2 X3 €1

Yr Y2 Y3 € =
T 1 1] |es

(2.5.20)

— e xR

Reversing the transformation leads to the mapping of the global ele-
ment to the canonical triangle as pictured in figure 9.

2.5.3 Three-dimensional Lagrangian basis

Similarly, a three-dimensional domain can be split up into many dif-
ferent simple geometries. In our case, we limit ourselves to the three-
dimensional extension of the triangle, the tetrahedron. Let the vertices
be labeled from 1 to 4 having physical coordinates (xi,yi, zi). Again,
we want to transform the physical system to the Barycentric coordi-
nate system.

Conceptually similar to the two-dimensional case, a point, P(x, y, z),
in a tetrahedron splits it into four sub-tetrahedra, the barycentric co-
ordinate system is defined by

€] = MiZE (2.5.21a)
V1234
V
= —P134 (2.5.21b)

2 prm—
V1234
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4 4
10
8
3 3
1 1
2 2

Figure 10: Nodes and their numbering tetrahedral elements using a La-
grangian basis of order one and two respectively.

3= MdED (2.5.21¢)
V1234
V
= _P123 (2.5.21d)
V1234

where Vjji is the volume of the tetrahedron with vertices 1i,j,k, L.
Then let the shape functions make up the linear system

T x1 y1 z1| | N
1 x2 y2 z2| |az| _ N2 (2.5.22)
T x3 ys z3| |3 N3
1 x4 ya z4] [oa Ny

Then following the same steps as for the triangular element, we can
define the transformation matrix to barycentric coordinates as

X1 X2 X3 X4 €1
Y1 Y2 Ys Ys4| |€2
Z1 Z2 Z3 Z4 €3
T 1 1 1 €4

(2.5.23)

- n o« R

Construction of higher-degree polynomials on tetrahedra involves the
placement of nodes at the edges, faces and the interior of the tetra-
hedral. In fact to construct a complete polynomial of order p on a
tetrahedral we need

1 2 3
ny = (p+ )(p;r )(p+3) (2.5.24)

nodes. Placement of nodes of different degrees can be seen in figure
10.

2.5.4 Interpolation error of finite elements

In this section, we will focus on the interpolation error on triangu-
lar elements. For the one-dimensional case, we found that the inter-
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polation error was quadratically proportional to the element size of
the mesh (eq. 2.2.64). However, as we will see, in two- and three-
dimensions the elements cannot be too distorted, meaning that the
angles present in the element cannot be too small or large.
Considering the transformation of a triangular element e to its
barycentric coordinates. For this we reconsider equations 2.5.19 and
rewrite
x =x1+ (X2 —x1)X+ (x3 —x1)7 (2.5.25a)

y=yr+y2—y1)x+ys—y1)j (2.5.25b)

where we substituted €, = X, €3 = § for a more common notation in
the context of transformations.
The Jacobian associated with this element transformation is

o Ox
Jer = gi gj (2.5.26)
5% o
and its determinant
Der = (x2 —x1)(y3 —y1) — (x3 —x1)(y2 —y1) (2.5.27)
=2A.1 (2.5.28)

where A, is the area of the triangular element.
Denote the smallest angle of this element o, and its longest edge

het, then
2

hs, . .
zel sinoe; < Det < hﬁlswmocel (2.5.29)

To see this, reconsider the arbitrary triangle depicted in figure o,
which shows an element with ae; = a3 and h,; = hy. Then we
can rewrite the Jacobian determinant as

Der = hohzsinog (2.5.30)

Using the law of sines, i.e.

sinag sinax,  sinog ( )
= = 2.5.31

hy h, h3
we have hy < h3 < hy. substituting this in equation 2.5.30, we end up
with the rh.s of equation 2.5.29. The Lh.s. follows from the triangle
inequality, i.e., h, < hy + h;, meaning that either hy or hz > h,/2.

Next, let Q.1 be the domain of the element and Q.qn the domain
of the canonical element. Furthermore, let 0(x,y) € H9(Q¢;) and
0(%,7) € HYQcan) such that 8(x,y) = 6(%X,7). Then there exists
constants cg, c1, such that

1, . _1 ~ 1. _1
cohgl ](suwcel)d ZIGIHd(Qe[) < IGIHd(Qca) < c1hgl ](snwcel)d ZISIHd(Qel)

(2.5.32)
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Here we will show the proof for the case d = 0. By definition of the
transformation we have

J 0%dxdy = Dy J 02 dxdy (2.5.33)
-O-el Qca

Using the definition of the H® norm (equation 2.3.15)

10102,y = DetlBlZo . (2.5.34)

using equation 2.5.29, dividing by D¢y, and taking the square root,
we end up with equation 2.5.32 for the case d =0, i.e.

18ll10(0,)

16l110 (20
herv2sinaey

2.5.
helvV/sinoey (2:5:35)

< IBlloga,) <
withe; =1/v2and ¢c; = 1.

The proof for higher values of d involve the use of the chain rule
and the respective H¢ semi-norm, and can be found in [15].

To proof the convergence rates for the finite element, we will, as in
the case of the one-dimensional approximation, find the error in an
upper bound given by the interpolating polynomial on the canonical
element

n
wi(%9) =) Nj(%julx ) (2.5.36)
j=1
Furthermore, we need an application of the Bramble-Hilbert Lemma
given by [21], which states

Let u(%,7) be a polynomial of degree p such that the interpolant,

u; of degree p is exact. Then, there exists a constant C > 0 such that

w—Uila(a.,) < Clulppi o, (2.5.37)

Using all of the results above we can state the following:

Let O be a domain consisting of n triangular elements, Q.,e =
1,---,m. Let hey be the largest element edge and alpha,; the smallest
angle of the element. Let u(%, §j) be a polynomial of degree p such that
the interpolant, u; of degree p is exact. Then there exists a constant
C > 0, independent of the mesh and u € HP*!, such that

u— Uy <—k 1 2.5.38
| ila < sindoc, e (2.5.38)

The proof follows by first substituting u —u; in the L.h.s of equation
2.5.32
1.2 24 . 1 o
u—uilfiaiq,,) < ahﬁl 2sin' ol —tilfa o, (2539
Following the use of equation 2.5.37

1
2 2-2d ;. 1-2d )
Iu—uiIHd(Qel) < ah"" sin ocelCIu\Hp+1(Qca) (2.5.40)
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And using the r.h.s of equation 2.5.32

1.2 24 1- -
Iu—uilﬁd(ﬂel) < ahél 2dgin! ZdocelCmHé{lsuL 1ocellu|%lp+1(Qel)
(2.5.41)
Combining all the constants and taking the square root yields

p—d+1
Che,

SlTld(Xe[ |u|Hp+1 (Qel) (2'5'42)

u—ilnaio,) <

Summing over all elements yields the final result.

A more general result is obtained by considering a uniform mesh.
A mesh is said to be uniform if all element angles are bounded away
from zero and 7, and all aspect ratios are bounded away from zero.
In this case, there is no dependence on the smallest angle, and the
result of equation 2.5.42 reduces to

[uw—uila < Chp—d+! [upype (2.5.43)

Now we know the convergence rates associated with the finite el-
ement method. For example, using linear basis functions (p=1), and
measuring the error in the H® = L?-norm (d=o), yields

lu—uili2 < ChzluIHz (2.5.44)

which is quadratically convergent, as our original one-dimensional
convergence result in equation 2.2.64.

This result gives us an expectation of how the error behaves w.r.t.
the number of mesh element size, and is also known as the a-priori
error estimation. Furthermore, as alluded to, the convergence rates
will be used to test the implementation of the solvers. As a wrong
implementation will not retrieve the correct convergence rates.

2.6 SOLVING LINEAR SYSTEMS

Up to now, we have seen how to set up the weak formulation, and
how the error of the finite element converges. In section 2.3.4 we saw
that the weak formulation reduces to a system of equation which are
either linear or non-linear. In this section, we will show, conceptually,
how these kinds of systems can be solved. Beginning with the sim-
plest case of a linear system, i.e.

Ax =D (2.6.1)

Such a system can be solved by different solvers which fall into two
categories, direct solvers and iterative solvers.

Direct solvers rely on the direct elimination of equations. The most
popular methods involve a LU-decomposition, where the matrix A is
split in an upper, U, and lower, L triangular matrix i.e.

A =LU (2.6.2)
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and thus by substitution in eq. 2.6.1
LUx=Db (2.6.3)

which can be solved in two steps, first by substitution of Y = Ux and
solving for Y
LY=bD (2.6.4)

and then by back-substitution we can solve for x
Ux =Y (2.6.5)

These methods solve the system of equations exactly and can handle
quite ill-imposed problems. However, the main drawback of these
direct methods is that the storage of requirements of L and U can be
extremely high. In particular, for bigger systems, the computational
memory can easily exceed that of a normal desktop computer.

The other type of solvers are the iterative solvers. These try to solve
the linear system by increasingly finding better approximations to
x. To demonstrate such an iterative concept, let x¥) be the current
estimation and x(¥*1) the next. If x*) is close to x then b — Ax(*) is
small. Thus an iterative process can be written as

X = (0 1 =T (b — Ax(®)) (2.6.6)

Where Q is known as the preconditioner. The goal of the precondi-
tioner is to augment the system to one that is computational easier to
solve. The above expression can be rewritten to

Qx 1 =Nx® b, N=Q-A (2.6.7)

Furthermore if x(**1) converges to x we have
Qx=Nx+b (2.6.8a)
Ax=(Q—N)x=b (2.6.8b)

A = Q — N is also known as the splitting of A. The easiest method
to implement is known as the Jacobi method. The Jacobi method has
a splitting of A = Da + La + Ua where DA = diag(A), La is the
lower triangular and U the upper triangular of A. Then the iterative
process reads for each node 1,

n
k+1 1 K
XE + ):—(bi—Zaijxj( ))
aii —
j#i
or in matrix form
X =DM (LA + U)X +DR'b (2.6.9)

Now we demonstrate the Jacobi method. Consider the following
system of equations
81 +x2+x3 =38 (2.6.10a)
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X1 +2x2 +2x3 =10 (2.6.10b)
X1 +x2+3x3 =3 (2.6.10C)
which can be rewritten as

X1 = 8-x2=xs (2.6.11a)

8
Xo = 10—x1 —2x3 (2.6.11b)

2
X3 = 3—761% (2.6.11¢)

Then, using an initial guess of x0) = {x; =0,x2 = 0,x3 = 0}, we
can find a better approximation using the above equations. Substitut-
ing the initial guess in the above expression leads to, new, improved
values of

x( ={x1=1, x2=5, x3=1} (2.6.12)

Then, the process can be repeated by substituting the values of x(1)
into equation 2.6.11. The iteration scheme is stopped when the differ-
ence between iterations is less than a specified tolerance, i.e. x (k) —
x*1 < o1 Using a tolerance of T¢o1 = 1x10~ 10 for the above
example leads to a converged solution after 77 iterations

x77) = {x1 =04, x=59, x3=-1.1} (2.6.13)

2.7 SOLVING TIME-DEPENDENT AND NONLINEAR SYSTEMS

During RF ablation heat is generated and spread throughout the tis-
sue. As such, the involved equations will include a time dependence.
In this section, we show the two most basic methods of dealing with
a time derivative, the (explicit) forward Euler and (implicit) backward
Euler methods.

Time discretization models are divided into explicit and implicit
methods. Explicit methods are formulations where the solution is
only dependent on known functions. Implicit methods solve equa-
tions involving the known and unknown parameters. For the next
section let us consider the model problem

du(t)
ot
Then the forward Euler method uses the value at the unknown time
step, w1 in terms of the value at the known time step uW over
the time interval At as

= f(t,u) (2.7.1)

W) ()

AL = f(t,u(“)) (2.7.2)

which is a linear equation for u(m*+1) and can be written as

w1 = Aef(t, ™) (2.7.3)
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However, this discretization in time introduces some error ¢, the
local truncation error. It is defined as the error introduced at a time
step, provided that the previous time step is known, i.e.

e+ — ¢ H 1) () Ate(t, u(™) (2.7.4)

As we are interested in the order of this error we use the Taylor ex-

pansion of w1 around u(t)
: At)2 At)®
w1 — u(t) + Atu' (1) + ( 2) +u’ (1) + ( 6) u (t)+--- (2.7.5)
(At)z " 3
=un +Atf(t,u(t)) + 5 U (t) + O(h?) (2.7.6)
Substituting the above expression into equation 2.7.4 yields
At)?
et _ 2) u (t) +0((At)?) (2.7.7)
where we used the big O-notation to indicate the order of the remain-

ing terms.

The first term dictates the order of the truncation error, and it is
therefore said that the local truncation error of the forward Euler
method is of second order.

The global truncation error, E, is the error at a time step due to all
the previous errors and is proportional to one order lower than the
local truncation error [22], i.e.

E=0((At)P ) (2.7.8)

where p denotes the order of the local truncation error.
The implicit version is known as the backward Euler method e.g.

W) ()

A = f(t,ulm) (2.7.9)
and its local truncation error is
M) — (41 () Agf(t, ulmH 1)) (2.7.10)

Now we expand the term u(™) around u(t)

At)?
u™ =) At u(t)) + ( 2) u (t)—0((At)?)  (2.7.11)
upon substituting the above expression into equation 2.7.10 we get
At)?
e(n—H) _ 7%11 (t) + O((At)3) (2.7.12)

Moreover, the implicit and explicit Euler methods have the same local
truncation error. The main advantage of the implicit method is that
it is known to be unconditionally stable, that is to say, the time step
can be made arbitrarily large. However, the drawback is that equation
2.7.9 leads to a nonlinear system of equations for the unknown u(™+1)
when material properties are taken into account. In the next section
we discuss two different methods of solving nonlinear systems, the
Picard-iteration, and Newton’s method.
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2.7.1  Picard Iteration

Consider an implicit Euler problem formulated as follows

(n+1) _

At

u ulm)

= umHD (1 —y ) (2.7.13)

where, again, u™ is the known solution, ul™t1) the desired solution
and At the time interval.
This can be rewritten as

F(u) = At(u™*1)2 4 (1 —Atyu™HD) —uW =0 (2.7.14)

Such a nonlinear equation can be solved by linearization. Let 1t be
a known approximation of u(™*1) then the quadratic term can be
linearized by

F(u) ~ F(u) = Atau™ ) + (1 —Apu™HD) —u™W =0 (2.7.15)

which is again a linear equation for the unknown u™. The approxima-
tion can then be improved by repeatingly solving for u, where each
iteration we set 1t = u. This is known as a Picard iteration. Since we
have to iterate in time and in the nonlinearities, let n denote the time
iteration and k the Picard iteration, we write

AtuHTR T (g A (vRED (0 g (5.16)

Where the first Picard iteration can be taken as the solution from the
previous time step, i.e. (™10} = 1™ Ag the Picard iterations lead
to ever better approximations, a stopping criterion is employed which

has the form

n+lk+1) . (n+1k

u ul < 1y (2.7.17)

where 1, is a set tolerance parameter, or when the residual is below
a tolerance, T,

F(u)| = [Attiu + (T — At u™ —u™ | < 7, (2.7.18)

2.7.2  Newton’s method

The second method to deal with non-linearities is known as Newton'’s
method. This method linearizes the nonlinear problem by expanding
F(u) by its Taylor series and truncating higher-order terms.

Consider the Taylor series of x = xo + €

Flxo +¢) = Flxo) + F [xo)e + 3F (xo)e (2719

~ F(xo) + F (xo)e (2.7.20)
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The above expression can be used to iteratively obtain a better ap-
proximation of the root by considering an initial guess xo. Solving for
€ =€

~ F(xo)
€0 =  (xo) (2.7.21)
Subsequently we let x; = xo + €p to obtain a better estimation. Re-
peating this process we end up with
€n = — Fixn) (2.7.22)
F%Xn)
and Fixn)
X
- (2.7.23)

Xn4+1 =Xn — F/(

—

Xn

To see the advantage of the Newton method consider that the Newton
iteration x(**1) converges to % and F ()70 such that

(k)

X\ =%+ ex (2.7.24)

where ey is the error after the kth iteration. Then using the Taylor
series around F(x(¥)) around the point X gives

F(x(®)) = F(X) + F (X)ex + %F” (%)e? =0 (2.7.25)

Dividing by F (&), rearranging the terms gives and using equation
2.7.23

~F' (%)
ekt = R e (2.7.26)

Taking the absolute value on both sides gives

(k+1)[ _ IF &)

padd

le

Which shows that the Newton method has a quadratic convergence
rate. The Newton method also adheres to the same stopping criteria
as the Picard method, e.g., equation 2.7.17, and 2.7.18.

2.7.3 Nonlinear System of equations

Nonlinear systems of equations do not only arise from implicit time
stepping schemes.
For example, consider the nonlinear model problem

-V (k(wVu) =f(u), €Q (2.7.28a)

u=0, on d8Q (2.7.28b)
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Multiplying by a test function, v € H} and using Green’s formula
we arrive at the weak formulation which states: find u € Hé such
that:

J k(w)Vu- Vvdx = J fluvdx, YveH} (2.7.29)
Q Q

The nonlinear system of equations is obtained by replacing H} by
the finite element subspace, Vi, C H(]) i.e.
find un, € Vi such that

(k(un)Vup, V) = (f(un),v), Vv e Vy (2.7.30)

and subsequently replacing uy, by the linear combination of its basis
functions

n
Unp = Z Eij (2'7'31)
j=1

we end up with
Ale)e =Db(e) (2.7:32)

A nonlinear system of equations.
We can solve this by linearization by the Picard method. Where we
repeatedly solve for &

A()e = b(E) (2.7.33)

Until a convergence criteria is met.
Alternatively, the second option, we use Newton’s method where
we first rewrite equation 2.7.32 to

F(e) = A(e)e—Db(e) =0 (2.7.34)

Then using the Taylor expansion on F(¢) around a known & and trun-
cating non-linear terms

Fle) = F(&) + (&) - (e — &) (2.7.35)

Where | is the Jacobian-matrix. Which, can be written in as a linear
system.

2.8 COMPUTATIONAL FRAMEWORK

Much of the previously discussed methods can be generalized and
therefore automated. There exist many different software packages
which handle many of the tedious work of setting up a FEM prob-
lem efficiently, such as efficient storage of matrices, efficient assembly
of these matrices and even using different solving techniques. To this
end, the FEniCS [23] project has been chosen as the framework. Fenics
is an open source computing platform for solving PDEs. Thanks to its
high-level Python interface combined with a C++ backbone, it allows
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for ease of programming while keeping the speed of operations asso-
ciated with C++. Furthermore, models written with Fenics are easily
transformed in parallel executable programs, allowing for a decrease
in computation time on modern desktops. Furthermore, Fenics strives
to make written code to be as close as possible to the original mathe-
matical formulation. For example, the problem described by 2.3.45 is
implemented as follows:

1 "'’ Implementation of the weak formulation of Poisson’s
equation. A mesh has been defined previously in the code and
is denoted here as mesh.

# Define a Lagrangian function space on the mesh of degree = 2.
(CG stands for Continuous Galerkin)
V = FunctionSpace('CG’, mesh, 2)

6
# Define weak formulation
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(0.)
11
a = inner(grad(u), grad(v)) * dx

L = inner(f, v) x dx

u = Function(V)
16 solve(a == L, u)
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MODELING OF RADIOFREQUENCY ABLATION

In general, the modeling of a finite element model follows the follow-
ing steps:

1. Simplification of the physical situation
2. Generation of a suitable mesh

3. Determining the mathematical equations involved and deter-
mining the weak formulations

4. Determining of the boundary conditions

5. Determination of the physical material characteristics involved

3.1 SIMPLIFICATION OF THE MODEL

One of the first steps in constructing a model of a physical phe-
nomenon is finding and applying adequate simplifications. In the
present case, this includes finding axes of symmetry, which will, in
turn, allow for the simplification of a three-dimensional model into a
two-dimensional axisymmetric model. Further geometric simplifica-
tions are made when only considering tissues which are relevant for
the treatment, in favor of microscopic structures as epithelia, basal
laminas, glands, and nerves [24], but including the probe, tumor and
surrounding tissues such as liver, cortical bone, trabecular bone or
muscle. An axisymmetric model is then achieved by simplifying the
tissues to be either spherical or cylindrical. An example of this can
be seen in figure 11, where a three-dimensional cylindrical model is
reduced to a two-dimensional model by exploiting its axis of symme-
try. The creation and subsequent meshing of models which consists
of simple geometric shapes, such as in figure 11, can be performed by
various software packages. However, the creation of a patient-specific
mesh is not straightforward. We will address this topic in section
5.3.1, where we will use patient-specific meshes for simulations.

3.2 EQUATIONS GOVERNING RADIO FREQUENCY ABLATION

Now that we have a mesh be it three- or two-dimensional, we solve
the appropriate equations that model the RFA process. The RFA pro-
cess is a transient one, meaning that the involved equations need to
be solved in time-steps. During each time-step, model parameters
are adjusted to reflect the current state of the model. For example,
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Figure 11: An example of a three-dimensional cylindrical volume which is
reduced to a two-dimensional model by exploiting the symmetry
axis (z-axis). (a) The three-dimensional model. (b) The axisym-
metric model

the electrode-voltage can be adjusted during RFA to reach a certain
temperature. Also, most material properties change as a function of
temperature, so must be updated accordingly.

Programming-wise the equations are solved in a loop until the sim-
ulation has been run for the desired treatment time. This loop is the
heart of the model and is schematically represented by figure 12.

The schematic can be roughly divided into four steps. First, the
root mean square (r.m.s.) voltage must be calculated. This is done
in the first section of Power control, where three types of control are
listed. Second, in the Electric potential block the source-term can be
calculated using the supplied voltage. However, the electric conduc-
tivity of tissue is temperature dependent [25] and must be updated ac-
cordingly. Further, if the voltage is regulated through an impedance-
control, the power and resistance are calculated. Third, the Pennes
bioheat-block is used to calculate the resulting temperature. This pro-
cess also involves the density, specific heat and thermal conductivity
of the involved materials which are temperature dependent Lastly,
the tissue damage is calculated according to one of the cell death mod-
els. Furthermore, there is feedback from the cell death model to the
Pennes’ bioheat equation as the extent of tissue damage, or cell death,
affects cooling abilities of the tissue [26]. In the next section we will
go over these blocks in detail, using figure 12 as a reference.
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3.3 POWER CONTROL

In RF ablation, the heat source arises from the current between the
electrode and ground pad, known as Joule-, or Resistive-heating. The
intensity of the source term can be regulated by adjusting the ap-
plied voltage to the electrode. By changing the r.m.s. voltage, one has
control over the temperatures reached within the tissue. To this end,
three types of control for the voltage have been implemented.

3.3.1 Constant voltage

The first is constant voltage control. The voltage is set to a constant
value throughout the RF ablation. This method is not clinically rel-
evant, as a method of control over the reached temperature within
the tissue is always desired. However, this form of control has been
included for testing purposes and completeness sake.

3.3.2 Pl-controller

A second control is a temperature-based control, a type of control
which is used in the clinical setting [11]. Here the voltage is regu-
lated such that a pre-defined temperature at the tip of the electrode
is reached, and subsequently maintained. The tip of the electrode
contains a thermocouple through which the temperature can be mea-
sured. Although the internal workings of these devices are not pub-
licly available, such a type of control can be modeled by utilizing a
PI-controller [27]. This control forms a closed feedback loop, where
the input is the temperature of the tip at time t and the output an
r.m.s. voltage at time t of V. More specifically the output is given by

t
V(1) = kp (Tearget — Te(0)) + ki J(nget Tt (33.)
0

where V(t) the voltage output at time t, Tiqrget is the desired target
temperature (K), T is the tip temperature (K) at time t, k, is the er-
ror, or difference, proportionality constant and k; the integral propor-
tionality constant. The first term of equation 3.3.1 ensures a voltage
proportional to k, when Tiqrget # Tt. The second term is included
to account for the differences in the past. When Tiyrget is met, both
term stops to grow. However, whereas the first term will be reduced
to zero, the second, in general, will not. This ensures that the target
temperature is maintained.

Values of k;, and k; must then be found such that similar behavior
is found to the in-vivo situation. Although this is model dependent, a
good agreement has been found by setting k, = 1.15 and k; = 0.06
[28]. The effect of adjusting these PI-parameters can be seen in figure



3.3 POWER CONTROL 49

Tip temperature vs time for different Pl-parameters
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Figure 13: Temperature at the tip of an electrode controlled by a PI-
controller, for different values of the PI parameters k;, and k;.
The target temperature was set to be 20°C

13, where the tip temperature over time has been plotted for different
values of k;, and k; with a set target of Tyarget = 90°C.

Focusing on this figure we see that the blue line represents the
parameters mentioned above. These values for k;, and k; result in a
tip temperature that, after a quick initial jump, gradually reaches its
target temperature.

On the other hand, the red line represents an increase in k. Due to
this increase, the contribution of the integral of all previous voltages
over time is increased, which, in turn, leads to an increased applied
voltage. This results in the controller reaching its target temperature
quicker, but also overshooting the target. After overshooting the tar-
get, the Tiqrget — Tt(t) term will be negative, and the integral contri-
bution will decrease over time until the target temperature is reached.

The opposite is true for the purple line, which shows a decrease in
ki, meaning that the integral term is lower and the controller reaches
its target slower. Low values of k; can result in the target not being
reached over the simulated time. In fact, an absence of the integral
term, as pictured here, means that the target is never reached, as
at one point the k;, term is not sufficient to drive the temperature
further. The effect of changing the k,,-term is more easily understood,
as it directly affects the applied voltage, and thus the temperature, as
seen by the black and yellow line.
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3.3.3 Impedance-control

The third type of control is the impedance-control. Here the voltage
is either set constant or increasing in stages until a sudden rise in
resistivity is measured. This effect is due to the evaporation of tissue
which results in a sudden drop of the electrical conductivity. When
this rise is measured, the power to the electrode is cut off, and the
tissue is allowed to cool down. Then after a certain period, usually 15
seconds, the power is reapplied to continue the process. The reason
for this type of control is that the power delivery is sub-optimal when
tissue vapor is formed, as it induces tissue charring, which results in
a smaller treated ablation volume [29].
The power (W) dissipated in the system can be calculated by

P= J QrrdQ (33-2)
Q

where Qgr is the heat source due to resistive heating. Using the above,
the resistance (Q) is calculated as

VZ

R
P

(3-3:3)
Then, the power to the electrode is cut off when the resistance reaches
a certain threshold.

3.4 ELECTRIC POTENTIAL

In each simulation, one of the power controls mentioned in the previ-
ous section is used. Such a control provides us with an r.m.s voltage,
(Ver), which is passed on to the next block Electric potential (see figure
12). In this block the heat source due to the resistive heating is calcu-
lated using a quasi-static approach, meaning that the electric field is
assumed to be constant over one time-step, but allowed to change at
each time-step iteration of the simulation.

3.4.1 Equations of the quasi-static approach

At frequencies used in RF ablation (~ 500kHz), tissues can be con-
sidered totally resistive as displacement currents are negligible. Then,
the distribution of the heat source, Q¢ is given by

Qrr=]J-E (3-4.1)

where E(V/m) is the magnitude of the electric field and J(A/ m?) the
current density defined as

J=o0-E (3.4-2)
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with o(S/m) being the electrical conductivity. The electric potential is
evaluated using Laplace’s equation

V-oVV =0 (3-4-3)
where V is the electric potential. From V, E is calculated as

E=-VV (3-4-4)
3.4.2 Validity of the quasi-static approach

The limits of this quasi-static approach can be investigated by consid-
ering a rectangular piece of tissue with an electrical conductivity o
and permittivity e,. Having electrodes on opposite faces. Let the area
of the electrode faces be A and the distance between them d. Then
the resistance, R is defined as

d
R=— 4.
oa (3-4.5)
and the capacitance, C, as
€A
C=— 4.6
1 (3-4.6)

where € = e€p, and €p being the permettivity of vacuum. For the
quasi-static approach to be valid, the capacitive current should be neg-
ligible compared to the resistive current, i.e., the phase angle should
be small. For this to be true it requires that R < 1/wC. Substituting
into equation 3.4.5 we end up with the following condition

cEw

Al 4.
5 < (3-4.7)

For tissue, both o and e change with frequency. However, a prediction
can be made due to various studies on the response of the dielectric
properties of tissues over a range of frequencies. For example, the
study of S. Gabriel et. al. [30] lists the dielectric properties of muscle
at 500 KHz as, 0 = 0.446(S/m) and e, = 3.65-103. Substituting these
values in equation 3.4.7 leads to a value on the left-hand side of 0.04
which is well within the limits of our condition.

3.4.3 Electrical conductivity

The electrical conductivity, o, appears twice in the quasi-static ap-
proach (see eq. 3.4.3 and eq. 3.4.2) and is a tissue-dependent parame-
ter. However, it is in general temperature dependent and is therefore
updated every simulation loop in the Electrical conductivity-block (see
figure 12). Foremost, it has been shown that the conductivity rises
with temperature for the radio-frequency range [25]. To model this, a
simple linear percentage increase per kelvin has been shown to be suf-
ficient [31]. Secondly, due to the evaporation of water and formation
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Electrical conductivity vs temperature
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Figure 14: A graph of equation 3.4.8, showing the temperature dependence
of the electrical conductivity. Three distinct regions can be seen.
First, a linear percentile increase, proportional to Ao, from its
base value, 0y, from the temperature at which it was measured,
To, until the temperature at which evaporation occurs Ty. Second,
the subsequent rapid linear decrease due to water evaporation.
Third, the region above T, at which the water content has fully
vaporized and o takes on a constant, oyqp.

of gas bubbles around phase change temperatures, a sudden drop
of a factor 100 to 10000 in the electrical conductivity appears. This
can be modeled as a linear drop between 100°C and 105°C [31]. The
electrical conductivity then takes on the form of

00+AG(T—T0), T<T1
o(T) = G(TL)+(Gvap—(00+AU(T1—T0)))%, Ti<T<Ty

Ovap, T> Tu

(3.4.8)
where 0 is the baseline electrical conductivity (S/m) measured at Ty
(K), Ao is the change in conductivity per Kelvin (K1), Oyap is the
electrical conductivity of vaporized tissue (S/m) and Ty, T, are the
lower and upper range of transition respectively. The above expres-
sion has also been plotted in figure 14. Note the significant drop in o
between T; and T,,. The impedance control scheme (section 3.3.3) is
based on this phenomenon.

3.4.4 Appropriate boundary conditions

Now that we have defined the equations for the electrical conductiv-
ity and the resistive heating, we can solve for the source term. How-
ever, the equations of the quasi-static approach (section 3.4.1) cannot
be applied directly. As seen in section 2.3.3 we must first transform
these equations in their corresponding weak formulations. Further-
more, in section 2.4 it was shown that Neumann boundary conditions
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rsym

Figure 15: Electrical boundary conditions for an axisymmetric, two-
dimensional, model. I'sym denotes the symmetry-axis. ' is the
electrode surface boundary, at which a r.m.s. voltage will be spec-
ified (Ve1). Last, the outer boundaries are denoted by I'a which
has a voltage of zero to mimic a dispersive electrode. Note that in
the case of a three-dimensional model the symmetry boundary is
not present.

are directly incorporated into the weak formulation. Therefore, before
defining the weak formulation, we have to specify the appropriate
boundary conditions.

A schematic for the boundary conditions in case of an axisymmet-
ric (two-dimensional) case is shown in figure 15. In the case of a three-
dimensional model, the boundary condition at the symmetry axis can
be ignored.

First, a boundary condition must be set at the surface of the elec-
trode, 'e1. This is done by specifying a Dirichlet boundary condition,
where the voltage applied is specified through the power control.

Second, a boundary condition is set at the outer boundaries, I'n,
away from the electrode. This is a zero voltage Dirichlet boundary
condition, to mimic the dispersive electrode, or ground-pad, applied
to the patient. Last, if the model is an axisymmetric one, a symme-
try condition must be imposed on the axis of symmetry, denoted by
I'sym- The flux across a symmetry plane is zero; thus the appropriate
symmetry boundary condition is an insulating Neumann condition.

3.4.5 The weak formulation

Now that we have defined the appropriate boundary conditions, we
can set up the weak formulation of equation 3.4.3. In particular, we
need to incorporate the symmetry condition of the axisymmetric case
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directly into the weak formulation. However, different weak formula-
tions arise whether one wants to solve an axisymmetric model or a
three-dimensional model. Let the model be defined on a domain Q
with an electrode boundary, I'.; and the outer boundary I'g.

To arrive at the weak-formulation for the three-dimensional case
we multiply equation 3.4.3 by a test function, v € H', and integrate
over the domain Q) on both sides. Let u be the quantity of interest,
then the problem reads, find u H' such that

Lw coVuwyvdV =0, WveH (3.4.9)

Using integration by parts

5
JO‘VLL-VV dv — J %vd/\zo Vv e H! (3.4.10)

Q To

Where the second term can be set to zero, since we require the test
function to vanish on the boundary, i.e, v € H}

J oVu-VvdV =0 YveH (3.4.11)
Q

Replacing v by a test function constructed in a finite element space,
Vh € Vi C H(]) and searching for the finite element approximation
up, results in the finite element problem. Furthermore, to include the
Dirichlet boundaries we restrict up, = Vep on ey and up, = 0 on I'n.
Find up, € Vy, such that

J oVup - VvpdV =0 Wy, € Vy (3.4.12)
Q

For the axisymmetric case, let the model be cylindrically symmetric
and defined in the (1, z)-plane. Furthermore, let the symmetry axis be
the boundary I'sym (see figure 15). Now, deriving the weak formula-
tion involves the same steps as for the three-dimensional case, but in
cylindrical coordinates.

o, 1o, &,
V = gr—k ;%G + 522 (3-4.13)

and
dV =rdrdfdz (3-4.14)

Furthermore, we have to include the Neumann boundary condition

of zero flux on the symmetry axis

J oVup Vv, rdrdz — J Ovdrdz=0, WwveV, (3-4.15)

Q rsym
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However, as seen in section 2.3.3, the second term vanishes as it is
naturally included in the the weak form. And we end up with

J oVupVvprdrdz =0, Vvp € Vi (3.4.16)
Q

Both the three-dimensional as well as the axisymmetric formulation
can be solved for the electric potential, and subsequently, the source-
term, Qgrr, due to resistive heating.

3.5 PENNES’ BIOHEAT EQUATION

Following figure 12, we arrive at the Pennes” bioheat-block, where we
will calculate the temperature distribution. This will be a combination
of the prior temperature distribution, plus the contribution due to the
source-term, Qgrr. Furthermore, because of blood-flow, or perfusion, of
tissue, a heat-sink is present, as blood at physiological temperatures
removes heat. Therefore, the heat transfer during RF ablation is de-
scribed by a modification of the standard heat equation, known as
the Pennes’ bioheat equation

oML =V k(MVT 4 Qur — Qert(T) + Qmeta (3-5.1)

ot
where p is the mass density (kg/m?), c is the specific heat (J/Kg-K), k
is the thermal conductivity (W/m - K), T is the temperature (K), Q¢
is the heat source (W/m?), Qperr is the heat loss due to perfusion
(W/m?3 and Qmetq is the heat generated due to metabolic processes
(W/m3). The last term is negligible in the process of RF ablation and
therefore ignored [24].

In the following sections, we will go over the material dependent
properties, i.e., k(T) and pc(T), where the latter has been grouped, as
it only appears together in equation 3.5.1.

After that, we further explain the perfusion term, as it is not only
a tissue-dependent parameter but also a function of the cell viability,
that is to say, the perfusion depends on the damage that has build up
within a cell due to hyperthermia. Keeping track of, or modeling of,
the cell damage is done by one of the cell death models listed in the
Cell death models-block (see figure 12). Furthermore, the inclusion of a
cell death model will allow for a direct prediction of the cell damage
and thus the ablation zone.

Lastly, we derive the appropriate boundary conditions and the
weak formulation of equation 3.5.1, similarly as done for the electric
potential. However, in addition, the weak formulation has to include
some discretization in time as the Pennes’ bioheat equation is time-
dependent.
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Thermal conductivity vs temperature
1

W/(m - K))

ko + Ak(373 —Tp)
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Figure 16: A graph of equation 3.5.2, showing the temperature dependence
of the thermal conductivity. Two distinct regions can be seen.
First, a linear increase, proportional to Ak, from its base value, ko,
from the temperature at which it was measured, Ty, until 373K.
After reaching this temperature, the second region is seen where
the thermal conductivity remains at a constant value.

3.5.1 Thermal conductivity

The thermal conductivity of is associated with having a linear depen-
dence on the temperature, with a constant value for tissues above 100
°C (373 K) [31], and therefore modeled according to

ko +Ak(T—Ty), T <373K
K(T)=<"° ° (3.5.2)
ko +Ak(373 —Ty), T > 373K

where ko is a baseline thermal conductivity in (W/(m - K), Ty the
temperature at which the baseline value is measured in (K) and Ak is
a measure of change per kelvin in the thermal conductivity (W/(m -
K2)).

The temperature dependence of the thermal conductivity is also
shown in figure 17.

3.5.2 Apparent heat capacity

The water contents of tissue start to evaporate as temperatures during
RF ablation reach upwards of 100 °C. This leads to a discontinuous
jump in the heat capacity during the phase-change. One method of
solving such a phase-change problem is by the apparent heat capacity
method [32].

ST

PCapp (T)E =V -k(T)VT — Qperf(T) + Qs (3-5-3)
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Densitiy x specific heat vs temperature

pC + PCyap 1
—z TPl

oc
PCvap
To T Ty

Figure 17: A graph of equation 3.5.4, showing the temperature dependence
of the apparent heat capacity. The phase change is modeled by a
discontinuous jump in the specific heat of the material.

with
Pc, T<T
PCapp = | BEEymiver 45 TC1e, TIKTLT, (3-5-4)
PvapCvap;, T>Ty,

where p,qp and cyqp are the density (J/ Kg3) and specific heat (J/Kg -
K) of vaporized tissue respectively, p,, is the density (J/Kg?) of water,
L is the latent heat of vaporization (J/Kg) and C is the percentage of
water in the tissue. The range over which the phase change takes
place is taken to be T € [Ty, Tl where Ty and T,, are respectively the
lower and upper temperature.

3.5.3 Perfusion and cell death models

The perfusion is modelled as

Qperf = Bovcorw(T—Ty) (3-5:5)

where py, is the density of blood (Kg/m?3), cy, is the specific heat of
blood (J/Kg - K), and omega is the tissue specific blood perfusion
rate s~ '. However, tissue perfusion is not constant during ablation
as tissue necrosis induces coagulation and stops the perfusion to the
tissue. In other words, the tissue perfusion of a cell is halted when
its viability drops below a certain threshold. This effect is regulated
through the (3-term
1, D> Do

B = (3.5.6)
0, D < Do

where D is the cell viability and Dy the cell death viability threshold.
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Figure 18: Arrhenius fits of experimental cell viability data under hyperther-
mia. (a) shows SN12 cells by He and Bischof [33] with fit param-
eters of A = 3.153-10%” and AE = 3.1489 - 10°. (b) shows PC3
cells by Feng et al. [34] with fit parameters of A = 1.19- 103> and
AE = 2.318-10°. Note that while the SN12 data shows a proper
fit, the Arrhenius fit of PC3 cells grossly overestimates the dam-
age at lower temperatures and heating times. The initial period
at which no damage occurs under low heating temperatures is
known as the shoulder-region and is present in the case of PC3
cells.

The cell viability, or better yet, cell damage is calculated through
one of the cell death models and is updated each iteration (see fig-
ure 12). These models calculate the cell damage due to hyperthermia
throughout the simulation. The cell viability can then simply be de-
fined as a lack of cell damage. In the following sections, we go over
each of the cell death models. All of them are based on experimental
data where the cell viability has been measured as a function of tem-
perature, using cell clonogenicity or fluorescence as a marker of cell
viability. However, they differ in the mathematical equations and the
types of cells on which the experiments were performed.

3.5.3.1 The Arrhenius model

The simplest included model is the Arrhenius model, an Arrhenius fit
with a single rate constant [35], i.e.

t
Qt) = JAeRATE dt (3.5.7)
0

where T is the temperature (K), R is the gas constant (8.3134] /mol-K),
AE the activation energy (J/mol) and A the frequency factor (s~ 1.

o
]

Viability of PC3 cells under hyperthermia
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The value of A and AE are both experimentally determined for dif-
ferent cell lines. Furthermore, these coefficients are normalized such
that :

Q = ln(ﬁ) (3.5-8)
where D the cell viability.

This normalization is used to calculate the cell viability and regu-
late the perfusion cut-off through equation 3.5.6. For example, com-
monly encountered values in literature are a threshold of QO = 1,
which yields a viability rate of 36% or QO = 4.6, a viability rate of
1%[36] [371]-

An example of an Arrhenius fit can be seen in figure 18(a). In this
figure, adapted from He and Bischof [33], the experimental data and
the corresponding Arrhenius fit for the cell viability of SN12 cells (a
human kidney cancer cell line) under different heating temperatures
is shown. The corresponding fit-parameters were A = 3.153-10%” and
AE = 3.1489 - 10°. Tt can be seen from this figure that, the Arrhenius
tits the experimental data rather well over the range of temperatures.

However, the simple Arrhenius model often fails to provide an
adequate fit when a “shoulder” region is present. This effect arises
when cells show thermal robustness under lower heating tempera-
tures, meaning that, cells can retain their integrity before accumu-
lating damage. This effect can be seen in figure 18(b), which shows
the Arrhenius fit to experimental data of the PC3 cell line (a human
prostate cancer cell line) under hyperthermia by Feng et al. [34]. Note
how the damage is overestimated for lower heating temperatures and
heating periods, where in reality no damage occurs due to the shoul-
der region. This is due to the fitting process over a range of tempera-
tures and heating times, and as such, the Arrhenius model often fails
to accurately model the initial shoulder region, in favor of accuracy
at longer heating periods and higher temperatures [36]. This is also
true for the current example, as the 54 °C line shows an acceptable
fit.

The Arrhenius fit parameters used in this section are also summa-
rized in table 3, in addition to parameters for the HepG2 (Human
liver cancer) and CHO (Chinese Hamster Ovary) cell lines.

3.5.3.2 The Arrhenius model with a temperature-dependent time delay

A method introduced by Pearce improves upon the Arrhenius model
by introducing a temperature-dependent time delay [38]. This method
sacrifices information in the slowly developing shoulder region in or-
der to obtain a more accurate estimate of the later, constant region.
However, in treatment planning, the goal is to obtain a final predic-
tion of the ablation-zone without overestimating its extent. In that
case, as reasoned by Pearce, the shoulder region can be ignored as
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Viability of PC3 cells under hyperthermia
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Figure 19: Arrhenius fit with a temperature-dependent time delay of PC3
cells, adapted from Pearce[38]. Corresponding fit parameters
were A = 6.75-10%3, AE = 222.2-10%, b = 2703 and m = 49.6.
Note the improved fit over the original Arrhenius fit in figure

18(b).

long as it is accounted for within the calculation. And this is what the
time delay does.

Referring back to figure 3.5.7(b) as an example. Instead of the expo-
nential fit being performed on the whole data-set, one only includes
data points at which the cell accumulates damage. After which a
temperature-dependent linear time delay is fitted to the data at which
no damage is measured. The time delay is of the form of

tg=b—mT (3.5.9)

where tq4 is the time delay before the damage accumulation starts
(s), b an offset (s), m an offset factor (s°C~'), and T the heating
temperature (°C).

For example, the original Arrhenius fit of PC3-cells in figure 18(b)
benefits greatly from this time delay, as demonstrated by Pearce[38].
In this case, the revised parameters become A = 6.75-1033, AE =
2222103, b = 2703 and m = 49.6. The resulting fit is shown in
figure 19.

The above time delay means that at a constant heating tempera-
ture of 44°C, the damage accumulation is delayed by 520 seconds.
Alternatively, looking at it the other way around, a constant heating
temperature of 54.5 °C is required for there to be no time delay at all.

As with the Arrhenius model, the cell viability can be calculated
according to equation 3.5.8. Moreover, a cell viability threshold can
be set to regulate the perfusion according to equation 3.5.6.

The improved fit parameters used in this section, as well as im-
proved fit parameters for the CHO cell line are given in table 3.
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3.5.3.3 Three-state cell death model

Another model is the three-state model of hyperthermic cell death
by O'Neill et al. [39]. Instead of a single reaction rate, this model
is based on three states in which a cell can reside, an alive state, A,
a vulnerable intermediate state, V, and a dead state, D. Cells in a
vulnerable state represent a state where the cell’s function is impaired,
but not fully dead, and has a chance to return to the alive state. The
dead state consists of cells which have undergone irreversible thermal
damage. The following rate reaction can describe these processes

ke ke
A A V—D (3.5.10)

The underlying progression of cell death is modeled by a single dam-
age mechanics. Thus the process from alive to dead is taken to be two
stages of a single process and therefore modeled by a single forward
rate constant k¢. The backward rate ky, is associated with the healing
of a cell and is therefore modeled by a different rate. Since all cells
are either in the alive, vulnerable or dead state we have

A+V+D=1 (3.5.11)
Thus the system can be reduced to two coupled differential equations

i—i\ = —kfA+kp(1—A—D) (3.5.12a)

% =k¢(1—A—-D) (3.5.12b)

To account for the fact that there is practically no thermal damage
at normothermia, the forward rate at 37°C must be small and after
that increasing with temperature. O’Neill et al. chose an exponential
dependence to mimic this behavior. Furthermore, already damaged
tissue will be most susceptible to further damage and will have a non-
linear influence on the cell viability. Therefore, the forward reaction
rate is multiplied by the term (1 — A), the fraction of vulnerable and
dead cells, which will increase as the fraction of alive cells decreases.

The combination of the above leads to a forward rate of
_
ki =kfe™ (1 —A) (3-5.13)

where k¢ is a scaling rate (s~ 1) and Ty a rate that sets the exponential
increase (°C). Thus the process is governed by three variables k¢, ky,
Ti.

Because of the term (1 — A) in equation 3.5.13, a fully alive cell, e.g.
A =1, leads to a static solution. This has been remedied by setting
the initial conditions to A = 0.99,V = 0.01 which had a negligible
effect on the system.

O'Neill et al. performed experiments to which these parameters
were fitted. The different make-up of co-cultures of human liver hep-
atocellular carcinoma, HepG2, and human lung fibroblast, MRC-5,
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Co-culture cell line make-up (% content of MRC-5)

Parameter 0% 25% 50% 75% 100% Average
ke 0.80x103s~1  2.62x1073s™1  3.52x1073s~ 1 4.54x1073s~!  9.07x1073s™1  3.33x107 35!
kb 0.25x103s~ ! 574x103s~ 1 846x103s~ 1 10.8x103s~ 1 192x1073s~1  7.77x10 357!
Ty 24.6 °C 36.7 °C 41.6 °C 46.3 °C 63.5 °C 40.5 °C

Table 2: List of optimized cell death model parameters for the three-state
cell death model of O’'Neill et al. for different co-cultures of MRC-5
and HepGz, and for an average over all co-culture make-ups. All
data taken from [39]

were heated for different periods for different heating constants. Then
the cell viability was measured as a function of the fluorescence,
which signifies the metabolic activity of the living cells. Furthermore,
a fit has been performed where the co-culture data has been averaged.
The results are given in table 2.

While this model accounts for cell death processes during the timescale

of RF ablation, it is known from the experimental data that the cell vi-
ability continues to decrease up to 50 hours after the ablation. There-
fore, a secondary slower mechanism is implemented, the so-called
slow cell death model. In this model, cells can transition from the alive
and the vulnerable state to the dead state, but there is no opportunity
for healing. This can be modeled by a single reaction rate

(1 —D) ==

D (3.5.14)
and the resulting partial differential equation

dD
at =ks(1—D) (3.5.15)
with

ks =KksD(1—D)(D—D¢)? (3.5.16)

where k; is a scaling rate (s—') and Dy a threshold for maximum cell
death for cells which have undergone minimal damage. This form of
ks was chosen as it is a positive value, indicating that no dead cells
return to the alive state, kg = 0 at D = 0, and thus no cells die when
tissue is 100% alive, and lastly, ks = 0 at D¢ such that there is a max-
imum value of cell death for tissues which have undergone minimal
damage. The slow cell death model is governed by two parameters K
and Dy¢. These parameters have been fit to experimental data of the
cell viability after a post-heating incubation time. Optimized values
for these parameters were found by O’Neill et al.

ks = 0.316x107 35! (3.5.17a)

Dy =0.208 (3.5.17b)



36 APPROPRIATE BOUNDARY CONDITIONS

Further, it was found that once cells pass the 80% viability thresh-
old, they would progress to an entirely dead state. Thus making it an
indicator for cell death and after that perfusion is stopped. The appro-
priate form of the -term for regulation of the perfusion in equation
3.5.5 for the three-state model can be written as

1, (1-D)>038
B = ( )> (3.5.18)
0, (1-D)<0.8

As for the other cell death models, a summary of the parameters
used in the three-state model regarding different cell lines is given in
table 3. Furthermore, due to the coupled equations of A (eq. 3.5.12a)
and D (eq. 3.5.12b), the implementation of the three-state cell death
model is more complicated than the Arrhenius model. Therefore, the
implementation of this model has been tested by retrieving the orig-
inal fits to the experimental data found in O'Neill et al. The cell vi-
ability data is therefore shown in the next chapter, which entails the
model validation, in figure 31.

36 APPROPRIATE BOUNDARY CONDITIONS

Now that we have a grasp of the involved terms of the Pennes’ bio-
heat equation (eq. 3.5.1), we can start to solve the resulting temper-
ature distribution. However, as for the electric potential, we need to
derive the weak formulation of the Pennes’ bioheat equation, and be-
fore that, define all the appropriate boundary conditions.

As it turns out, the same boundaries as for the electric potential in
tigure 15 are used. First, Dirichlet boundaries of constant initial tem-
perature are set at the outer model boundaries, I'n, as it is assumed
the temperature at the boundary remains unchanged, provided that
the domain is large enough.

Second, an optional cooled tip can be modeled through a convec-
tive Neumann condition on the electrode surface, I'.1. These types of
electrode provide an extra cooling element in the procedure, extend-
ing the depth at which the maximum temperature arises within the
tissue, and helps to prevent tissue charring [11].

Last, for the axisymmetric case, an insulating Neumann condition
must be set at the symmetry axis, I'sym, to ensure zero-flux across
this boundary.
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Model Coeficcients
Three-state k¢ ko Ti
cell line Type range (°C) (x1073s7 1) (x1073s7 1) (°C)
HepG2 Human liver cancer 37-100 0.8 0.25 24.6
MRC-5 Human lung 37-100 9.07 19.2 63.5
Arrhenius A AE
(s") (Jmol™")

HepG2 Human liver cancer 50-70 5.396x103° 2.486x10°
CHO Chinese hamster ovary ~ 42.5-46 6.355x1077 6.102x10°
PC3 Human prostate cancer ~ 44-60 1.19x1035 2.318x10°
SN12 Human kidney cancer 45-70 3.153x10% 3.1489x10°
Arrhenius with delay A AE tqg=b—mT

(7 Jmol™")  b(s)) m(sC""))
PC3 Human prostate cancer  44-60 6.75x1033  2.222x10% 2703 49.6
CHO Chinese hamster ovary ~ 42.5-46 7.254x10790  6.275x10° 26062 555.9

Table 3: Summary of cell death models and its parameters for various cell lines.
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3.7 TIME DISCRETIZATION

One more step must be taken before the weak formulation can be
derived. The time derivative of the Pennes’ bioheat equation must be
approximated discretizing in time.

Two different time stepping schemes have been implemented, the
implicit Euler method and a three-level explicit scheme known as
Lees” method.

3.7.1  The implicit Euler Method

The implicit Euler method, as discussed in section 2.7, is relatively
straight-forward to implement, formulation and programming-wise.
The premise of this method is based on the assumption that the tem-
perature varies linearly in time. Then, the Pennes’ bioheat equation
(eg. 3.5.1) can be rewritten as

Tn+1) _ 1)
pCapp (T e = V(T YT By pp (T —Ty) +Quf

At
(3.7.1)
where T(") is the known temperature at the current time step, T("*1)
is the temperature at the next time step, and At is the time step size.

The next step is transforming the above expression into its corre-
sponding weak formulation for use in the finite element method. The
weak formulation for the three-dimensional case is obtained by mul-
tiplying equation 3.7.1 with a test function, v € H} and integrating
over the domain.

For this let T*1) be a square integrable function, Q the domain
of interest and ' the outer boundary. After integration by parts and
bringing all the terms to one side, the weak formulation reads:

find TM*+1) € H] such that

0= J pCapp (T Ty 40 4 At J k(T (vTHD . wy) dQ

Q Q
—AtJQﬁcv dQ+AtJ Bppcow(TMH —Ty)vdQ
Q Q
— J TMyvdQ, VveH]
Q

(3-7-2)

The axisymmetric weak formulation is obtained by following the
same steps as we did for the axisymmetric electric potential solver.

Using figure 15 as a reference, let () be a cylindrically symmetric
domain, T'sym denote the line of symmetry and I'p the boundaries
away from the axis of symmetry. Then the weak formulation reads:
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find T(M+1) ¢ H(]) such that

0= J pCapp (T TNy, 40 + At J k(T (VT L gy)rdQ

Q Q
— At J Qremv dQ+AtJ Bppcow(TMH) —Ty)rvdQ
Q Q
— J TMrvdQ, VveH])
Q

(3.7.3)

Where the symmetry Neumann condition vanishes as it is naturally
included in the weak formulation.

The drawback of this method is that any temperature dependence
of the material properties leads to a non-linear system of equations,
which has to be linearized first using methods such as the Picard iter-
ation (see section 2.7.1), or Newton’s method (see section 2.7.2). Still,
this method shows accurate results when a small model is considered.
Furthermore, this implementation can act as a benchmark for more
complicated schemes.

3.7.1.1  The explicit Lees method

Lees” method [42] is a three-level time stepping scheme as described
in [43]. The main advantage is that the algorithm evaluates the non-
linear material-properties at a known time-step, and thus, do not
need to be evaluated through linearization. Furthermore, since it is
a three-level scheme, we will show that the local truncation error is of
order three, an improvement over the Euler method (see section 2.7).

Further, an additional benefit comes in the form of an automated
time step control. After each iteration, the difference in temperature
at the mesh nodes is calculated between the new temperature and
the previous temperature. If this measure is below a certain lower
tolerance, 11, the time step (At) is increased. On the other hand, if
the measure is above an upper tolerance, T, the time step is de-
creased. This ensures that small enough time-steps are taken when
the temperature-field changes rapidly between iterations, but it al-
lows for greater time-steps when the temperature changes are smaller.

First let the unknown temperature, T be approximated by a linear
combination of shape functions, i.e.

n

T= ZNi(x,y,z)Ti(t) (3.7-4)

i=1

Then the weak formulation of equation 3.5.3 can be written in matrix
form as
CTHKT+F=0 (3.7.5)
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with
Q.
K=Y J K(T)(VN; - VNi) + BppcowN; Ny dQ (3.7.6b)
Q.
Fi=— Z J N;iQ+f + Bpocowlp Ny dQ (3.7.6¢)
Qe

Let the temperature be linear over the interval 2At, then we can use
the approximations

1

T = g(T(“H) + T 4 in=1)y (3.7.7)
and (n+1) _ T(n=1)
. TN — T
T — 7.
AL (3.7.8)

where T(n) is the known temperature at time t, T=1) is also known
and is the temperature at the previous time t — At, and T+ is the
desired temperature at time t + At.

Substituting both approximations into equation 3.7.5 yields

)T(n+1)_T(n—1) )(T(““)—i—T(n)—I—T(n*”)

C(n K(TL F(n) =0
e 3 -
(3.7.9)
Rearranging the terms lead to the following formula
3 3
(KM L 2 cygnt) — ) L gn)pn=1) _ 2
T " 24t

(3.7.10)
In which only values C, K and F occur at the current time (1), which
are known. Therefore, this scheme is fully explicit, however it is not
self-starting, as two initial temperature profiles are needed. This can
be solved by either taking initial time steps small enough for the tem-
perature to remain constant, or using one Euler iteration to arrive at
two starting conditions. This algorithm has been shown to be uncon-
ditionally stable [44] and has been successfully implemented in other
simulations [43].
The local truncation error of Lees” method can be investigated by
considering a general form of the time derivative discretization, i.e.

T — 7= L 2 ALf(¢, TMY) (3.7.11)
and thus
e =TI+ D 7= _9Atf(t, TV (3.7.12)
Now we expand both T a¢ and T¢_a¢ in their Taylor series around
T(t)

(At)?_

(At)3 "
3 T () +

: T (1) + O((At)?)
(3.7.13a)

T = T L AT (1) +
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2 3
T = T AT (1) + (Azt) T'(t) - (A;‘) T"(t) + O((At)?)
(3.7.13b)
substituting the above expressions into 3.7.12 yields
At)?
et = B 1 og(any?) (5714)

Thus, the local truncation is of order three, one higher than the result
found for the implicit euler method (eq. 2.7.12).

3.7.2  Cool-down

Using either of the two time-stepping schemes allows for the calcula-
tion of the new temperature distribution. Then, looking back at figure
12, the new temperature distribution is passed back to the beginning
to start the loop anew. This process is repeated until the simulation
has run for the desired period.

However, as heat is not immediately dissipated when the proce-
dure has finished, a cool-down part has been implemented. The cool-
down can be seen as a dashed line in figure 12. Cool-down is the
period after the ablation procedure, where the power has been shut-
off, and the heat is allowed to dissipate. Therefore, during this period,
the source-term is no longer updated and set to zero.

Since heat resides in the tissue, so does damage still take place
during this cool-down period. The Pennes’ bioheat and cell death
blocks continue to get updated until the maximum temperature in
the mesh is below a certain threshold at which the mesh is considered
cooled-down.

After that, the simulation has finished, and a prediction of the final
ablation-zone can be made using either the temperature distribution
before the initiation of the cool-down phase, or the final cell viability
distribution.

However, before we can start to simulate our models, it is of im-
portance to validate the current implementation, which will be the
subject of the next chapter.



VALIDATION OF THE MODEL

The validation of the finite element model is be performed in three
different ways.

First, we use the method of manufactured solutions, to perform tests
which can confirm that the implementation of the weak formulations
is correct. These methods are not based on any physical phenomenon,
but instead, we impose boundary conditions which correspond to a
predefined solution and check if the solver arrives at this solution
with the correct convergence rates.

Second, physical examples can be sought which have analytical
solutions, usually exploiting some symmetry or considering semi-
infinite models. These allow for more complex interactions in the
model to be tested, while still having an exact solution.

Last, the model can be validated against experimental data, where
the resulting simulations are shown to be within a specified tolerance
of the experimental data.

4.1 METHOD OF MANUFACTURED SOLUTIONS

This method relies on the construction of boundary and initial con-
ditions such that an exact analytical solution is retrieved, usually a
polynomial, or an infinitely differentiable function. Since we know
the solution ourselves, we can calculate the error. This error should
be within machine precision when the function is a polynomial of
degree p, and the FEM basis function are also of order p.

However, more interestingly, when the underlying basis functions
are of a degree less than p the solver introduces some error w.r.t our
function. However, we also know that refining the mesh, i.e., adding
more elements, decreases the error of the solution. In section 2.5.4 it
has been shown that the convergence of the error w.r.t. to mesh size
should be proportional to the mesh size. It is the convergence rate
which is used to determine if the solver implementation is correct.

To demonstrate this we refer back to the electrostatic problem (equa-
tion 3.4.3) but with an added source term,

V-oVV(x,y) = f(x,y) (4.1.1)

The source term has been added such that we can test any function
and just calculate the corresponding source term. Now suppose our
imposed solution is a quadratic polynomial, e.g.

V(x,y) = ax? + By +c (4.1.2)
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If we want the solver to solve equation 4.1.1 and end up with equa-
tion 4.1.2, we have to provide the correct source term. Assuming o
constant for now, by manually differentiating we end up with

f=2«0 (4.1.3)

Now the finite element solution of u can be retrieved by substituting
the above source term, f, into equation 4.1.1. We also set the boundary
to be equal to the values of the exact solution, u.

The only thing left is specifying the degree of the basis functions
we use in the solver. If, in this case, we use basis functions of order
two, the exact solution is retrieved, as second order basis functions
can represent polynomials of the second order exactly. However, as
said before, it is the convergence of the solution on lower order basis
functions which is used in the manufactured solutions test. In particu-
lar, the convergence rates were determined in section 2.5.4 and given
in equation 2.5.42, which is repeated here

[u—uyilya < Chp—d+! [wliyp 1 (4.1.4)

Where hP—4+1 is the relevant term with h the characteristic mesh size,
p the degree of the basis functions and d the order of the semi-norm
used to calculate the error.

For example, if we want to test the convergence rate of the solution
of the case mentioned above, we can use at most basis functions of
degree one, p = 1. Then, we can calculate the error in a H4 semi-norm,
in particular the [le]|;2 = [e[jo (see eq. 2.3.15) and |e[y1 (see eq. 2.3.16)
semi-norms. Using the appropriate values for p and d, according to
equation 4.1.4, the error in these norms should converge proportional
to h? and h respectively.

The convergence rate can be asserted by calculating two successive
finite element solutions, and their errors, e;, e;_1, where the mesh
size parameter, h, has halved. Then the convergence rate, r, can be
calculated as

T T (4.1.5)

4.1.1  The electric potential solver

In this section, we validate the electric potential solver with the use
of the manufactured solutions method as described above. Both the
three-dimensional model as the axisymmetric model need to be val-
idated independently, as they are formulated by different weak for-
mulations.



4.1 METHOD OF MANUFACTURED SOLUTIONS

4.1.1.1  Three-dimensional convergence rates

The error convergence rates have been investigated for different poly-
nomials of the form

V(x,y,z) = (axx + ayy + &z +¢)P (4.1.6)

with a constant sigma.

As mentioned, we can use any arbitrary polynomial we desire. In
practice, polynomials and basis functions of higher degrees consume
more memory. Therefore, in order for the results to be reproducible,
we use the following polynomial of order three

Vix,y,z) = (6x+ 2y +z+19)° (4.1.7)

Substituting the above expression into equation 4.1.1 yields the corre-
sponding source term

f(x,y,z) = —0(1476x + 492y + 246z 4 4674) (4.1.8)

Since the solution is a polynomial of order three, we can investigate
the convergence rates using basis functions of order one and two.

Using equation 4.1.4 we expect that basis functions of order one
(p = 1) should show a convergence rate of two and one for the |e|}o
and |e[;;1 semi-norms respectively. Similarly, using second order basis
functions we can expect a convergence rate of three and two for the
lelijo and |ef41 semi-norms respectively.

To calculate the convergence rate, the solutions are approximated
on meshes of increasing resolution. In this particular case, a unit cubic
mesh is chosen which is split into N elements in each direction, such
that the mesh is uniform. Consequently, a uniform mesh parameter
can be defined as h = 1/N. Then, using two subsequent solutions, we
can calculate the order of convergence using equation 4.1.5.

The results are presented in table 4 with o = 1. Where it is seen
that all the convergence rates are as expected.

A second convergence test has been performed where, instead of a
polynomial, the solution is of the form

V(x,y,z) = sin(mwx)sin(mwy)sin(mwx) (4.1.9)
and again, using equation 4.1.1, we have a corresponding source term
f(x,y,z) = SUnszV(x,y,z) (4.1.10)

This solution cannot be exactly retrieved by any polynomial basis
function, and thus, has as benefit that we can investigate the order
of convergence using any order of basis functions. However, as men-
tioned, higher order basis functions are more computationally expen-
sive. Therefore, we limit ourselves to basis functions of order one and
two, which should have the same convergence behavior as the basis
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p=1 p=2
N HO I'ho H' 1 HO Iho H' I
2 1.96x102 - 1.25x10% - 1.83x10° - 2.55x10! -
4 490x107  2.00 6.22x10%2 1.01 2.29x1071 3.00 6.37x10°  2.00
8  1.22x107  2.00 3.10x102  1.00 2.86x1072 3.00 1.59x10°  2.00
16 3.06x10° 2.00 1.55x10%2 1.00 3.58x1073  3.00 3.98x10~1" 2.00
32 7.65x10~" 2,00 7.75x10" 1.00 447x107%  3.00 9.95x1072 2.00

Table 4: Three-dimensional electric potential convergence rates of the finite
element solution of a polynomial of degree three (equation 4.1.7),
by polynomials of degree p = 1 and p = 2 respectively. The errors
are measured in the H® and H' semi-norms and their convergence
are denoted 10 and ry1 respectively. The number of elements in
the mesh, N, is doubled every iteration.

p=1 p=2
N H° o H! o H° o H' o
2 264x1077 - 1.58x10° - 551x1072 - 584x10~!' -
4 119x107" 115 9.45x10~" 0.75 6.59x1073  3.06 1.69x10~1" 1.79
8 3.60x1072 1.72 4.86x10~' 0.96 7.44x10~%  3.15 4.50x1072 1.91
16 9.50x1073 1.92 2.44x10~" 1.00 8.92x107° 3.06 1.15x107%2 1.97
32 241x1073 198 1.22x10~"  1.00 1.10x1075  3.02 2.89x1073 1.99

Table 5: Three-dimensional electric potential convergence rates of the finite
element solution of a sine function (equation 4.1.9), by polynomials
of degree p = 1 and p = 2 respectively. The errors are measured
in the H® and H' semi-norms and their convergence are denoted
Tho and 1441 respectively. The number of elements in the mesh, N,
is doubled every iteration.

functions in the previous test. The results are shown in table 5 with
o=w=1.

Deviations from the convergence rate at a lower resolution can be
attributed to errors due to the interpolation of the source term and
the boundary terms on such a low-resolution mesh. However, when
the mesh is refined, the expected convergence rates are retrieved.

4.1.2  Axisymmetric convergence rates

Convergence rate tests have also been performed for the axisymmet-
ric model, as its weak formulation requires a different implementa-
tion than the three-dimensional case. Again, the first test was deter-
mining the convergence rate for a polynomial of the form

V(r,z) = (0T + azz+¢)P (4.1.11)

Where, again, we can choose the parameters as we see fit. The benefit
of the axisymmetric, two-dimensional, model is the less restrictive
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p=2 p=3
N H° Tho H' I HO T'Ho H' I
2 3.22x108 - 4.82x10% - 3.93x10! - 7.61x102 -
4 399x102  3.01 1.20x10* 2.00 2.30x10°  4.09  9.28x10"  3.04
8  4.97x10"  3.01 3.00x103 2.00 1.38x10~"  4.06 1.14x10"  3.02
16 620x10°  3.00 7.52x10% 2.00 842x1073 4.03 1.42x10° 3.01
32 7.75x1077 3.00 1.88x10Z  2.00 5.19x107%  4.02 1.77x10~"  3.01
64 9.68x10~2 3.00 4.70x10" 2.00 3.22x10~>  4.01 2.20x10~"  3.00

Table 6: Two-dimensional, axisymmetric, electric potential convergence
rates of the finite element solution of a polynomial of degree five
(equation 4.1.12), by polynomials of degree p = 2 and p = 3 re-
spectively. The errors are measured in the H® and H' semi-norms
and their convergence are denoted 110 and 1 respectively. The
number of elements in the mesh, N, is doubled every iteration.

memory requirement allows us to test higher-order basis functions.
Therefore, we have chosen a polynomial of degree 5

V(r,z) = (10r+10z+12)° (4.1.12)

And the corresponding source term is

1
(112001 + 1600z 4 1920) (51 + 5z + 6)? (4.1.13)

f(r,z) = —
T

Where we will calculate the solution on basis functions of order
two and three. The expected convergence rates, according to equation
4.1.4, for basis functions of order two, are three and two for the |e|;0
and |e[;;1 semi-norms respectively. Whereas for the basis functions of
order three, convergence rates of four and three for respectively the
leljo and |el4y1 semi-norms are expected.

The solutions are approximated on a uniform two-dimensional unit-
square mesh, which is split into N elements in each direction. Again,
we can define a uniform mesh parameter as h = 1/N. The conver-
gence rates are then calculated according to equation 4.1.5 The results
are given in table 6 and are in accordance with the expected rates of
convergence.

A second convergence test is performed where the solution is of
the form

V(r,z) = sin(wmr)sin(wmnz) (4.1.14)

and consequently

f(r,z) = _L:T[cos(wﬂr)sin(wﬂz) + 2w?mu(r, z) (4.1.15)

The results are shown in table 7. Where it is seen that the expected
convergence results are retrieved as the mesh is refined.
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p=2 p=3
N HO o H' o HO o H' I
2 412x1072 - 470x107" - 540x1073 - 1.02x107' -
4  480x1073 3.10 1.30x107' 1.86 3.55x10~%  3.93 1.32x10%2 294
8 5.66x107% 3.08 3.34x1072 1.96 220x107°  4.02 1.66x10~3  3.00
16 6.93x107° 3.03 842x1073 1.99 1.35x107¢  4.02 2.06x10~* 3.01
32 8.62x107¢ 3.01 211x10~3 2.00 8.40x10~8 4.01 257x10~>  3.00
64 1.08x107¢ 3.00 5.28x10~* 2.00 5.23x1077 4.01 3.21x107°> 3.00

Table 7: Two-dimensional, axisymmetric, electric potential convergence
rates of the finite element solution of a sine function (equation 4.1.7),
by polynomials of degree p = 2 and p = 3 respectively. The errors
are measured in the H® and H' semi-norms and their convergence
are denoted 140 and Tyy1 respectively. The number of elements in
the mesh, N, is doubled every iteration.

4.1.3  Three-dimensional vs axisymmetric

We have shown that the three-dimensional and axisymmetric solvers
show their expected convergence rates. As a final test, it rests on
showing that a three-dimensional representation of the axisymmet-
ric model shows the same results. To this end, we choose the solution
in the axisymmetric case, and the respective source term of the form

Vaxi(r,z) = 2(r* —27) (4.1.16)

faxi(T/ Z) = —4o (4-1-17)

and for the three-dimensional case
Vip(x,y,z) = 2(x* +y* — z%) (4.1.18)

f3p(x,y,z) = —40 (4.1.19)

where we used 12 = x? +y2. The solutions are calculated on basis
functions of degree 2, this way both solutions should be exact and can
be compared. Then, the line z = 1 —r from both results is compared,
and a maximum difference is established. The result is shown in 20.
In particular, figure 20(a) shows the solution of the three-dimensional
solver. In this case, a cut has been made along the x and y-axis to ex-
pose the z,x-, and z, y-planes. Since the model is axisymmetric, these
will have the same values as the z, r-plane. The dashed-line of both
the z, y-plane (outlined in black) and the solution of the axisymmetric
solver, in figure 20(b), are then compared. The resulting error-norms
and maximum point-wise difference are given in table 8.

From this table, it is seen that in both cases the exact solution is
retrieved and that the three-dimensional formulation of an axisym-
metric model yields the same results, i.e., all error measures are less
than 1x10 12,
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Uaxi usp

HO H' HO H' max |uzp —uzp|
4.69x1071  7.66x10713 220x10~ " 1.66x10713 6.68x10 14

Table 8: H® and H' error-norm results of the finite element solution of Vi
(eq. 4.1.16) and V3p (eq. 4.1.18) respectively. Both functions are poly-
nomials of degree two. Furthermore, the three-dimensional function
is axisymmetric, and thus, can be compared to the two-dimensional,
axisymmetric result. Both solvers used basis functions of degree 2,
and therefore, their individual errors should be within machine pre-
cision, e.g. < 1x107'2. The last column denotes a maximum point-
wise difference between the two solutions over the line z = 1 —r
(see dashed line in fig. 20).

2.0e+00

.

|
o
ulx,y.z)

Figure 20: Results of a manufactured solutions test for the electric potential
solver. (a) The three-dimensional solution (eq. 4.1.18). (b) The ax-
isymmetric solution (eq. 4.1.16). The axisymmetric model solves
the same problem as the three-dimensional model by exploiting
the symmetry (z) axis. Therefore, (b) yields the same result as the
z,y-plane (outlined in black) of (a). A point-wise difference is cal-
culated between the two models over the dashed-line. Difference
results are given in table 8.
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4.1.4 Pennes’ bioheat solver

Similar method of manufactured solution tests have been performed
for the Pennes’ bioheat solver. However, due to the time dependence,
the time discretization must also be validated. An thus, in addition to
the spatial convergence tests, temporal convergence tests have been
performed.

4.1.4.1 Three-dimensional spatial convergence

Both Lees” method and the implicit Euler method are exact when the
temperature depends at most linearly on time. Therefore, the spatial
convergence of the solvers can be investigated by use of the manu-
factured solutions method, where we only use functions which are at
most linearly dependent on time.

Again, we can impose any manufactured solution we want. For the
results to be reproducible, we use the following polynomial of degree
three.

T(xy,z,t) = (x+2y +32)3 +t (4.1.20)

However, the material properties p, ¢ and k are in general tempera-
ture dependent. This gives rise to a system of non-linear equations,
which require an extra step to solve (see sections 2.7.1 and 2.7.2). To
test if the solver can adequately handle non-linearities, we use non-
linear, manufactured functions for the material properties, e.g.

pc(T)=1+T2 (4.1.21)

K(T)=1+T2 (4.1.22)

Where the density, p, and specific heat c, are taken as one function,
as they appear together in the Pennes’ bioheat equation (eq. 3.5.1).

Since we are again interested in the convergence rate of the error,
we will use basis functions of degree two, one degree less than the
solution. Then, using equation 4.1.5, we know that the expected con-
vergence rates are three and two for the |e[;0 and |e[};1 semi-norms
respectively.

Further, since the Lees algorithm is a three-level scheme, we need
two initial solutions. Therefore we test the convergence over two sub-
sequent time steps. The convergence results for Lees” and Euler’s im-
plementation are shown in table g and 10 respectively. As seen in both
tables, the expected convergence rates are retrieved.

4.1.4.2 Axisymmetric spatial convergence

The same convergence tests have been repeated for the axisymmetric
implementation. In this case, we have taken a polynomial of degree
three

T(r,z,t) = (r+32)° +t (4.1.23)
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Linear, t=2At Non-linear, t=2At
N HO o H' I HO o H' )
2 426x1070 - 6.37x10° - 4.27x107! - 6.37x10° -
4 533x1072 3.00 1.60x10° 2.00 536x1072 299  1.60x10°  2.00
8  6.66x1073 3.00 3.98x10~' 2.00 6.78x1073 298 4.03x10~' 1.99
16 8.43x10~% 3.00 1.01x107" 1.98 8.64x10~% 2.97 1.03x107' 1.97

Table 9: Three-dimensional Pennes’ bioheat convergence rates of the finite
element error of a polynomial of order three 4.1.20 using Lees” al-
gorithm, by a polynomial of degree two after two subsequent time-
steps of At = 1. Constant material properties lead to a linear model,
whereas the non-linear variant is tested using equations 4.1.21 and

4.1.22

Linear, t=2At Non-linear, t=2At
N HO o H' I HO o H' T
2 4.64x1077 - 6.37x10° - 427x1071 - 6.37x10° -
4 533x107% 3.00 1.59x10° 2.00 534x1072 3.00 1.59x10° 2.00
8  6.66x1073 3.00 3.98x10~' 2.00 6.68x1073  3.00 3.99x10~" 2.00
16 8.33x107% 3.00 9.95x1072 2.00 8.35x10~% 3.00 9.97x1072 2.00

Table 10: Three-dimensional Pennes’ bioheat convergence rates of the finite
element error of a polynomial of order three 4.1.20 using the im-
plicit Euler algorithm, by a polynomial of degree two after two sub-
sequent time-steps of At = 1. Constant material properties lead to
a linear model, whereas the non-linear variant is tested using equa-
tions 4.1.21 and 4.1.22
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Linear, t=2At Non-linear, t=2At
N HO o H' o HO o H' T
2 1.89x107" - 2.61x10° - 2.00x10~" - 2.71x10° -
4 236x1072 3.00 6.53x10°"  2.00 259x1072 295 691x10°" 1.97
8 295x1073 3.00 1.63x10~" 2.00 3.22x1073  3.01 1.69x10~' 2.03
16 3.68x107% 3.00 4.07x1072 2.00 401x107%  3.00 4.14x1072 2.03
32 4.60x107° 3.00 1.02x1072 2.00 5.05x107° 2.99 1.03x10~2 2.01
64 575x107° 3.00 2.54x1073 2.00 6.67x107% 292 256x1073 2.01

Table 11: Two-dimensional, axisymmetric, Pennes’ bioheat convergence
rates of the finite element error of a polynomial of order three
4.1.23 using Lees’ algorithm, by a polynomial of degree two after
two subsequent time-steps of At = 1. Constant material proper-
ties lead to a linear model, whereas the non-linear variant is tested
using equations 4.1.21 and 4.1.22

Linear, t=2 At Non-linear, t=2 At
N HO I‘Ho H1 I‘Hl HO I'Ho H1 I‘Hl
2 1.89x10°17 - 2.61x10° - 1.91x10°" - 2.63x10° -
4 236x1072 3.00 6.51x1071  2.00 2.38x1072 3.00 6.58x10~1  2.00
8 2951073 3.00 1.63x10~" 2.00 2.96x1073  3.01 1.64x10~1 2.01
16 3.68x107% 3.00 4.07x1072 2.00 3.69x107%  3.00 4.08x10~2 2.00
32 4.60x107° 3.00 1.02x1072 2.00 4.60x107° 3.00 1.02x10~2 2.00
64 5.75x107¢ 3.00 2.54x1073 2.00 5.75x107¢  3.00 2.54x1073 2.00

Table 12: Two-dimensional, axisymmetric, Pennes’ bioheat convergence
rates of the finite element error of a polynomial of order three
4.1.23 using the implicit Euler algorithm, by a polynomial of de-
gree two after two subsequent time-steps of At = 1. Constant ma-
terial properties lead to a linear model, whereas the non-linear
variant is tested using equations 4.1.21 and 4.1.22

And have taken the same form for the non-linear material properties
as in equations 4.1.21 and 4.1.22. The results for Lees” and the implicit
Euler implementation is shown in table 11 and 12 respectively.

Since the solution is of degree three, we take basis functions of
degree two. The three-dimensional test also used basis functions of
degree two, and as such, we expect the same convergence rates for
this test. And indeed, the tables show the correct convergence rates,
three and two for the |e|1;0 and |e[1 semi-norms respectively. Further-
more, we see that for the linear case, both implementations return the
exact same result. Whereas for the non-linear case there is a slight dif-
ference. This is to be expected due to the difference in the evaluation
of the non-linearities.
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Backwards Euler Lees
N € Te E re € Te E re
4 296x107% - 141x1077 - 1.73x107%2 - 3.80x107%2 -
8  755x1073 1.97 7.20x1072 0.97 2.05x1073  3.08 9.34x1073  2.02
16 1.92x1073 1.98 3.64x1072 0.99 250x10~*  3.03 2.32x1073 2.01
32 4.83x10~* 1.99 1.83x1072 0.99 3.08x1075 3.02 5.76x10~* 2.01
64  121x107% 199 9.16x1073 1.00 3.83x107¢  3.01 1.44x10~* 2.00
128 3.04x107> 2.00 4.58x1073 1.00 4.78x1077  3.00 3.59x107> 2.00
256 7.62x107° 2,00 2.29x1073 1.00 5.97x1078 3.00 8.97x10~¢ 2.00
512 1.91x107° 200 1.15x10~3 1.00 7.46x1077  3.00 2.24x10~° 2.00

Table 13: Temporal convergence of the implicit Euler and Lees method w.r.t
halving the time step size, i.e., At = 1/N. The local truncation
error and its convergence is denoted by € and v, respectively. Sim-
ilar, the global error and its convergence is denoted by E and t¢
respectively.

4.1.4.3 Temporal convergence

The temporal convergence of the backward Euler method and Lees’
can be investigated by considering the manufactured solution to be
time dependent. By considering a function that is solely dependent
on time, we can use the same function for both the axisymmetric as
the three-dimensional solver.

T(t) =e' (4.1.24)

Both the local, €, as the global, E, convergence rates have been inves-
tigated. From equations 2.7.12, 2.7.8 and 3.7.14 we have

€Euter = O(At?),  €pces = O(AL) (4.1.25)

EEuler - O(At), ELees == O(Atz) (4.1.26)

The convergence tests have been performed by doubling the number
of steps, N = 1/At, each iteration. Then the error was determined at
the first step, to determine the local truncation error and the last step
for the global truncation error. The end time was set at t = 1s. The
axisymmetric solver and thee dimensional solver results are shown in
table 13. Again, the solvers show their expected convergence behavior.

4.2 ANALYTICAL SOLUTIONS TO SPECIFIC PROBLEMS

In this section, we validate the model implementation by solving
physical problems for which we can derive an analytical solution.
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EIecTrodeI

Tissue-

Materials

on R r
(a)

Figure 21: An axisymmetric two-dimensional model for the semi-infinite
electrode test. The symmetry-axis is denoted by I'sym. Voltage
and temperature boundary conditions are imposed on the elec-
trode surface denoted by [;. Likewise for the outer boundary
2. The dashed line represents the line (r, z=0), and will be used
to plot the temperature distribution (see figure 22).

4.2.1  The semi-infinite electrode

For this problem we consider the model presented in figure 21. It is
an axisymmetric model, which has a semi-infinite electrode, that is to
say, the electrode will be long enough such that the effect of the top
and bottom boundaries will be negligible.

The electric potential, subsequent source term, and heat equation
will all only depend on 1. Since we can find an analytical solution
for all of these terms, we can test the interaction between the electric
potential solver and Pennes’ bioheat solver. The simulation should,
in the end, produce a temperature distribution equal to the analytical
solution.

We can solve the electric potential (equation 3.4.3) equation exactly
if one applies a voltage V = V¢ to the semi-infinite long electrode at
le1(r =71), and a ground V = 0 at I}, (r = 13). Furthermore, we take
o as being constant. Then

od d

?ETEV(T) =0 (4'2'1)

Which, after moving the constants around and integrating leads to
V(r) = Ciln(r) + C, (4.2.2)
using our boundary conditions, i.e.

V(r1) =Vea, V(r2)=0 (4-2.3)
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we can solve for C; and C,. Doing so yields

Ve 1

C = (4.2.4a)
n()
_ Vet
substituting the above into equation 4.2.2 we end up with
. Vel T
Further, we have
Qrr=0E-E (4.2.6a)
E=-VV (4.2.6b)

Using the above we find an expression for the generated heat source

Vi1
QrF = (l‘r(:(f))zrz (4-2.7)

Now we want to find the temperature distribution due to the above
source term. For this, we consider the steady state of the Pennes’ bio-
heat equation (equation 3.5.1), i.e. 4 = 0, were we take the thermal
conductivity k as a constant and ignore the perfusion term, i.e w = 0.

Due to symmetry, there is only a r dependence.

kd d

—Qgrr = ;araT(r) (4.2.8)

Substituting equation 4.2.7 in the above expression, rearranging the
terms and performing integration yields

A
T(r) = Elnz(r) +Ciln(r)+C, (4.2.9)
where we used 5
_ Vel Kk
A= _an(:—‘) P (4.2.10)
2

We can solve equation 4.2.9 for its constants C;, C, by setting temper-
ature boundary conditions at 'y where we set T(r1) = Ty , and T3,
where T(r2) = Ty,. We then find

1 A T‘%
A 2
Cr=Tq— iln(r] )—Cqiln(r) (4.2.12)

Substituting the above coefficients into equation 4.2.9 yields the ana-
lytical solution for the steady state problem.
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Steady state temperature distribution

—— Analytical solution
—— Steady state simulation
Transient simulation

T(r, z

Ta

Tp
r r
r

Figure 22: The analytical (equation 4.2.9), steady state and transient to
steady state solutions of the infinite electrode problem over the
line z = 0 (see dashed line in figure 21). With vy = 0.75mm,
T2 = 100mm, Tq = 6K, T, = 5K. Tissue parameters were
o = 0.21(S/m) and k = 0.52(W/(m - K)), corresponding to the
average reported values for liver tissue [45]. Values for the differ-
ence between solution and simulation are given in table 14.

The convergence of the analytical solution has been investigated in
two ways. First, a variational form of the steady-state equation has
been set up, and the solution should be found after a single calcu-
lation. Second, the time-dependent equations were set to solve the
equations indefinitely until the difference between succeeding solu-
tions was less than a predefined tolerance, e.g., 1x10712, as the tem-
perature distribution does not change anymore and is considered to
be steady-state. The line z = 0 was compared (see dashed line in fig-
ure 21, as it was furthest away from the opposite boundaries, and
thus their effect should be negligible.

The parameters were set to 11 = 0.75mm, a typical electrode thick-
ness, 1o = 100mm, T(r7) = 6, T(r2) = 5. The material values for the
tissue were set to 0 = 0.21(S/m) and k = 0.52(W/(m - K)), which are
average reported values for liver tissue [45]. The transient to steady
state solution was stopped when [un 11 —un| < 1x10~"2At. The re-
sults are shown in table 14 and figure 22. Furthermore, a summary of
the simulation parameters is given in appendix A.1.

The solutions show excellent agreement with the analytical solu-
tion, with the maximum error being 0.123%. Furthermore, as expected,
we see that the transient solution converges to the same result as the
steady-state problem.
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Steady state Transient
emax (%) e(%) emax (%) e(%)
1.23x107" 1.01x1072 1.23x107" 1.01x1073

Table 14: The maximum and average errors of steady state and transient to
steady state solution. Both solutions converge to the same result.

o N X L

Figure 23: Geometry of the one-dimensional solidification test. Ny denotes
the element length. The dashed line represents the line over
which the temperature profile (see figure 24) and interface po-
sition has been calculated (see figure 26).

4.2.2  One-dimensional solidification

Since a phase change can occur throughout RF ablation, we modeled
the specific heat according to the apparent heat capacity (see equa-
tion 3.5.3). To test the validity of this method, a one-dimensional Ste-
fan problem has been implemented. These are phase change problems
which can be solved analytically and can be used as a test case for dis-
continuous properties of the thermal conductivity, specific heat and
density. Here we consider the freezing of water with the following
material properties

Ky = 0.556Wm~'K™T, py=1000Kgm™3, ¢; =4426]K™" (4.2.13)

ks =2.24Wm~ K™, pg =1000Kgm ™3, ¢ =1762JK™" (4.2.14)

where the subscript | and s denotes liquid and solid respectively.

Now consider the problem geometry seen in figure 23. It contains a
slab of length L created from elements with a characteristic length of
Ny. The slab is filled with water at an initial temperature, T; above the
melting point Ty, i.e. Ty > Ty, At time t = 0 we set the left boundary
(x = 0) at a temperature, Ty, below the melting temperature, i.e. Ty <
Tm. Since the model is considered one-dimensional, the temperature
is only dependent on t and .

The derivation of the analytical solution is beyond the scope of this
thesis. However, it can be shown, e.g. in Heat Conduction by Hahn
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and Ozisik [46], that the temperature profiles can be expressed as a
function of the solidification interface position, s(t).

f X
To%—(Tm—l—To)L (2@), x < s(t)

erf(x)
T(x,t) = (4.2.15)
erfc( 3 "O( t)
Ti+ (T —Th) — x> s(t)
erfc(x a—i)
where 5 5
s 1
o , = .2.16
° Ps +Cs pL+cy 4 )
and
s(t) = 2xvast (4.2.17)

And Y is the root of the following transcendental equation

kl Ks Tm — Tl X1 X\/E _
+ =1/ - qusion =0
X1 Tm - TO e-rfc(x %) Cs (Tm - TO)

x1

(4.2.18)
Where L¢ysion is the latent heat of fusion. For water L¢sion = 333x103JKg~'.

Using the above expressions, the temperature profile at a time, t, can
be analytically determined.

Three parameters are checked for convergence. First, the error in
the temperature profile at t = 10, 3050h of the simulation has been
calculated by taking the profile along the dashed line in figure 23.
The maximum of these errors is denoted et. Second, the maximum
error of the position of the phase-change front during the simulation,
€s. This parameter is calculated by finding the distance from x =0 to
the point where T = T, along the dashed line in figure 21. Last, the
error in the temperature profile over time at a fixed-point in the mesh
during the simulation was calculated and denoted €.

Solidification is a rather slow process. To see interesting effects, the
simulation has to simulate on the order of hours. To cut down on the
computation time, Lees’ algorithm has an automated time-stepping
method. At each iteration, the difference between u, ;1 and u, is
evaluated. If it is lower than a certain threshold T, the time step
size is doubled. On the other hand, if it is it higher than another
threshold T, un41 is disregarded, and the step size is halved. The
two tolerances have to be different to prevent the algorithm from
indefinitely changing its step size.

The convergence has been investigated by changing T, T¢ and AT,
the temperature-interval over which the phase change occurs (see
equation 3.5.4), i.e. 2AT = T,, — Ty where T,, and T; are the upper and
lower temperatures over which phase change occurs. Specific to this
problem, the thermal conductivity has been defined as also changing
linearly over AT as in equation 3.5.3.



4.3 VERIFICATION BY EXPERIMENTS

AT =1 AT =05

max | eT| max | eg] max | ;] max | eT| max | eg| max | e,
w (O (m) O O (m) O
AT 357x1071 4.20x1073  4.99x10~ 1.22x107"  2.05x1073  3.52x10~!
IAT 1.13x1077 1.62x1073  2.71x107! 8.67x1072  1.09x1073  3.22x107"
TAT 7.94x1072  8.87x10~%  2.91x10~! 8.13x107% 5.35x10~% 2.24x107"
IAT 925x1072 6.73x107*  1.98x10~" 8.26x1072  2.69x10~* 7.35x1072
FAT  9.33x1072 5.91x10~*  1.35x10! 341x1072 3.93x107*  5.09x10~2

Table 15: Error dependence of decreasing tolerance level and different phase
change intervals.

The tests have been performed on a two-dimensional rectangular
mesh of L = T meter, consisting of 1024 nodes, i.e. Ny = 1/1024.
The size of this domain was large enough for there to be no effect
from the boundary at x = L, over a simulated time of t = 50h. The
range of phase change was considered to be from T,, — AT to T +AT.
The initial temperature was set to be T; = 20 and the temperature at
L = 0 was Top = —10. The probe was set at r = 0.05. Further, the upper
tolerance was set to be €,, = 2€;. The results are shown in table 15 and
figures 24, 25, 26. Furthermore, a summary of simulation parameters
is given in appendix A.2.

The results are in excellent agreement with theory, with all errors
being less than 1% at all times. Further, it appears that the error is not
very sensitive to the phase change interval AT, achieving similar re-
sults for AT =1 as AT = 0.5, as long as a time step size is taken which
is smaller than the interval. In particular, setting the lower time step
tolerance to 1/4AT, yield acceptable results. Since the phase change
interval was defined as 2AT = T, — Ty, the step size was allowed
to increase when at least eight steps are taken in the phase change
regime.

4.3 VERIFICATION BY EXPERIMENTS

In this section, we verify the implementation of our model by com-
paring simulation results against experimental data and simulations
performed by other groups. This final group of tests allows us to
compare the use of the whole model against other results.

4.3.1 RF ablation of Osteoma Osteoide

RF ablation has been successfully applied to the treatment of osteoid
osteoma (OO), a small benign tumor found within the bone [47] [48].
However, extra care must be taken when the tumor is located close to
critical tissue such as nerves and joints.
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Figure 24: Analytical and simulated solution of the temperature profile at
t = 10, 3050h in red, blue and purple respectively. The similar

colored markers along each line denote the analytical solution.
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Figure 25: Analytical and simulated solution of the temperature at r = 0.05
over time. AT = 0.5, 1y = (1/4)AT
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Figure 26: Analytical and simulated solution of the distance of the phase
change front over time. AT = 0.5, Ty = (1/4)AT
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Figure 27: Theoretical model of the experimental setup found in Bitsch et
al.[49]. The model is a two-dimensional axisymmetric model. The
symmetry-axis is denoted by I'sym and the electrode surface by
le1- In this model the width of the periosteum, d, is changed
to 1, 3, and 5 mm. Then, the temperature is measured at Tomm,
Tsmm and Tiomm, which are located o, 5 and 1omm from the
periosteum respectively. The same model was also simulated by
Irastorza et al.[28].

To asses the temperature distribution of RF ablation during treat-
ment of OO, Bitsch et al. [49] performed ablation on bovine tibial
bones. Frozen specimens were taken where the tumor was modeled
by drilling a cavity in the bone of 8mm in height and 6.6mm in diam-
eter. Then, the hole was filled with 0.8% agarose gel, a spongy-like
substance, to model the histology associated with these kinds of tu-
mors. The cavity was either placed d = 1,3, 5mm from the periosteum
(see figure 27). Subsequently, the specimen was placed in a controlled
bath with a physiologic NaCl solution at 37°C. The ablation was per-
formed when the internal temperature reached 35 °C. Thermocouples
were placed at the periosteum, and 5 and 10 millimeters away from
the periosteum respectively.

Further, the group of Irastorza et al. [28] performed simulations
of this experimental setup, providing us benchmarks against other
simulation software as well as experimental values. To this end, we
replicated the theoretical model of Irastorza et al. as an axisymmetric,
two-dimensional model as shown in figure 27.

Considering the uncertainties in the material parameters, Irastorza
et al. performed multiple simulations to determine a best fit to the
experimental data of Bitsch et al. Here we only consider these best fit
parameters, which are shown in table 16.
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Extracted from [28]

Cortical bone Muscle Agar gel Electrode Trocar (plastic)

p (Kgm—3) 1500 1000 1000 6450 70
o(Sm 1) 0.022  0.446 0.4 1.2x10° 1x10~>
c(Jkg~ K1) 1026 2824 4107 840 1045
k (Wm~TK™1) 0.3 0.52 Eq.43.1 18 0.026

Table 16: Optimal material parameters for the model of Bisch et al. (fig. 27).

Furthermore, a change in the electrical conductivity of 1.5%°C~"
was considered. The following polynomial modeled the thermal con-
ductivity of agar gel

Kagar = —8x107'C+ 1.5x1073T 4 1.63x10~" (4-3.1)

where T is the temperature (K) and C is the concentration of the agar
gel (0.8%).

The thermal conductivity of the other biological tissues was as-
sumed to change with 0.003K~'. Perfusion was excluded from the
simulations, as the experiments were performed in an ex-vivo envi-
ronment.

Electrode and trocar properties were not mentioned in Irastorza et
al. Bitsch et al. used a conventional monopolar needle electrode (TCM
101; Stryker Leibinger, Freiburg, Germany)[49], which produces Niti-
nol electrodes, a nickel-titanium alloy, of 18, 20 and 22 gauge[50].
Simulations were performed with all three sizes, and the 22 gauge
electrode was determined to be the best fit.

Bitsch et al. followed an ablation protocol of 400 seconds using a
set target temperature of 95 °C. Here, and in Irastorza et al., we used
a PI control as described in section 3.3.2 to mimic the automated tem-
perature control. The PI parameters were set to k, = 1.15, ki = 0.06.
Subsequently, the electrical boundary conditions were a voltage, Ve,
provided by the PI control on the electrode boundary (Ie in figure
27), zero current density on the axis of symmetry (I'sym in figure
27), and zero voltage on the lower limit of the domain to mimic the
ground-pad. The initial temperature and temperature at the bound-
aries away from the symmetry-axis were set to be 35 °C to model the
procedure of Bitsch et al.

Convergence tests were performed to determine adequate domain
and element size. The tests were similar to the ones described in Iras-
torza et al. However, the method of domain size convergence was
not mentioned in Irastorza et al. Here we increased the domain size
until the temperature at Toym, Tsmm and Tiomm was less than 0.5%
between iterations. Spatial convergence was reached by refining the
mesh until the difference in temperature at T, m between iterations
was less than 0.5%.
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Figure 28: Temperature comparison of Tomum, Tsmm and Tiomm. (@), (b), (c), shows the temperature profiles in
red for our own simulation, blue from Irastorza et al.[28] and purple Bitsch et al.[49]. The dashed, full
and alternating dash-dot line represent the Tomm, Tsmm and Tiomm respectively. (d), (e), (f) show the
absolute error in °C between our simulations and those of Irastorza et al. with in red, blue and purple
the error in Toynm, Tsmm and Tiomm respectively. Likewise (g), (h), (i), show the absolute error in °C
between our simulations and the experimental data of Bitsch et al.
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Temporal convergence was reached by changing the tolerances of
the automatic time step, Ty, 7|, until the temperature at Tommm be-
tween iterations was less than 0.5%. Since performing one conver-
gence test considers the other parameters as constant, all three con-
vergence tests were performed once more.

Simulations were performed by for d = 1,3 and 5mm. The results
are shown in figure 28. Furthermore, a summary of simulation pa-
rameters is given in appendix A.3.

We obtain similar results to Irastorza et al., especially for the probes
Tsmm and Tqomm Which are within 0.5 °C at all times.

Higher differences in the Tomm probe were expected as the models
are different due to the limited information of the model presented
in Irastorza et al. Still, the Tormm probe is within 1 °C for most of the
simulation, differing only in the initial heating period t < 50s.

Further, compared to the experimental data of Bitsch et al. we
found that the maximum error achieved was around 5 °C, one degree
less than reported in Irastorza et al. This error only occurred during
the principle heating part, t < 50s. At all other times, we found the
same level of accuracy as Irastorza et al. with the error being between
5 and 8%.

4.3.2 RF ablation in cortical osteoid osteoma

Most OOs consist of a nidus of active bone surrounded by a reactive
zone which is histologically similar to dense reactive sclerotic bone.
Further, the reactive zone is surrounded by cancellous or trabecular
bone, which in turn has a cortical outer layer. The bone is surrounded
by muscle. The reactive zone has been hypothesized to play an essen-
tial part in RF ablation as it acts as a thermal insulator. Irastorza et
al. performed various simulations of OOs containing such a reactive
zone [7]. The geometry of this model has been replicated for model
verification purposes, see figure 29.

Among other things, Irastorza et al. investigated the temperature
profile at the end of the simulation along the r-axis from the middle
of the electrode surface for varying thicknesses of the reactive zone.
The thickness of the reactive zone took on values of t =2.5,5 and 7.5
mm. The material properties are summarized in table 17.

The nidus is associated with having a high perfusion rate as is
apparent from table 17. Irastorza et al. modeled the perfusion with a
temperature cut-off of 50 °C, i.e., the 3-term of the perfusion equation
(see eq. 3.5.5) is modeled as

1, T<50°C
p= (4.32)

0, T>50°C
A PI control scheme regulated the temperature in the simulation.
In particular, the protocol entailed an ablation period of 300s by a
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Figure 29: Two-dimensional, axisymmetric model of cortical osteoid os-
teoma adapted from Irastorza et al.[7]. I'sym and Ty denote the
symmetry boundary (z axis) and electrode boundary respectively.
t denotes the thickness of the reactive zone, which in this study,
took on the values of t = 2.5, 5 and 7.5 mm.

monopolar 17-gauge electrode with a set target temperature of 90 °C.
The internal parameters K, K; of the PI controller were set to 1.15
and 0.06 respectively.

Convergence tests were performed to determine adequate domain
and element size. The convergence was tested by measuring the tem-
perature profile at the end of ablation along the r — axis from the
middle of the electrodes surface.

The boundary conditions were a voltage set by the PI control on the
electrode surface and zero voltage at the lower boundary to mimic the
ground pad. The initial temperature and temperature at boundaries
away from the symmetry-axis was set to be 37 °C. An insulating Neu-
mann condition was set at the symmetry-axis.

Convergence tests have been performed to determine adequate do-
main, spatial and temporal parameters. Domain size convergence was
reached by increasing the domain size until the temperature profile
differed less than 0.5% between iterations. Spatial convergence was
reached by refining the mesh until the temperature profile between
iterations differed less than 0.5%. Temporal convergence was reached
by changing the tolerances of the automatic time step, T, T, until the
temperature profile between iterations differed less than 0.5%. Since
performing one convergence test considers the other parameters as
constant, all three convergence tests were performed once more.
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VALIDATION OF THE MODEL
p(Kgm=3) o(Sm™") c (kg7 'K k(Wm 'K w(xio*s™)
Cortical bone 1908 0.022 1026 0.30 0
Trabecular bone 1178 0.087 2274 0.31 5.9
Nidus 1046 0.29 2726 0.56 48
Reactive zone 1908 0.0535 1026 0.3 2.95
Muscle 1090 0.446 2824 0.52 6.7
Electrode 6450 108 840 18 0
Trocar 70 107> 1045 0.026 o
Blood 1046 - 3639 - -
Table 17: Material properties measured at 37 °C. All data extracted from
Irastorza et al.[7]
Temperature profilet = 2.5 mm Temperature profilet = 5.0 mm
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Figure 30: Temperature profile comparison for various reactive zone thick-
nesses.(a), (b), (c) shows temperature profiles of a reactive zone
of thickness t = 2.5, 5 and 7.5 respectively. In (d) the absolute
difference between our simulation and Irastorza et al. is shown.
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The results are shown in figure 30. Furthermore, a summary of
simulation parameters is given in appendix A.4. The differences in
temperature profiles can be attributed to the limited information of
the actual geometry provided by Irastorza et al., a different time-step
algorithm used and different convergence criteria. Nevertheless, ex-
cellent agreement is reached between our simulations and those of
Irastorza et al. with the temperature profiles being within 0.7 °C or
1% at all times.

4.3.3 Verification of the three-state cell death model

The three-state cell death required the implementation of nonlinear
coupled PDE’s. As such, the model has been verified by replicating
the fits to the data of the original paper of O'Neill et al. [39]. O’Neill
et al. heated cell-cultures at 55,65, 75, 85 and 100°C with heating times
of 300, 600 and, 900 seconds. Subsequently, the heating medium was
replaced with a medium at 37 °C. Then fluorescence was measured at
2,26 and 50 hours after incubation, which is taken as a direct correla-
tion of cell viability. The experimental data of O’Neill et al. is shown
in table 18.

The cell death model parameters have been found by performing
an optimal fit to the two hours post-heating cell viability data. The
results for different cell co-cultures have been previously stated in
table 2 and in particular, parameters for an average culture fit were
determined to be

ke =3.33x1073s71, kp =7.77x1073s7, T =405°C  (4.3.3)

with a root mean square (RMS) error of 1.40% [39].

Further, the slow cell death model parameters, equation 3.5.17, have
been found by performing an optimal fit to all the experimental data
points, where the RMS error was found to be 2.80%

Simulations have been performed on a unit square mesh for the
different heating times and temperatures. To validate the cell death
model, the RMS error of the cell viability at the end of ablation w.r.t
the 2h post-heating viability was calculated. The results are shown in
figure 31. Furthermore, a summary of simulation parameters is given
in appendix A.5. The RMS error was calculated to be 1.40%, as in
O’NeEeill et al.

After ablation, the model switched over to the slow cell death
model. To validate the slow cell death model, the RMS error of the
cell viability at all the experimental data points has been calculated.
The results are shown in figure 32. The RMS error was calculated to
be 2.80%, as in O’Neill et al.

93



94 VALIDATION OF THE MODEL

Heating Post-heating incubation (h)
Heating temperature
time (s) °O) 2 26 50
300 37 100.0 100.0 100.0
55 100.0 98.02 98.02
65 100.0 98.02 98.02
75 89.66 89.00 86.82
85 52.89 25.48 9.56
100 4.23 1.00 0.00
600 37 100.0 100.0 100.0
55 9471 83.75 83.75
65 56.94 22.33 13.38
75 7-89 1.47 1.47
85 2.45 0.00 0.00
100 1.19 0.00 0.00
900 37 100.0 100.0 100.0
55 66.99 53.80 10.61
65 10.75 1.33 1.65
75 2.56 0.00 0.00
85 2.51 0.00 0.00
100 0.00 0.00 0.00

Table 18: Experimental cell viability data for the three-state model. Extracted
from O'Neill et al. [39].
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to be 2.80% as in [39]
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4.3.4 Sensitivity analysis of RF ablation parameters

Simulations of Hall et al. [45] have been replicated, as it includes
the same cell death model of O’Neill et al., and uses the impedance
control technique described in 3.3.3.

In the paper of Hall et al. a sensitivity analysis has been performed
on RF ablation of a liver to determine the most critical parameters in
the model. To this end, the authors chose the Morris-method for pa-
rameter screening. A global one-at-a-time sensitivity analysis where
the number of runs is linear with respect to the number of parameters
was investigated.

In the Morris-method, each of the k model parameters are scaled
such that x; € [0,1]. Then the parameter space is spanned by the
k-dimensional hypercube over which the parameters are varied. Sub-
sequently, the parameter space is discretized to a grid with equally
spaced points Ax = 1/(1— 1) where 1 is the number of grid points
from which random sets of parameters can be sampled.

The method works by choosing a random starting point, x, in the
parameter space with simulation output of y(x). Then a random step
is taken with +Ax, by changing a random parameter. This results in
a new set of parameters x. with simulation output y(x¢). Then an el-
ementary effect due to the change of this parameter can be computed
by

£, = Y0 ylee) A;"(Xe) (43.4)
This is repeated by changing one of the remaining parameters, until
an effect can be calculated for each parameter. This results in a total
of k + 1 simulations, which form a single trajectory trough the pa-
rameter space. Multiple trajectories through the parameter space are
simulated by choosing different starting locations and repeating the
process as described above.

Then for each parameter, the mean and standard deviation of the
elementary effect is computed. These are the sensitivity measures of
the Morris-method.

The mean of the effect is a measure of the change in output by
varying that parameter, whereas the standard deviation is a measure
of the non-linear effects of the parameter, e.g., when a change of Ax
in the parameter for each trajectory results in the same difference in
the output, the standard deviation will be zero. Furthermore, it means
that the change in output is unaffected by the global position, x, in the
parameter space, i.e., by the values of the other parameters. On the
other hand, when a change in the parameter gives rise to different el-
ementary effects for different trajectories, the standard deviation will
be non-zero, and the effect will be dependent on the global position
in the parameter space. Thus it is a measure of non-linear interaction.
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Figure 33: Parameter space of the Morris method for a model with three
parameters (k=3). Three trajectories are shown in red, blue and
purple respectively. Note that every trajectory has k + 1 points.

The model consisted of a round piece of liver, in which a 3omm
long probe with a thickness of 1.5mm was placed. The electrical
boundary conditions were zero voltage on the outer boundary, to
mimic the ground pad and a voltage of V¢ = 60V set on the probe
boundary, regulated by the impedance control. The probe was shut
down for 15 seconds whenever the resistance in the mesh exceeded
R = 120Q), which can be calculated according to equation 3.3.3.

Initial temperature and temperature at boundaries away from the
axis of symmetry were set at 37 °C. Further, a Cool-tip-electrode was
modeled by applying a convective heat transfer condition h(T —37°C)
to the active tip. The value of h was set to 3366 W/K/ m2.

Hall et al. gathered lower and upper parameter values of twelve
different parameters for the Morris method. The parameters and their
values are shown in table 19.

pc and pyapCvap are the density and specific heat of normal and
vaporized liver tissue respectively. The density and specific heat are

grouped into one parameter as they only appear together in the Pennes’

bioheat equation.

ko is the baseline thermal conductivity of liver and Ak the abso-
lute increase per kelvin. The model implemented a cut-off of 100 °C
above which the thermal conductivity does not increase further, as in
equation 3.5.2.

0 is the baseline electrical conductivity of liver and Ao a percentile
increase per kelvin. To account for the sudden drop in thermal con-
ductivity, oyqp, after phase-change, the electrical conductivity has
been modeled according to equation 3.4.8, where Ty = 100 °C and
Tu =105 °C.
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Parameter Units Lower Upper
pc ]m_3K_1 3.7x10° 4.3x10°
PvapCvap Jm—3K~! 0.44x10° 0.8x10°
ko wm~1K™! 0.47 0.57
Ak wm~ K2 0 0.0033
00 Sm~! 0.14 0.28
Ao %K ! 1.0 2.0
Wp Jm—3K—Ts! 34020 68040
C 0.71 0.76
AT K 1 10

€ 0 1
Ovap/0 0.01 0.0001
Go Yo 70 20

Table 19: Changing parameters for the Morris method. Extracted from Hall
et al. [45].

Wh = PbloodCbloodW Where w is the liver perfusion rate. These
parameters have been grouped together into one parameter as the
uncertainty in w dominates those of py100d,Cblood-

C is the fraction of water content of the liver, which appears in the
equation of apparent heat 3.5.3.

AT =T, — Ty is the range over which the phase-change takes place.
Hall et al. set T,, = 100°C and varied T; through AT.

€ determines the co-culture cell make-up by interpolating on the
values found in table 2, and returning intermediate values. A value
of e = 0 corresponds to a pure HepGz culture. Similarly, a value of 1
corresponds to a pure MIRC-5 culture.

Go determines the cut-off value for cell viability below which a cell
is considered dead. This threshold is also used to determine the area
of cell death as well as the perfusion cut-off value.

The parameter space has been discretized into an evenly spaced
grid of 1 = 4 points. Six trajectories have been simulated in this pa-
rameter space resulting in 78 simulations. A summary of simulation
parameters is given in appendix A.6. The results are shown in figure
34 on a 2D scatter plot with their mean values on the x-axis and the
standard deviation on the y-axis. The line y = £x has been plotted as
well. This shows whether the main effect is bigger than the standard
deviation and the main effect is likely to be non-zero.

Due to the statistical nature of the Morris method, exact replication
of the results of Hall et al. is not expected. Nevertheless, very similar
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Figure 34: Sensitivity analysis of model parameters as in Hall et al. [45]. Pa-
rameters clustered near zero are represented in the upper right
legend. The solid line y = =£x is plotted. Points below this line
have a mean larger than its standard deviation and thus the ex-
pectation value of the mean is non-zero.

results are achieved. The order of importance of the parameters is
preserved, i.e., their deviation from the origin.
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ATYPICAL CARTILAGINOUS TUMORS

Atypical Cartilaginous Tumors (ACT), or chondrosarcoma grade I
according to older nomenclature, are often located at the proximal
humerus, or other long bones that grow rapidly during adolescence
[51]. At the Universitair Medisch Centrum Groningen (UMCG) these
type of tumors is treated with RF ablation when non-surgical candi-
dates are concerned. RF ablation has been shown to be an effective
treatment option for ACT [52]. However, for better treatment plan-
ning, predictability over the ablation zone is still desired, and there-
fore a simulation model of ACT is made.

ACT'’s are characterized by cartilage-like histology in addition to
being vascularized [53]. While ACT’s and OO are both bone tumors,
ACT’s often lack the periosteal bone formation that is associated with
OO0 [54].

Four patient-specific cases of RF treatment of ACT contained in
femur were investigated. Pre- and post-treatment images were avail-
able from which the models were constructed, and the post-treatment
ablation zone was determined. Information of the needle placement
was also available as the needle was placed under CT-image guidance
before treatment. Cross-sections concerning the angle of entry of the
needle of the different patient cases are shown in figure 35. The differ-
ent cases are referred to as case 2, 7, 9 and 15 respectively. All tumors
were treated using a 17-gauge electrode with a target of 9o °C, as i .
Case-specific details are shown in table 20.

Case 2, 7 and 9 show a typical ACT, being round or oval and having
a diameter of between 1.5 — 3 cm. Case 15 shows an atypical case of
a much smaller rectangular-like tumor. Furthermore, due to the sur-
rounding critical tissue, the angle of entry was limited. This resulted
in the electrode being placed next to, instead of located within, the
tumor.

Time at go °C  Electrode length Tumor shortest Tumor longest

Case (min) (mm) diameter (mm) diameter (mm)
2 10 20 16 18
8 30 23 32
9 9 20 14 23
15 9 20 13 16

Table 20: Case-specific treatment parameters.
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Figure 35: Cross sections of patient cases of ACT in femur. (a) case 2, (b) case 7, (c) case 9 and (d) case 15. Note that the cortical layer is surrounded by muscle, which is not
pictured here.
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5.1 CELL DEATH MODELS

We are interested in the extent of the ablation zone. Therefore, we
want to simulate the cell viability throughout the procedure. This can
be done by one of the cell death models presented in section 3.5.3.
However, the different models give rise to different equations as they
are based on different assumptions. Furthermore, most models are
based on experimental data of different cell lines. Some of these cell
lines are more thermally robust than others. For example, compare
the experimental data of the three-state model by O’Neill et al [39]
(see figure 31) against the experimental data of SN12 cells in figure
18(a). The former cell remains undamaged for the order of minutes,
even at 100°C, while the latter shows total cell death over the same
period at a lower temperature of 70°C. The delay before damage accu-
mulation, such as in the three-state model, is known as the shoulder-
region.

Since not much is known of the cell viability kinetics of ACT under
hyperthermia, we investigate the extent of predicted cell damage with
the use of different cell death models and cell lines.

To this end, an axisymmetric, two-dimensional model has been
made based on the characteristics of the geometry as seen in the
patient cases 35 and is shown in figure 36. The model consisted of
a 17-gauge electrode of 2omm in length with a sharp-part of 1mm.
The tumor was modeled as an ellipse with a major (z) diameter of
25mm and a minor (r) diameter of 2omm. The cortical layer had a
fixed thickness of 2mm. The distance, d, between tumor and muscle
for the model was set to be d = 4mm.

Finding material properties of specific tumors, or even tissues can
be challenging, as is the case for ACT tumors. Since not much is
known about the tumor characteristics, we use the same properties
as in Irastorza et al. [7] which lists a range of possible values for
bone tumors. The corresponding values are summarized in table 17.
An absolute increment in thermal conductivity Ak = 0.003K~! was
considered. Further, an increase of 1.5%K~! was considered for the
electrical conductivity. The cell death model of O'Neill et al. [39] has
been used to determine a cell death area. The fit parameters were set
to the average parameters from table 2. A cell was considered dead
when its viability reached below 80%.

The protocol entailed an ablation period of 600 seconds with a tar-
get temperature of 90 °C. As a result, the maximum temperature at
any point in time was 93 °C and phase-change could be neglected.

The temperature control was modeled by a set voltage on the elec-
trode by a PI-control as described in section 3.3.2. The PI-parameters
were set to K, = 0.06, K; = 1.15, the same as in Irastorza et al. These
parameters led to the target temperature being reached after around
one minute, as is found in the patient-specific cases. Zero voltage was
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Figure 36: Two-dimensional, axisymmetric model of ACT. Here, d denotes
the distance between the tumor and muscle region. The symme-
try axis is the z-axis.

set on the boundaries away from the axis of symmetry to mimic the
ground-pad. Initial temperature and temperature at the boundaries
away from the axis of symmetry were set to 37 °C.

Convergence tests were performed to determine adequate domain
size, spatial convergence, and temporal convergence. The domain size
was increased, the mesh was refined, and the auto-time step toler-
ances lowered until the 50 °C- and cell death-area were within 0.5%
of the previous iteration. After every test converged, they were re-
peated once more, as each convergence test requires constant values
for the other parameters.

The final domain size was 42mm in width and 65mm in length.
The domains consisted of approximately 2000 triangular elements.
The lower and upper temporal tolerances were set to €y = 0.1K, and
€y = 0.5K respectively.

For each simulation, the cell death profiles at the end of ablation
are of interest. Further, as the heat trapped within the tissue does not
suddenly disappear after ablation, the mesh is allowed to cool down.
During this period there is no additional heat input, but the simula-
tion steps are repeated until the maximum temperature in the mesh
is under a certain threshold (see dashed line in the model schematic
12). The threshold was chosen to be 0.05 °C above normothermic con-
ditions, i.e., 37.05 °C.
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Figure 37: Ablation areas for different cell death models during ablation. (a)
Area of cells above 50 °C. (b) Area of cells having less than 80%
viability.

The parameters for the cell death models are shown in table 3. For
the O’Neill et al. three-state model simulations, a cell was consid-
ered dead when the viability was less than 80%, as per suggestion
of O'Neill et al [39]. Similarly, for the Arrhenius models a viability
threshold of 80% corresponds to O = In(1/0.8) ~ 0.223 (see eq. 3.5.8).
This same threshold was used to determine the cut-off value below
which perfusion was stopped. Results are shown in figure 37. Fur-
thermore, a summary of simulation parameters is given in appendix
A

From figure 37 it can be seen that a higher area of 50 °C is reached
with a higher area of cell death. This is as expected, as cell death
means loss of perfusion and thus loss of cooling. Further, notice the
discrepancy between the Arrhenius and three-state models of HepG2
cells. In the first, no shoulder region is observed, while in the latter
no damage is observed due to the shoulder region until well into the
ablation period (=~ 3min). The Arrhenius model of the SN12 cell line
shows similar behavior as the HepGz cells. However, the Arrhenius
model of SN12 fits the original data very well [33] as it does not show
a shoulder region (see figure 18(a)). The same conclusion was reached
by Pearce [38] as the addition of a temperature-dependent delay did
not improve the original fit. On the other hand, while both PC3 and
SN12 cell experiments were performed under similar conditions, PC3
cells were found to have a significant shoulder region, and as such,
benefit from a temperature-dependent time delay (see fig. 18(b) vs.
fig. 19), indicating that different physical processes are at play for
different cell lines under thermal stress [36]. Furthermore, as seen
in figure 37(b), there is a noticeable difference in thermal robustness
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between the two cell lines with SN12 cells being more robust than
PCs.

However, most experiments are conducted on pure cell lines whereas
tumors are known to be composite structures and sclerotic [55]. O’Neill
et al. performed the experiments on co-cultures of HepG2 and MRC-s5,
a lung cell line, to model sclerotic tumor. The difference between the
pure HepGz2 and HepG2/MRC-5 mixture three-state model, also seen
here, indicates a positive correlation between thermal robustness and
tissue fibrosity (O’'Neill et al.). This is supported by another experi-
ment by Mayrhauser et al. [56] where hyperthermic treatment was
performed on co-cultures of HepG2 and LX-1, a cell line associated
with liver fibrosis, and thermal robustness increased with increasing
percentages of LX-1.

Heat remains in the tissue after the ablation period. In extreme
cases, temperatures as high as 40 °C remain 30 minutes after the pro-
cedure as seen in figure 38(a).However, extending the simulated time
to include the cool-down period gives rise to a glaring limitation
of the cell death models as is shown in figure 38(b). In this case, a-
physical results are obtained in the form of exponential growth to to-
tal cell death for the three-state models and the PC3 Arrhenius model
with a temperature-dependent time delay. In fact, what is seen is an
artifact of the fit-parameters of both models. None of the models in-
clude a temperature-dependent threshold for damage accumulation,
meaning that, even under normothermic conditions, i.e., 37°C, cells
start to accumulate damage and the viability drops. The damage ac-
cumulation starts slowly for this temperature and is negligible for the
periods over which the respective model was fitted. However, due to
the exponential dependency (see eq. 3.5.13 and eq. 3.5.7), prolonging
the simulated time will show total cell death at one point in time.

These are 24 and 61 minutes for the HepG2 and 50/50 HepG2/MRC-
5 three-state cell death models respectively, 29 minutes for the PC3
cell line, 1277 minutes for SN12, and 517 minutes for the Arrhenius
HepG2 model. It can be seen in figure 38(b), that the HepGz three-
state model and the PC3 Arrhenius model have surpassed their re-
spective values, and as a consequence, show total cell death, whereas
an exponential increase in ablation area can be seen for the 50/50
HepG2/MRC-5 three-state model, as it almost reaches its respective
value.

However, the Arrhenius SN12 and Arrhenius HepG2 models do not
show total cell death over the extended cool-down period. Further,
they demonstrate that the ablation area grows quite substantially af-
ter ablation, 22.5% and 13.3% for HepG2 and SN12 cells respectively.
The experimental data of SN12 cells of He and Bischof further sup-
port this significance, where damage accumulation during the non-
isothermal portions of the thermal history (heat-up and cool-down)
was found to be significant (> 10%) when peak temperatures were
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above 60 °C [33]. Another simulation study by Irastorza et al. draws
the same conclusion, stating that the coagulation zone in computer
modeling of RF ablation is underestimated by ignoring the cooling
phase just after RF power is switched off [57].

5.2 PARAMETER SENSITIVITY OF THE ACT MODEL

Lack of accurate parameter values is one of the shortcomings of RF
ablation simulation. Material parameters are usually derived from ex-
vivo experiments or non-human tissue. Furthermore, parameters are
likely to vary throughout the population and as such taking a single
value is not accurate [45]. Here we investigate the sensitivity of the
ACT model to its parameters through the Morris method as described
in section 4.3.4.

The model used was the same as in the previous section (seen in
figure 36). The protocol entailed an ablation period of 6oos with a
constant-temperature control set to 90 °C. From the previous section
we can conclude that the cool-down period has a significant effect
on the ablation zone and cannot be ignored. Therefore the sensitivity
screening has been performed twice, once with the three-state model,
ignoring cool-down, and with an Arrhenius model of SN12 cells, in-
cluding cool-down. This way the parameter sensitivity during abla-
tion can be investigated for two opposite cases. The three-state model
showcases a cell line showing a shoulder region whereas the SN12
cell line does not. The latter is then also used to screen the sensitiv-
ity of parameters during the cool-down phase as it does not show
a-physical behavior over the extended simulated time.

5.2.1 Parameter uncertainty

A wide range of tissue parameters is used in literature. The IT'IS
foundation aims to provide an up-to-date database for tissue ma-
terial parameters and statistical information about the spread and
standard deviation per tissue [58]. Parameter values for density, heat
capacity, thermal conductivity, and perfusion rates are found in this
database. A range of electrical conductivities of tissues is retrieved
from a database of dielectric properties of human tissue at RF and
microwave frequencies [59].

The lower and upper values for the rate of change in electrical con-
ductivity have been set to Ao € [1%,2%] to capture the range of val-
ues cited in the literature. Likewise, the values for the rate of change
in thermal conductivity were taken to be Ak € [0,0.0033] [7][57]. A
value of zero for the Ak has been included as other studies remarked
that RF ablation is non-sensitive to this parameter and can be ignored
[31][45]. Maximum temperatures in the mesh did not exceed 95 °C,
and thus, phase-change phenomena were ignored.
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Tissue / Parameter Lower Upper
Density x heat capacity, pC(x103Jm—3K=1)

Tumor 3847 4030
Trabecular bone 2225 3407
Cortical bone 1487 3465
Muscle 2732 4475
Thermal conductivity, k (Wm~"K™")

Tumor 0.47 0.518
Trabecular bone 0.29 0.36
Cortical bone 0.3 0.36
Muscle 0.4225 0.56
Electrical conductivity, o(Sm~")

Tumor 0.08¢ 0.5¢
Trabecular bone 0.030° 0.088°
Cortical bone 0.3b 0.36°
Muscle 0.4225° 0.56°
Perfusion rate, w(xto 4s™ 1)

Tumor 26¢ 70¢
Trabecular bone 1.96 9.82
Cortical bone 0 3.18
Muscle 3.45 17.08
General parameters

Electrical conductivity increase, Ac(%K~') 0.01 0.02
Thermal conductivity increase, Ak(Wm~1K~2) 0 0.0033
Cell viability threshold, Go(%) 0.7 0.9
Cell culture make-up (three-state only), € 0 1

Table 21: Lower and upper values of tissue parameters. All values extracted

from [58] except, (a) [7] and (b) [59]
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Values for the cell death threshold parameter have been set to
Go € [70%,90%], as it should cover the range over which thermal
damage (10%, 30%) should be reliably detectable amid biological tis-
sue [36]. This threshold has also been used to determine the blood-
perfusion cutoff as it is assumed that it marks the lower bound of
the unperfused region [45]. For the Arrhenius model, using equation
3.5.8, the same cell viability threshold leads to Go € [0.105,0.357].
The three-state model has an extra parameter, € € [0,1]. As in Hall
et al.[45], this parameter is used to interpolate over the values found
in table 2. This way the effect of different co-cultures of HepG2 and
MRC-5 can be investigated. A value of € = 0 corresponds to a homo-
geneous culture of HepGa2.

All parameters which are used to construct the parameter space
are summarized in table 21. For the three-state model, eight different
trajectories are simulated with k = 20 parameters resulting in 168
simulations. Similarly, for the Arrhenius model 160 simulations are
performed. A summary of the simulation parameters is given in in
appendix A.8.

5.2.2  The three-state model

Results of the three-state model sensitivity analysis are shown in fig-
ure 40. The main outcome of the sensitivity analysis is the scatter plot
shown in figure 40(a), where the mean elementary effect of the abla-
tion area is plotted against its standard deviation. The line y = £x
has been plotted as a visual aid. Values below this line have a mean
effect which is bigger than its standard deviation, and thus the main
effect is likely to be non-zero. It is clear from this graph that the cell
culture-makeup, €, the cell death threshold, Gy, and the electrical con-
ductivity parameters oy m and orq dominate the uncertainty in the
ablation area.

An increase in G leads to a more significant ablation area. This
is logical; the cell dead condition is sooner met with an increase in
viability threshold, e.g., cells are considered dead at 90% viability
instead of 85%.

Further, an increase in € leads to a decrease in the ablation area.
This can be explained by the increase in the percentage of MRC-5
in the co-culture make-up. As seen in figure 37(b) and concluded by
O’Neill et al., an increase in MRC-5 leads a more thermally robust
cell line due to the presence of fibrosis [39].

Interestingly, the electrical conductivity parameters, o¢ym and o¢rq,
show an opposite behavior of the uncertainty in ablation area. An in-
crease in the electrical conductivity of the tumor, otym shows an in-
crease in ablation area whereas an increase in the electrical conductiv-
ity of the immediately surrounding tissue, 0o, shows an expected
decrease. The first is expected as the Joule heating term is roughly
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Figure 39: Difference in initial electric potential, AV, and temperature pro-
files, AT, at t=100s due to a Aorq +0.1. (a) AV due to an increase
in o¢rq. (b) AT due to an increase in 0¢rq. (c) AV due to a decrease
in Otrq. (d) AT due to a decrease in o¢rq

proportional to oV2. An increase in o would, therefore, lead to more
heat being deposited into the tissue and a higher amount of damage.
The latter effect is not as easily explained.

This effect has been further investigated by considering three sim-
ulations with all average parameters except otrq, which was set to
0.1,0.2 and 0.3 respectively. Then the difference in electrical potential
and temperature was calculated by subtracting results of the mean
simulation with o¢rq = 0.2 from the extremes. Results are shown in
figure 39.

An increase in 0o leads to a decrease in the electrical potential
at the tumor-trabecular interface (fig. 39(a)). As a consequence, the
gradient of the electric potential over the electrode-tumor interface is
higher. This, in turn, leads to higher resistive heating around the elec-
trode and the temperature at the tip of the electrode rises faster. As a
consequence of the PI-control scheme, the applied voltage throughout
the ablation period is lower than before. The effect on the temperature
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is then seen in figure 39(b) where the temperature remains lower at
the tumor-trabecular interface.

The opposite effect is seen when o0, is decreased. Higher resistive
heating at the tumor-trabecular interface is seen due to the increase in
electrical potential at the interface. This, in turn, leads to an increase
in the temperature at the tumor-trabecular interface and center of the
electrode (fig. 39(d)).

The effect is a by-product of the PI-controller, which regulates the
temperature through the temperature measured at the tip. This effect
was therefore not seen in a repeat of the simulation where the PI-
controller was replaced by a constant-voltage electrode. In this case,
an increase of either o(ym Or O¢rq led to an increase in temperature
and ablation zone.

The mean effect and standard deviation of the four most important
parameters during ablation are plotted in figure g4o(b) and 40(c) re-
spectively. Due to the shoulder region, damage does not accumulate
until after roughly three minutes. Furthermore, it can be seen that the
cell death parameters, Go and €, are the dominant effect until the last
100 seconds where the electrical parameters become important. This
last period corresponds to the cell death extending beyond the tumor
and accumulating within the trabecular bone.

In 40(d) the mean and standard deviation of the ablation zone area
of all simulations is shown. Similarly, the mean and standard devi-
ation of the area of cells above 50 °C has been plotted in go(e) as
The 50 °C isotherm is often used as a cell death indicator [24]. Here
it can be seen that taking the 50 °C isoline as a cell death indicator
over-predicts the ablation area compared to the three-state cell death
model. The mean ablation area was Aqpy = 179 £ 79mm? and the
mean 50 °C area was Aspoc =481 = 10Tmm?2.

5.2.3 The Arrhenius model

The experiment has been repeated with the Arrhenius model of SN12
cells. As this model does not show a-physical results over an extended
period, it can be used to investigate the sensitivity of parameters dur-
ing ablation as well as the cool-down period for cells which do not
show a shoulder-region. The cool-down period was considered com-
pleted when the maximum temperature was no more than 0.05 °C
above the baseline value of 37 °C.

The sensitivity parameters used to construct the parameter space
for the Morris method are the same as for the three-state model and
summarized in table 21, except for €, which has been excluded from
this model. The results are shown in figure 41.



5.2 PARAMETER SENSITIVITY OF THE ACT MODEL 113

Otum

Standard deviation (x107?)

15
Mean (x1072)

(a)
ol
= Otum 2 20 = Otum
e 15 —— 0O X = Otra
L — Go S15- — Go
b e — —
X 10 € 3 €
= Weum S 10 el
c ]
S o°
s 2 P 5
- 3
C
0w S Omm e — ‘ ‘ ‘
0 2 n 0 2 4 6 8 10
Time (min) Time (min)
(b) ()
250
I —— average
g <500
& 200 —— = standard deviation N
E £ 400-
© 150 ;
% @ 300-
—
< 100 ©
5 U 200-
i o
o 50 © 100- —— average
Q N -
< 0 o] —— =+ standard deviation
0 2 4 6 8 10 0 2 4 6 8 10
Time (min) Time (min)
(d) (e)

Figure 40: Results of three-state model sensitivity analysis of the ACT model. (a) The sensitivity scatter plot
of the parameters presented in table 21. The line y = +x (in red) is a visual guide, below the line,
the mean effect is bigger than its standard deviation. Annotation of parameters clustered near zero
has been left out for clarity. (b) the mean sensitivity of the four parameters with the largest effect
with respect to time. (c) the standard deviation of the four sensitivity parameters with respect to
time. (d) The mean ablation area of all 168 simulations with its respective standard deviation. (e)
the mean area of cells above 50 °C and its standard deviation.
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In figure 41(a) the sensitivity of the ablation zone to the parameters
at the end of the simulation, that is, including ablation and cooldown-
period, is plotted on a scatter plot, where again, the red line y = +x
is shown as a visual guide. Again, the electrical- and cell death pa-
rameters show the most substantial effect on the ablation zone. Also,
as in the three-state model, the electrical conductivity of the tumor
and trabecular bone show an opposite effect on the expected size of
the ablation zone.

After these, the perfusion of muscle shows the most significant ef-
fect, a parameter that showed no effect during the three-state model.
The damage accumulated within the three-state model never reached
the muscle boundary. Here, whenever the damage is extended to the
muscle region, the perfusion of this tissue had a significant effect.
However, when the damage was contained within the bone, the ef-
fect of muscle perfusion was negligible, explaining that its standard
deviation is higher than its mean.

The sensitivity of ablation zone growth during cool-down has also
been investigated and is shown in figure 41(b). The growth during
cool-down was defined by the final size of the ablation volume minus
the volume at t = 600s. In this plot we can see that while Gy and otym
remain important parameters, Wmys becomes more dominant than
Otra- Also, pcirq Which has not shown any effect during ablation of
either Arrhenius or three-state models affects the cool-down portion.
This parameter dictates the ability of trabecular bone to absorb heat,
and thus an increase leads to an increase in the ablation zone.

The mean sensitivity and standard deviation dependence during
the simulation of the four most important parameters is shown in
figure 41(c) and 41(d) respectively. The electrical parameters show a
peak in the first minutes of the procedure; this coincides with the pe-
riod where the ablation zone is within the respective tissue. This same
effect was seen in the three-state model, only later as the damage ac-
cumulates later due to the shoulder region. The standard deviation
of these parameters also shows a peak during this period. A change
in electrical conductivity affects when its respective tissue is entirely
damaged. A decrease in the standard deviation is then seen due to
the tissue being damaged over the whole of the procedure. It is also
clear from these figures that the effect due to the perfusion of muscle
is only significant during the cool-down period.

In figure 41(e) the mean and standard deviation of the ablation area
of all simulations is shown. The vertical dashed-line signifies the end
of ablation. Similarly in figure 41(f) the mean and standard deviation
of the percentile increase from the ablation area to the end of cool-
down is shown.
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Figure 41: Results of SN12 cell Arrhenius model sensitivity analysis of the ACT model. (a) The sensitivity
scatter plot of the final ablation zone due to the parameters presented in table 21. The line y = £x
(in red) is a visual guide, below the line, the mean effect is bigger than its standard deviation.
Annotation of parameters clustered near zero has been left out for clarity. (b) the sensitivity scatter
plot of increase in ablation size during cool down, i.e., the parameter of interest was the final abla-
tion zone minus the ablation zone at t = 600s. (c) the mean sensitivity of the four parameters with
the largest effect with respect to time. (d) the standard deviation of the four sensitivity parameters
with respect to time. (e) The mean ablation area of all 168 simulations with its respective standard
deviation. (f) the mean percentage increase in ablation area during cool down and its standard
deviation.
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The total ablation area was Agpy = 457 + 122mm?, a mean area
which is 2.5 times the predicted area by the three-state model. The
total increase in ablation area after cool-down was AA p = 12 &
2%, again signifying the importance of the inclusion of a cool-down
period.

For both models, cell death, and electrical parameters of the tumor
and trabecular bone, oy, m and oirq, played the most significant part
in determining the extent of the end ablation zone. As such, extra
care should be taken for setting these parameters whereas constant
values can be taken for other parameters.

The perfusion of muscle played an important part when the abla-
tion zone extended within the muscle and cool-down was considered.
The effect of muscle perfusion could have an even more significant
impact as in-vivo blood perfusion initially increases with temperature.
This initial increase is an attempt of the body to reduce the tempera-
ture to normothermic values. Research shows that this effect is most
significant for muscle tissue, which can increase 9-fold until 45 °C,
after which a constant value is retained [60]. Such a temperature-
dependent perfusion term has not been included in the model and
hence should be a reference for further investigation.

5.3 PATIENT-SPECIFIC SIMULATIONS

Simulations have been performed based on the patient-specific cases
presented at the beginning of this chapter. Up to this point, most of
the simulations were run on two-dimensional meshes made out of
simple geometries. These kind of meshes are relatively easily made
with sufficient quality to use within the finite element method. How-
ever, this is not the case for the three-dimensional meshing of complex-
geometries such as patient-specific models, and as such, the method
of creating these meshes is explained here.

5.3.1 Patient-specific mesh

Patient data is annotated into three different categories; tumor, trabec-
ular bone, and cortical bone. A closed-surface representation of these
tissues is then exported. These surface-representations are then used
to construct volume meshes.

The difficulty lies in the making of a coherent and accurate three-
dimensional mesh, containing the surgical needle. To this end, the
creation of the mesh works from inwards to outwards, starting at the
needle and after that adding the outer layers; tumor, trabecular bone,
cortical bone and an outermost layer of muscle. In this way, the mesh
can be made coherent, having no overlapping or missing layers.

The needle is based on CT-images made before the procedure. By
extracting a tip-point, a point of entry and knowing the radius, the
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Figure 42: Results of the refinement process of the tumor segmentation of
case 9, prior to the creation of the patient-specific mesh. (a) non-
refined. (b) refined surface-representation with a target tolerance
of 5mm. Further, a silhouette of needle can be seen, this is a result
of the applied boolean operations, ensuring there is no overlap-
ping volumes.

needle can be constructed along the line spanned between the two
points. This is done in GMSH, a three-dimensional finite element grid
generator [61], where the needle is constructed from simple shapes: a
cone for the tip of the needle and cylinders for the needle-shaft.

To create a coherent mesh, boolean mesh operations must be ap-
plied. These operations allow for creating the union or difference be-
tween two meshes. The latter is used here, as the inserted needle
must be subtracted from the tissue. Before this can happen, the sur-
face representations of the tissues are optimized. This optimization is
performed in Pymesh, a python library which provides access to pop-
ular open-source mesh libraries such as CGAL, Cork and Tetgen [62].
With this library, common mesh-artifacts such as isolated vertices and
self-intersections can be removed. Furthermore, a refinement loop is
applied to make the mesh more uniform. All edges longer than a
specified tolerance are split, while all edges shorter than a specified
tolerance are elongated. This is repeated until all edges are bound,
or a maximum number of loops is reached. The results of such a
refinement-loop is shown in figure 42.

After refinement, the meshes are subtracted from one another to
ensure no overlapping volumes are present (see fig. 42(b)). Lastly, the
meshes are placed within a box which will act as muscle and can be
increased to determine the domain size convergence.

Then all surface meshes are imported back within GMSH, where a
three-dimensional mesh can be created now that all surfaces are co-
herent. The number of elements for the patient-specific meshes was
in the range of 1 —2x10°. To compute the simulations within a reason-
able time, the model has been adjusted to allow for parallel solving.
Furthermore, the model has been implemented on the Peregrine high
performance computing cluster.
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parameter minimum average maximum
Go(%) 0.7 0.8 0.9
Otum (SM™T) 0.08 0.29 0.5
Otra(SMT) 0.088 0.059 0.03

Table 22: Parameters which were changed to represent an expected mini-
mum, average and maximum case respectively. Note that otrq is
higher for the minimum case , and after that decreases. This is due
to the aforementioned opposite effect with respect to otym.

5.3.2 Simulation parameters

Simulations have been run on the patient-specific meshes to deter-
mine a predicted ablation zone.

Initial temperatures and temperatures at the outer-boundaries were
assumed to be 37 °C. Temperature was controlled by a Pl-controller
with a target temperature of 90 °C. To mimic the original protocol, the
simulations included a warming-up time. During this period, the tip-
temperature was increased until it reached its target, then the ablation
period was extended to their respective duration as summarized in
table 2o0.

As concluded in the previous sections about parameter sensitivity,
the ablation zone is most sensitive to only a few parameters. However,
the range of these parameters represents an uncertainty; either due to
a lack of experimental data or variations found within the data. There-
fore, three simulations were performed for each case, representing an
expected minimum, average, and maximum ablation zone.

Due to the increased computational costs of the patient-specific sim-
ulations, only the Arrhenius model of SN12 cells has been considered.
This choice was made as the model does not show a-physical results
throughout ablation and cool-down. Where the latter, as concluded
previously, has a significant contribution to the ablation zone predic-
tion. In this manner, a final expected ablation zone can be predicted
for cells showing no shoulder region.

The most sensitive parameters for the Arrhenius model were the
cell death viability threshold value ,Gp, and electrical conductivity
parameters, 0t m and oirq, for tumor and trabecular tissue respec-
tively. These parameters were changed to represent the three simula-
tion cases mentioned previously and are represented in table 22. For
all other parameters, average values from table 21 were considered.
A summary of the simulation parameters is given in appendix A.9.
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Figure 43: Three-dimensional representations of the predicted cell death.
The green, blue and red contours represent a minimum, average
and maximum case respectively. (a) Case 2, (b) case 7, (c), case 9
and (d) case 15. Note that a maximum size for case 2, 9 and 15
is not available as the simulations exceeded their requested time
limit.

5.3.3 Results

Complications arose during some of the simulations. When a max-
imum case was considered for cases 2, 9, and 15, the temperature
within the model exceeded 100 °C. Although the PI-controller regu-
lates the temperature, which had a target below 100°C for all cases,
the maximum temperature does not necessarily occur at the tip of the
electrode. Despite the model being able to accurately handle phase-
change phenomena, the adaptive time step reduced drastically. As a
consequence, these simulations did not finish within the requested
simulation time, i.e., these simulations took longer than 72 hours on
the high-performance cluster, and have been excluded from the re-
sults.

Coverage of the expected ablation radius is shown in figure 43.
From this figure, it is seen that using the simulation parameters for a
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minimum expected ablation zone (in green) leads to a non-successful
procedure in all of the patient cases. However, depending on the pa-
tient case, the average parameters can lead to a successfully predicted
procedure. In particular, patient cases 2 and 9, figure 43(a) and 43(c)
respectively, show that the tumor is fully located within the predicted
cell death.

Case 7 (figure 43(b)) shows a successful procedure when a maxi-
mum case is considered. These results further demonstrate the need
for accurate values of these parameters. In all cases, the predicted
success of the procedure depends on these parameters.

From each simulation, a longest diameter, d;, and shortest diameter,
ds, is determined. These diameters are compared to post-treatment
MRI-images from which a visual ablation zone could be inferred.
Slices from which these diameters are determined are shown in figure
44. The results are summarized in table 23.

While an ellipsoid can rather well approximate all simulated abla-
tion zones, post-treatment MRI-data can show a clear-cut cutoff. This
effect shows when the ablation zone extends to within the muscle-
layer. This could be due to the increase of perfusion with increasing
temperature, which is not included in this model, as explained in
the previous section. Different cell death mechanisms for different
tissue-types could also explain this effect. As previously seen in fig-
ures 18(a), 19, and 31, different cell types show different cell death
rates under hyperthermic stress. If a certain type of tissue shows a
significant higher thermal robustness, it will show as a clear-cut re-
gion as seen in the MRI-data. Lastly, since the MRI-data is not taken
immediate after treatment, it is possible that the muscle has healed.

Measured Simulated
d; ds Simulation dy dg volume
Case (mm) (mm) case (mm) (mm) (cm3)
2 43 26 min 32 22 8
avg 37 33 20
7 65 32 min 44 23 15
avg 45 29 22
max 51 40 44
9 42 40 min 32 23 10
avg 39 33 21
15 30 25 min 31 20 8
avg 33 26 11

Table 23: ablation zone dimensions from MRI-data (measured) and simu-
lated data.



g ,,.{ ,
-0 l
» ~

¥ 41.25m|

30.45fm|
1l.l -

(8)

5.3 PATIENT-SPECIFIC SIMULATIONS

Electrode-
Trocarf]
Tumor{]
Trabecular bone ]
Cortical bone-

Materials

Electrode-
Trocar] §
Tumor IE
Trabecular bonel§o
Cortical bone-

(d)

Electrode-
Trocar] §
TumorI;GE_J
Trabecular bonel§O
Cortical bone-

Electrode-

Tumorl@
Trabecular bonelg
Cortical bone-

(h)

Figure 44: Measured ablation diameter and predicted ablation diameter on the left and right respectively. From

smallest to largest the ablation radii are a minimum, average, and when present, maximum case. (a) and
(b), (c) and (d), (e) and (f), (g) and (h) represent case 2, 7, 9 and 15 respectively. Each simulated case is

surrounded by muscle (gray).
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Inspecting case 2 (figure 44(a), 44(b)), we see that the model fails
to accurately represent such a cut-off region, extending the ablation
zone to well within the muscle layer. Regardless, the simulation con-
sidering a minimum expected case underestimates the actual ablation
zone, where the longest and shortest diameter differ by 11 and 4 mm
respectively. On the other hand, the average considered case differs
by 6 and 8 mm for d; and d, overestimating the shortest diameter.
The latter, however, shows a significant increase in ablation damage
in muscle. Artificially inducing a clear-cut region, by just ignoring the
damage in the muscle-region, would reduce ds to 26 mm, as found
in MRI-data.

Case 7 (figure 44(c), 44(d)), also shows a clear-cut ablation zone,
which, again, is not seen in the simulation data. Interestingly, this case
represents an outlier, in the sense that even the maximum predicted
ablation zone underestimates the actual case. From the MRI-data it
is seen that both the minimum and maximum diameter extend to
the muscle-region. Such results can be achieved when either more
extreme parameters are considered than those summarized in table
22, or the inclusion of a cell line which is less thermal-robust.

For now, we can mimic the latter by adjusting the cell viability
threshold, Gy, such that the extent of the ablation zone is similar
to the one in MRI-data. As seen in figure 45(a), a viability thresh-
old 0.97% is needed to create a similar ablation zone as found in
the MRI-data. Although, in reality, the viability threshold needed to
create such an ablation zone would be a bit lower due to the effect
of the threshold on the perfusion cut-off. Nevertheless, it would re-
quire a feeble cell line, while we already consider a cell line without
a shoulder-region.

Further, we can also look at the temperature isotherm that corre-
sponds with the border of the actual ablation zone at the end of ab-
lation. As it turns out, this would correspond to a cell death model
which shows irreversible damage at a peak temperature of no more
than 39 °C as seen in figure 45(b). It is therefore much more reason-
able that the increase in ablation zone is due to the electrical param-
eters, and as such, that the range of values found for o¢ym and otrq
(table 21), does not adequately represent the variation found within
the population.

In case 9 (figure 44(e), 44(f)), the minimum considered simulation
case underestimates the actual ablation zone and does not predict a
successful procedure. However, it is clear from the MRI-data that the
tumor is fully located within the ablation zone. The average predicted
case shows more resemblance to the actual case, differing only by 3
and 7mm for the longest and shortest diameter respectively. Note that
the MRI-data does not show a clear-cut region as the tumor is located
centrally within the trabecular bone.
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Figure 45: Isotherm data of the maximum simulation case of patient 7. (a)
Arrhenius cell death at the end of simulation, the sharp border
between the red and blue corresponds to the value of Q = 0.105,
which corresponds to the 90% viability isotherm (eq. 3.5.8), which
was used during the simulation. The border has been extended
to Q = 0.03, or a 97% viability rate,to retrieve a similar ablation
region as seen in the MRI-data (see fig. 44(c)). Similarly, (b) shows
the temperature distribution at the end of ablation. The sharp bor-
der between red and blue denote the 50°C isotherm. To retrieve a
similar ablation zone as seen in in-vivo, cells would need to accu-
mulate irreversible cell damage at a peak temperature of 39°C.

Case 15 (figure 44(g), 44(h)), does show a clear-cut of the ablation
zone at the cortical muscle interface, which, again, is not seen in the
simulated data. Nonetheless, the average simulated case represents
the actual situation quite well, differing only 3 and 1T mm in the
longest and shortest diameter respectively. This case also showed the
least difference between simulated cases. The average simulated case
showed only an increase of 2 and 6 mm for the longest and short-
est diameter respectively. At the same time, the case contained the
smallest tumor, and as such, it should be expected that changing its
parameters has the least overall effect of all the cases.

For each case, the difference between simulation cases is most sig-
nificant in the shortest diameter, i.e., the direction perpendicular to
the electrode, which always showed a more substantial increase than
the diameter along the electrode. On average, the difference between
the shortest diameter of a minimum and an average case was 8.25
mm, while only 3.75 mm for the longest diameter.
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CONCLUSIONS

A model for simulating radio-frequency (RF) ablation has been made
based on the finite element method. The model is capable of simu-
lating axisymmetric- as well as three-dimensional models. Further-
more, non-linear material properties have been implemented as well
as different power control schemes. These included a constant-voltage
scheme, a target-temperature scheme dictated by a PI-controller and
an impedance control scheme. Internally cooled electrodes, such as
the Cool-Tip-electrode can also be modeled.

An apparent heat capacity form of the Pennes’ bio-heat equation
has been implemented to account for phase change phenomena when
the temperature exceeds 100 °C. However, time step sizes must be
reduced to represent phase changes adequately. To increase the effi-
ciency of the model, two different time stepping schemes have been
implemented. The first is the implicit Euler method, which was imple-
mented due to the ease of programming, and acted as a benchmark.
The second is an explicit three-level scheme from Lees [43], which has
an adaptive time step method based on the change in temperature be-
tween two consecutive steps.

Different cell death models have been implemented. These include:
the Arrhenius model, the Arrhenius model with a temperature-dependent
time delay by Pearce [38], and the three-state model of O’Neill et al.
[39]. Since perfusion is stopped when cells die due to coagulation,
these models also included a feedback mechanism to determine the
perfusion cutoff.

The implementation and validity of the different solvers have been
extensively tested. The method of manufactured solutions was used
to determine convergence rates. All tests retrieved their correct con-
vergence rates. Second, two analytic problems were tested; the first be-
ing a two-dimensional, axisymmetric model containing a semi-infinite
electrode, the second a one-dimensional Stefan problem. The solu-
tions to both problems were found to be within 1% of the analytical
solution. Third, simulations by other groups were replicated. Excel-
lent agreement was reached for the simulations of Berjano [7] [28],
differing less than 1% at all times. The replication of the simulation
of Hall et al. involved a sensitivity analysis, which due to the sta-
tistical nature of the analysis was not expected to retrieve the same
results. Nevertheless, very similar results were achieved [45], in par-
ticular, the order of parameter importance was conserved.

Then the model was used to investigate characteristics of RF abla-
tion of ACT. First, the simulations were performed to compare differ-
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ent cell death models. The three-state model showed significant lower
predicted ablation zones than other models. Further, from these sim-
ulations, it became clear that ignoring the cool-down phase has a sub-
stantial impact on the expected ablation zone (> 10%). This conclu-
sion is shared by another simulation study of RF-ablation of the liver
by Irastorza et al. [57]. Furthermore, an experiment of cell viability of
SN12 cells by He and Bischof found that ignoring the non-isothermal
periods of RF ablation (heat-up and cool-down) underestimates the
final ablation zone [33]. However, it also became clear that most cell
death models showed a-physical results over the extended period of
cool-down, reaching a state of total cell death even under normother-
mic conditions. This is an artifact due to the limited time range over
which the experimental data were fitted, considering ablation periods
of at most 15 minutes.

The parameter sensitivity has been investigated for the three-state
model as well as the Arrhenius model for SN12 cells, using the Morris
method. The first represents a case of cells showing a shoulder-region
while the latter does not. For both cases, the parameter governing the
cell viability, Go € [70,90%] was of most importance. This is to be
expected as it directly dictates when a cell is considered dead. The
range was set as it would most likely correspond to a threshold which
should be reliably detectable amid biological tissue [36].

Then the electrical parameters of the tumor, (m € [0.08,0.5](S/m)
[7], and surrounding trabecular bone, oq € [0.03,0.08](S/m) , showed
the most significant contribution to the uncertainty in ablation zone
. Interestingly, the parameters showed an opposite effect on the pre-
dicted ablation zone, a result also present in the study of Irastorza
et al.[7]: increasing with an increase of ot ,m and decreasing with an
increase Orq. It was concluded that this effect is a by-product of the
used temperature control, where the target temperature was reached
sooner due to a local decrease in electric potential around the elec-
trode tip. The effect was, therefore, not seen when a constant-voltage
control replaced the temperature control.

Further, the Arrhenius model showed the perfusion of muscle as
an essential parameter. The standard deviation of this parameter was
more significant than its mean. This meant that changing the param-
eter did not always result in a change in the predicted ablation zone,
but when it did, the contribution was significant. Further investiga-
tion showed that the effect of the parameter was only significant
when the ablation zone reached within the muscle. Nonetheless, the
effect of this parameter can be underestimated as muscle perfusion
increases with temperature [60].

The sensitivity analysis also showed the significant difference in
predicted ablation zone between the three-state and SN12 model, pre-
dicting an area of Agp1 = 179+ 79mm? and Agp = 457 £+ 122mm?
respectively. Where the latter showed an increase in ablation area dur-
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ing cool-down of 12 &+ 2%, the first did not include a cool-down pe-
riod, as it leads to the previously mentioned a-physical result of cell
death at 37 °C. The increase during cool-down could be even more
significant for such a model, due to the non-linear dependence on
cell viability and the presence of the shoulder region, which delays
the time at which cell damage occurs.

CT-data of four patient cases having an ACT were available from
which patient-specific models could be created. The needle was placed
under CT-guidance from which a final placement could be deduced.
Furthermore, post-treatment MRI-images were available from which
an actual final ablation zone could be determined. The final models
contained between one and two million elements. To reduce the com-
putation time, the model has been rewritten and implemented on the
Peregrine high-performance cluster.

Based on the sensitivity analysis, a minimum, average, and max-
imum expected ablation zone case has been simulated for each of
the patient cases. These were determined by changing the cell viabil-
ity threshold, and the electrical conductivity parameters of the tumor
and trabecular bone. Complications arose during three of the sim-
ulations. All three simulations involved a maximum considered-case
where the temperature exceeded 100 °C. Although the model can han-
dle phase-change phenomena, the time step reduced drastically, and
the simulations did not finish within the requested time.

Nonetheless, the simulations show that patient-specific parameters
are decisive in the outcome of the procedure. Considering a minimum
simulation case, the procedure is ineffective in all patient cases, failing
to ablate the whole of the tumor, whereas considering an average or
maximum case shows a successful procedure.

One of the cases showed an ablation zone bigger than even the
largest predicted ablation zone. Investigating how to achieve a simi-
lar ablation zone, a Go of 0.97% is required. Otherwise, using a dif-
ferent cell death model would need for a cell line which shows sig-
nificant damage at a peak temperature of only 39 °C. A more reason-
able explanation is therefore that the range of electrical conductivity
parameters suggested does not cover the variation found within the
population.

In three patient cases a clear-cut ablation region is seen, something
which is not present in the simulations. In these cases, the ablation
region does not extend to the muscle region. The temperature depen-
dent perfusion rate, as mentioned earlier, could cause such a clear-
cut between tissues, something which is not included in the model.
The clear-cut could also be a consequence of different tissues being
more robust than others under thermal stress [36][33][63]. Therefore,
further research should focus on the cell viability response of both
cancerous and healthy tissue, under hyperthermic stress. As of now,
the same parameters are used for every type of tissue. Further steps
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should be taken to improve the model. For one, the effect of a non-
linear perfusion rate on the clear-cut region should be investigated.

The current implementation of the model lacks a cell death model
which can accurately represent a shoulder region and not show cell
death under normothermic conditions, over the extended simulated
time when a cool-period is considered. A first step would be to repli-
cate the three-state model of O'Neill et al., but include viability data
over longer heating times and temperatures close to normothermia.
This, in theory, should extend the time after which the model predicts
cell death under normothermic conditions. This increased period is
needed as it was shown that the ablation zone grows significantly
during the cool-down phase.

Lastly, to reduce uncertainty in the predicted ablation zone, exper-
iments should be conducted to get more information about the varia-
tion within electrical conductivity parameters of both the tumor and
the immediately surrounding tissue, as concluded from the sensitiv-
ity analysis.



SIMULATION SPECIFIC PARAMETERS

In this appendix, additional tables are given with the specific simula-
tion parameters for each simulation.

A.1 SEMI-INFINITE ELECTRODE

Parameter value
tablation until steady state
Tinitial 5°C
Power control Constant
Vel 10V
Thermal conductivity (k) Constant
Electrical conductivity (o) Constant
Density x specific heat (pc) Constant
Cell death model None
Time stepping
algorithm Lees
Atinitial 1x10~© s
Atrax 1x1072 s
T 0.25 K
Tu 0.5 K

Table 24: Summary of the simulation parameters used in the semi-infinite
electrode model, in section 4.2.1.
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A.2 ONE-DIMENSIONAL SOLIDIFICATION

Parameter value
tsimulation 50 h
Tinitial 20 °C
Ty—o —10°C
AT 1,0.5°C
Power control Constant

Vel ov
Thermal conductivity (k)  Temperature-dependent

T 0—AT°C

Tu 0+ AT °C
Electrical conductivity (o) Constant

Density x specific heat (pc)
Ty
Ty
Cwater
Lrusion

Pwater

Cell death model
Time stepping
algorithm
Atinitial
Atmax
Tl

Tu

Temperature-dependent

0—AT°C
0+ AT °C
100 %

333 (KJ/Kg)
1000 (Kg/m?3)

None

Lees
1x107° s
1x10'% s

0.25 K

0.5 K

Table 25: Summary of the simulation parameters used in the one-

dimensional solidification model, in section 4.2.2.



A3 RF ABLATION IN OSTEOMA OSTEOIDE

A.3 RF ABLATION IN OSTEOMA OSTEOIDE

Parameter value
tablation 400 s
Tinitial 35°C
Power control PI-control
Ttarget 95 °C
kp 1.15
ki 0.06

Thermal conductivity (k)
To
Tm ax

Ak

Electrical conductivity (o)

Ovap

Density x specific heat (pc)
T
Tu
Cwater
Lvaporization
Pwater

Time stepping
algorithm
Atinitial
Atmax
Tl

Tu

Temperature-dependent
37 °C

100 °C

0.003(W/(m - K?))
Temperature-dependent
100 °C

105 °C

1.5%K "

ox10~4
Temperature-dependent
99 °C

100 °C

99.2 %

2260 (KJ/Kg)

1000 (Kg/m?3)

Lees
1x107° s
05s
01K
0.25 K

Table 26: Summary of the simulation parameters used in the Osteoma Os-

teoide model, in secti

on 4.3.1.
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A.4 RF ABLATION IN CORTICAL OSTEOMA OSTEOIDE

Parameter value
tablation 400 s
Tinitial 37 °C
Power control PI-control
Ttarget 95 °C
kp 1.15
ki 0.06

Thermal conductivity (k)
To
Tmax

Ak

Electrical conductivity (o)

Ovap
Density x specific heat (pc)
T
Tu
Cwater
Lvaporization

Pwater

Cell death model
Perfusion
B (T <50°C)
B (T > 50°C)
Time stepping
algorithm
Atinitial
Atmax
T

Tu

Temperature-dependent
37 °C

100 °C

0.003(W/(m - K?2))
Temperature-dependent
100 °C

105 °C

1.5%K "

ox10~4
Temperature-dependent
99 °C

100 °C

0.8 %

2260 (KJ/Kg)

1000 (Kg/m?3)

None
Temperature-dependent
1

(6}

Lees
1x107 ¢ s
05s

0.1 K
0.25 K

Table 27: Summary of the simulation parameters used in the cortical Os-

teoma Osteoide model, in section 4.3.2.
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A.5 THREE-STATE CELL DEATH MODEL

Parameter value
tablation 300,600,900 s
Yncubation 2,26,50 h
Tinitiat 37,55,65,75,85,100 °C
Power control Constant
Vel oV
Thermal conductivity (k) Constant
Electrical conductivity (o) Constant
Density x specific heat (pc) Constant
Cell death model (t < tavlation) Three-state (Fast)
K¢ 3.33x10 35!
kb 7.77x1073s~!
Ty 40.5 °C

Cell death model (t > tqblation)
Ks
Dy
Time stepping
algorithm
At(t < tavlation)

At(t > tablation)

Three-state (Slow)
0.316x107 357!
0.208

Lees
1s
60 s

Table 28: Summary of the simulation parameters used in the three-state cell

death verification model, in section 4.3.3.
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A.6 SENSITIVITY ANALYSIS OF RF ABLATION PARAMETERS

Parameter value
tablation 600 s
Tinitial 37 °C
Power control Impedance control
Vel 60V
Qthreshold 120 Q
tshutdown 15s
h 3366W/(K - m?))

Thermal conductivity (k)
Electrical conductivity (o)
Density x specific heat (pc)
Cell death model

1%

Ky

T¢
Perfusion

B (D > 80 %)

B (D < 80%)
Time stepping

algorithm

Atinitial

Atmax

T

Tu

see table 19

see table 19

see table 19
Three-state

3.33x107 357!
7.77x107 357!

40.5 °C

Cell death-dependent
1

(0)

Lees
1x107¢ s
05s

0.1 AT
0.25AT

Table 29: Summary of the simulation parameters used in the parameter sen-

sitivity model, in section 4.3.4.
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A7 ACT CELL DEATH MODELS

Parameter value
tavlation 600 s
Tinitial 37 °C
Power control PI-control
Ttarget 90 °C
kp 1.15
ki 0.06
Thermal conductivity (k) Temperature-dependent
To 37 °C
Tmax 100 °C
Ak 0.003(W/(m -K?2))
Electrical conductivity (o)
type Temperature-dependent
T 100 °C
Tu 105 °C
Ao 1.5%K™!
Ovap ox10~4
Density x specific heat (pc) Temperature-dependent
T 99 °C
Tu 100 °C
Lvaporization 2260 (KJ/Kg)
Pwater 1000 (Kg/m?3)
Cell death model (1) Three-state HEPG2
K¢ 0.8x10 357!
kp 0.25x10 35!
T¢ 24.6 °C
Cell death model (2) Three-state 50/50 HEPG2/MRC-5
K¢ 3.52x10 357!
ko 8.46x10 35!
T¢ 41.6 °C
Cell death model (3) Arrhenius HepG2
A 5.396x103¢s~!
AE 2.486x10°Jmol ™!
Cell death model (3) Arrhenius SN12
A 3.153x10%7s 7!
AE 3.1489x10°Jmol ™!
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Cell death model (5) Arrhenius with delay PC3
A 6.75x1033s !
AE 2.222x10%Jmol ™!
b 2703 s
m 49.6s°C™!

Perfusion Cell death-dependent
B (D > 80 %) 1
B (D < 80%) 0

Time stepping
algorithm Lees
Atinitial 1x107° s
Atmax 05s
T 01K
Tu 0.25 K

Table 30: Summary of the simulation parameters used in the two-
dimensional, axisymmetric, ACT model, in section 5.1.
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A.8 ACT PARAMETER SENSITIVITY ANALYSIS

Parameter value
Tinitial 37 °C
Cool down target 37.05 °C
tablation 600 s
Power control PI-control
Ttarget 90 °C
Kp 1.15
ki 0.06

Thermal conductivity (k)
Electrical conductivity (o)
Density x specific heat (pc)
Cell death model (1)
Cell death model (2)

A

AE
Perfusion

p
Time stepping

algorithm

Atinitial

Atmax

T

Tu

see table 21

see table 21

see table 21

Three-state (see table 21)
Arrhenius SN12
3.153x10%7s~!
3.1489x10°Jmol ™!

Cell death-dependent

see table 21

Lees
1x107% s
05s

0.1 AT
0.25 AT

Table 31: Summary of the simulation parameters used in the two-
dimensional, axisymmetric, sensitivity ACT model, in section 5.2.
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SIMULATION SPECIFIC PARAMETERS

PATIENT SPECIFIC SIMULATIONS

Parameter value
Tinitial 37°C
Cool down target 37.05 °C

tablation

Patient 2
Patient 77
Patient 9
Patient 15
Power control
Ttarget
kp
ki
Thermal conductivity (k)
To
Tmax
Ak
Electrical conductivity (o)
To
Tmax
Ao
Ovap
Density x specific heat (pc)
Ty
Ty

I—v aporization

Pwater

Cell death model
A
AE

Perfusion
B

Time stepping
algorithm
Atinitial
Atmax

T

600 s, after reaching Tiqarget
480 s, after reaching Tiarget
540 s, after reaching Tiarget
540 s, after reaching Tiarget
PI-control

90 °C

1.15

0.06
Temperature-dependent

37 °C

100 °C

0.003(W/(m-K?))
Temperature-dependent

37 °C

100 °C

1.5%K !

ox10~4
Temperature-dependent

99 °C

100 °C

2260 (KJ/Kg)

1000 (Kg/m?3)

Arrhenius SN12
3.153x10%7s~1
3.1489x10°Jmol ™!

Cell death-dependent

see table 22

Lees
1x107° s
05s
0.1 K
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Tu 0.25 K

Table 32: Summary of the simulation parameters used in the patient specific
ACT model, in section 5.3.
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