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Abstract: It is yet unknown how exactly children are able to match objects they perceive with their 
correct labels. This is known as the mapping problem. Researchers have proposed various theories on 
how this problem could possibly be dealt with, two of the most well-known being cross-situational 
learning and propose-but-verify. But one aspect is often overlooked: the context in learning 
environments. For this study, I have built computational models of cross-situational learning and 
propose-but-verify that take on experiments done by Dautriche and Chemla (2014). Using these models 
gave me the opportunity to inspect closely how different contextual setups in the experiments affect the 
performance of both strategies. The models’ performances were then compared to human data. Results 
showed that even with the context modulations, neither necessarily resembles human data beUer than 
the other. I discuss one possible explanation for this finding: that people actually use a combination of 
both strategies. 

	   

1. Introduction 
Young children learn words in their native 
language very rapidly. Upon becoming 2 years of 
age, children reach an average vocabulary of 300 
words (Fenson et al., 2014). This is an impressive 
achievement, because the environments in which 
children learn words are often rather complex, 
consisting of many different objects, concepts 
and ongoing actions. It is still unknown how 
exactly children match the words they hear with 
what they perceive in the world. This issue is also 
known as the mapping problem (Bloom, 2000). 
Quine (1960) similarly states that for each 
naming event, there is referential ambiguity. A 
classic example that he has given to illustrate this 
phenomenon is that of a native speaker of a 
foreign language, who upon seeing a rabbit 
uUers the word “gavagai”. To someone unfamiliar 
with this language, the word may refer to the 
rabbit, but it may as well refer to “animal”, 
“food”, “grass” or any other present object. All 
the more, it may even refer to something that is 
not present at the moment, such as “hunting”. 
Quine’s aim was to show that, in theory, there 
might be an infinite set of possible candidate 
meanings for an unknown word. However, in 
this example we can already sense that it is more 
likely that gavagai means “rabbit”, rather than 

“hunting”.  It is plausible to think that learners 
exclude rather spurious candidate meanings 
from the number of considered possibilities, 
which would greatly reduce the ambiguity. 
Though in spite of this reduction, a reasonable 
amount of possibilities ceases to exist. The 
number of different possibilities results in 
uncertainty. The learner, due to this uncertainty, 
requires a means to distinguish the true referent 
of a word from the other possibilities, also 
known as distractors. The means to overcome  
referential uncertainty could be realized as an 
underlying mechanism or a strategy.  

In previous studies, researchers have come up 
with several explanations on how learners cope 
with the referential ambiguity in word-learning. 
These each have their differences, but can be 
classified into two general types of accounts.  

On one hand, several researchers have proposed 
that learners are able to keep track of statistics of 
word-object co-occurrences across diverging 
learning environments or situations. In other 
words, according to this theory learners can in 
some way carry information from previously 
encountered learning situations to another. For 
this fact, one of the more prevalent theories in 
this domain is called cross-situational learning. 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In theory, when a new word is uUered, there is a 
set of candidate meanings of that word due to the 
referential uncertainty. But when the word is 
repeatedly presented in new situations, the 
different contexts of those situations can be used 
to rule out candidate meanings which will 
reduce the uncertainty (Smith & Smith, 2012). 
This already suggests that context plays an 
important role in object-word learning.  

On the other hand, there are researchers that 
propose that a learner does not keep track of 
information from previously encountered 
learning situations. The theory that has been 
proposed by Trueswell et al. in 2013 is called 
propose-but-verify, in which learners upon 
hearing a new word, propose a hypothesis, 
which may be verified upon later encounters of 
that word. If their hypothesis is verified, i.e. the 
hypothesized object-word match is shown on a 
new trial, the hypothesis is strengthened.  If, 
however, the word is heard in absence of the 
hypothesized object, the hypothesis is rejected. In 
this case a new hypothesis is chosen. We may ask 
ourselves how a learner chooses a (new) 
hypothesis and whether the context of a learning 
situation has any influence on the process. 

My aim in this study was to investigate the role 
of context in object-word learning, using the two 
theories proposed above. I constructed 
computational models of the two theories and 
used a previously done study by Dautriche and 
Chemla (2014) to assess both of the models’ 
performances. The named study that Dautriche 
and Chemla carried out, consisted of different 
modifications of the same experiment in which 
the context differed. Their study was interesting 
to use for us, because this helped us to obtain the 
models’ performances across different contextual 
setups.  The performances of our computational 
models were tested in the same experiments and 
compared to the human data. 

Having obtained the results, we made two types 
of comparisons: a comparison between the two 
models  (model-to-model comparison) and a 
comparison between each of the models and the 
human data that was obtained from Chemla and 
Dautriche’s experiments (model-to-data 
comparison). We found that the outcome of the 

two models is mostly similar with respect to the 
choices they make during the experiment, with 
minor differences. When comparing the models 
to the human data, we find that neither 
necessarily resembles human data beUer than the 
other. I discuss one possible explanation: that 
learners in reality use a strategy or mechanism 
that is in fact a combination of cross-situational 
learning and propose-but-verify. 

2. Background 
It is worth to mention that the two theories of 
object-word learning that we will be comparing 
in this experiment, cross-situational word 
learning and propose-but-verify, can be classified 
more broadly as two different learning accounts. 
Cross-situational word learning can be seen as a 
form of implicit learning, whereas the propose-
but-verify strategy uses propositional logic to 
reduce uncertainty. 

In cross-situational word learning, learners are 
eventually able to determine the correct object-
word pair by choosing the object that has the 
highest occurrence with the referring word as, 
implicitly, that word will be the most associated 
with the object in comparison to the other words. 
Figure 1 illustrates a simplified example of how 
uncertainty can be reduced over multiple 
exposures. On each exposure, i.e. each time the 
target word “horse” is used, there is a set of 
objects present that become candidate meanings. 
The appearance of the real horse is consistent 
over multiple exposures and therefore this 
candidate will be associated more with the target 
words than the other candidates.  

 

Figure 1: Simplified example of how uncertainty 
is reduced in cross-situational word learning  
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The implicit learning factor of the cross-
situational learning theory may be realized by 
using, for example, the Rescorla-Wagner model, a 
theory of classical conditioning (Rescorla & 
Wagner, 1972). Rescorla-Wagner is a variation on 
Pavlovian classical conditioning, where we do 
not assume that conditioned stimuli followed by 
unconditioned stimuli result in learning. 

This is based on findings by Kamin (1969) on the 
blocking effect. Namely, that once one stimulus 
has a strong association with a certain outcome, 
any other stimulus that is presented at the same 
time will not be learned to be a predictor for the 
outcome. In the Rescorla-Wagner model, the 
change in associative strength of a stimulus 
depends on the existing associative strength of 
that stimulus and of the other present stimuli. If a 
stimuli is already strongly associated with a 
certain response, the association will not 
strengthen as much as when the stimuli is not yet 
strongly associated with the response. It is 
important to emphasize that the Rescorla-
Wagner model that we use does not merely 
implement associative learning, but rather a form 
of discriminative learning. The discriminative 
part here implies that if a stimulus is not present, 
there is a process of unlearning. These concepts 
of the theory are realized through the 
mathematical formula in equation 1, which 
Miller et al. (1995) introduced in an assessment of 
the Rescorla-Wagner model. 

                                                              
                                                             (1)  

In the equation above, ΔVx resembles the change 
in associative strength between the conditioned 
stimulus (labeled X) and an unconditioned 
stimulus. The change occurs from the current 
trial to the next, hence the change can be seen on 
trial n+1 (where n resembles the number for the 
current trial). The change is given by the 
associability of the conditioned stimulus (α), 
bounded between 0 and 1, multiplied by the 
associability of the unconditioned stimulus (β), 
bounded between 0 and 1. Typically, α and β  
have a value of 0.1. The associability of a 
stimulus is closely related to the intensity of that 
stimulus. The λ resembles the maximum 
associative strength that the unconditioned 

stimulus can support. Because we are using 
discriminative learning, which makes it possible 
for weights to become negative, the value for λ  is 
0 when an outcome is not present. Vtot yields the 
total sum of associative strengths of all 
conditioned stimuli (including stimulus X) that 
are present on trial n+1 (Miller et al., 1995). 

Using the Rescorla-Wagner model , the 
mechanism of cross-situational learning can be 
realized as a linked network consisting of 
associative information.  As such, the theory can 
be seen as an implicit learning account.  

There are opponents of cross-situational learning, 
who argue that a flaw in this theory is that it 
makes the assumption that children can 
somehow keep track of multiple hypotheses for a 
word, which would require a vast amount of 
memory (see Medina et al., 2011; Trueswell et al., 
2013). Instead, they propose, that a learner does 
not keep track of information from previously 
encountered learning situations and thus that the 
type of learning is not associative, they propose 
that the learners in fact use propositional logic to 
learn object-word pairings. The theory that has 
been proposed by Trueswell et al. in 2013 is 
called propose-but-verify, in which, as its name 
suggests, learners per learning situation propose 
a hypothesis which may be verified upon later 
learning situations. Using this strategy, learners 
only have to keep track of their current 
hypothesis, which is a single object-word match. 
The hypothesis can either be verified, which 
happens when an object-word match is shown on 
a new trial, in which case the hypothesis is 
strengthened.  If, however, the target word is 
heard in absence of the hypothesized object, the 
hypothesis is rejected. In that case a new 
hypothesis is chosen.  

Trueswell et al. (2013) describe the specific steps 
that are taken in the strategy as follows: 

1. Begin by guessing at chance. 

2. On an additional occurrence of a word, 
remember the previous guess with some 
probability α. 

3. If the remembered guess is present in the 
current referent set (i.e., confirmed), increase 
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the value for α and select the referent; 
otherwise select a referent at random.  

This strategy thus knows only one free 
parameter, α, that resembles that probability that 
a learner’s previous guess of a target word is 
remembered.  

We have just described two accounts of how 
learners could cope with the referential 
uncertainty (i.e. the mapping problem) that is 
found in object-word learning. On one hand we 
have the associative account, or cross-situational 
learning, which proposes that learners compare 
conjectures that they gather over multiple 
situations. The core difference with the 
propositional logic account, propose-but-verify, 
is that according to the laUer theory learners do 
not keep track of information about previously 
encountered situations - instead they store only a 
single conjecture, being their hypothesis. This 
hypothesis is carried forward until disproven by 
later encounters.   

While research has been focused on the possible 
underlying mechanisms of object-word learning, 
one source of information is often left out: the 
context of the those learning situations. A 
previously conducted study by Horst (2013) has 
demonstrated that children’s word learning 
benefits from contextual repetition. Horst 
investigated the influence of contextual repetition 
on word-learning by reading groups of children 
either the same three storybooks repeatedly or 
nine different storybooks once each. They found 
that all children performed well on the tests they 
made right after the storybook reading, however 
only the group of children who had listened to 
the same storybooks repeatedly retained those 
word-object associations upon a second test, one 
week after the storybook readings, meaning that 
contextual repetition proved beneficial for 
learning to occur. Horst states that this may also 
explain why stories or songs that make use of 
repetitive features are more appealing to 
children.   

In this study, we want to further explore the 
influence of context on object-word learning. We 
are specifically interested in the effect of context 
modulation on the learning rate of words using 

the cross-situational learning and propose-but-
verify mechanisms. 

We have chosen to use computational modeling 
as a tool to investigate the role of context in 
object-word learning. In prior studies, several 
researchers have laid out experiments with 
human participants in which the context was 
modulated in some way to test its effects on 
object-word learning (Chemla & Dautriche, 2014; 
Roembke & McMurray, 2016 - see section 
“Previous studies with human subjects”). With 
our modeling approach, we aim to provide new 
insights to current findings.  

Computational modeling has two main 
advantages as opposed to testing with human 
subjects.  Firstly, modeling allows us to control 
the learning strategies that we want to 
investigate. We have the possibility to see the 
outcome of a strategy at each stage during the 
learning process. With human participants, this 
would not be possible, as we would only be able 
to see the outcome of the tests because of which 
we can only take a guess at what sort of strategy 
would have produced that outcome. The other 
advantage  is that with the aid of modeling, we 
can examine how learning progresses over a 
longer period of time or with more exposures. 
This is difficult to do with human subjects, whose 
time and aUention is limited.  

Previous studies with human subjects 
Several studies have conducted language 
experiments with the aim to gain more insight 
into the underlying processes of object-word 
learning (see e.g. Smith et al., 2010; Ramscar et 
al., 2013; Trueswell et al., 2013). In these 
experiments, the participants (children or adults) 
were typically shown different objects along with 
a to-be-learned word. Analyzing what choices 
participants make when selecting what they 
believe is the referent of a word, allows us to 
infer what underlying learning mechanism or 
strategy  they might have been using.  

We found two studies that were not just focused 
on the mechanism behind object-word learning, 
but rather on how the learning was effected by 
different contexts. 
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In 2014, Dautriche and Chemla conducted a 
study in which their aim was to investigate how 
context could modulate learners’ strategies 
during object-word learning and how that 
influences the strategies’ efficiencies. They set out 
three experiments in which they had participants 
look at pictures upon hearing a word, with the 
aim to have the participants eventually link that 
word to the corresponding object. They would 
show participants four pictures at a time per trial,  
where the correct object would always be present 
in learning instances for that word. This was the 
basic set up. The difference between the three 
experiments was the context, which they tried to 
simulate by altering which objects were shown 
together. In their first experiment, the objects that 
were shown together at a time were entirely 
randomized.  In the second experiment, they 
chose to only show pictures that belonged to a 
same category  (e.g. animals or clothes) together, 
so as to simulate a natural context (e.g. a zoo or 
clothing store context). In the third experiment, 
Dautriche and Chemla wanted to further explore 
different kinds of contexts and their effects by 
grouping objects into consistent contexts 
(consisting of objects that have no semantic 
coherence) instead of natural contexts. From this 
study, they found that learning benefits from 
situations that consistently contain members 
from a certain group, both when this group 
represents a natural context and when the 
context is merely consistent without any 
semantic coherence. These results suggest that a 
consistent context serves as a memory cue during 
the learning process. 

Roembke and McMurray conducted a follow-up 
study in 2016 to look further into this effect. Their 
aim in this study was to simulate contexts in a 
more natural, probabilistic manner by not having 
the context appear on only the first block, like 
Dautriche and Chemla chose to do. The reason 
that Roembke and McMurray chose for a 
different approach on simulating context was 
that they believed that Dautriche and Chemla’s 
approach made context very salient. Roembke 
and McMurray therefore tried to manipulate 
contextual consistency between trials in a more    
natural or probabilistic manner. With this they 
investigated how contextual consistency could 

not only serve as an aid to learning, but also as a 
cost. 

We want to build on the findings by other studies 
such as those by Dautriche & Chemla, and 
Roembke & McMurray. We are interested in 
what computational modeling can tell us about 
the role of context in object-word learning using 
cross-situational learning and propose-but-
verify.  

We want to evaluate our results by comparing 
them to data from human participants. This is 
why we chose to model a previously carried out 
experiment on context in object-word learning. 
Recreating the setup from an actual experiment 
gives us an advantage as this makes it easy to 
compare our models’ results to the results of that  
same experiment done with human participants. 
As mentioned before, there have been two 
research groups that tried to investigate the role 
of context in a similar way to our current study. 
The studies that were conducted by Dautriche 
and Chemla on the one hand, and Roembke and 
McMurray on the other hand, were both suitable 
for our modeling project. However, for practical 
reasons, we favored modeling the study done by 
Chemla & Dautriche. The experiments that 
Roembke & McMurray carried out involved a lot 
of trials, which would be more complex to 
capture in a model because the parameters that 
we are using might change over time.   

We have chosen to model only the first two of the 
experiments that Chemla & Dautriche carried 
out. The reason for this is that comparing the 
results of these two experiments are sufficient to 
gain insight how the context influences the 
learning. The first two experiments that 
Dautriche and Chemla carried out are crucial for 
our investigation, as they show the differences 
between learning in a situation where context 
plays no role and learning in a situation where 
context occurs and therefore may serve as a 
memory cue. 

3. Method 
For this study I have chosen to model both 
experiments using the R software (R Core Team, 
2017). I have created a package containing the 
necessary functions to represent the experiments 
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and the learning mechanisms of cross-situational 
learning and propose-but-verify. 

  
We have modeled two different modifications of 
the same experiment that Dautriche and Chemla 
carried out (see sections 4 and 5), and since they 
were so alike we were able to use the same 
functions to simulate both experiments. I made 
use of the packages ndl (Arppe, A., Hendrix, P., 
Milin, P., Baayen, R. H.,   Sering, T. & Shaoul, C., 
2015) and NDLvisualization (van Rij, 2018) to 
simulate the mechanism of cross-situational 
learning. Since such a package did not exist yet 
for propose-but-verify, I have wriUen several R 
functions that were necessary to simulate the 
strategy. I have based these functions on the 
strategy as how it was described by Trueswell et 
al. (2013) (see Background). 

3.1 Cross-situational learning 
The cross-situational learning model we have 
constructed learns based on the cues that are 
present in a learning event. In all learning events, 
multiple cues are presented together with an 
outcome. The outcome is the to-be-learned word 
and the cues are the presented objects (pictures), 
alongside a background cue, which we added 
manually to each learning event. Furthermore, 
since category plays a role in one of our 
experiments, we also added cues for the 
categories of the objects. The presented cues are 
mapped to the outcome and a list of all the 
mappings in an experiment forms the data frame 
that is used for the learning. This data frame is 
fed to a function RWlearning (ndl and 
NDLvisualization packages) that implements the 
Rescorla-Wagner model, which is a form of the 
mechanism behind cross-situational learning. In 
this implementation of the Rescorla-Wagner 
model, we use values of 0.1 for both the 
associability of the conditioned stimulus (α) and 
the associability of the unconditioned stimulus 
(β). The function returns a list with a weight 
matrix for each learning event. The weight 
matrices represent the strengths of association of 
the network, which are all cue-outcome 
combinations. The difference in weights  over 
time allows us to see the learning progress. 

3.2 Propose-but-verify 
In modeling the mechanism of the propose-but-
verify theory, we followed the steps that 
Trueswell et al. (2013) describe (see section 2). 
The first of these steps states that a choice is 
made at random upon the first trial, as no 
previous information is known. One of the 
presented objects during that event is chosen and 
the object-word match is kept as a hypothesis. 
Upon a new learning situation for the same 
word, we implemented two consequent options: 
First, there exists a chance that the object chosen 
on the last trial is remembered. This chance is 
expressed by the probability of α, which 
Trueswell et al. (2013) proposed to have a value 
of 0.26 initially. They proposed this value based 
the percentage of participants that had been 
correct on the preceding trial, but not on the 
current trial, which gave them an indication of 
the probability that participants remember their 
hypothesis. If the object that was chosen on the 
last trial is remembered and currently present, it 
is chosen again. If this is the case, the value for α 
increases and becomes 0.71, which is also based 
on findings by Trueswell et al. (2013). This is 
another value they found from the percentage of 
participants that after several trials were correct 
on the preceding trial, but not on the current one.  
If the object is remembered but not present, or if 
it is not remembered at all, we implemented a 
second probability. With a probability of α again, 
there is a chance that the semantic category that 
the previously chosen object belonged to is 
remembered. If the category is remembered and 
one object from that category is present on the 
current trial, it is chosen. If multiple objects from 
that category are present, one of those objects is 
chosen at random. If neither the object nor the 
category is remembered, or if they are but no 
object belonging to the same category is present 
in the current set, a new object is chosen at 
random. Figure 2 shows a visual representation 
of the steps taken by our propose-but-verify 
model.  
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Figure 2: Decision tree that entails the steps 
taken by the propose-but-verify  model 

4. Experiment 1 

4.1 Introduction  
The first experiment that we carried out was  a 
computational model of Dautriche and Chemla’s  
(2014) Experiment 1. In their Experiment 1, they 
aimed to represent a learning situation in which 
various concepts are presented to the subject. 
They did this by showing pictures over different 
trials, in which subjects saw a word at the same 
time that referred to one of the shown pictures.  
The setup of the experiment was similar to the 
study done by Trueswell et al. in 2013. Trueswell 
et al. used a paradigm in which subjects heard 
the to-be-learned words while being shown a five 
pictures of different objects. Dautriche & Chemla 
reduced this to a number of four pictures per 
word. With this experiment, Dautriche & Chemla 
wanted to show how object word-learning 
progresses over trials, without taking the 
influence context into account . In the 
computational model of this experiment that we 

made, we used the exact same setup as Dautriche 
& Chemla.  

4.2 Design 
There were a total of twelve to-be-learned words. 
These words were legal English non-words and 
they represented 12 different objects. The non-
words were blicket, dax, smirk, zorg, leep, moop, 
tupa, krad, slique, vash, gaddle and clup. They 
r e p r e s e n t e d t h e f o l l o w i n g 1 2 o b j e c t s 
correspondingly: cat, dog, cow, rabbit, pants, hat, 
socks, shirt, pan, knife, bowl, and glass. The objects 
were shown in trials, in which a target object 
would be presented along with 3 random 
distractors - making up for a total of 4 pictures 
per word. The distractors were randomly chosen 
other objects from the same list. Twelve following 
trials made up for a block, and the experiment 
consisted of a total number of 5 blocks. In total, 
therefore, the whole experiment consisted of 60 
(5 x 12) trials. Figure 3 shows a possible setup for 
the first block of experiment 1. 

Figure 3: Experimental design of experiment 1 
by Chemla & Dautriche 

There were two constraints with regard to the 
objects presented. Firstly, each object would be 
presented 20 times in total: 5 times as a target - 
exactly once per block- and 15 times as a 
distractor in total. Secondly, an object could not 
be a distractor more than twice for a specific 
target. 
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We simulated this experiment by constructing a 
digital matrix of the 60 trials, in which the 
distractors per trial were randomized but 
adhered to the constraints of the original 
experiment. This matrix was fed to the cross-
situational learning and the propose-but-verify 
models to perform the learning. A crucial 
difference between the real experiment and our 
simulated experiment is that Dautriche & 
Chemla had participants click on the pictures to 
indicate their choices. Our models do not click on 
the pictures, which is a point of discussion that 
we will comment on later (see Discussion). 

4.3 Results 
Having carried out the simulated experiments, 
we are interested in the performances of both 
models. We will evaluate these by means of two 
types of comparisons. Since we have two models,  
one for each theory, we can take a closer look at 
how the obtained results from these models 
differ from each other. In addition, we can 
compare the results from each of the models to 
the data that was obtained in the original 
Experiment 1 from Chemla & Dautriche. 

Model-to-model comparison 
We we will now look at results from our two 
models separately to see if they match our 
hypotheses and then we will set them side by 
side to make a comparison between the two.   

First, let us look at the results from our cross-
situational learning model. We chose to run the 
experiment 5 times during the learning phase, in 
order boost the models’ weights and thus the 
learning effect. This allows also us to see how the 
learning trend continues over time. Figure 4 
shows us how the connection weights tied to the 
cues in the model develop over time. We see the 
process over 300 trials, which is the duration of 
the entire experiment (60 trials) increased by a 
factor of 5. We can observe that each time a cue is 
presented together with the outcome, the weight 
for that cue increases. We see that the cue 
competition decreases over time as the weight for 
the correct cue prevails.  

Figure 4: Connection weights for the label 
“blicket” in experiment 1 using cross-
situational learning over 300 simulated trials (25 
blocks) 

Using this model, we acquire the values of the 
connection weights that are associated with 
certain outcomes. We can not simply assume that  
the cue with the highest association corresponds 
to the made choice on a trial in the experiment.  
But since we want to be able to make a 
comparison between the choices of our two 
models per trial, we made an interpretation of 
the weights. In this interpretation, we first 
summed up the weights corresponding to the 
four objects that are presented on a trial and  
consequently divided the weights for each of the 
cues corresponding to the objects by this total 
sum. This left us with percentages of activation 
for each outcome, which we interpret as the 
choices.  Since this is merely our interpretation it 
does not guarantee that this is how the choices 
are actually made by the model.  This point will 
be discussed later (see Discussion).  

Let us now move on to the performance of the  
propose-but-verify model. This model, as 
explained before, only keeps track of a single 
conjecture (its hypothesis) and makes its choice 
per trial based on that hypothesis with a chance  
variable, given by the α parameter. The results 
from this model show us the actual choices that 
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simulated participants made and not just 
connection weights, as with the cross-situational 
learning model. We ran the experiment over 1000 
simulated participants to gain insight into the 
average of the choices made by the model. Figure 
5 shows us how the accuracy of the choices made 
per trial develops over the total of 5 blocks.  

Figure 5: Accuracy per label for each block 
using our propose-but-verify simulation of 
experiment 1 

We are interested in seeing the parallels and 
differences between the two just discussed 
models. For this reason, we decided to focus on 
one of the labels, “blicket” (cat), and see what 
choices both of the model make on the trials 
where this is the target label. To observe the 
choices made by our cross-situational model, we 
use the interpretation of the connection weights 
that we have described earlier. Figure 6 shows us 
an overview of the five trials (one per block) in 
which “blicket” is the to-be-learned word. This 
figure illustrates how often the target and the 
distractors were chosen by both models. This 
gives us insight how the models compare to each 
other. We see the target accuracy in the cross-
situational learning model lies higher than that in 
the propose-but-verify model from blocks 2 to 4. 
The two reach a similar target accuracy in block 
5.  Furthermore, we observe that the distribution 
between the distractors looks similar. It is 
notable, though, that on the last trial the choice 
rate for “pan” is bigger in the cross-situational 

model compared to the propose-but-verify 
model. What is more, if we look back at figure 4, 
we see that the connection weight for “pan” in 
the long run gets a higher activation than all the 
other distractors. This could hint at the fact that 
the learning strategy or mechanism changes in 
the long run.  

 

Figure 6: Choices made by the cross-situational 
learning and propose-but-verify model on trials 
with “blicket” as target label 

Model-to-data comparison 
We have taken a closer look at the performances 
and differences between our two models, but we 
can also make a comparison between our 
findings and the data that was obtained in the 
experiment done with human participants that 
Dautriche and Chemla carried out.  In figure 7 
we can observe the difference in the performance 
of our simulated participants with both our 
models and the human participants tested by 
Dautriche & Chemla. All of them start at chance 
level. Our cross-situational learning model 
surpasses the accuracy of the human participants 
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quickly in block two and prevails until the last 
block, where it reaches an accuracy that lies close 
to the accuracy that is reached by the human 
participants. But it is noteworthy to mention that 
accuracy is difficult to extract. Our propose-but-
verify model follows a course that instead lies 
close to the human participants’ accuracy until 
block 4. In the last block, it deviates. It is 
noteworthy that the learning paUern that can be 
observed by human participants, seems to lie in-
between the paUerns that our two models follow. 
We will discuss a possible explanation for this 
effect later (see Discussion).  

Figure 7: Average accuracy in experiment 1, our 
models vs. human participants tested by 
Dautriche and Chemla

5. Experiment 2 

5.1 Introduction 
Up until now we have only looked at object-
word learning in trials with randomized sets of 
objects. As a result, there was no consistency in 
contexts between the shown objects. Dautriche 
and Chemla carried out a second experiment, a 
modification of their first experiment, such that 
context starts to play a role. Here, they define 
context as a consistency in category. An example 
of such a context could be a zoo context, in which 
primarily objects belonging to an animal-
category are present at the same time. This 
consistency in context could serve as an aid in 
object-word learning. We constructed a 

computational model of Dautriche and Chemla’s 
second experiment, so that we could compare 
our results of our model of the experiment 
without the contextual consistency to one where 
the context plays a role.  

5.2 Design 
The second experiment that Dautriche & Chemla 
conducted was overall very similar to the first 
experiment, in the sense that the same objects 
and words were used for this experiment. The 
experimental design did not differ from the first 
experiment in numbers: the second experiment, 
again, used 60 trials divided over 5 blocks. But 
now there is a new (contextual) restriction with 
regard to which pictures are shown, only in the 
first block. In this block, the to-be-learned objects 
were shown together with other objects 
(distractors) that belonged to the same semantic 
category. There were three different categories: 
animals (cat, dog, cow, rabbit), clothes (pants, hat, 
socks, shirt) and dishes (pan, knife, bowl, glass). 
Figure 8 shows a possible setup for the first block 
of experiment 2. 

Figure 8: Experimental design of experiment 2 
by Chemla & Dautriche 

After the first block, the second to fifth block 
continued without the contextual restriction, i.e. 
these blocks did not differ in terms of setup 
compared to experiment 1. 

5.3 Results 
We have now simulated the second experiment, a 
modification of the first experiment with added 
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consistent semantic context. We want to inspect 
to what extent the contextual consistency has 
served as a learning aid for object-word learning 
in the performance of our models. We will 
therefore again make a model-to-model 
comparison and a model-to-data comparison. 

Model-to-model comparison 
In an analysis of the results from the first 
experiment, we looked at how the connection 
weights of our cross-situational learning model 
developed over time. Figure 9 shows us the 
connection weights of this model in our 
simulation of the second experiment. We can not 
distinguish a clear difference between these 
weights and those in the first experiment, but we 
will later interpret these weights as choices made 
by the simulated participants again, which we 
can compare to the choices made during the first 
experiment.  

Figure 9: Connection weights for the label 
“blicket” in experiment 2 using cross-
situational learning over 300 simulated trials (25 
blocks) 

We can also compare the results of our propose-
but-verify model in the second experiment to the 
results we obtained in the first experiment. We 
looked at how the accuracy developed for all 
labels over the five blocks. We will now look at 
this development in the second experiment, so 
that we can see what effect the added consistency 
in context has had. Figure 10 illustrates the 

development in accuracy over the five blocks. 
What stands out from this plot is that for some of 
the labels the accuracy takes a large jump from 
the first to the second block, while for other 
labels the accuracy improves at a much lower 
rate. We found that the accuracy rate in the 
second block respective to the first block depends 
largely on the set of (randomized) distractors that 
are present in the second block. The participants 
have seen each of the objects in a semantic 
coherent context during the first block, so the 
category of the objects can serve as a memory aid 
during the second block (e.g. when a participant 
does not remember which object they chose 
during the first trial, but if they do remember 
that it must belong to the category “animal”, they 
will choose an object from that category again). If  
the distractors belong to different categories than 
the target, participants are less like to choose 
them.  This is how the distractors influence the 
accuracy change from one block to the next, in 
particular from the first to the second block.  

Figure 10: Accuracy per label for each block 
using our propose-but-verify simulation of 
experiment 2 

Now, we want to compare the models to each 
other again to gain insight into their similarities 
and differences. We will again focus on the trials 
where “blicket” (cat) is the target label and 
inspect what choices are made by both models on 
these trials. A visualization of these choices can 
be observed in Figure 11. Here we can clearly see 
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that distractors that belong to the same category 
as “blicket”, namely animals, are being chosen 
more often in comparison to other distractors by 
both of the models. This happens on blocks 2 and 
3. Furthermore, we observe that the target 
accuracy seems very similar between the two 
models, with only notable difference in the 
fourth block.   

 

Figure 11: Choices made by the cross-situational 
learning and propose-but-verify model on trials 
with “blicket” as target label 

Model-to-data comparison 
Now that we have seen how the models’ 
performances changed after adding a semantical 
contextual restriction to the experiment, we can 
also take a look at how the average accuracy has 
benefited from this modification in comparison 
to how the human participants in Dautriche & 
Chemla’s experiment performed. In Figure 12 we 
can see the difference in the performance of our 
simulated participants in both of our models and 
the human participants tested by Dautriche & 
Chemla. Again, all models start at chance level.   

The accuracy of our cross-situational learning 
model stays below the accuracy that human 
participants obtain until block 3, after which it 
takes a jump and shows a course that is similar to 
the data that Dautriche & Chemla obtained. 
What is remarkable is that if we look at the 
course of the human data, the paUerns is similar 
to the behavior of our cross-situational learning 
model during the first experiment. If we look at 
the results from our cross-situational learning 
model, we can notice that the paUern lies very 
close to the data from human participants. Let us 
then look at the results from our propose-but-
verify model. The trend it shows in performance 
until block 4 lies very close to how the human 
participants performed. It stands out that the 
propose-but-verify model and the cross-
situational learning model during the first 
exper iment perform s imi lar to human 
participants until the fourth block, whereas the 
cross-situational learning model during the 
second experiments seems to perform similar to 
human participants in blocks 4 and 5. This might, 
as we speculated on earlier, hint at the fact that 
people are in reality using a combination of both 
strategies.  

Figure 12: Average accuracy in experiment 2, our 
models vs. human participants tested by 
Dautriche and Chemla  

It stands out that our cross-situational learning 
model in blocks 1-3 from the second experiment 
performs worse than it does during the first 
experiment, while the addition of contextual 
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consistency serves as an aid for the human 
participants and the propose-but-verify model. 
We can see that the performance trend from 
cross-situational learning model in the first 
experiment matches the human data beUer. The 
difference in these first three blocks can be 
understood if we take a closer look at the 
connection weights in trials 1-60 in the first and 
the second experiment. Figure 13 shows us the 
connection weights in in experiment 1 the 60 
simulated trials, whereas figure 14 shows us the 
weights in a identical manner but for experiment 
2.  

Figure 13: Connection weights for the label 
“blicket” in experiment 1 using cross-
situational learning over 60 simulated trials (5 
blocks) 

Figure 14: Connection weights for the label 
“blicket” in experiment 2 using cross-
situational learning over 60 simulated trials 

When comparing the connection weights in the 
60 trials during experiment 1 (figure 13) to those 
in experiment 2 (figure 14), we can see that due 
to the addition of context in the second 
experiment, the weights for cues that belong to 
the animal-category like “blicket” (cat), compete 
with the cue for cat until the third block. This is 
not the case in experiment 1, where the cue for 
cat starts to prevail after the second block. This 
explains how the contextual consistency in the 
first block lowers the performance of the cross-
situational learning model in the second 
experiment as opposed to the first experiment.   

Discussion 
We constructed computational models of two 
object-word learning theories, cross-situational 
word learning and propose-but-verify and used 
them to test their performances on simulations of 
experiments done by Dautriche and Chemla in 
2014. We can now draw several conclusions from 
these simulations.  

We compared our two models to each other to 
gain insight in their similarities and differences 
per block. We found that both show a clear 
learning trend over time, however we observe 
minor differences with respect to the competition 
of distractors for a target. 

F u r t h e r m o r e , we m a d e m o d e l - t o - d a t a 
comparisons in which we looked at how the 
performances of our models compared to how 
human subjects performed in Dautriche and 
Chemla’s experiments. We found that in the first 
experiment, our cross-situational learning model 
overall has a slightly higher accuracy than the 
human participants, while our propose-but-
verify model has a slightly lower accuracy. In the 
second experiment, the accuracy of the propose-
but-verify model lies extremely close to the 
accuracy of human participants until the fourth 
block. In fact, the accuracy can be approached by 
taking the combination of the cross-situational 
model during the first experiment, during the 
second experiment and the propose-but-verify 
model.  
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Our findings from the model-to-model and 
model - to -data compar i sons f rom both 
experiments could hint at the fact that in reality, 
learners might not be using either of the 
strategies exclusively, but they could in reality be 
using a combination of both strategies implicitly 
to obtain a higher level of accuracy in the end. 
This is what we guess based on looking at the 
results from the two experiments, though it has 
been found before by Roembke & McMurray 
(2016) that a combination of associative learning 
and real-time processes results in paUerns that 
they have observed in object-word learning 
during their study.  

Some critical points are worth mentioning with 
respect the choices that we made in order to 
model the two object-word learning theories 

In order to compare the models to each other and 
to the data obtained by Dautriche & Chemla, we 
wanted to use the choices made by both of the 
models per trial so that we could determine the 
accuracy. However, the cross-situational learning 
did not return the exact choices made, but it 
instead provided us with the values for the 
connection weights for all the cues per trial. In 
order to be able to make the comparisons, we 
needed to translate these weights into choices 
and we did so by interpreting the weights. By 
using this interpretation, we were able to 
compare it to the human data, but weights could 
possibly be interpreted in a different way, which 
could lead to different insights.  

Another point of discussion that we want to 
make is our approach to model the α-parameter 
corresponds to the strength of the current 
hypothesis in the propose-but-verify strategy. In 
our model, we took a rather crude approach to 
modeling this parameter. We only used two 
values, 0.26 and 0.71, that were proposed by 
Trueswell et al. (2013) in their study on propose-
but-verify. We would like to mention that the 
value of the α-parameter could in reality be of a 
different value or moreover, more flexible. The 
value should certainly surpass 0.71 if the 
experiment is run over a longer period of time, as 
eventually learners will not forget the meaning of 
a word.   

We would also like to address that in our 
modeled simulations of the experiments, we only 
implemented a limited set of cues, which the 
pictures that were presented on each trial, their 
category and a background cue. In the 
e x p e r i m e n t s c a r r i e d o u t w i t h h u m a n 
participants, however, these cues might have 
been different or more diverse than in the model 
representation. What is more, the used pictures 
could have a certain connotation in reality (e.g. 
someone who really likes cats could be able 
remember these pictures beUer), which is too 
complex to capture in our simulations. This 
might have had a slight influence on our 
obtained results.  

We found that neither of the two theories that we 
modeled resembled the human data beUer than 
the other. It might be possible therefore that 
learners in fact use a combination of the 
mechanisms behind cross-situational learning 
and propose-but-verify, instead of one of the two 
exclusively. An earlier conducted study by 
Roembke & McMurray (2016) also found that a 
combination of associative learning and real-time 
processes results in paUerns that they observed 
in object-word learning. However, we have not 
looked into this combination enough to draw a 
solid conclusion. It would therefore be 
interesting to investigate such a combination in a 
follow-up study. Another element that leaves 
room for investigation after this study is the 
modeling of the α-parameter in  propose-but-
verify. Since we used a rather crude modeling 
approach of this parameter, we would not have 
been able to use our propose-but-verify over a 
longer period of time. This makes it interesting to 
look into this parameter by trying out different or 
adaptive rates of forgeUing and see how this 
affects the results and how that compares to how 
human participants perform.  
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