
MASTER’S THESIS

Exploring Improvements for Gradient
Descent Optimization Algorithms in Deep

Learning

Author:
Richard ELDERMAN

Supervisors:
Dr. Marco WIERING

Prof. Dr. Lambert SCHOMAKER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Artificial Intelligence

in the

Bernoulli Institute
Faculty of Science and Engineering

UNIVERSITY OF GRONINGEN

March 7, 2019

https://www.rug.nl/research/bernoulli/
https://www.rug.nl/fse/
http://www.rug.nl

iii

“There’s a way to do it better - find it.”

Thomas A. Edison

v

UNIVERSITY OF GRONINGEN

Abstract
Faculty of Science and Engineering

Bernoulli Institute

Master of Science in Artificial Intelligence

Exploring Improvements for Gradient Descent Optimization Algorithms in
Deep Learning

by Richard ELDERMAN

The use of the right optimization algorithm for gradient descent in a deep learn-
ing system can have a big influence on the learning performance of the classifier.
Currently, there are two families of optimization algorithms commonly used: pure
stochastic gradient descent (SGD) with some kind of momentum, and algorithms
with adaptive learning rates from which Adam is the most commonly known. In
this thesis, it is tried to investigate possible improvements on these state of the art
optimization algorithms for gradient descent used in deep learning. Five different
new methods are invented that could improve the algorithms. One of them tries to
incorporate some braking system in the SGD with momentum algorithm, while the
other four use a different gradient history collection (GHC) method for the adaptive
learning rate algorithms. These new techniques are compared to the state-of-the-
art algorithms in 16 different experiments. One experiment is dedicated to a pure
optimization setting on a simple convex optimization function, while all other ex-
periments use either the logistic regression method, a standard multi-layer percep-
tron, or a convolutional neural network as a classifier. The results of the experiments
show in general that the adaptation of the SGD with momentum algorithm turns out
to perform worse than the standard SGD with momentum algorithm. Two of the
four alternative methods for GHC in adaptive learning rate algorithms also perform
worse than the standard version, but the other two methods turn out to perform bet-
ter. These two alternative GHC methods can be proposed as potential improvements
of the state of the art algorithms such as Adam.

HTTP://WWW.RUG.NL
https://www.rug.nl/fse/
https://www.rug.nl/research/bernoulli/

vii

Table of contents

Abstract v

1 Introduction 1
1.1 Current state of optimization algorithms for gradient descent 2

1.1.1 Adaptive learning rate methods 2
1.2 Motivation of the study and research question 2
1.3 Thesis outline . 3

2 Theory 5
2.1 Introduction to neural networks . 5

2.1.1 Biological influence . 5
2.1.2 Perceptron . 6
2.1.3 Activation functions . 7

Logistic Sigmoid function . 7
ReLU function . 8
Other activation functions . 8

2.1.4 Loss functions and adapting weights 8
2.1.5 Gradient descent . 9
2.1.6 Logistic regression . 10
2.1.7 Multi-layer perceptron . 11
2.1.8 Backpropagation . 11
2.1.9 Regularization methods . 13

Dropout layer . 13
Batch normalization . 13

2.2 Optimization algorithms for gradient descent 13
2.2.1 SGD algorithms . 14

Momentum . 14
Nesterov Accelerated Gradient 14

2.2.2 Adaptive learning rate algorithms 15
Adagrad . 15
AdaDelta . 16
RMSprop . 16
Adam . 17
AdaMax . 17
Nadam . 18
NadaMax . 18
AMSGrad . 18
NAMSGrad . 19

2.2.3 Differences and similarities between algorithms 19
Building blocks . 19
Algorithmic framework . 20

2.3 Convolutional Neural Network (CNN) 20
2.3.1 Convolutional layer . 20

viii

2.3.2 Pooling layer . 21
2.3.3 Architecture of a CNN . 21
2.3.4 Learning in a CNN . 22
2.3.5 Reasons to use a CNN . 22

3 New ideas for optimization algorithms 25
3.1 SGD adaptation: handbrake momentum 25
3.2 Adaptive learning rate algorithms . 26

3.2.1 Absolute difference . 27
3.2.2 Alternative norm . 27
3.2.3 Adaptive norm . 27
3.2.4 Exponential function . 29

3.3 General methodology . 29
3.3.1 Experiments . 29

Used datasets: MNIST and CIFAR10 30
Overview of algorithms used in the experiments 31
Software . 31

3.3.2 Scoring system . 32
3.3.3 Learning feature plots . 32

4 Experiment on the Rosenbrock optimization function 35
4.1 Rosenbrock function . 36
4.2 Experimental setup . 36
4.3 Results (A) . 37
4.4 Discussion . 39

4.4.1 Differences in behavior of algorithms 39

5 Experiments on the XOR problem 41
5.1 The XOR problem . 41
5.2 General methodology . 41

5.2.1 Experimental setup . 42
5.3 Neural network with 2 hidden nodes . 42

5.3.1 Results (B) . 42
5.4 Neural network with 5 hidden nodes . 44

5.4.1 Results (C) . 44
5.5 Neural network with 2 hidden nodes and batch normalization 45

5.5.1 Results (D) . 45
5.6 Neural network with 5 hidden nodes and batch normalization 46

5.6.1 Results (E) . 47
5.7 Discussion . 48

6 Experiments with logistic regression 49
6.1 Logistic regression on MNIST . 49

6.1.1 Experimental setup . 49
6.1.2 Results (F) . 50

6.2 Logistic regression on CIFAR10 . 51
6.2.1 Experimental setup . 51
6.2.2 Results (G) . 52

ix

7 Experiments on a multi-layer perceptron 53
7.1 MLP with 1 hidden layer on MNIST . 53

7.1.1 Experimental setup . 53
7.1.2 Results (H) . 53

7.2 MLP with 1 hidden layer and batch normalization on MNIST 55
7.2.1 Experimental setup . 55
7.2.2 Results (I) . 55

7.3 MLP with 1 hidden layer on CIFAR10 57
7.3.1 Experimental setup . 58
7.3.2 Results (J) . 58

7.4 MLP with 1 hidden layer and batch normalization on CIFAR10 59
7.4.1 Experimental setup . 59
7.4.2 Results (K) . 60

7.5 MLP with 3 hidden layers on CIFAR10 61
7.5.1 Experimental setup . 61
7.5.2 Results (L) . 61

7.6 MLP with 3 hidden layers and batch normalization on CIFAR10 63
7.6.1 Experimental setup . 63
7.6.2 Results (M) . 63

8 Convolutional neural network experiments 65
8.1 CNN on MNIST . 65

8.1.1 Network architecture . 65
8.1.2 Experimental setup . 66
8.1.3 Results (N) . 66

8.2 CNN on CIFAR10 . 67
8.2.1 Network architecture . 68
8.2.2 Experimental setup . 68
8.2.3 Results (O) . 68

8.3 CNN with batch normalization on CIFAR10 70
8.3.1 Network architecture . 70
8.3.2 Experimental setup . 70
8.3.3 Results (P) . 70

8.4 Comparison of CNN and MLP . 72

9 General discussion 73
9.1 Summary of results . 73
9.2 Analysis of algorithms . 74

9.2.1 SGD with handbrake . 75
9.2.2 Different GHC methods . 76

Absolute gradient . 76
Changeable norm . 77
Adaptive norm . 77
Exponential function . 78
Analysis of feature plots . 78
Conclusions per GHC method 79

10 Conclusions 83
10.1 Answers to the research question . 84
10.2 Influence on the research field . 84

10.2.1 Future work . 85

x

Appendices 87

A Optimal parameter settings in the experiments 89

B Performance plots on the Rosenbrock function 97

C Cost plots of XOR experiments 101

D Cost plots of MNIST experiments 103

E Cost plots of CIFAR10 experiments 111

F Feature plots 125

G Mathematical proofs ’Abs’, `1−4, and `ada variants 131
G.1 Rewrite Adam update rule . 131
G.2 AbsAdam . 132
G.3 `1−4-Adam and `ada-Adam . 133

Bibliography 137

1

Chapter 1

Introduction

Deep learning is the most popular machine learning technique nowadays. It is a
powerful tool, loosely based on the internal workings of the brain, and can be used
for a variety of applications in multiple research fields. Often it is used as a classi-
fier, but it is also suited for a regression task. Examples of research fields in which
deep learning is used are speech recognition (Hinton et al., 2012), object recogni-
tion (Socher et al., 2012), natural language processing (Collobert and Weston, 2008),
and reinforcement learning (Sutton and Barto, 1998; Wiering and Van Otterlo, 2012;
Wolfshaar, Wiering, and Schomaker, 2018).
Deep learning is nowadays also used as the artificial intelligence part of custom ap-
plications and products, such as face recognition (Schroff, Kalenichenko, and Philbin,
2015), personal assistants like Apple’s Siri and Google Assistant (Jones, 2014), and
autonomous driving systems (C. Chen et al., 2015). These products and applications
can use deep learning because of one or more of the following reasons: (1) a big
company with a lot of money produces it, (2) the classification scope is (highly) lim-
ited, and (3) the situations in operation time can be simulated during training time.
If neither would be the case, the deep learning system can hardly be trained well
enough before operation time, and hence deep learning could not be used.
The underlying problem is that, for training a neural network such that it becomes
robust and stable enough for the custom market, it needs a big amount of training
examples and learning iterations. Moreover, for real-world applications the deep
learning systems are often very big, so it can take days or even months before such
a system is trained. In recent years the hardware has of course become much faster
and expandable than before, especially since GPUs can be used.
The final performance of the deep learning system is highly dependent on three as-
pects that all must be chosen at forehand: the type and size of the network used
in the system (also called network architecture), how the internal parameters of the
system are initialized, and finally the method to train the network which is highly
dependent on the chosen optimization algorithm. Considering this final aspect, not
only the choice of algorithm is important, but the optimal values of the hyperparam-
eters of the algorithm are different for each application in which neural networks are
used. So it may need several tries with different algorithms and parameter settings
before a trained system has a performance high enough to use it in custom applica-
tions, which often still takes a lot of time.
A deep learning system is typically a supervised learning system, which means that
it gets pairs of input and corresponding output. The difference between the output
of the system and the desired output, calculated using some error function, can then
be used (via a method called backpropagation) to tweak the internal parameters
(also called weights) in the system such that the difference would become smaller.
Since the network needs to be able to correctly classify as much data as possible, the
weights in the network cannot be changed such that the current training examples

2 Chapter 1. Introduction

will be classified optimally. This is the case because the current training examples
will hardly ever reflect the exact (relevant) properties of all the data: it is a stochastic
representation of the full data set. Therefore the weights are changed only a small
bit into the direction of the weights that would classify the current training exam-
ples better. Doing small steps has the disadvantage that it will take a long time until
convergence has been reached, i.e. no further improvements can be made (which by
the way does not always mean that all data will be classified correctly).

1.1 Current state of optimization algorithms for gradient de-
scent

Optimization algorithms are designed to try to take as much advantage from the in-
formation about the weight changes coming from the current examples as possible
while preserving the generalization of the network over the entire scope of the data
set. They get as input a list of gradients, one for each weight in the network, which
are commonly calculated using backpropagation, and try to change the weights ac-
cordingly. The most basic and also oldest algorithm that does this is called standard
stochastic gradient descent, or SGD (Goodfellow, Bengio, and Courville, 2016). This
algorithm simply takes a proportion of the gradient using a parameter called the
learning rate. However, this method is rather slow, since it can take small steps and
ultimately after a large amount of time reach the minimum error, or take big steps
and probably overshoots the minimum (i.e. the big steps make it ascent instead of
descent in the error landscape). The addition of (some kind of) momentum to this
SGD algorithm (Nesterov, 1983; Polyak, 1964), based on the analogy of a ball rolling
down a hill, speeds up this process significantly (Qian, 1999; Sutskever et al., 2013).
However, in recent years a new family of algorithms has been developed that can
speed up the learning process even more.

1.1.1 Adaptive learning rate methods

The key idea in adaptive learning rate algorithms is to give every weight in the net-
work its own learning rate. In this way, a single weight can take a big step into
a direction if needed without dragging the other weights along and making them
worse. The first commonly known algorithm with this technique was proposed back
in 2011 (Duchi, Hazan, and Singer, 2011). This publication led to a small flood of
derivatives and improved versions (Zeiler, 2012; Kingma and Ba, 2014; Dozat, 2016;
Reddi, Kale, and Kumar, 2018), which added a more convenient way of determin-
ing the importance of an update and incorporated (Nesterov) momentum into the
algorithm. The algorithms in this family, and especially the more sophisticated ones
(Kingma and Ba, 2014; Dozat, 2016), have proven to get superior results with respect
to the standard SGD algorithms, and have therefore become the standard first choice
as optimization algorithm in a deep learning system.

1.2 Motivation of the study and research question

The fact that since the introduction of adaptive learning rates optimization algo-
rithms about eight years ago multiple derivations have been proposed (up until one
year ago) indicates that the deep learning community is still searching and exploring
for the best mechanism for this algorithm. It is thought that the research conducted

1.3. Thesis outline 3

in this thesis could contribute to the state of this research field, by searching for pos-
sible improvements of the state of the art algorithms. Since the deep learning field
is very popular, and hence makes a quite rapid progress, the research conducted in
this thesis could have some impact and influence on the research field in the case
that it includes at least one idea to improve the current state-of-the-art algorithms.
The main research question of this thesis can be stated as:

How can the state-of-the-art optimization algorithms for gradient descent in neural
networks be adapted, such that the new variant outperforms its standard version in

convergence rate and -speed?

It is tried to answer this question by coming up with possible variants of state of the
art algorithms, and testing the performance and functionality of these new versions
in either a multi-layer perceptron, convolutional neural network, or a pure optimiza-
tion setting in a total of 16 different experiments. The results of all the conducted
experiments will be evaluated, and it will be determined if the novel algorithms
outperform the state-of-the-art algorithms. For this purpose, the performance of the
algorithm has to meet some requirements. It should:

1. need (significantly) less training epochs than every other algorithm to reach a
certain training cost.

2. reach a test cost at least as low as the average of all other algorithms.

3. not need (significantly) more time for a single update than every other algo-
rithm.

The first requirement is the main criterion for this research, since it shows the direct
optimization from the supervised learning of the training data. If this would be bad,
the algorithm could never reach a low test cost. Criterion 2 is included since the al-
gorithm also needs to preserve the generalization of the entire data set, and thus not
overfit on the training data. Criterion 3 is included since an algorithm that requires
a much smaller number of updates than other algorithms seems good, but when a
single update lasts much longer than for the other algorithms, the algorithm is not
faster after all.

1.3 Thesis outline

In the next chapter the theory behind all used state of the art concepts in the field of
neural networks are covered, including its biological sources of inspiration, the basic
principles of an artificial neuron, and a standard multi-layer perceptron. Moreover,
some regularization methods will be covered, as well as the convolutional neural
network. However, the biggest part of the next chapter consists of an extensive
overview of all state of the art optimization algorithms.
In the third chapter, the new ideas for improvements of the optimization algorithms
are described and explained, and some general aspects of the conducted experi-
ments are discussed.
Hereafter are the various experiments described in 5 chapters, being: experiments
on the Rosenbrock function, on the XOR problem, and on the MNIST (LeCun, 1998)
and CIFAR10 (Krizhevsky and Hinton, 2009) data sets. The experiments on these
two data sets are either on a system with logistic regression, on a multi-layer percep-
tron, or on a convolutional neural network.

4 Chapter 1. Introduction

After these chapters, a chapter is assigned to the general discussions of the results of
all experiments. The final chapter consists of the general conclusions, it is tried to an-
swer the research question, and a list of future work ideas building on the outcomes
of this thesis is included.

5

Chapter 2

Theory

The field of deep learning is quite a broad field, with many aspects and several dif-
ferent kinds of neural networks. In this chapter, all topics in the field of deep learning
that are used in the experiments in this thesis are explained and discussed. In the
first section, the basic workings of an artificial neuron and an artificial neural net-
work are explained, as well as some regularization methods. In the second section,
all state of the art optimization algorithms considered in this thesis are extensively
described. In the last section, a special kind of neural network is discussed, namely
the convolutional neural network.

2.1 Introduction to neural networks

The basic principles of neural networks are already quite complicated. As with all
classifiers, there is a given input describing the data, and the system has to give a
classification using this input. Moreover, the system must be able to learn from the
past, and since it is a supervised learning system, it can do so by changing its inner
workings upon the errors it made in the previous classifications. In this section, it
is described how a neural network comes up with a classification based on some
input, and how it can learn to improve them. But first, the building blocks of an
artificial neural network are discussed, starting with a brief comparison between
these artificial neurons and their biological counterpart and source of inspiration.

2.1.1 Biological influence

The brains of every existing living creature can be seen as a very sophisticated bio-
logical classifier (Kalat, 2015). The five senses, along with the inner thoughts, serve
as inputs, and the output is represented by the activation of all kinds of muscles
and also the inner thoughts. In between these "inputs" and "outputs" is a complex
cognitive process going on, involving different parts of the brain for different tasks.
However, all these different parts of the brain have in common that their cognitive
abilities are mainly due to the workings of the same kind of structure: the biological
neuron. The brain consists of billions of those neurons, which are "connected" with
each other and work together in a big biological neural network.
Each biological neuron has in basic terms the same components. A schematic overview
of these essential components can be seen in Figure 2.1a. The dendrites are together
the input of a neuron. These dendrites carry outputs of other neurons. These outputs
are in the form of electrical signals that last very short. At the location of a synapse,
this output becomes via an electrochemical reaction the input of the next neuron. A
biological neuron typically receives input from many thousands of connections with
other neurons. All the electrical signals come together in the cell body, where they
accumulate to a certain level. If this level is high enough, the neuron will "fire", i.e.

6 Chapter 2. Theory

(A) Biological neuron (B) Artificial neuron (perceptron)

FIGURE 2.1: A schematic overview of the most essential components
of a biological and artificial neuron. Images retrieved from (Gurney,

2014).

generates an electrical response by itself. It can do so via its output channel, which
is called the "axon". Some incoming signals try to prevent the neuron from firing
(inhibitory signals), while others try to make the neuron fire (excitatory signals).
The inputs and outputs of a single biological neuron change over time. For example,
if an input from a certain other neuron is never used, it will deteriorate and ulti-
mately be removed. This is a method through which the neurons can adapt to be
able to contribute to a bigger effect on the outcomes of certain inputs of the brain,
which can lead to the creature to have learned something. The field of neurophys-
iology has not yet discovered the exact workings of these mechanisms, which also
make the brain much more energy-efficient than any artificial neural network imple-
mentation.

2.1.2 Perceptron

The workings of a biological neuron, and the learning power that can be achieved by
using multiple of them, have been a great source of inspiration for an artificial coun-
terpart that can be used for classification tasks. The perceptron (Rosenblatt, 1958) is
one of the earliest inventions that led to the artificial neurons used in modern deep
learning systems.
In the case of an artificial neuron, the input would be data from some instance in the
data set. The output should be a classification of the input data. Besides classifica-
tion, a neuron can also be used for a regression task. In that case, the output should
be the predicted value of some variable. For example, the task can be, given the cur-
rent weather conditions (temperature, wind speed etc.), calculate the most probable
temperature after one hour.
In any case, the input is represented by numbers, and they must all be able to con-
tribute to the output. The artificial counterpart of the inhibitory and excitatory sig-
nals is the use of weights. Every input value of an artificial neuron gets multiplied
by a certain weight, such that they are able to either negatively or positively con-
tribute to the total sum of all weighted inputs, and also can have a greater impact
than other input values (or no impact at all if this would be desirable). In a formula,
the output can thus be calculated in the following way:

z = ∑
x∈X

x · wx (2.1)

2.1. Introduction to neural networks 7

(A) Sigmoid function (B) ReLU function

FIGURE 2.2: Plots of the used activation functions. The figures are
generated using custom Python scripts.

In this equation, z is the output of this function, X is the set of all input values, and
wx is the weight for input value x. If the input and the corresponding weights are
treated as vectors, the equation can be rewritten using a dot product between input
vector X and weight vector W:

z = Xᵀ ·W (2.2)

2.1.3 Activation functions

The total sum of all weighted inputs is to be checked to see if it reaches the threshold
to "fire" the output of the artificial neuron. This can be done using a hard threshold:
output a value of 1 if the threshold has been reached and zero otherwise, but it is
far more convenient to use a so-called activation function. Such a function takes as
input the total sum of weighted inputs, and a non-linear transformation is applied
to it. The use of a function instead of a binary threshold makes it more easy to make
the neuron learn to adapt its response, since for that purpose the derivative of the
function can be used (more on that in the next subsection).
Multiple functions have been proposed that can be used as an activation function.
In this thesis two different functions are used in the experiments.

Logistic Sigmoid function

The first activation function is called the Logistic Sigmoid function, which is the
most simple version of the general Sigmoid function. This function is as follows,
with x being the input and y the (activated) output:

y =
1

1 + exp−x
(2.3)

The plot of the Sigmoid function can be seen in Figure 2.2a. The output value is
(close to) zero for input values smaller than -5, and (close to) one for values bigger
than 5. This makes these regions very insensitive for changes in the input. This is
a good thing if they reflect an important aspect of the data, but a bad thing if they
need to be (re)trained. In between these points the function has a gradual ascend in

8 Chapter 2. Theory

the form of an S. Parameters in this region are more sensitive to changes in the input:
a relatively small change in the input leads to a relatively big change in the output.

ReLU function

The second activation function that is used during the experiments is the Rectified
Linear Unit (ReLU) function. This function is more recently taken in use as activation
function, and its workings are very simple. If the input value is negative the function
returns zero, and otherwise it returns the input value. The plot of this function can
be seen in Figure 2.2b.
The ReLU function does not simulate the output of a binary function in a continuous
manner, but its output can be seen as a linear function with two linear pieces (y = 0
for x ≤ 0 and y = x for x > 0). This makes the ReLU function almost linear, and
hence it has many of the properties that linear models have which makes it easy to
optimize with methods based on the gradient (Goodfellow, Bengio, and Courville,
2016). Moreover, instead of the Sigmoid function which has two regions in which the
gradient is very small, the ReLU function only has one such region. This makes it less
likely that a certain neuron becomes saturated. In recent years the ReLU function has
become the default recommendation to use as activation function (Nair and Hinton,
2010; Glorot, Bordes, and Bengio, 2011).

Other activation functions

There are quite a few other activation functions than the ones used in this thesis. For
example the leaky ReLU (Maas, Hannun, and Ng, 2013), which introduces a small
gradient in the part of the ReLU function with the input smaller than zero. Another
function based on ReLU is the softplus function (Dugas et al., 2001; Nair and Hin-
ton, 2010), which can be seen as the continuous version of ReLU. Softplus and ReLU
were compared in (Glorot, Bordes, and Bengio, 2011) and it turned out the latter per-
formed better. A different kind of function is the hyperbolic tangent function tanh,
which is closely related to the Sigmoid function.

2.1.4 Loss functions and adapting weights

The introduction of a weight for each input value of a neuron created a way to make
an input value more important for the total value (the sum that will be activated)
than others. However, they can also be used as the changeable parameter with which
a model can be fitted, i.e. changing the weights can lead to a learning effect on the
perceptron.
In basic terms a weight can be increased, decreased, or left the same after an update.
The error in the output gives an indication of the direction in which the weights must
be changed. This error can be calculated using a so-called loss function. Multiple
functions can be used for this purpose. The result of the loss function indicates the
error in the output of the perceptron, however this output was generated using a
sum of weighted inputs and an activation function. To determine in which direction
each weight must be changed, it must first be found out how much a single weight
can be "blamed" for the error in the output. This can be done using first derivatives.
The total formula for the output of the activation function is as follows:

ŷ = a(z(X)) (2.4)

2.1. Introduction to neural networks 9

In this equation, ŷ is the output, a() is the activation function, and z(X) is the unacti-
vated sum as calculated in Equation 2.2. In this equation, X consists of input values
x1...n, and W consists of corresponding weight values w1...n. The only value in this
equation that can be changed is the weight vector, since the input is data and hence
constant and the activation function is also not changeable. The error J in the output
can be calculated using the loss function, for example the mean-squared error (MSE)
function:

J =
1
2
(y− ŷ)2 (2.5)

To determine how the weight vector must be changed, the derivative of the error J
with respect to the weight vector W can be calculated. The result yields the following
equation:

∂J
∂W

=
∂J
∂ŷ
· ∂ŷ

∂z
· ∂z

∂W
(2.6)

As can be seen, the derivative of J with respect to W is calculated using the chain
rule, because first the dot product between X and W is determined, which is then
used as argument in the activation function a(), and finally this outcome is used to
determine the error using the loss function J. When the partial derivatives are filled
in, the following equation is obtained:

∂J
∂W

= −(y− ŷ) · a′(z) · X (2.7)

The partial derivative of J with respect to ŷ is in the case of the MSE loss function
(y − ŷ), the partial derivative of ŷ with respect to z is a′(z), whatever function a
exactly is used, and the partial derivative of z with respect to W is the input vector
X.

2.1.5 Gradient descent

The vector of ∂J
∂W consists of a value for each weight in the vector W that can be used

to update the values in W such that the obtained error J would become smaller. The
values in the vector indicate the direction in which the weights must be changed
(which is the opposite direction, since the values must move downhill in the error
landscape), but they do not indicate the exact magnitude of the change. They can
be seen as the local gradient of each degree of freedom at the current position of the
weights in the n-dimensional error space (where n is the number of weights in W).
Somewhere in this error space is a position with the smallest error. However, since
the current error landscape is an approximation of the one for the entire data set, it
cannot be assumed that the minimum point for a single data example is at the same
location as the one for all data. The use of batches of data points can reduce this
uncertainty since this gives a better indication of the variation between the instances
in the set.
It is tried to reach the position with the smallest value in the error space by changing
the weights in such a way that the obtained configuration leads to an error as small
as possible. There are a couple of methods to do this, such as second-order derivative
methods from which Newton’s method is most famous (Nocedal and Wright, 2006),
which use Hessian matrices and Lagrangian functions to find out the best weight
configuration. This method in theory only needs a couple of optimization steps,
however one step is (until now) computationally extremely expensive. Therefore
the method is hardly ever used in practice.

10 Chapter 2. Theory

The method that is used most often is called gradient descent. With this method,
the weights are changed by "following the gradient". This means that the weights
are changed according to dJ

dW such that a new configuration is found that should lie
"downhill" in the n-dimensional error space. However, it is not convenient to change
the weights with the values in dJ

dW , because these values are only obtained on the
current data instance(s). These will hardly ever reflect the exact (relevant) properties
of all the data. Since the network needs to be able to correctly classify as much data
as possible, the weights in the network cannot be changed such that the current
training examples will be classified optimally. Therefore the weights are updated by
a small step in the direction of dJ

dW . The size of the small step is determined by the
learning rate α. This parameter often has a small value, always between 0 and 1. We
have obtained the general update rule for gradient descent, which is also the most
basic optimization algorithm called Stochastic Gradient Descent (SGD):

W = W − α
∂J

∂W

Taking small steps has the disadvantage that it will take a long time until conver-
gence has been reached, i.e. no further improvements can be made (which by the
way does not always mean that all data will be classified correctly). There are mul-
tiple optimization algorithms that try to speed up this learning process. These algo-
rithms are discussed in the next section.
If all goes well, the weights will ultimately have a configuration that leads to a vec-
tor dJ

dW with only values very close to zero. This means that the gradient in every
direction is zero, and thus that a local minimum in the error space has been found.
However, it is not always guaranteed that this is also the global minimum, i.e. there
could exist another configuration of the weights that yields an even smaller error.
The local minimum is only guaranteed to be the global minimum too if the error
space is convex. This means that there exists only one minimum in the error space,
and this minimum can be reached from every other point in the error space. Unfor-
tunately, most error spaces from real-world problems are non-convex, which means
that they have multiple local minima and only one of them is the global minimum.
Often the initial configuration of the weights (the start position in the error space)
has a big influence on the probability to reach the global minimum.

2.1.6 Logistic regression

Until now only a single neuron, the perceptron, has been considered. For a classi-
fication task, multiple neurons are needed since with only one neuron only prob-
lems that are linearly separable can be solved (Alpaydin, 2009). In a classification
task with a neural network, the output layer is normally composed of a number of
neurons (also called nodes) equivalent to the number of classes. Often the Softmax
method is used to determine the classification: the value of every output node is
scaled between 0 and 1, in such a way that the values of all output nodes add up
to 1. The chosen output node, which is the one with highest value, represents the
classification made by the system.
When the output layer is the only layer that is used, every output neuron bases its
output directly on input data. This kind of deep learning system is called a linear
network, and along with a cross-entropy loss function the system is equivalent to
logistic regression. This is in fact a type of classifier that can be implemented in mul-
tiple ways, and using a linear network is one of them. It is a special kind of linear

2.1. Introduction to neural networks 11

regression, in which the output is not linear but binary.
Since in a linear network the inputs have a direct connection with the output neu-
rons, it is the case that the output is only formed by contributions from individual
input values. However, in some cases this can not provide enough information for
the system to learn and perform good classifications. In such a case it is needed to
introduce multiple layers of neurons in the network.

2.1.7 Multi-layer perceptron

A neural network with multiple layers of nodes and in which the connections be-
tween nodes are always between a node of the current layer and a node of the next
layer (i.e. a feed-forward network) is called a multi-layer perceptron (MLP). The
MLPs that are used in the experiments in this thesis are all fully-connected. This
means that there exists a connection between every node in the current layer and ev-
ery node in the next layer, and no other connections exist (i.e. a connection between
a node and another node multiple layers ahead, or a node connected to itself).
The layers in between the input layer and the output layer are called hidden lay-
ers, and the nodes in them are hidden nodes. This term "hidden" is used due to the
fact that the output of a node in a hidden layer is not directly accessible and hardly
interpretable. It should represent some statistic coming from a combination of mul-
tiple values from the previous layer, but the exact meaning is unknown. Some think
this is a downside of an MLP, since it is not clear exactly why a certain output is
generated upon an input. Research has been conducted trying to understand the
meaning of outcomes of hidden nodes, which could then be used in explanations to
users about how a network came to its classification. Especially custom applications
will be expected to provide such information in the future. This subfield of AI is
also known as explainable AI (XAI) (Gunning, 2017) and is yet in an early stage of
development.
To come up with an output for a certain input of the system, information travels
through the network according to the forward propagation method. In the first layer,
the input data gets weighted and summed up for every node, after which the result
gets activated by the activation function. These activated outputs of the nodes in the
first layer act as the inputs of the second layer. In this layer, the weighted sum of the
inputs is again calculated for every node, and the result is activated. This process
will be repeated for every layer in the MLP, and in the end the output of the last
layer is used to come up with the final classification.

2.1.8 Backpropagation

Learning in a neural network with multiple layers of nodes is in general similar to
how a single perceptron learns: by adapting the weights. However, in this case it is a
bit more difficult to know how each weight must be changed. In the case of one per-
ceptron (and also the linear network), only one activated dot product between input
data and weights is needed to obtain the output of a node. Since in an MLP there
are multiple layers, the output of a node in the last layer is determined by taking the
(activated) dot product of the weights and the outputs of the nodes in the previous
layer. These latter values are each calculated in a same fashion. This means that the
error obtained in the output of the final layer can be caused by the weights in the
last layer, but also by the weights in the previous layer(s). So the question is which
weights from which layers to blame for the obtained error. This is also sometimes
called the credit assignment problem. A method that can solve this problem is called

12 Chapter 2. Theory

backpropagation, as described in (Rumelhart, Hinton, and Williams, 1986).
The basics are the same as for a single neuron: the influence of a weight in the net-
work on the error in the output can be determined by taking the first derivative
of the error J with respect to the weight in Wn. This weight vector consists of all
weights in layer n. If the network has three layers of nodes, the partial derivatives
for the weights in layer 3 are as follows:

∂J
∂W3

=
∂J
∂ŷ
· ∂ŷ

∂z3
· ∂z3

∂W3
(2.8)

The terms are all the same as in Equation 2.7, and so z3 is the unactivated output
of layer 3 in the network, except for ∂z3

∂W3
. Since this is not the first layer, this term,

which resembles the derivative of the unactivated output of layer 3 with respect to
the weights in layer 3, cannot be replaced by the input. Instead, it must be replaced
by the output of the previous layer (the second layer in the network), which is called
H2.
The influence of the weights in the second layer on the error in the output layer can
be calculated in the same way, but now some more partial derivatives are needed:

∂J
∂W2

=

(
∑

j

∂Jj

∂ŷj
· ∂ŷj

∂z3,j
· ∂z3,j

∂H2

)
· ∂H2

∂z2
· ∂z2

∂W2
(2.9)

The first two partial derivatives are the same as before, but now they must be summed
over all j nodes in the output layer, since a single weight in the second hidden layer
has influence on the values of all output nodes in a network with fully-connected
layers. The derivative ∂z3

∂H2
resembles the derivative of the unactivated output of

layer 3 with respect to the input of layer 3 (hence the output of layer 2), which re-
sults in the weight matrix W3 of the third layer. This term "removes" the part of the
error due to the weights in W3 from the rest of the error that is propagated back to
the second layer. ∂H2

∂z2
is the derivative of the output of the second layer with respect

to the unactivated output of the second layer, which results in the derivative of the
activation function, this time with z2 as argument. ∂z2

∂W2
is the derivative of the unacti-

vated output of the second layer with respect to the weight matrix W2 of the second
layer, which resembles the output H1 of the first layer.
Finally, the influence of the weights in the first layer can be calculated using a deriva-
tive with even more partial derivatives:

∂J
∂W1

=

(
∑

k

(
∑

j

∂Jj

∂ŷj
· ∂ŷj

∂z3,j
· ∂z3,j

∂H2,k

)
· ∂H2,k

∂z2,k
· ∂z2,k

∂H1

)
· ∂H1

∂z1
· ∂z1

∂W1
(2.10)

In this equation, there must be summed over all k nodes in the second hidden layer
and per node over all j nodes in the output layer, since a weight in the first hidden
layer has influence on all the values from a single node in the first hidden layer
to (all) the nodes in the second hidden layer, and thus also on the complete set of
connections between the second hidden layer and the output layer. The additional
terms for the first layer with respect to Equation 2.9 can be filled in analogously to
the ones for the second layer, except for ∂z1

∂W1
which can be replaced by the input

vector X.
As can be seen, the earlier a layer in the network occurs, the longer the list of partial
derivatives becomes. Moreover, the first terms of every equation occur in every
derivative. Therefore, they are often stored as a variable δn (delta) in the following

2.2. Optimization algorithms for gradient descent 13

way:

δ3 =
∂J
∂ŷ
· ∂ŷ

∂z3
, δ2 =

(
∑

j
δ3,j ·

∂z3,j

∂H2

)
· ∂H2

∂z2
, δ1 =

(
∑

k
δ2,k ·

∂z2,k

∂H1

)
· ∂H1

∂z1
(2.11)

In this way, δn can be determined upon calculating ∂J
∂Wn

, and used in the calculation

of ∂J
∂Wn−1

.

2.1.9 Regularization methods

During the training process of a neural network the weights get changed very of-
ten. This can lead to unbalances in the network, for example in the case that one
weight gets a very high value for some reason, or that all weights to a neuron be-
come (nearly) zero. Such things have a bad influence on the ability and flexibility
of training. Regularization methods can be used to prevent these things to occur. In
the experiments in this thesis two regularization methods are used.

Dropout layer

The basic principle of a dropout layer (Srivastava et al., 2014) is that it removes some
of the activation values from the previous layer. Or in other words it "drops" cer-
tain nodes "out" of the network. By doing this, the remaining nodes form a slightly
different network, and must react to the absence of the "dropped out" nodes. This
regularization method tries to make the network more robust against small differ-
ences in the input, without actually receiving these from the training data. This is
valid, since real world data will always include some noise with respect to the ex-
amples in the data set.

Batch normalization

The input data of a neural network (and also for classifiers in general) must often
be normalized, such that features in the data vector with a broader range of possible
values do not have a bigger impact than features with a smaller range of possible
values. The same can be done for the input of a hidden layer, that comes from a
previous layer of nodes (Ioffe and Szegedy, 2015).
Batch normalization will normalize the activated output of the previous layer by
subtracting the (mini-)batch mean and dividing by the standard deviation of the
(mini-) batch. This prevents the activation values for becoming too large or too small,
what prevents overfitting and allows higher learning rates to be used, and hence
makes it easier to learn more different features. Including batch normalization in a
network can speed up the training process significantly.

2.2 Optimization algorithms for gradient descent

As discussed above, a small part of the obtained gradient is subtracted from the
current weights in a network to adapt them such that they perform not only better
on the currently evaluated data instance(s), but hopefully also on the other instances
in the data set. However, taking too small steps would slow down the learning
process unnecessarily. Optimization algorithms for gradient descent try to speed up
the learning process as much as possible, without letting go of the generalization to

14 Chapter 2. Theory

the entire data set. This section discusses all state-of-the-art optimization algorithms
considered in this thesis. The algorithms can be divided into two groups: those
using a version of standard stochastic gradient descent, and those using adaptive
learning rate strategies.

2.2.1 SGD algorithms

Several optimization algorithms for gradient descent have been proposed to find a
way to minimize the error in the output layer as fast as possible. The most basic, and
also oldest one is stochastic gradient descent (SGD). This method takes a small step
in the opposite direction of the gradient, using the learning rate α. This parameter
has a fixed value during the entire learning process, often around 0.01, sometimes
much higher depending on the data to be learned, but always smaller than 1. See
also Equation 2.12, in which Θt are the parameters/weights of the model at epoch t,
gt(Θt) are the gradients for each weight in Θt at epoch t, and α is the learning rate.

Θt+1 = Θt − α · gt(Θt) (2.12)

Momentum

Standard stochastic gradient descent moves, independently from previous steps,
with a fixed step size downhill on the error landscape. The analogy of a ball rolling
down a hill introduced the idea to add momentum to the algorithm. The basic idea
is that the direction and magnitude of the previous gradients contribute to the step
size in the current epoch: when the gradient is still pointing in the same direction,
the ball would accelerate according to the magnitude or the slope of the gradient.
The moment the direction would change, i.e. the slope starts to go upward, the ball
would slow down and so the step size would be decreased. This mechanism can be
implemented in the following way (Polyak, 1964):

Θt+1 = Θt − vt (2.13)

vt = γ · vt−1 + α · gt(Θt) (2.14)

In these equations, γ is the momentum term that determines the influence of previ-
ous gradients on the current update. The general idea is to set this term as close to
1 as possible, and to choose for the learning rate α a value as high as possible, while
conserving a stable convergence.

Nesterov Accelerated Gradient

The analogy of the ball rolling down the hill, gaining speed through momentum,
seems a nice feature to implement. However, a ball would not stop once it is in the
valley. It will roll further until no speed is left. If there is a slope uphill on the other
side of the valley, this would cause the ball to eventually roll back, but it would
take multiple oscillations before the ball stops at the minimum point in the valley.
Nesterov (1983) came up with an idea to prevent the ball from going uphill again
too much. For the calculation of the step size in the current epoch, it will calculate
the gradient at the approximate location that the ball would end up using standard
momentum. This gradient is then used to make a correction, which is especially
convenient in the case when there is an uphill slope at the approximated location. It
will prevent a too big step size that would go to the other side of the valley. Nesterov

2.2. Optimization algorithms for gradient descent 15

implements this method in the following manner:

Θt+1 = Θt − vt (2.15)

vt = γ · vt−1 + α · gt(Θt − γ · vt−1) (2.16)

A downside of this method is the calculation of gt(Θ− γ · vt−1), which can be com-
putationally intensive and time consuming for some networks. Sutskever et al.
(2013) propose to modify the calculation of vt in the following way:

vt = γ ·mt + α · gt(Θt) (2.17)

mt = γ ·mt−1 + α · gt(Θt) (2.18)

This latter method is also used in the built-in SGD with Nesterov momentum algo-
rithm in the software used in the experiments in this thesis.

2.2.2 Adaptive learning rate algorithms

All versions of SGD, as described above, use for the calculation of the update of ev-
ery individual parameter in the system the same learning rate. However, the infor-
mation from the gradient in a single update could be much more important for one
parameter than for another. In such a situation, the parameter with the important
update should take a bigger step in the direction of the gradient than the parameter
with a less important update. In other words: to speed up the learning process every
parameter to be updated should have its own learning rate in every epoch. Cases
in which the gradients are sparse (i.e. images with a lot of white space around the
edges) should particularly benefit from this mechanism, but it also speeds up the
learning process in other cases.

Adagrad

The first commonly used algorithm that does this, is Adagrad (Duchi, Hazan, and
Singer, 2011). This method calculates a separate learning rate for every parameter in
the model, based on the full history of the squared gradients of the parameter. The
squared gradient resembles the magnitude of the gradient. They are summed up for
each parameter, and the current learning rate is calculated by dividing the current
gradient by the square root of the summed squared gradients plus a small value
(to prevent division by zero). This means that, the bigger the previously obtained
gradients were, the less important the current gradient is, and thus the smaller the
learning rate and thus the step size in the current epoch would be. However, the sum
of squared gradients will only increase, so later updates must have a larger gradient
to obtain the same step size as earlier updates. The formal notation is as follows:

Θt+1 = Θt − α · gt(Θt)√
Gt + ε

(2.19)

Gt = Gt−1 + gt(Θt)
2 (2.20)

In this algorithm, α is again the learning rate, and ε is the smoothing term, often set
to 1e − 08. This to prevent a situation where division by zero would occur. Note
that in Equation 2.19, just like for all other optimization algorithms described in this
thesis, the calculation of Θt term is for a single parameter in the weight matrix.

16 Chapter 2. Theory

AdaDelta

The idea behind Adagrad is nice, but the algorithm has some downsides. The
biggest one has to do with the behavior described above. After a while, the accu-
mulation of the squared gradients reaches a value so high that the learning rates
used in the updates become very small, and hence almost no improvements can be
made. The algorithm AdaDelta (Zeiler, 2012) tries to tackle this problem by adapt-
ing the Adagrad algorithm such that the window of accumulated past gradients is
restricted to a fixed size instead of taking the entire history. For an efficient imple-
mentation, the authors chose to use an exponentially decaying average of all past
squared gradients, instead of storing the relevant previous gradients.
Apart from this, the authors introduce a method to remove the need of a learning
rate from the algorithm. They note that the units of the learning rate and the decay-
ing average of all past squared gradients do not match. They solve this by replacing
the learning rate by another exponentially decaying average, of the squared param-
eter updates ∆Θ2

t . This resembles the magnitude of the previous changes of the
parameter. By dividing the square root of this by the square root of the resemblance
of the magnitude of the previous gradients (both plus a small smoothing term ε), we
end up with a value that more or less indicates the proportion of the magnitude of
the previous gradients that was used to update the parameters, or in other words
the influence of the previous gradients on the current value of the parameter. The
formal notation is as follows:

Θt+1 = Θt − gt(Θt) ·

√
E(∆Θ2

t)t + ε√
E(g2)t + ε

(2.21)

E(∆Θ2
t)t = γ · E(∆Θ2)t−1 + (1− γ)∆Θ2

t (2.22)

E(g2)t = γ · E(g2)t−1 + (1− γ)gt(Θt)
2 (2.23)

The parameters ε and γ are again the smoothing term (often set to 1e− 08) and the
momentum term (often set to a value close to 1) respectively.

RMSprop

More or less parallel to the AdaDelta algorithm, the RMSprop algorithm was pro-
posed by Geoff Hinton in Lecture 6e of his Coursera class (without an official pub-
lication, in collaboration with Tijmen Tieleman, Nitish Srivastava, and Kevin Swer-
sky)1. This algorithm aims to solve the same issues in Adagrad as AdaDelta does,
but keeps the learning rate. The formal notation is as follows:

Θt+1 = Θt − α · gt(Θt)√
E(g2)t + ε

(2.24)

E(g2)t = γ · E(g2)t−1 + (1− γ)gt(Θt)
2 (2.25)

Hinton suggests to use a value of 0.9 for the momentum term γ, while using a learn-
ing rate α of 0.001.

1http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

2.2. Optimization algorithms for gradient descent 17

Adam

The Adaptive Moment Estimation (Adam) algorithm, proposed by Kingma and Ba
(2014), is another algorithm that uses per-parameter learning rates. It is in some
sense an extension of RMSprop, although not explicitly stated as such. Like RM-
Sprop, an exponentially decaying average of past squared gradients vt is used to
calculate the step size of each parameter in the update. Additionally, an exponen-
tially decaying average of past gradients mt is included. This new value resembles
the average direction of the past gradients, and it acts in a similar way as the mo-
mentum term in standard SGD: the more recently obtained gradients point into the
same direction, the bigger the current steo size will be. The standard learning rate α
is multiplied by (a bias-corrected) mt, so the per-parameter learning rate gets higher
when mt gets higher, which is the case when the past gradients are in a more equal
direction.
The authors include a bias-correction for both mt and vt, such that they are not biased
towards zero. The formal notation is as follows:

Θt+1 = Θt − α · m̂t√
v̂t + ε

(2.26)

m̂t =
mt

1− βt
1

(2.27)

mt = β1 ·mt−1 + (1− β1) · gt(Θt) (2.28)

v̂t =
vt

1− βt
2

(2.29)

vt = β2 · vt−1 + (1− β2) · gt(Θt)
2 (2.30)

New parameters in this algorithm are β1 and β2, which are used in the two exponen-
tially decaying averages. The authors propose standard values of 0.9 for β1, 0.999 for
β2, and 1e− 08 for ε.

AdaMax

In the same paper as Adam is proposed, the authors propose a slightly different
version called AdaMax (Kingma and Ba, 2014). In this algorithm, the `2 norm used
in the calculation of vt (see Equation 2.30) is replaced by the `∞ norm. This variation
is proposed, since the `∞ norm generally exhibits stable behavior too. This change
causes the exponentially decaying average of Equation 2.30 to be converted into the
maximum term in Equation 2.34.2 The bias-correction is omitted for ut. The full
formal notation is as follows:

Θt+1 = Θt − α · m̂t

ut
(2.31)

m̂t =
mt

1− βt
1

(2.32)

mt = β1 ·mt−1 + (1− β1) · gt(Θt) (2.33)

ut = max(β2 · ut−1, |gt(Θt)|) (2.34)
2In the definition of Equation 2.34 in (Kingma and Ba, 2014) the previous value of vt is taken instead

of ut. This is an error: the vt term is not used in AdaMax.

18 Chapter 2. Theory

Nadam

The Nadam algorithm (Dozat, 2016) is the Adam algorithm with Nesterov accelera-
tion included. To incorporate Nesterov acceleration into Adam, Dozat first rewrites
the NAG update rule (see Equation 2.17 and Equation 2.18). He then rewrites the
Adam update rule, and applies the new NAG update rule to the new Adam update
rule. The m̂t term resembles the momentum term, so we can put that in the place of
the mt term in Equation 2.18. The full update rule is as follows:

Θt+1 = Θt − α ·
β1 · m̂t +

(1−β1)·gt(Θt)
1−βt

1√
v̂t + ε

(2.35)

m̂t =
mt

1− βt
1

(2.36)

mt = β1 ·mt−1 + (1− β1) · gt(Θt) (2.37)

v̂t =
vt

1− βt
2

(2.38)

vt = β2 · vt−1 + (1− β2) · gt(Θt)
2 (2.39)

The fraction in the nominator in Equation 2.35 is only applicable if a decay is in-
cluded for β1, hence the notation βt

1 in that equation. If the same value is used
throughout the learning process, this fraction term can be changed into gt(Θt).

NadaMax

In the same way as Adam can be transformed into AdaMax (Kingma and Ba, 2014),
Nadam can be changed into NadaMax. The Nesterov momentum term must be
calculated in AdaMax, which can be done analogous to the method in Adam. First
AdaMax is rewritten in a more convenient way, and then Nesterov momentum is
added. We end up with the following update rule.

Θt+1 = Θt − α · β1 · m̂t + gt(Θt)

ut
(2.40)

m̂t =
mt

1− βt
1

(2.41)

mt = β1 ·mt−1 + (1− β1) · gt(Θt) (2.42)

ut = max(β2 · ut−1, |gt(Θt)|) (2.43)

AMSGrad

In their recent paper ”On the convergence of Adam and beyond" (Reddi, Kale, and
Kumar, 2018), Google DeepMind employees Sashank J. Reddi, Satyen Kale, and San-
jiv Kumar describe a kind of problem that cannot be solved by standard state-of-the-
art optimization algorithms like Adam and RMSprop. They provide a small example
optimization problem that shows the limitations of these algorithms. The problem
function is stated as follows:

ft(x) =

{
Cx for t mod 3 = 1
−x otherwise

(2.44)

2.2. Optimization algorithms for gradient descent 19

where C > 2, and −1 ≤ x ≤ 1. In each time step t a value xt is received, and the
goal is to obtain on the longer run (i.e. overall, in total, or cumulative) a value as
small as possible. According to the authors, the optimal solution would be x = −1.
The Adam algorithm however will always converge to x = 1. The authors propose a
new algorithm called AMSGrad that can solve these kinds of problems, while keep-
ing all the benefits from Adam. Experiments in the paper show that the algorithm
even outperforms Adam in experiments on the CIFAR10 data set.
The new algorithm differs at two points from the Adam algorithm. The first differ-
ence is the calculation of v̂t, the bias correction for vt. Instead of dividing this term
by 1− β2, the maximum is taken of the previous value of v̂t and the current value of
vt. In this way, a sort of long term memory is incorporated for large gradients. The
second difference with respect to Adam is that the bias correction for the mt term is
omitted. The formal notation of the algorithm is as follows:

Θt+1 = Θt − α · mt√
v̂t + ε

(2.45)

mt = β1 ·mt−1 + (1− β1) · gt(Θt) (2.46)

v̂t = max(v̂t−1, vt) (2.47)

vt = β2 · vt−1 + (1− β2) · gt(Θt)
2 (2.48)

AMSGrad uses the same parameters as Adam. They propose a value of 0.9 for β1
and 0.99 or 0.999 for β2.

NAMSGrad

Analogously to Adam and AdaMax, AMSGrad can also be modified to incorporate
Nesterov acceleration. The resulting algorithm NAMSGrad is as follows:

Θt+1 = Θt − α ·
β1 ·mt +

(1−β1)·gt(Θt)
1−βt

1√
v̂t + ε

(2.49)

mt = β1 ·mt−1 + (1− β1) · gt(Θt) (2.50)

v̂t = max(v̂t−1, vt) (2.51)

vt = β2 · vt−1 + (1− β2) · gt(Θt)
2 (2.52)

2.2.3 Differences and similarities between algorithms

The algorithms described in the previous two sections are all adaptations of SGD or
Adagrad. This means that some terms/techniques are used in multiple algorithms.
To give a good overview of the different algorithms, they are described in terms of
these general parts. The notation is loosely based on the generic algorithm described
by Reddi, Kale, and Kumar (2018).

Building blocks

Most algorithms can be described in terms of a uniquely used combination of a small
number of building blocks:

• Running average of past gradients (direction variation, momentum):

mt = γ1mt−1 + (1− γ1)gt(Θt)

20 Chapter 2. Theory

Algorithm Mt Vt

SGD gt(Θt) 1
Adagrad gt(Θt) Vt−1 + gt(Θt)2

RMSprop gt(Θt) vt
Adam m̂t v̂t
AdaMax m̂t max(Vt−1, |gt(Θt)|)
Nadam γ1m̂t + gt(Θt) v̂t
NadaMax γ1m̂t + gt(Θt) max(Vt−1, |gt(Θt)|)
AMSGrad mt max(Vt−1, vt)

TABLE 2.1: The values for Mt and Vt for all algorithms that can be
described in terms of the generic algorithm in Equation 2.53.

• Running average of past squared gradients (size variation, importance):

vt = γ2vt−1 + (1− γ2)gt(Θt)
2

• Bias corrections of mt and vt:

m̂t =
mt

1− γ2
v̂t =

vt

1− γ1

Algorithmic framework

The general update rule for most algorithms can be described in general terms in
this way:

Θt+1 = Θt − α
Mt√

Vt + ε
(2.53)

The Mt and Vt terms differ between algorithms. Table 2.1 shows for every algorithm
the values in terms of the building blocks described above and the gradient gt(Θ).
The SGD algorithms with momentum cannot be described in terms of this generic al-
gorithm, since they use a different notation (without any fraction). AdaDelta cannot
be (efficiently) transformed too, since it does not use any learning rate α.

2.3 Convolutional Neural Network (CNN)

The convolutional neural network (LeCun et al., 1989), or CNN, is a special type
of neural network that combines the multi-layer perceptron with convolutions. It
is often used in a classification algorithm for data with a topological input, such as
time-series data in the one-dimensional case, and image data in the two-dimensional
case (M. Chen et al., 2017; Noh, Hongsuck Seo, and Han, 2016; Rocco, Arandjelović,
and Sivic, 2017; Zbontar and LeCun, 2016). In this research, the CNN is used as one
of the classifiers tested on the data sets MNIST and CIFAR10. This section discusses
the internal operations of the CNN in general, and explains some reasons for using
a CNN instead of a standard neural network.

2.3.1 Convolutional layer

In general, a CNN is a neural network with at least one layer that uses a convolution.
Such a layer is called a "convolutional layer". A convolution is an operation on two

2.3. Convolutional Neural Network (CNN) 21

functions, in this case with values in two-dimensional matrices called tensors. The
general equation of the two-dimensional convolution is displayed in Equation 2.54.

S(i, j) = (I · K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n) (2.54)

A convolution is done between tensors I, the input matrix or feature map, and K,
the kernel or feature. K is (much) smaller than the feature map, and is slid over I. At
each location, the convolution of K with the underlying part of I is calculated. This
is done by multiplying the values at the same topological location, and summing
the results. The convolution in a convolutional layer is by default a so-called "valid"
convolution, which means that K is only convolved with the underlying part of I if
there are no regions outside the input in the underlying part. This causes the result
of a convolutional layer S being of smaller size than the input I. It is also an option
to use a "full" convolution, in which case the convolution of K and a part of I is also
performed at places where K only partially covers I.
The trained kernels can be used to detect certain patterns in the image data, as lines
and curves. The output from previous convolutional layers can be combined in
another convolutional layer to combine the detected shapes into the detection of
more complicated shapes, like doors, eyes or even entire faces.

2.3.2 Pooling layer

A convolutional layer often appears in a CNN together with a ReLU layer, which
incorporates the ReLU activation function as earlier discussed, and a pooling layer.
The pooling layer (Krizhevsky, Sutskever, and Hinton, 2012) comes in different ver-
sions, but the general purpose of the pooling layer is to replace the output of the
convolutional layer with a summary statistic of the neighboring outputs. The idea
behind this is that a relevant feature in the input data might not always occur in the
exact same spot, but somewhere in a (bit) wider region. Replacing the outputs of all
locations in a certain region with a single value removes the need of the exact loca-
tion: as long as the detection is made somewhere in the considered region it must be
fine.
Multiple summary statistics can be used in a pooling layer. Max-pooling (Zhou and
Chellappa, 1988) is a popular version, which replaces the output with the maximal
value in the set of nearby values in the output. Other possibilities are average pool-
ing, which takes the average of the set of nearby values, and weighted average pool-
ing, which gives weights to output values based on the topological distance to the
current value. In theory, any summary statistic function can be used in the pooling
layer. Often the nearby values lie in a rectangular shape around the current value,
but depending on the input another shape can be chosen (e.g. a circular shape). The
size of the neighborhood, also called window size, is often small. Neighborhoods
can overlap, depending on the size of the stride, which is the number of pixels that
the window will be shifted. If there is little or no overlap, the output of the pooling
layer is smaller than the input.

2.3.3 Architecture of a CNN

A typical CNN starts with a couple of convolutional layers, often with a ReLU and
pooling layer in between, while at the end of the network one or more fully con-
nected layers are implemented. In between the layers also a dropout layer can be
inserted and/or batch normalization can be applied. The input of the first fully

22 Chapter 2. Theory

connected layer is a list of summary statistics obtained from the convolutional and
pooling layers, based on the various different patterns that are searched for. The
fully connected layers use these statistics to come up with a classification for the
input of the network.

2.3.4 Learning in a CNN

During training, the weights in every layer in the CNN are adapted, such that the
system should come up with better classifications. These weights are adapted using
the error in the classification that is back propagated through the layers.
Backpropagation through and error calculation in the pooling layer is somewhat dif-
ferent from the method in a fully connected layer. The pooling layer does not really
contribute to the error: it only reshapes and summarizes the output of the convolu-
tional layer. Therefore, the error is only back propagated through the pooling layer,
which is done by inverting the operation in the forward pass. For example, in a max-
pooling layer only the local maxima are kept. Since only the local maxima are fed
to the next layer, only those values contributed to the error. So in back-propagation
the input of the pooling layer is reshaped, while only keeping the local maxima (all
other values are set zero), and the back-propagated error is mapped on that recon-
structed input. If another summary statistic function was used, backpropagation
would consist of inverting that operation. I.e. in average pooling the error would be
divided among all values that contributed to the local average.
Backpropagation and error calculation in the convolutional layer is also somewhat
different from the way it is done in a fully connected layer, due to the shared weights
in the kernels. For a single kernel in the layer, the calculation is as follows: the recon-
structed output matrix of the convolution layer S′, filled with back propagated er-
rors, is convolved with the input matrix of the convolutional layer I, using a "valid"
convolution. This results in a matrix of the size of the kernel, K′, filled with delta
values. This matrix can be piece-wise added to the kernel values in K, to adapt the
weights. The error can be back propagated to the layer before the convolutional
layer, by doing a "full" convolution between the reconstructed error matrix E and
the kernel K with original values, using Equation 2.54. In that way, a matrix of the
same shape as the I is reconstructed, filled with back-propagated error. This matrix
can then be passed on to the previous layer.

2.3.5 Reasons to use a CNN

There are several reasons to use a CNN instead of a standard multi-layer perceptron
for classifying images (Goodfellow, Bengio, and Courville, 2016).

• An image as input often results in very big layers, since every pixel is one input
value. If there would only be the ordinary neural network, so with full connec-
tions between the layers, a lot of memory must be used in each calculation to
store the weights. In a convolutional layer there is no full connection, instead
there is "sparse" connectivity. This is due to the kernel being smaller than the
input: every node in the layer has only k incoming and outgoing connections,
where k is the number of values in the kernel. This sparse connectivity results
in fewer connections than in a fully connected layer, and thus fewer weights to
store.

2.3. Convolutional Neural Network (CNN) 23

• Input from a binary image, as in the MNIST data set, contains quite a lot of
zeros (white space), which would not have much influence on the final classifi-
cation. Therefore it would be redundant to provide input from those locations
with separate weights. The CNN due to its sparse weights does not do this.

• In a fully connected layer, every weight is independent of all the others, which
results in many values that must be updated and stored. A convolutional layer
has "shared" weights, since the weights are the values in the kernel. Every time
a convolution is made with a certain area of the input, it is done with the same
kernel, and thus the weights are the same. Thus in one convolutional layer
there are only k independent weights, instead of the n× m weights in a fully
connected layer from a layer with n nodes to a layer with m nodes.

• Multiple kernels can be used in one convolutional layer. One kernel can be
seen as a filter to detect a certain small pattern in the input image. By using
multiple kernels, there can be searched for multiple small patterns at the same
time. The outputs of those different filters can then be used in the next convo-
lutional layer, in which more complicated shapes can be detected, built from
the small patterns.

25

Chapter 3

New ideas for optimization
algorithms

In the previous chapter, many current state-of-the-art optimization algorithms for
gradient descent in deep learning have been discussed. In this chapter, the new ideas
for the algorithms that possibly lead to better learning performances are explained.
It starts with a new idea that can be implemented in the standard SGD algorithm.
After this, some ideas are discussed to improve the adaptive learning rate technique
in algorithms based on Adagrad and Adam.
Finally, in the last section of this chapter, some general methodology is discussed
and explained of the conducted experiments in this thesis.

3.1 SGD adaptation: handbrake momentum

Standard momentum adds a value to the current update step size, based on the cur-
rent gradient and the previous update, which is (by recursion) based on all previous
gradients. In this way, the step size increases (accelerates) when multiple steps to-
wards the same direction are taken, and decreases (slows down) when the gradient
starts to point to the opposite direction. Since the optimum value, or the minimum
error, must be found, there might in theory be an opportunity for faster convergence,
if the added momentum would be zero the moment the current gradient points in
another direction than the previous one. In that way, the weight would not unnec-
essary move in the "old" direction, which results in oscillation around the (local) op-
timum, but stay at the (local) minimum once it has been found. This technique can
be implemented in the standard stochastic gradient descent algorithm with momen-
tum, by setting the momentum term to zero the moment it seems to have reached
the (local) minimum. This algorithm can be stated formally as follows:

Θt+1 = Θt − vt (3.1)

vt = γ ·Mt · vt−1 + α · gt(Θt) (3.2)

Mt(vt−1, gt(Θt)) =

{
1 if vt−1 · gt(Θt) ≥ 0
0 otherwise

(3.3)

In this algorithm, α is the learning rate, γ is the momentum term, and Mt is the
"handbrake" term. This last term acts like a boolean. It is 1 if the gradient still points
into the same direction, and 0 if this is not the case. By multiplying the momentum
part in vt with this value, the momentum is reset for a weight at the moment the local
minimum of the weight has been reached. To evaluate if the current momentum and

26 Chapter 3. New ideas for optimization algorithms

the current gradient point in the same direction, they are multiplied with each other.
If the result is positive, they do point in the same direction (both are positive or both
are negative). If the result is negative, they point into the opposite direction (one is
positive, while the other is negative). If the result is zero, it means the current gra-
dient must be zero. In this case, it is not needed to reset the momentum term since
this does not automatically indicate a local minimum. Note that, except for the first
learning step, in practice the momentum term can hardly ever become zero. This
would only be the case if multiple gradients of zero are received after each other,
such that the remaining momentum from previous gradients becomes zero too.

3.2 Adaptive learning rate algorithms

Most considered state-of-the-art optimization algorithms for gradient descent that
use adaptive learning rates have by design the same method to calculate the "im-
portance" of the current gradient with respect to the previous gradients. The previ-
ous gradients are represented by an exponentially decaying average of past squared
gradients. By dividing the learning rate (and some momentum term in some algo-
rithms) by the square root of this average, the learning rate for each weight in the
current update can be calculated. In this way, weights that received larger gradients
in the past will receive a smaller update for the same current gradient than other
weights. The key observation is that the magnitude of the previous gradients and
the scaling factor for the learning rate are calculated using a method similar to the `2
norm 1. In the paper of the first adaptive learning rate algorithm that was proposed,
Adagrad, the authors state that they have tested several methods for determining
the importance of the gradient and that the `2-norm had the best results. Therefore
they have used this method. However, the more recent algorithms do not use a pure
norm anymore, but a sort of decayed version. Moreover, in the AdaMax algorithm it
is shown that a different method, in this case the infinity norm, can also have a good
performance. So it seems that the results of the different methods as tested on the
Adagrad algorithm do not necessarily apply to other algorithms as well. This might
indicate that some other method to determine the importance of the gradient could
lead to a better result for these algorithms. In fact in theory any method is possible,
as long as a higher magnitude of previous gradients leads to a lower scaling factor
for the learning rate, which is the core idea of adaptive learning rates.
Taking this into account, it was tried to come up with some alternative gradient
history collection (GHC) methods that can be implemented in the state of the art
optimization algorithms. To compare the standard and the to be introduced alter-
natives algorithm-wise the RMSprop algorithm is taken as an example, since this
is the most basic algorithm that uses gradient history collection in an exponentially
decaying average. The standard version of RMSprop is as follows:

Θt+1 = Θt − α · gt(Θt)√
vt + ε

(3.4)

vt = γ · vt−1 + (1− γ)gt(Θt)
2 (3.5)

1Although a norm is slightly different (except for the method used in Adagrad), since it normally
does not include a decaying factor, the methods for gradient history collection used in the algorithms
are referred to as "norm" in the rest of this thesis.

3.2. Adaptive learning rate algorithms 27

In this algorithm, α is the learning rate, ε is the smoothing term, and γ is the momen-
tum term. The exponentially decaying average vt uses squared gradients to collect
the gradient history, while in the update rule the square root of vt is taken.
Four alternative ways to collect information about the gradient history are defined
and tested in the experiments. Each alternative way can be implemented in every
algorithm that uses the standard method.

3.2.1 Absolute difference

The first alternative is named "Abs", since it takes the absolute gradient instead of the
squared gradient in the exponentially decaying average of past gradients. However,
it keeps the square root from the standard method. The "Abs" version of RMSprop
can be defined as follows:

Θt+1 = Θt − α · gt(Θt)√
vt + ε

(3.6)

vt = γ · vt−1 + (1− γ)|gt(Θt)| (3.7)

3.2.2 Alternative norm

The second method is able to use a very dynamic value for the power and the root,
however in a single update the power in the exponentially decaying average and the
root in the denominator use the same value, similar to a norm. In this case the ab-
solute value of the gradient must be taken before the power is calculated, to ensure
only positive values are added and to make the use of an odd norm possible. The
value for the norm can be the same throughout the entire learning process, but it can
also be increased or decreased using a fixed schedule during (a part of) the learning
process.
This so-called `1−4-version of RMSprop can be defined as follows:

Θt+1 = Θt − α · gt(Θt)
Λt
√

vt + ε
(3.8)

vt = γ · vt−1 + (1− γ)|gt(Θt)|Λt (3.9)

Λt =

{
min(Λ0 + λ · t, Λmax) if λ ≥ 0
max(Λ0 + λ · t, Λmin) otherwise

(3.10)

As the name of the algorithm already suggests, it is highly recommended to keep the
value of Λt between 1 and 4, since a smaller value leads generally to bad results and
a higher value leads hardly to improvements and therefore only introduces more
expensive computations.

3.2.3 Adaptive norm

The different gradient history collection methods give different "rates of importance"
to the same previous gradients. The second alternative method described above can
be used to illustrate the difference in convergence if a `1, `2, or `3 norm is used. To
this end, the `1−4-version of the Adam optimizer is considered. Three parameter
settings are defined, in which only the norm differs between `1, `2, and `3. Each
variation must find the minimum of the Rosenbrock function from the same starting

28 Chapter 3. New ideas for optimization algorithms

FIGURE 3.1: Comparison of the path towards convergence of the
Adam optimizer using a `1, `2, and `3 norm in the gradient history

collection.

point. The resulting plot is displayed in Figure 3.1. It can be seen that the higher
the power in the algorithm, the more oscillation and hence exploration occurs. Ad-
ditionally, it is the case that the algorithms with higher powers need less steps to
converge to the minimum of the function. The one with `1 needed 2102 steps, `2
norm (hence standard Adam) needed 784 steps, while the algorithm with a `3 norm
only needed 584 steps. This observation and also the results in the next chapter in-
dicate that the use of a higher norm leads to more exploration, and also that the use
of a norm other than `2 leads to (slightly) better results in almost all cases. Probably,
it would be even better if the algorithm could somehow automatically change the
used norm every update, such that it is even more dynamic than the increasing or
decreasing norm scheme that the `1−4 method allows. To this end, it is tried to come
up with an adaptation of the standard adaptive algorithms that changes the used
norm every update, based on information in previous updates. The resulting algo-
rithm, called "`ada", includes the third method of gradient history collection, and the
version of RMSprop is as follows:

Θt+1 = Θt − α · gt(Θt)
Λt
√

vt + ε
(3.11)

vt = γ · vt−1 + (1− γ)|gt(Θt)|Λt (3.12)

Λt = Λ0 −
Pt

Pmt
(3.13)

Pt = γP · Pt−1 + (1− γP)|gt(Θt)| (3.14)

Pmt = max(Pmt−1, |gt(Θt)|) (3.15)

The power value Λ at time step t is in this method defined as Λ0 minus the ratio
of the exponentially decaying average of past absolute gradients and the maximum
absolute gradient. This means that the norm can vary between Λ0 and Λ0 − 1 (or

3.3. General methodology 29

even a smaller range, which is also dependent on γP), and it becomes lower the
steeper (absolute higher) the current gradient is. In this way, it is tried to allow more
exploration in the case of a small gradient and less exploration for a big gradient.
Several other ratios were tested, such as only the current absolute gradient divided
by the maximum gradient (which is still possible in the final algorithm if γP is set to
zero), and dividing the exponentially decaying average by an exponentially decay-
ing maximum value (e.g. Pmt = max(0.9Pmt−1, |gt(Θ)|), but these had (far) worse
results than the ratio in the final algorithm. The algorithm has two new parameters:
γP which has a default value of 0.9, and Λ0 which has a default value of 3. Fur-
thermore, it is needed to set the initial value of Pmt to a small positive number (like
the ε parameter in the standard algorithms), to prevent division by zero in case all
gradients so far have been zero.

3.2.4 Exponential function

All considered methods, and the standard method, use a method similar to a norm
for the gradient history collection. However, since the used function must have the
property that a higher input value results in a higher output value, other functions
can also be considered. The last method uses a power function in the exponentially
decaying average of past gradients. Instead of the squared gradient, e to the power
of the gradient is taken. And instead of the root in the update rule, it uses the natural
logarithm of the result to compute the scaling factor for the learning rate. For this to
work, vt must be initialized at 1, since the log of a value less than 1 is negative, while
the denominator in Equation 3.16 must be positive.
The "Exp" version of RMSprop can be defined as follows:

Θt+1 = Θt − α · gt(Θt)

ln (vt + ε)
(3.16)

vt = γ · vt−1 + (1− γ)e|gt(Θt)| (3.17)

Note that AdaDelta needs to use the adaptations in the GHC of the algorithm as
proposed in the four methods above in both of its exponentially decaying averages,
to preserve the reason of the authors for introducing the second average: "keeping
the units the same".

3.3 General methodology

The new alternative optimization algorithms, as described in the first sections of
this chapter, will be compared to the state of the art optimization algorithms on a
number of experiments. These experiments cover the next four chapters, and within
each chapter the specific setup of the experiments are described. However, some
aspects of the experiments are performed in more than one experiment. These parts
of the methodology are described and explained in this section.

3.3.1 Experiments

A total of 16 different experiments have been conducted to find out if the adapted
versions of the optimization algorithms outperform the state of the art ones. The
next five chapters cover the results of the experiments, grouped by and in order of

30 Chapter 3. New ideas for optimization algorithms

SGD SGDmom SGDNAG SGDHB
Adagrad Absgrad `1−4−Adagrad AdaMax
AdaDelta AbsDelta `1−4−AdaDelta NadaMax
RMSprop Absprop `1−4−RMSprop ExpAdam

Adam AbsAdam `1−4−Adam `ada−Adam
Nadam AbsNadam `1−4−Nadam

AMSGrad AbsAMSGrad `1−4−AMSGrad
NAMSGrad AbsNAMSGrad `1−4−NAMSGrad

TABLE 3.1: All algorithms considered in the experiments

the complexity of the classifier.
The experiments are on four different problems. The most basic one is the optimiza-
tion of the Rosenbrock optimization function. For this problem no deep learning
system is needed, instead the two input values of the function can be changed using
the pure optimization algorithms and the partial derivatives of the function. A bit
more difficult is the XOR problem, which does need a (small) neural network to be
able to find a solution. For this problem, the algorithms are tested on four different
neural networks, where for one network it is easier to find a solution than for an-
other.

Used datasets: MNIST and CIFAR10

The majority of the experiments that are conducted in this thesis are about the classi-
fication of images from a data set. Two different data sets are used for this purpose:
MNIST and CIFAR10.
The MNIST data set consists of 28x28 binary images of handwritten digits. The data
set is constructed by Yann LeCun (LeCun et al., 1998), who also was one of the de-
velopers of the convolutional neural network. The data set was designed as an easy
to use real-world data set. LeCun used a subset of a data set collected by NIST (Na-
tional Institute of Standards and Technology) and made some modifications (hence
the M) such that no extra preprocessing is required when the data set is used. This
makes it easy to use in studies with the main focus on (aspects of) the classifier.
Moreover, since there are only 784 input values per example, a classifier will not
need a huge amount of memory to process an image from this data set.
The data set used in the experiments was retrieved from (LeCun, 1998). It contains
60000 training examples and 10000 test examples with 10 different classes (the digits
0 to 9). Some example binary images are displayed in Figure 3.2a.
The CIFAR-10 data set (Krizhevsky and Hinton, 2009) consists of 32x32 RGB im-
ages of objects from 10 classes: ’plane’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse’,
’ship’ and ’truck’. The images form a subset of the "80 million tiny images" data set
(Torralba, Fergus, and Freeman, 2008). Like the images in the MNIST data set, the
images in the CIFAR-10 data set have already been preprocessed. They are however
more difficult to classify since they are bigger and above all they are RGB images
instead of binary images, which means that every pixel has three values (red, green,
blue), each in a wider range than binary values.
The used data set was retrieved from https://www.cs.toronto.edu/~kriz/cifar.

html, and consists of 50000 training images (5000 per class) and 10000 test images
(1000 per class). Some example images are displayed in Figure 3.2b.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

3.3. General methodology 31

(A) Some examples of the binary images in the
MNIST data set. (Retrieved from https://en.

wikipedia.org/wiki/MNIST_database#/media/File:

MnistExamples.png)

(B) Some example images per class
from the CIFAR-10 data set. Image re-
trieved from https://www.cs.toronto.

edu/~kriz/cifar.html.

FIGURE 3.2: Example images from the two data sets.

Overview of algorithms used in the experiments

The experiments on the Rosenbrock function, on the XOR problem, and logistic re-
gression on the MNIST data set, are conducted with all considered algorithms. 29
algorithms in total are considered, including state of the art algorithms and adapta-
tions of multiple state of the art algorithms using the new methods described in the
previous sections. A full list of all considered algorithms can be seen in Table 3.1.
However, for sake of proper use of time, it was decided to reduce the number of
algorithms to be considered for the experiments with more complex deep learning
systems, and hence a longer duration time, such that more of these kinds of experi-
ments could be conducted. This reduced selected group contains 12 different algo-
rithms, which are put in bolt in Table 3.1. Some of the experiments are conducted on
a small group of additional algorithms, which are the newly proposed adaptations
of one of the state of the art algorithms derived from Adam. It was decided to in-
clude those to find out if the indicated effect of the new adaptation on Adam itself
in the results also applies to the relevant derivative.

Software

All experiments are implemented in the Python programming language, version
3.6.4 (Python Core Team, 2018). For the experiment on the Rosenbrock function, the
optimization algorithms are customarily implemented using the Numpy package
(Walt, Colbert, and Varoquaux, 2011). For all other experiments, the PyTorch pack-
age (Paszke et al., 2017) is used for all deep learning techniques and the optimization
algorithms. Packages like TensorFlow (Abadi et al., 2016) and Caffe (Jia et al., 2014)
could not be used since they do not provide the amount of space for custom im-
plementation as PyTorch does. For the implementation of every new adaptation in
every considered state of the art algorithm, an additional module had to be created.
Moreover, the state of the art algorithms "Nadam", "NadaMax", and "NAMSGrad"
are for some reason not included in the standard PyTorch package, so these had to be
custom created too. The experiments and parameter optimization runs of the exper-
iments on the Rosenbrock function and on the XOR problem are run on a standard
desktop computer. All runs of the other experiments are run on the Peregrine cluster
from the University of Groningen via an SSH protocol and the program MobaXterm.

https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png
https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png
https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

32 Chapter 3. New ideas for optimization algorithms

3.3.2 Scoring system

Since the algorithms will be compared on their performances in the experiments,
and since it is quite complicated and extensive to fully analyze every difference in
performance between all algorithms in every experiment, a scoring system is intro-
duced to compare the performance of the algorithms in a more succinct manner.
For this scoring system, only those algorithms are considered that are involved in
every single experiment conducted in this thesis. This group consists of the 12 algo-
rithms in the selected group.
For each experiment, the considered algorithms are ranked based on their perfor-
mance on a certain statistic, which is in most of the experiments the training cost (the
lower the reached cost the better). It is decided to prefer to use the reached training
cost as the criterion over the reached test cost since this gives a better indication of
the pure optimization capabilities of the algorithms. In some of the more easy ex-
periments, where every algorithm was able to reach 100% accuracy on the training
set, the algorithms are compared on a statistic indicating the optimization speed, i.e.
how many iterations over the training set it took before 100% accuracy was reached.
The exact relevant statistic for each experiment is indicated by an asterisk (*) behind
the name of the considered statistic in the result tables of the experiments.
Each algorithm earns a number of points for its performance on each individual ex-
periment. The best performing algorithm gets 12 points, the second best 11 points
etc. The worst performing algorithm gets 1 point. In this way, it is much easier to see
which algorithm performs better on which kind of problems, and also the general
performance can be determined and individual algorithms can be compared.

3.3.3 Learning feature plots

Apart from a comparison in general performance, so in terms of reached training
cost etc, it is also needed to compare the algorithms on their behavior during the
optimization process. For a simple problem as the Rosenbrock function (discussed
in the next chapter), this can be done by comparing the visited positions in the 2D
error space before convergence on the global minimum as displayed on a 2D heat
map of the error space. However, with more complicated problems where the error
space can have more than a thousand dimensions (weights) this is of course not
possible.
For certain problems, certain statistics might be useful to keep track of. For example,
the step size per weight update could indicate something about the convergence
and the way of exploration. Another aspect is the obtained gradient for each weight
update. A smaller gradient would mean that the current parameter configuration
lies closer to the (local) minimum than a greater one.
A total of eight so-called features are kept track of during the runs in the experiments
on the MNIST or the CIFAR10 data set.

• The average and standard deviation of the gradient, calculated by taking the
average over the gradients for all weights in the neural network.

• The average and standard deviation of the absolute gradient, calculated by
taking the average over the absolute gradients for all weights in the neural
network.

• The average and standard deviation of the delta weight, so the average value
added to all weights.

3.3. General methodology 33

• The average and standard deviation of the absolute delta weight, so the aver-
age of the absolute values added to all weights.

For each feature, one value per parameter update is obtained. A plot can be made
of the feature value over all parameter updates in the training process. The plots of
different algorithms can then be compared to find indications of certain behaviors
during the optimization process.

35

Chapter 4

Experiment on the Rosenbrock
optimization function

All considered algorithms as stated in Table 3.1 are compared on their ability to op-
timize the performance of a deep learning system. However, since quite a few other
mechanisms in those systems also affect the performance, the algorithms are also
compared on a pure optimization problem. In this way, the optimization power of
just the algorithms can be compared. Moreover, this test case served as a good indi-
cator for any new ideas for the optimization functions.
This chapter describes this experiment, by first explaining the problem to be solved.
After this, the experiment itself is explained and described and the results are dis-
cussed.

x

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5
2.0

y

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

500

1000

1500

2000

2500

FIGURE 4.1: Plot of the Rosenbrock function. The global minimum of
zero is at point (1,1)

36 Chapter 4. Experiment on the Rosenbrock optimization function

4.1 Rosenbrock function

Over the years, several functions have been invented that can be used to test opti-
mization algorithms1. Some of these functions are pretty complicated, while others
are very simple. Since an optimization function is needed in which the algorithms
must be able to find the global minimum, a convex optimization function must be
chosen. A highly non-convex function, like the Eggholder function (Whitley et al.,
1996), is not suited since it contains many local minima and this is not convenient
for gradient descent. For example, genetic algorithms could solve such a problem
much easier, but since gradient descent is used in the learning process of the deep
learning systems considered in this thesis, it is also used in this case. Next to the
function being convex, it must also have only 2 input values. This must be the case
such that the optimization "paths" of the algorithms can be plotted in a heat map of
the function. In that way, the behavior of the algorithms during optimization can be
compared, and algorithms with similar strategies can be identified.
The Rosenbrock function (Rosenbrock, 1960) is convex and has 2 input values, and
is therefore chosen to be used as a test case for the optimization algorithms. The
general Rosenbrock function is defined as:

f (x, y) = (a− x)2 + b(y− x2)2 (4.1)

The goal of the algorithms is to minimize the value of f (x, y). The values for a and
b determine the exact function but are usually set to 1 and 100 respectively. These
values are also chosen in this experiment. The considered ranges are −2 ≤ x ≤ 2
and −1 ≤ y ≤ 3. A plot of the function within this scope can be seen in Figure 4.1.
It can be seen that the function landscape is composed of a curved trench with quite
steep walls. Moreover, in the trench there is also a little gradient, and the purple
area indicates the region around the global minimum. This minimum lies on the
exact point (x, y) = (1, 1) and has a value of 0.

4.2 Experimental setup

The optimization algorithms have to be able to find the global minimum of the
Rosenbrock function from any start point on the function landscape using as few
parameter updates as possible. An initial random position in the 2D landscape of
the function is chosen, and the algorithm has to find the coordinates of the global
minimum of the function, and do so in as few steps as possible.
For each algorithm, the optimal parameter settings must be found. This is done by
running each considered parameter setting on 50 randomly chosen start points in
within the considered parameter range. The setting resulting in the lowest average
number of updates needed to find the minimum of the function is chosen. For each
algorithm, the optimal parameter setting is displayed in Table A.1 in Appendix A.
Note that for AbsDelta no parameter setting could be found that resulted in conver-
gence behavior. Also, note that for `1−4-RMSprop no better parameter setting could
be found than the one of standard RMSprop.
After these optimal values have been found, the main experiment can be conducted.
Each algorithm is tested on a set of 400 different starting positions in the Rosenbrock
function. These start positions are also plotted on the heat map of the Rosenbrock

1A nice overview can be found at https://en.wikipedia.org/wiki/Test_functions_for_

optimization

https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/Test_functions_for_optimization

4.3. Results (A) 37

FIGURE 4.2: All the starting points in the Rosenbrock function in the
data set. The colors represent the family of algorithms to which the
algorithm belongs that had the best result. Purple = SGD, Green =
Std Ada, Blue = Abs Ada, Pink = Exp Ada, Orange = `ada Ada, Teal =

`1−4 Ada

function in Figure 4.2. For each test case, the number of updates that the algorithm
needed to converge to the minimum is taken. The maximum number of updates per
test case was set on 300000: if an algorithm still did not find the global minimum this
maximum number is taken to be the number of updates needed. Since this will turn
out to be much more than an algorithm would need if it finds the global minimum,
it has a huge impact on the average number of updates needed.

4.3 Results (A)

The results of this experiment are displayed in Table 4.1. The average and standard
deviation of the number of updates needed are shown, as well as the convergence
rate (i.e. in how many of the test cases was the algorithm able to find the minimum).
It turns out that the majority of the algorithms was able to converge to the minimum
in all test cases: only SGD, SGDHB, all variations of AdaDelta, NAMSGrad, and
`1−4-NAMSGrad had some misses. The algorithm with the smallest average num-
ber of updates needed turned out to be `1−4-Adam, while `1−4-AMSGrad needed a
similar number of updates. AbsDelta was the worst algorithm since it could not find
the minimum of the function from any start position.
Looking at the difference between SGDHB and the other SGD versions, the former
took much longer on average to find the optimum and it also had more cases in
which it was not able to find the minimum at all.
Comparing the standard, "Abs", and "`1−4" versions of the algorithms with adaptive

learning rates, it can be seen that in 4 cases (Adagrad, RMSprop, Nadam, NAMS-
Grad) the "Abs" version had the best result, in 2 cases (Adam, AMSGrad) the "`1−4"
version had the best result, and in 1 case (AdaDelta) the standard version had the
best result.
The "Exp" version of Adam scored better than the standard version, but worse than
the "Abs" and "`1−4" versions. Finally, the "`ada" version of Adam scored better than

38 Chapter 4. Experiment on the Rosenbrock optimization function

Algorithm Avg upd.* Std Dev Conv. rate # best res
SGD 3832 21011 398/400 (99.50%) 0
SGDmom 324 88 400/400 (100.00%) 10
SGDNAG 407 115 400/400 (100.00%) 6
SGDHB 46180 105584 341/400 (85.25%) 14
Adagrad 4510 2103 400/400 (100.00%) 8
AdaDelta 43418 79693 366/400 (91.50%) 2
RMSprop 3273 991 400/400 (100.00%) 0
Adam 726 281 400/400 (100.00%) 4
AdaMax 434 164 400/400 (100.00%) 11
Nadam 771 363 400/400 (100.00%) 19
NadaMax 740 401 400/400 (100.00%) 25
AMSGrad 466 126 400/400 (100.00%) 3
NAMSGrad 13170 58552 384/400 (96.00%) 26
Absgrad 2069 893 400/400 (100.00%) 19
AbsDelta 300000 0 0/400 (0.00%) 0
Absprop 2974 1051 400/400 (100.00%) 3
AbsAdam 333 381 400/400 (100.00%) 8
AbsNadam 440 343 400/400 (100.00%) 64
AbsAMSGrad 7793 3061 400/400 (100.00%) 4
AbsNAMSGrad 1870 899 400/400 (100.00%) 11
`1−4−Adagrad 3490 1787 400/400 (100.00%) 3
`1−4−AdaDelta 47513 97833 348/400 (87.00%) 7
`1−4−RMSprop 3273 991 400/400 (100.00%) 0
`1−4−Adam 228 66 400/400 (100.00%) 46
`1−4−Nadam 482 260 400/400 (100.00%) 37
`1−4−AMSGrad 231 66 400/400 (100.00%) 38
`1−4−NAMSGrad 21312 74981 373/400 (93.25%) 16
ExpAdam 387 129 400/400 (100.00%) 8
`ada−Adam 445 197 400/400 (100.00%) 8

TABLE 4.1: Results of all optimization algorithms on the Rosen-
brock function. The experiment included 400 different randomly cho-
sen starting points, and the maximum number of epochs was set to
300000. The values of the average and the standard deviation of the

number of updates needed to reach convergence are rounded.

the standard version, but worse than all other versions.
In Table 4.1 it is also indicated in the rightmost column for each algorithm in how
many of the test cases it had the best result, i.e. it managed to find the optimum
the fastest of all algorithms. The "Abs" version of Nadam had the best result here
with 64 fastest times. If the different versions of the same standard algorithm are
compared on this result, it turns out that SGDHB had the best result among the SGD
algorithms. This is remarkable, since SGDHB needed on average far more updates
to converge than most of the other algorithms. This might indicate that the test
cases in which SGDHB was fastest to find the optimum were very hard to solve. For
Adagrad, RMSprop, and Nadam the "Abs" version scored best, while for AdaDelta,
Adam, and AMSGrad the "`1−4" version had the best result. NAMSGrad is the only
algorithm from which the standard version had the best result.
In Figure 4.2 all 400 start positions are drawn in the heat map of the Rosenbrock func-
tion. Each start position has the color of the algorithm group to which the fastest al-
gorithm belongs. It was hoped that something could be inferred from this plot about
in which cases (high or low initial gradients etc.) which algorithm group performed
best. As can be seen, every algorithm group has best performances all over the map,
so not much can be inferred here.

4.4. Discussion 39

4.4 Discussion

From the results in this experiment it can be concluded that, apart from SGDHB, the
new adaptations can result in a faster convergence than the standard versions of the
algorithms. The new version `1−4 seems to be most promising, but the Exp, `ada and
Abs versions performed often better than the standard version too.

4.4.1 Differences in behavior of algorithms

To gain some insight in the differences in optimization behavior between the algo-
rithms, all versions are tested on a single case, and the trajectory that has been fol-
lowed by the algorithm in the function heat map is plotted. In Figure B.1, Figure B.2
and Figure B.3 an example trajectory of each optimized algorithm is displayed. Al-
gorithms based on the same state-of-the-art algorithm are placed next to each other,
and in every caption the number of updates needed for the displayed run is given.
In general, it can be seen that the algorithms that follow the gradient, like RMSprop
and AdaDelta, are not the fastest algorithms. `1−4-Adam was the fastest, with only
144 updates needed, and looking at the path in the plot it started with some explo-
ration, then the oscillation dampens, and only in the final stage the pure gradient
is followed. Algorithms like `ada-Adam, Adam, AdaMax, and `1−4-Amsgrad have
a similar "strategy", but in this case they overshoot the optimum point, and have to
make a turn before they converge. Furthermore, most "Abs" versions and SGDmom
and SGDNAG are bouncing a lot on the borders of the considered parameter range,
which helps them converging. This could mean that, without this help, they would
have needed much more updates to converge. Standard SGD and SGDHB have a
more gentle path within the borders, but they need almost ten times as much up-
dates. Finally, ExpAdam seems to have a slightly different oscillation pattern, which
looks less smooth than the algorithms using a power function for the gradient col-
lection. However, it converges faster than standard Adam in this case.

41

Chapter 5

Experiments on the XOR problem

The next group of experiments conducted for this thesis is on the XOR problem.
Four different small neural networks are trained to solve this problem using the full
set of considered optimization functions.

FIGURE 5.1: Plot of the XOR problem. The two classes are clearly
not linearly separable: there is no method to draw a single line that

separates them. (Modified image from (Alpaydin, 2009).)

5.1 The XOR problem

The XOR ("exclusive or") problem is a classic but very easy problem to solve when
compared to training on entire data sets. It is based on the workings of the logical
"exclusive or" operator. In the classic XOR problem, there are 2 binary inputs and 1
binary output. The output will only be 1 if either of the two inputs is 1. If the two
inputs have the same value, the output will be 0. The XOR problem cannot be solved
by a single perceptron, since the problem space is not linearly separable (Russell and
Norvig, 2016) (see also Figure 5.1). This caused the field of neural networks (in the
time it was called "cybernetics") to become very unpopular. Only after the invention
of back-propagation for the multi-layer perceptron the field regained its popularity.

5.2 General methodology

Some of the aspects across the four different neural networks trained on the XOR
problem are the same. As activation function the Sigmoid function is used in this
experiment. The mean-squared error is chosen as the loss function. The weights in
the network are initialized at random values between -0.1 and 0.1, this to encourage

42 Chapter 5. Experiments on the XOR problem

FIGURE 5.2: The neural network with two hidden nodes, used in the
experiment on the XOR problem

the learning process. The neural networks are trained in a stochastic or online fash-
ion, i.e. the training examples are presented one by one.

5.2.1 Experimental setup

The procedure in the experimental setup is also the same in the four experiments. To
find out the parameter settings for the best performance of each algorithm, multiple
parameter settings are compared on 50 test cases. Per test case the number of epochs
needed to reach a cost smaller than 0.001 is saved. The maximum number of epochs
is set to 20000 and if an algorithm exceeds this number it has failed to solve the
XOR problem. The setting that on average needs the smallest amount of epochs is
chosen as the optimal one. The optimal parameter settings for all four experiments
are displayed in Table A.2 and Table A.3 in Appendix A.
During the main experiments, each optimized algorithm is tested for 200 runs, every
time with another begin configuration of the weights. The number of epochs in one
run is different for the four experiments. Each epoch consists of a full iteration over
the training set, and after each epoch the average loss is saved. Per run a data file is
created in which the average loss per epoch is stored.

5.3 Neural network with 2 hidden nodes

The first experiment on the XOR problem is with one of the smallest MLPs possible.
The MLP consists of the two input nodes, followed by a hidden layer of 2 nodes,
and finally one node in the output layer, and is displayed in Figure 5.2. No biases
were included in the network. This setup is known to be the smallest neural network
capable of solving the XOR problem. It was first believed that there exist multiple
local minima in the error landscape of this neural network (I. G. Sprinkhuizen and
E. J. Boers, 1996), but later it was found out that these local minima only exist with
infinite parameter values, and do not occur with finite ones (I. Sprinkhuizen and
E. Boers, 1999). In practice this means that local minima are possible. This neural
network is still the most difficult one to optimize when compared to the three other
networks in the other experiments on the XOR problem.

5.3.1 Results (B)

The obtained results for all optimization algorithms can be seen in Table 5.1. The
convergence rate indicates in how many of the 200 cases the function was learned
(i.e. the final cost was smaller than 0.001). The columns "Avg # upd needed" and

5.3. Neural network with 2 hidden nodes 43

Algorithm Convergence rate Avg # upd needed* st.dev.
SGD 179/200 (89.5%) 9732 3275
SGDmom 197/200 (98.5%) 1448 1078
SGDNAG 195/200 (97.5%) 1410 1065
SGDHB 197/200 (98.5%) 1257 727
Adagrad 121/200 (60.5%) 401 104
Absgrad 165/200 (82.5%) 12459 801
`1−4−Adagrad 126/200 (63.0%) 1783 653
AdaDelta 182/200 (91.0%) 9236 3209
AbsDelta 172/200 (86.0%) 9990 3213
`1−4−AdaDelta 180/200 (90.0%) 9301 3507
Adam 133/200 (66.5%) 746 119
AbsAdam 180/200 (90.0%) 572 1351
`1−4−Adam 128/200 (64.0%) 475 1207
ExpAdam 141/200 (70.5%) 2915 274
`ada−Adam 141/200 (70.5%) 515 334
RMSprop 149/200 (74.5%) 373 36
Absprop 190/200 (95.0%) 834 919
`1−4−RMSprop 148/200 (74.0%) 321 49
AMSGrad 141/200 (70.5%) 586 1347
AbsAMSGrad 186/200 (93.0%) 595 1173
`1−4−AMSGrad 123/200 (61.5%) 778 199
Nadam 132/200 (66.0%) 1131 596
AbsNadam 185/200 (92.5%) 783 135
`1−4−Nadam 121/200 (60.5%) 1330 339
NAMSGrad 126/200 (63.0%) 870 1084
AbsNAMSGrad 185/200 (92.5%) 538 85
`1−4−NAMSGrad 123/200 (61.5%) 377 50
AdaMax 115/200 (57.5%) 2559 379
NadaMax 133/200 (66.5%) 531 756

TABLE 5.1: The results of all optimization algorithms on the XOR
problem, using a neural network with 2 hidden nodes and no batch
normalization. The experiment included 200 different randomly cho-
sen starting points, and the maximum number of epochs was set to

20000.

"st.dev." indicate how many updates were needed on average to reach a cost smaller
than 0.001, and the standard deviation of this statistic respectively. Note that if the
algorithm was not able to reach such a low cost in a run, the run will not be counted
for the statistics about the number of updates needed (this applies also to the results
of the other experiments on the XOR problem).
It can be seen that none of the algorithms managed to learn the XOR function in
all 200 runs. The highest accuracy was reached by SGD with momentum and SGD
with handbrake momentum (98.5%), where the latter needed on average less up-
dates, and also had a smaller standard deviation. Given these statistics, it can be
concluded that in this setup the handbrake momentum had a minimally equal con-
vergence rate and a faster convergence speed than all other SGD algorithms.
Taking a look at the adaptive learning rate algorithms and their versions, it can be
seen that, except for AdaDelta, the "Abs" version of each algorithm had the highest
convergence rate. However, only for Nadam the convergence speed of the "Abs"
version was also the highest of all versions. Instead, often the "`1−4" version needed
the least amount of updates on average, with "`1−4-RMSprop" being the fastest on
average of all algorithms. The results of the "`ada" version of Adam are in terms of
the convergence rate better than all other versions except the "Abs" version, and in
terms of speed better than all other versions except the "`1−4" version. The "Exp"

44 Chapter 5. Experiments on the XOR problem

FIGURE 5.3: The neural network with five hidden nodes used in the
experiments on the XOR problem.

version of Adam turned out to have a convergence rate which is only worse than
the Abs version, but it is much slower in converging than all other Adam versions.

5.4 Neural network with 5 hidden nodes

This neural network differs from the one in the experiment described in the previous
section by the number of nodes in the hidden layer. Where the previous network
only had 2 hidden nodes, does this one contain 5 hidden nodes. This provides the
network with a lot more weights to be optimized, and hence more ways in which
the network can be trained to solve the XOR problem. The network is displayed in
Figure 5.3.

5.4.1 Results (C)

Table 5.2 shows the results on the network with 5 hidden nodes and no batch nor-
malization. It can be seen that the algorithms in general had fewer problems to find
the optimal solution on this network than on the smaller network. Almost half of
the algorithms were able to find the optimal solution in all 200 cases, and those that
could not reach a convergence rate of 1.0 did reach a higher rate than on the previous
network.
All algorithms using SGD with some kind of momentum had a very similar result:
they all had a convergence rate of 1.0, and both the average and the standard devia-
tion of the average number of updates needed are very close to each other. However,
they are much higher than the ones of most of the adaptive learning rate algorithms.
For these algorithms again the "Abs" versions seemed to have the best convergence
rate. However, in terms of the number of updates needed they were not always the
fastest. `1−4-AMSGrad turned out to be the overall fastest with an average of 128
(std=79), also much faster than the other versions of AMSGrad. The "Exp" version
of Adam was again the worst performing algorithm both in convergence rate and
speed. The convergence rate of the "`ada" version of Adam is in between the one of
the standard version and the `1−4 version, and the average speed seems to be higher
than both of them: the average number of updates needed of the `1−4 version is a bit
smaller, but its standard deviation turns out to be much higher.

5.5. Neural network with 2 hidden nodes and batch normalization 45

Algorithm Convergence rate Avg # upd needed* Std.dev.
SGD 199/200 (100.0%) 8874 2403
SGDmom 200/200 (100.0%) 895 262
SGDNAG 200/200 (100.0%) 936 275
SGDHB 200/200 (100.0%) 950 238
Adagrad 191/200 (95.5%) 370 1058
Absgrad 200/200 (100.0%) 7576 1582
`1−4−Adagrad 198/200 (99.0%) 341 183
AdaDelta 200/200 (100.0%) 8602 2386
AbsDelta 199/200 (99.5%) 8567 2542
`1−4−AdaDelta 198/200 (99.0%) 8584 2175
Adam 197/200 (98.5%) 252 194
AbsAdam 200/200 (100.0%) 179 23
`1−4−Adam 196/200 (98.0%) 182 977
ExpAdam 194/200 (97.0%) 776 1390
`ada−Adam 197/200 (98.5%) 224 49
RMSprop 190/200 (95.0%) 234 351
Absprop 200/200 (100.0%) 291 148
`1−4−RMSprop 200/200 (100.0%) 232 222
AMSGrad 186/200 (93.0%) 226 772
AbsAMSGrad 200/200 (100.0%) 182 35
`1−4−AMSGrad 197/200 (98.5%) 128 79
Nadam 195/200 (97.5%) 238 983
AbsNadam 200/200 (100.0%) 170 25
`1−4−Nadam 198/200 (99.0%) 226 88
NAMSGrad 200/200 (100.0%) 147 44
AbsNAMSGrad 200/200 (100.0%) 170 21
`1−4−NAMSGrad 195/200 (97.5%) 183 357
AdaMax 196/200 (98.0%) 285 68
NadaMax 200/200 (100.0%) 605 1485

TABLE 5.2: The results of all optimization algorithms on the XOR
problem, using a neural network with 5 hidden nodes and no batch
normalization. The experiment included 200 different randomly cho-
sen starting points, and the maximum number of epochs was set to

20000.

5.5 Neural network with 2 hidden nodes and batch normal-
ization

This experiment is on a similar network as the one shown in Figure 5.2, but now
with an additional batch normalization layer applied to the output of the hidden
layer. This addition should give the optimization process a boost, according to the
influence of batch normalization on experiments in the literature (He et al., 2016;
Huang et al., 2017).

5.5.1 Results (D)

The results for this network can be seen in Table 5.3. It is clear that the usage of batch
normalization gives a huge boost to both the convergence rate and the convergence
speed, when these results are compared with the ones in Table 5.1. All algorithms
now manage to find the optimal solution in all 200 cases. However, some algorithms
need some more updates than others. Therefore these slower algorithms, which are
all algorithms based on AdaDelta, used a maximum number of updates of 10000.
All other algorithms had a maximum of 5000 updates.
Since all algorithms reached a convergence rate of 1.0, the different algorithms can

46 Chapter 5. Experiments on the XOR problem

Algorithm Convergence rate Avg # upd needed* Std.dev.
SGD* 200/200 (100.0%) 1100 770
SGDmom 200/200 (100.0%) 216 213
SGDNAG 200/200 (100.0%) 226 324
SGDHB 200/200 (100.0%) 169 155
Adagrad 200/200 (100.0%) 119 183
Absgrad 200/200 (100.0%) 224 51
`1−4−Adagrad 200/200 (100.0%) 132 343
AdaDelta* 200/200 (100.0%) 840 623
AbsDelta* 200/200 (100.0%) 1125 880
`1−4−AdaDelta* 200/200 (100.0%) 1089 817
Adam 200/200 (100.0%) 77 16
AbsAdam 200/200 (100.0%) 63 22
`1−4−Adam 200/200 (100.0%) 51 14
ExpAdam 200/200 (100.0%) 96 115
`ada−Adam 200/200 (100.0%) 49 16
RMSprop 200/200 (100.0%) 180 19
Absprop 200/200 (100.0%) 62 25
`1−4−RMSprop 200/200 (100.0%) 123 14
AMSGrad 200/200 (100.0%) 54 12
AbsAMSGrad 200/200 (100.0%) 73 27
`1−4−AMSGrad 200/200 (100.0%) 87 10
Nadam 200/200 (100.0%) 117 12
AbsNadam 200/200 (100.0%) 100 35
`1−4−Nadam 200/200 (100.0%) 147 15
NAMSGrad 200/200 (100.0%) 74 8
AbsNAMSGrad 200/200 (100.0%) 77 27
`1−4−NAMSGrad 200/200 (100.0%) 68 11
AdaMax 200/200 (100.0%) 548 59
NadaMax 200/200 (100.0%) 43 20

TABLE 5.3: The results of all optimization algorithms on the XOR
problem, using a neural network with 2 hidden nodes and batch nor-
malization. The experiment included 200 different randomly chosen
starting points, and the maximum number of epochs was set to 10000

for algorithms with *, and 5000 for the others.

only be compared on the convergence speed. It turns out that the SGD version with
handbrake needed the least updates on average, and also had the smallest standard
deviation of all SGD versions. So it can be concluded that this new SGD version had
the best performance among them. However, also in this case most of the adaptive
learning rate algorithms were (much) faster.
For this network, there is no version that has a clearly better performance in all al-
gorithms. For Adagrad, AdaDelta, and Amsgrad it seems the standard version had
the best performance, while for RMSprop and Nadam the "Abs" version performed
best and for NAMSGrad the "`1−4" version performed best. Moreover, the "`ada"
version of Adam outperformed all other versions of Adam. The overall best per-
forming, hence fastest algorithm turned out to be NadaMax with 43 updates needed
on average.

5.6 Neural network with 5 hidden nodes and batch normal-
ization

The final network is in theory the easiest to optimize when compared to the three
other ones. This network both uses 5 nodes in the hidden layer (similarly to the

5.6. Neural network with 5 hidden nodes and batch normalization 47

Algorithm Convergence rate Avg # upd needed* Std.dev.
SGD 200/200 (100.0%) 514 161
SGDmom 200/200 (100.0%) 77 24
SGDNAG 200/200 (100.0%) 74 26
SGDHB 200/200 (100.0%) 82 26
Adagrad 200/200 (100.0%) 52 12
Absgrad 200/200 (100.0%) 186 23
`1−4−Adagrad 200/200 (100.0%) 42 11
AdaDelta 200/200 (100.0%) 502 123
AbsDelta 200/200 (100.0%) 528 173
`1−4−AdaDelta 200/200 (100.0%) 522 195
Adam 200/200 (100.0%) 40 4
AbsAdam 200/200 (100.0%) 32 6
`1−4−Adam 200/200 (100.0%) 29 3
ExpAdam 200/200 (100.0%) 25 7
`ada−Adam 200/200 (100.0%) 13 3
RMSprop 200/200 (100.0%) 54 10
Absprop 200/200 (100.0%) 49 23
`1−4−RMSprop 200/200 (100.0%) 45 12
AMSGrad 200/200 (100.0%) 23 3
AbsAMSGrad 200/200 (100.0%) 32 6
`1−4−AMSGrad 200/200 (100.0%) 31 3
Nadam 200/200 (100.0%) 23 3
AbsNadam 200/200 (100.0%) 27 5
`1−4−Nadam 200/200 (100.0%) 32 4
NAMSGrad 200/200 (100.0%) 26 3
AbsNAMSGrad 200/200 (100.0%) 28 5
`1−4−NAMSGrad 200/200 (100.0%) 26 3
AdaMax 200/200 (100.0%) 33 6
NadaMax 200/200 (100.0%) 28 7

TABLE 5.4: The results of all optimization algorithms on the XOR
problem, using a neural network with 5 hidden nodes and batch nor-
malization. The experiment included 200 different randomly chosen
starting points, and the maximum number of epochs was set to 5000.

network in Figure 5.3), which provides more ways to optimize the network such that
it solves the XOR problem, and it applies batch normalization to the output of the
hidden layer, which speeds up the learning process as well. It is therefore expected
that all algorithms achieve in this experiment better results than in the three other
experiments.

5.6.1 Results (E)

The results for this network can be seen in Table 5.4. In these runs, the maximum
number of updates was set at 5000.
Since all algorithms have a convergence rate of 1.0, they can again only be com-
pared in terms of convergence speed. It turns out that again the algorithms based
on AdaDelta have the worst performance, together with standard SGD, with more
than 500 updates on average needed and a standard deviation between 100 and 200.
The SGD versions with momentum are again much faster than standard SGD, and
in this case the version with Nesterov momentum slightly outperforms the others.
Most of the algorithms with adaptive learning rate again outperform the ones us-
ing SGD. Only the AdaDelta versions and the "Abs" version of Adagrad are slower.
The "`1−4" version of the algorithms outperforms the other versions for Adagrad

48 Chapter 5. Experiments on the XOR problem

and RMSprop. For all other algorithms the standard version had the best perfor-
mance, except for the Adam algorithm, where the "`ada" version had the best result.
`ada-Adam also has the best result of all algorithms, with only 13 updates needed on
average and a standard deviation of 3.

5.7 Discussion

The results of the algorithms on the four networks differ very much. For all algo-
rithms it is the case that the worst performance is on the network with two hidden
nodes, followed by five hidden nodes, two hidden nodes and batch normalization,
and finally five hidden nodes and batch normalization. This means that the addition
of batch normalization has a greater positive effect than the addition of three extra
hidden nodes on the convergence rate.
However, this research is about the influence of the optimization algorithm. The
results show that on average the more a network gets help from other mechanisms
(like batch normalization or extra nodes) the smaller the influence of the optimiza-
tion algorithm becomes. In the experiment with five hidden nodes and batch nor-
malization all algorithms were able to reach a perfect accuracy, and especially be-
tween all the derivations of standard Adam the difference in speed was small. Cer-
tainly when compared to the AdaDelta variants and standard SGD, that needed
roughly 20 times the amount of epochs on average. The experiment with 2 hidden
nodes and no batch normalization however showed that in these more bare circum-
stances the use of the right optimization algorithm does make a big difference. The
standard SGD algorithm with momentum and the SGD algorithm with handbrake
momentum reached an almost perfect score, while most other algorithms were not
even able to reach 75%. Moreover, for almost all adaptive learning rate algorithms
the Abs variant reached a (much) better score than the standard version, while the
other variants often had a more or less equivalent convergence rate with a some-
times higher convergence rate.
These differences between the networks can also be seen in the plots of the average
cost over the runs, as shown in Appendix C. In Figure C.1 it can be seen that for the
experiment with 2 hidden nodes practically every algorithm converges on its own
final cost (and does so in general after only a couple of hundreds epochs, as also in-
dicated by the convergence speeds in Table 5.1). This effect is also present in the plot
for the experiment with a network with 5 hidden nodes, which is displayed in Fig-
ure C.3, but it has disappeared in Figure C.2 and Figure C.4 which show the plots for
the experiments with batch normalization included. In these two latter plots almost
all algorithms manage to reach a cost of zero, and only the speed in which they do
so differs. Moreover, this difference in speed is smaller when the three extra hidden
nodes are used.
From these experiments it can be concluded that the choice of the optimization algo-
rithm can have a big influence on the training performance, but this influence seems
to become smaller when a bigger network is used and especially when batch nor-
malization is added. The new introduced variants of the optimization algorithms
had some promising results. It seems that SGDHB is at least as fast as the other SGD
algorithms with momentum, and regarding the different GHC methods it seems that
Abs is more stable, i.e. has a higher convergence rate, while the others seem to have
a similar convergence rate but with a higher speed.

49

Chapter 6

Experiments with logistic
regression

The most basic version of the neural network, a network where input and output are
directly connected (also called "linear network"), can be used in a setup for logistic
regression. This type of classifier has been discussed more elaborately in subsec-
tion 2.1.6. It is used here as a test case on image data that is closest to pure optimiza-
tion (Reddi, Kale, and Kumar, 2018), so without any additional techniques.
In this chapter, the two experiments using a logistic regression setup are discussed.
The chapter starts with the experiment on the MNIST data set and continues with
the experiment on CIFAR10.

6.1 Logistic regression on MNIST

The classifier in this experiment is not expected to have a very high performance
with any optimization algorithm since initial research by LeCun et al. (1998) showed
that more complex systems are needed to accomplish that. However, it does serve
as a kind of baseline regarding the optimization power of the different algorithms
for the MNIST data set. All 29 considered algorithms are tested in this experiment.

6.1.1 Experimental setup

The classifier in this experiment consists of 28 · 28 = 784 inputs nodes, which are
directly (fully) connected to the 10 output nodes, representing the 10 different classes
(which are in fact the digital numbers 0 to 9). As loss function the cross-entropy
method is used, which incorporates the Softmax functionality.
Every optimization algorithm is optimized by running different parameter settings
each for 5 runs during 15 iterations over the entire training set. A batch size of 128 is
used, and the training data is shuffled every iteration. The training cost is kept track
of, and for every parameter setting the average is calculated of the minimum training
cost reached per run. The setting that resulted in the smallest average training cost
is taken as the optimal parameter setting. These configurations are displayed in
Table A.4 in Appendix A.
The experiment itself is conducted by running every optimization algorithm for 5
runs during 250 iterations over the training set. The average scores for the training
cost and -accuracy and test cost and -accuracy over each iteration are calculated and
saved in data files.

50 Chapter 6. Experiments with logistic regression

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.2392 93.55% 0.2714 92.63%
SGDmom 0.2326 93.71% 0.2769 92.56%
SGDNAG 0.2325 93.72% 0.2760 92.57%
SGDHB 0.2393 93.58% 0.2724 92.59%
Adagrad 0.2187 94.09% 0.3073 92.62%
Absgrad 0.2472 93.25% 0.2674 92.74%
`1−4−Adagrad 0.2195 94.05% 0.3057 92.59%
AdaDelta 0.2405 93.54% 0.2699 92.66%
AbsDelta 0.2409 93.51% 0.2719 92.63%
`1−4−AdaDelta 0.2392 93.58% 0.2711 92.63%
Adam 0.2189 94.03% 0.2772 92.65%
AbsAdam 0.2213 93.97% 0.2775 92.64%
`1−4−Adam 0.2143 94.12% 0.3111 92.51%
ExpAdam 0.2161 94.06% 0.3261 92.46%
`ada−Adam 0.2147 94.06% 0.3065 92.43%
RMSprop 0.2214 94.01% 0.2824 92.69%
Absprop 0.2235 93.95% 0.2766 92.68%
`1−4−RMSprop 0.2188 94.08% 0.3047 92.56%
AMSGrad 0.2204 94.01% 0.2771 92.68%
AbsAMSGrad 0.2228 93.96% 0.2758 92.66%
`1−4−AMSGrad 0.2147 94.11% 0.3065 92.49%
Nadam 0.2188 94.04% 0.2760 92.65%
AbsNadam 0.2215 93.98% 0.2762 92.64%
`1−4−Nadam 0.2143 94.11% 0.2973 92.52%
NAMSGrad 0.2203 94.02% 0.2759 92.68%
AbsNAMSGrad 0.2217 93.98% 0.2776 92.62%
`1−4−NAMSGrad 0.2150 94.10% 0.2964 92.50%
AdaMax 0.2246 93.91% 0.2763 92.65%
NadaMax 0.2245 93.92% 0.2758 92.63%

TABLE 6.1: Results of all algorithms on the MNIST data set using
logistic regression. For both the training set and test set the mini-
mal cost and maximal accuracy (after 250 iterations over the entire
training set) averaged over 5 runs with randomly shuffled data is dis-

played, and per column the best value is highlighted.

6.1.2 Results (F)

The obtained results are displayed in Table 6.1. The table shows for every algorithm
the minimum training cost reached, the maximum training accuracy, the minimum
test cost, and the maximum test accuracy. These values are all averages over the 5
runs per algorithm.
In terms of training cost, the `1−4− versions of Adam and Nadam scored the best
results, while the former also achieved the best result in training accuracy. All SGD
versions, all AdaDelta versions, and Absgrad together make up the group of worst
performing algorithms in terms of training cost. The latter had the worst score of
all algorithms for both training cost and accuracy. The new algorithm SGDHB per-
formed on a similar level as standard SGD and worse than SGDmom and SGDNAG.
When for each adaptive learning rate algorithm the different versions are compared
on training cost, it can be concluded that in six out of seven cases the `1−4−version
performed best. Only for Adagrad the standard version reached the lowest training
cost. Moreover, the Exp and `ada−versions of Adam performed better than the stan-
dard version. The Abs version on the other hand performed in terms of training cost
for all algorithms worst of all versions.
When the results for the minimum test cost reached are analyzed, it turns out that the

6.2. Logistic regression on CIFAR10 51

algorithm worst performing on training cost (Absgrad), is the best performing algo-
rithm on test cost. Moreover, the worst performing algorithms are the `1−4−versions
of the algorithms, as well as the Exp and `ada−versions of Adam. All SGD versions
perform on a similar level as the average adaptive learning rate algorithm, and stan-
dard SGD as well as SGDHB outperform the SGD version with momentum and
SGDNAG.
Comparing the versions of the adaptive learning rate algorithms on test cost, it turns
out that in four of the seven cases the standard version had the best result, and in
the other three cases the Abs version reached the lowest test cost. The results indi-
cate that, in general, the algorithms that achieve lower values on the training cost
are among the highest scores on the test cost and vice versa. For example Absgrad,
which has the highest training cost, reached the absolute lowest test cost among all
algorithms. The plots in Figure D.5 and Figure D.6 in Appendix D show that in gen-
eral the training cost keeps decreasing, seemingly approaching a convergence point
at which it cannot improve anymore. The plots of the test cost on the other hand
show a rapid decrease at the start, but after a couple of iterations the cost slowly
increases again. The minimum test cost is in this case therefore in general reached
after only a couple of (tens of) iterations, while the minimum training cost is almost
always reached in the last iteration. The Adagrad and SGD algorithms seem to keep
the low test cost until the end (see Figure D.6c and Figure D.6k), where the former
also has not much improvement in training cost (see Figure D.5c) but the latter has
(Figure D.5k).

6.2 Logistic regression on CIFAR10

Similarly to the logistic regression experiment on the MNIST data set described
above, this experiment is conducted to find out the basic optimization power of the
various algorithms in a classifier, but now on the classification of images from the
CIFAR10 data set. This is a more difficult task, since the images are more compli-
cated and bigger, which is caused by the three channels in the RGB image format. A
selection of 14 optimization algorithms is tested in this experiment.

6.2.1 Experimental setup

The input of the linear network consists of 32x32 RGB images. This means that there
are 32 · 32 · 3 = 3072 input nodes since RGB images have three input channels. There
are images from ten classes, so the network has ten output nodes.
The algorithms are optimized by selecting the parameter setting that reached the
lowest training cost. This was found out by taking the average score over three
runs, where each run consisted of five iterations over the entire training set. The
data was shuffled before every iteration, and a batch size of 128 was used.
For the experiment, each optimization algorithm is tested on 5 runs, where each run
lasted 20 iterations over the entire training set. Again, the training data is shuffled
every iteration and a batch size of 128 is used. Since the number of instances in the
data set is quite high, the average cost and accuracy are calculated and stored every
20 mini-batches instead of every iteration. Since every time that data is stored the
performance on the test set is determined, multiple of these performance measures
can be done in this way. The same is done with the current cost and accuracy on the
test data. This provides the plots with ((50000/128)/20) ∗ 20 = 391 data points per
run. However, for the plots of the training and test cost average, average values are

52 Chapter 6. Experiments with logistic regression

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 1.6613 44.21% 1.7365 40.56%
SGDmom 1.6532 44.43% 1.7463 40.12%
SGDNAG 1.6531 44.53% 1.7442 40.18%
SGDHB 1.6602 44.23% 1.7409 40.35%
Adam 1.6577 44.32% 1.7406 40.36%
AbsAdam 1.6561 44.35% 1.7422 40.28%
`1−4−Adam 1.6494 44.50% 1.7509 39.96%
ExpAdam 1.6530 44.46% 1.7421 40.29%
`ada−Adam 1.6505 44.52% 1.7494 39.95%
Nadam 1.6509 44.51% 1.7487 40.01%
AMSGrad 1.6568 44.36% 1.7401 40.38%
AbsAMSGrad 1.6556 44.36% 1.7422 40.26%
`1−4−AMSGrad 1.6497 44.53% 1.7482 40.07%
AdaMax 1.6560 44.44% 1.7437 40.21%

TABLE 6.2: Results of all considered algorithms on the CIFAR-10 data
set using logistic regression. For both the training set and test set the
minimal cost and maximal accuracy on the entire set (after 20 iter-
ations over the entire training set) averaged over 5 runs with ran-
domly shuffled data is displayed, and per column the best value is

highlighted.

calculated for entire iterations over the training set, to obtain a more representative
outcome.

6.2.2 Results (G)

The results of the optimization algorithms on the experiment with logistic regression
on the CIFAR10 data set can be seen in Table 6.2.
In terms of training cost the `1−4 version of Adam again has the best result, directly
followed by the `1−4 version of AMSGrad, the `ada version of Adam, and standard
Nadam. Among the worst performing algorithms are standard SGD and SGD with
handbrake. Furthermore, it turns out that all new versions of Adam outperform the
standard version in terms of minimum training cost reached.
The results of the minimum test cost reached show that standard SGD has the best
performance here, at some distance followed by SGDHB and standard AMSGrad
and Adam. The `1−4 and `ada versions of Adam as well as standard Nadam form the
group of worst performing algorithms on the test cost. It seems again that algorithms
with a better score on the training set reach a worse score on the test set and vice
versa. Furthermore, the plots in Figure E.1 and Figure E.2 show a similar course of
the training cost and test cost as in the experiment with logistic regression on the
MNIST data set. The plots are zoomed in to be able to see the different lines. This
was needed due to the enormous drop in both test and training cost that occurred
in the first few iterations. After that the training cost keeps decreasing, but the test
cost starts to converge after about eight iterations over the training set. A difference
from the previous experiment is that the plots do not show a significant increase of
test cost after convergence occurs.

53

Chapter 7

Experiments on a multi-layer
perceptron

While in the previous chapter the optimization algorithms were tested on linear net-
works in a logistic regression setting, in this chapter they will be tested on several
multi-layer perceptrons (MLPs). A total of six different experiments are described in
this chapter.

7.1 MLP with 1 hidden layer on MNIST

In the first experiment, a selection of the optimization algorithms is tested on the
classification of the MNIST data set using a small neural network. This network
consists of the 784 input nodes, followed by 100 hidden nodes, and 10 output nodes.
The ReLU activation function is used in between the layers, and as loss function
cross-entropy is used. It is expected that this network has better results than the
linear network in the logistic regression experiment, due to the extra hidden layer
which provides multiple extra weights to optimize.

7.1.1 Experimental setup

In this experiment, the 12 selected algorithms are tested, as well as AbsAMSGrad
and `1−4-AMSGrad. These two have been added to find out if the performance dif-
ference between standard Adam and AMSGrad transits to the new versions of the
algorithms.
The optimal parameter setting for each algorithm is determined by running each al-
gorithm five times for 40 iterations on the MNIST data set. The setting that yielded
on average the smallest training cost is chosen as the optimal setting. The final pa-
rameter settings for all algorithms can be found in Table A.5.
In the experiment itself, the optimization algorithms are tested during 5 runs on the
MNIST data set. Each run consists of 100 iterations over the training set. A batch
size of 128 is used. After each full iteration, the average cost and accuracy on the
training set are calculated, and the performance on the test set is determined.

7.1.2 Results (H)

The results of this experiment are displayed in Table 7.1. The table shows the mini-
mum cost and maximum accuracy reached on the test set and the training set. These
values are all calculated from the average result over the 5 runs. Moreover, since
most algorithms were able to achieve 100% accuracy on the training set, a result is
added to the table indicating how many iterations over the training set were needed

54 Chapter 7. Experiments on a multi-layer perceptron

Algorithm Min train-
ing cost*

Max train-
ing accuracy

Avg to 100%
(st.dev.)

Min test
cost

Max test
accuracy

SGD 0.000254 100.00% 24.80(0.75) 0.0732 98.08%
SGDmom 0.000133 100.00% 19.80(0.75) 0.0803 98.17%
SGDNAG 0.000112 100.00% 19.40(1.50) 0.0793 98.13%
SGDHB 0.000130 100.00% 26.80(0.75) 0.1018 97.99%
Adam 0.000104 100.00% 36.20(3.97) 0.0813 97.94%
AdaMax 0.000003 100.00% 26.20(1.47) 0.0761 98.10%
Nadam 0.000015 100.00% 37.00(5.83) 0.0784 97.92%
AMSGrad 0.000107 100.00% 17.40(0.49) 0.0848 98.02%
AbsAdam 0.000014 100.00% 31.80(0.98) 0.0719 98.01%
`1−4−Adam 0.000040 100.00% 35.80(1.60) 0.0732 97.94%
ExpAdam 0.010232 99.73% -(-) 0.0872 97.55%
`ada−Adam 0.000030 100.00% 29.20(1.33) 0.0760 97.99%
AbsAMSGrad 0.000072 100.00% 16.60(0.49) 0.0852 98.07%
`1−4−AMSGrad 0.000050 100.00% 16.40(1.36) 0.0858 98.06%

TABLE 7.1: Results of all algorithms on the MNIST data set using an
MLP with 1 hidden layer of 100 nodes. For both the training set and
test set the minimal cost and maximal accuracy (after 200 iterations
over the entire training set) averaged over 5 runs with randomly shuf-
fled data are displayed, and per column the best value is highlighted.
Moreover, for the algorithms that on average reached a training ac-
curacy of 100%, it is indicated after how many training iterations this

happened.

to reach this accuracy level. This number is also the average over 5 runs, and there-
fore also the standard deviation is included, which indicates the difference in train-
ing speed between the 5 runs for each algorithm.
The results in the table show that all algorithms managed to get a training accuracy
of 100%, except for ExpAdam that only reached 99.73%. This is also the only al-
gorithm with a minimum training cost reached above 0.0003, namely slightly over
0.01. The other algorithms have a very small minimum training cost, and they lie
quite close to each other. One group has a minimum slightly over 0.0001, while the
other group has an even smaller minimum training cost. AdaMax managed to get
the smallest value with 0.000003.
The division in groups of the algorithms on the training cost reached, cannot be used
on the number of iterations to reach 100% accuracy on that training set. ExpAdam
has the highest minimum training cost and is the only algorithm that did not reach
100%. Some members of the group of algorithms with a minimum cost slightly over
0.01 reached 100% accuracy after about 30-40 iterations, but some also already within
less than 20 iterations. Moreover, the group of algorithms with the smallest training
cost includes also algorithms that needed 30-40 iterations as well as algorithms that
needed less than 20 iterations. Most algorithms have a small standard deviation for
this statistic, only standard Adam and Nadam have a standard deviation (much)
higher than 2. The fastest state of the art algorithm turns out to be AMSGrad, so the
Abs and `1−4 versions of that algorithm are also tested. It turns out that both new
versions outperform the standard AMSGrad algorithm, both in terms of minimum
training cost reached and number of iterations to reach 100%. This is also the case
for the Adam algorithm, where also the `ada version outperformed the standard ver-
sion.
The plots in Figure D.1 show for various algorithm groups the average training cost
per algorithm for each iteration (over 5 runs). There seem to be two groups of algo-
rithms: those with a smoothly decreasing line, and those with a lot of ups and downs

7.2. MLP with 1 hidden layer and batch normalization on MNIST 55

in their lines. This last group is formed only by adaptive learning rate algorithms,
namely Adam, Nadam, AbsAdam, ExpAdam, and `ada-Adam. Figure D.1a shows
that `1−4-AMSGrad is the fastest algorithm to reach convergence and that ExpAdam
is not even close to the other algorithms. In the first 15 iterations it keeps up with
the others, but from that moment it seems that it is not able to improve at all.
In terms of test cost and accuracy reached, most algorithms were able to reach a
cost between 0.07 and 0.09 (except for SGDHB), and an accuracy between 97.5% and
98.2%. This means that there seems to be no significant difference in performance
on the test set between any of the tested algorithms. AdaMax had the best test cost
from the state of the art algorithms, while SGD with standard momentum reached
the highest accuracy. All new versions of Adam, except for the Exp version, were
able to outperform the standard version of Adam. However, the Abs and `1−4 ver-
sions of AMSGrad had a slightly worse minimum test cost but a slightly better test
accuracy.
Figure D.2 shows for some algorithm groups for every algorithm the average test
cost per iteration (over 5 runs). Similarly to the plots in Figure D.6, the curves show
a rapid decrease in the first couple of iterations (this time 5-10 iterations), after which
a gradual increase happens. All SGD versions and all AMSGrad versions were able
to minimize this decrease, while the other state of the art algorithms and ExpAdam
have a quite rapid increase in test cost. However, each new Adam version outper-
forms its AMSGrad counterpart in terms of minimum test cost reached, as can be
seen in Figure D.2b and Figure D.2f, and these two also outperform standard Adam
as can be seen in Figure D.2d.

7.2 MLP with 1 hidden layer and batch normalization on MNIST

The next experiment is on a neural network very similar to the one used in the previ-
ous experiment, so with a hidden layer of 100 nodes, the ReLU activation function,
and the cross-entropy loss function. The only difference is the addition of a batch
normalization layer. This promises to speed up the learning process of the previous
experiment significantly. Batch normalization is applied to the output of the hidden
layer. The MNIST data set is again used as the test case.

7.2.1 Experimental setup

In this experiment, only the 12 optimization algorithms from the selected group are
tested. The optimal parameters for each algorithm are again determined by running
several different parameter settings for each algorithm over three runs. Each run
lasts 40 iterations over the training set with a batch size of 128. The parameter setting
with the on average lowest cost reached is chosen to be the optimal one. The final
parameter settings can be found in Table A.6.
The experiment itself is conducted by running each algorithm for 5 runs. Each run
lasts 100 iterations over the training set with a batch size of 128. After every iteration
the average training cost is calculated and the performance of the current network
on the test set is determined.

7.2.2 Results (I)

The results of this experiment are displayed in Table 7.2. The table shows again
for each algorithm the minimal average training and test cost reached, as well as

56 Chapter 7. Experiments on a multi-layer perceptron

Algorithm Min train-
ing cost*

Max train-
ing accuracy

Avg to 100%
(st.dev.)

Min test
cost

Max test
accuracy

SGD 0.00087 99.99% - 0.0746 97.92%
SGDmom 0.00126 99.97% - 0.0820 97.91%
SGDNAG 0.00058 99.99% - 0.0740 97.96%
SGDHB 0.00132 99.97% - 0.0809 97.72%
Adam 0.00078 99.99% - 0.0748 97.96%
AdaMax 0.00028 99.99% - 0.0713 97.97%
Nadam 0.00075 99.99% - 0.0761 97.82%
AMSGrad 0.00049 100.00% 57.20(6.82) 0.0746 98.03%
AbsAdam 0.00123 99.97% - 0.0754 98.00%
`1−4−Adam 0.00047 100.00% 82.60(9.99) 0.0759 97.85%
ExpAdam 0.00207 99.94% - 0.0796 97.89%
`ada−Adam 0.00047 100.00% 67.20(4.66) 0.0758 97.89%

TABLE 7.2: Results of all algorithms on the MNIST data set using an
MLP with 1 hidden layer of 100 nodes and batch normalization. For
both the training set and test set the minimal cost and maximal accu-
racy (after 200 iterations over the entire training set) averaged over 5
runs with randomly shuffled data are displayed, and per column the
best value is highlighted. Moreover, for the algorithms that reached
a training accuracy of 100%, it is indicated after how many training

iterations this happened.

the maximum average accuracy on the training and test set. Since again some al-
gorithms were able to reach a perfect score on the training set, a column is added
indicating the average number of iterations to reach this 100% accuracy and its stan-
dard deviation.
The results show that, although all of the algorithms managed to reach a training ac-
curacy above 99.90%, only three algorithms reached the perfect score of 100%. How-
ever, the algorithm with the lowest minimum training cost reached, which is just like
in the previous experiment AdaMax, is not among these three algorithms. These are
AMSGrad, `1−4-Adam and `ada-Adam, and so these latter two have outperformed
their standard version on the training set. The Abs and Exp versions however had
slightly worse results, with ExpAdam being the overall worst performing algorithm
on the training set. From the three algorithms that reached the perfect score, AMS-
Grad turned out to be the fastest to converge, with on average slightly over 57 iter-
ations needed. `ada-Adam has the second least amount of iterations needed: about
10 more, while `1−4-Adam needs about 83 iterations. The standard deviations are
quite high, much higher than in the previous experiment. The minimum training
cost and average iterations needed to reach 100% accuracy are also higher, while the
reached maximum accuracy is often lower. This means that the addition of the batch
normalization layer was in this case in terms of the performance on the training
set only beneficial for the ExpAdam algorithm, since this algorithm reached better
scores than in the previous experiment.
The influence of the addition of the batch normalization layer on the reached test
cost and accuracy is positive for some algorithms, mostly the state of the art adap-
tive learning rate algorithms, but negative for the other algorithms, including the
new versions and the SGD algorithms. However, the scores have not changed very
much. AdaMax, which also reached the lowest training score, reached the lowest
test score. AMSGrad had the highest test accuracy. The SGD algorithm with hand-
brake did outperform SGD with standard momentum on the test cost but not on
the test accuracy, and had a worse score than the other two SGD algorithms. All
new versions of the Adam algorithm were outperformed by the standard version of

7.3. MLP with 1 hidden layer on CIFAR10 57

Adam in test cost, but AbsAdam managed to reach a slightly higher test accuracy.
The plots in Figure D.3 show for several algorithm groups the average training cost
reached per iteration for each algorithm. All plots are zoomed in, such that the dif-
ferences between the various algorithms are better visible. However, in this case
they all have a very similar performance. The various waves in the lines are there-
fore mainly caused by the far zoom in.
The plots show that AMSGrad is fastest in the first part of the learning process, but
after about 70 iterations over the training set it starts to fluctuate more, leading to
an increase in training cost. In that phase AdaMax takes over the lead and keeps it
until the end. Looking at Figure D.3c it can be seen that ExpAdam is the worst per-
forming version of Adam during the entire run. `1−4-Adam and `ada-Adam seem to
take turns in having the lowest training cost. Adam and AbsAdam are in a similar
situation, but with a slightly higher cost than the two best-performing algorithms.
Figure D.3d shows the averaged performances of the SGD algorithms. The new SGD
algorithm with handbrake momentum seems to be behind for the biggest part of the
run, and only at the end it more or less matches the training cost of SGD with mo-
mentum. SGD with Nesterov momentum is the best performing algorithm in the
first 60 iterations, but then its cost suddenly increases. However, in the end it seems
to recover and reaches the lowest training cost of all SGD algorithms. At the very
end it seems to give away the lead to standard SGD.
Figure D.4 shows for various algorithm groups the average test cost reached per
iteration for each algorithm. These plots have been zoomed in slightly, except for
Figure D.4d which has no zoom.
The shapes of the lines are quite similar to each other, and also like the ones in the
previous experiments: a big decrease in the first 10 iterations followed by a gradual
increase for the rest of the run. However, there seems to be no algorithm that man-
ages to more or less restraint the increase.
At the minimum point of the test cost, it is clearly AdaMax which has the best result,
while SGDmom seems to reach the highest minimal test cost. This latter algorithm
also has the highest final cost, while AbsAdam, SGD, and AMSGrad have the low-
est final test cost. Figure D.4c shows that ExpAdam performs again worse than all
other Adam versions during almost the entire run. AbsAdam seems to have the
best performance during the phase with the big decrease of test cost, however it is
outperformed by Adam in reaching the lowest test cost. At the end of the run Ab-
sAdam regains the smallest test cost, and it also seems that `ada-Adam can match
this performance at the end. However, during the first couple of iterations in the run
it seems that this algorithm might be the worst performing algorithm together with
ExpAdam. In Figure D.4d it can be seen that standard SGD has the best performance
during almost the entire run, but SGD with Nesterov momentum reaches the lowest
minimum test cost. SGD with handbrake momentum performs worse than both but
better than SGD with standard momentum.

7.3 MLP with 1 hidden layer on CIFAR10

This experiment is similar to the first experiment described in this section, but now
the CIFAR10 data set has been used. Since it is more difficult to learn to classify
this data than the MNIST data set, mainly due to the bigger input caused by the
RGB type of the input images, the hidden layer in the neural network has 200 nodes
instead of 100.

58 Chapter 7. Experiments on a multi-layer perceptron

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.632 79.11% 1.419 51.26%
SGDmom 0.527 82.24% 1.429 51.19%
SGDNAG 0.447 84.70% 1.413 51.53%
SGDHB 0.587 80.22% 1.428 51.08%
Adam 0.415 86.09% 1.415 51.82%
AdaMax 0.407 86.43% 1.404 51.94%
Nadam 0.353 88.18% 1.411 51.98%
AMSGrad 0.402 86.75% 1.410 51.87%
AbsAdam 0.474 83.99% 1.425 51.54%
`1−4−Adam 0.417 85.82% 1.427 51.57%
ExpAdam 0.429 85.90% 1.405 51.81%
`ada−Adam 0.404 86.45% 1.414 51.90%
AbsNadam 0.397 86.50% 1.414 51.58%
`1−4−Nadam 0.351 88.21% 1.405 52.10%
`ada−Nadam 0.349 88.32% 1.402 51.96%
AbsAMSGrad 0.469 84.17% 1.421 51.45%
`1−4−AMSGrad 0.384 87.20% 1.417 51.79%

TABLE 7.3: Results of all algorithms on the CIFAR10 data set using
an MLP with 1 hidden layer of 200 nodes. For both the training set
and test set the minimal cost and maximal accuracy (after 40 iterations
over the entire training set) averaged over 5 runs with randomly shuf-
fled data are displayed, and per column the best value is highlighted.

7.3.1 Experimental setup

Apart from the algorithms in the selected group, this experiment is conducted on
the Abs and `1−4 versions of AMSGrad and Nadam and the `ada version of Nadam
as well. These are included to see if the difference between Adam and its versions
also occurs between AMSGrad and Nadam and their versions.
The parameters of all algorithms are optimized by running for each algorithm sev-
eral parameter settings. Each setting is tested in 3 runs, and the reached cost after
5 full iterations over the training set, with a batch size of 128, is taken as the selec-
tion criterion. The setting with the smallest average training cost reached is taken
as the optimal one. The final parameter settings for all algorithms are displayed in
Table A.9.
The performance of all optimized algorithms on the CIFAR10 data set using a neu-
ral network with a single hidden layer is measured by testing each algorithm for 5
runs. Each run lasts 40 iterations with a batch size of 128. Every 20 mini-batches the
current average training cost and accuracy (over the mini-batch) are stored, and the
performance on the entire test set is determined.

7.3.2 Results (J)

The results are displayed in Table 7.3. The table shows for every tested algorithm
the minimum average cost and maximum accuracy reached on the training set and
on the test set. It can be seen that all algorithms reach a much lower training cost
than test cost, and also the accuracy on the former is much better than on the latter.
There seems to be quite a difference between the algorithms in reached minimum
average training cost. The `ada version of Nadam reaches the smallest value, im-
mediately followed by the `1−4 and standard versions of Nadam. This same re-
sult applies to the maximum training accuracy reached. The worst algorithms in
terms of training cost are the SGD algorithms and the Abs versions of AMSGrad and
Adam (AbsNadam performs better than most of the other algorithms, but worst of

7.4. MLP with 1 hidden layer and batch normalization on CIFAR10 59

all Nadam versions). SGDHB does a better job than standard SGD, but far worse
than SGDNAG and SGDmom. ExpAdam also has a worse performance than stan-
dard Adam, but still better than AbsAdam. So only the new `ada and `1−4 versions
were all (except `1−4-Adam) able to improve the performance of their standard ver-
sions on the training set.
The plots in Figure E.3 show for groups of algorithms the average training cost over
the course of the learning process in the 5 runs. It can clearly be seen that the stan-
dard Nadam along with the `1−4 and `ada versions of Nadam outperform the other
algorithms during the entire run. Comparing this difference to the difference be-
tween these three versions of Nadam, it seems that the latter is much smaller. The
various plots show that the difference in performance between standard Nadam and
AMSGrad/Adam seems to transit to the new versions. Figure E.3i shows that dur-
ing the runs the order in the performance of the SGD algorithms remains the same.
Looking at the test scores in Table 7.3, it seems that the scores from different algo-
rithms lie much closer to each other than for the training scores: all algorithms reach
a minimum average cost between 1.40 and 1.43 and a maximum accuracy between
51.0% and 52.1%. `ada-Nadam had the lowest test cost reached (and therefore has the
best score in 3 of the 4 statistics), while the `1−4 version of Nadam had the highest
accuracy on the test set. SGDHB managed to outperform SGDmom on the mini-
mum test cost but reached a worse score than the other two SGD algorithms. For
the new versions of Adam, only `1−4- and ExpAdam did better than the standard, in
the group of AMSGrad algorithms neither did better than the standard, but for the
Nadam algorithms only Abs did not outperform the standard.
Figure E.4 shows the plots of the average test cost during the course of the runs.
Again the typical shape of the lines in the plot can be seen: a big decrease of test
cost, followed by a gradual increase. The difference between the algorithms in the
valley of the plot is not very clear. However, it can be seen that after the valley the
`1−4 version of Adam is worst in preventing the cost from increasing (at the end to-
gether with standard Nadam), while standard SGD does the best job here. From the
new adaptive learning rate versions, ExpAdam seems to have the best result. This is
a result similar to some cases in the logistic regression experiments, since ExpAdam
as well as SGD are among the worst performing algorithms on the training set.

7.4 MLP with 1 hidden layer and batch normalization on CI-
FAR10

Similarly to the experiments with a neural network with a single hidden layer on
the MNIST data set, the addition of batch normalization to the neural network with
a single hidden layer for the classification of data from the CIFAR10 data set should
increase the performance of the learning system.

7.4.1 Experimental setup

In this experiment, only the algorithms from the selected group have been tested.
The parameters of the algorithms are optimized with exactly the same method as in
the experiment on the neural network with a single hidden layer and without batch
normalization. The optimal parameter settings for the algorithms can be reviewed
in Table A.10.
The experiment itself is also conducted in the exact same fashion as the experiment

60 Chapter 7. Experiments on a multi-layer perceptron

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.622 78.89% 1.396 51.86%
SGDmom 0.554 81.01% 1.392 51.89%
SGDNAG 0.507 82.53% 1.388 52.03%
SGDHB 0.583 80.13% 1.383 52.07%
Adam 0.475 83.85% 1.376 52.40%
AdaMax 0.474 83.99% 1.361 52.66%
Nadam 0.432 85.25% 1.370 52.56%
AMSGrad 0.474 83.91% 1.365 52.64%
AbsAdam 0.515 82.32% 1.379 52.21%
`1−4−Adam 0.474 83.90% 1.375 52.32%
ExpAdam 0.683 76.63% 1.384 51.73%
`ada−Adam 0.481 83.54% 1.375 52.38%

TABLE 7.4: Results of all algorithms on the CIFAR10 data set using
an MLP with 1 hidden layer of 200 nodes and batch normalization.
For both the training set and test set the minimal cost and maximal
accuracy (after 40 iterations over the entire training set) averaged over
5 runs with randomly shuffled data are displayed, and per column

the best value is highlighted.

without batch normalization. So 5 runs per algorithm are conducted, with 40 iter-
ations per run and a batch size of 128. Every 20 mini-batches the average training
cost and accuracy are calculated and the performance on the test set is determined.

7.4.2 Results (K)

The results of this experiment can be seen in Table 7.4. Again the minimum training
cost is for all algorithms much lower than the minimum test cost, and the maximum
training accuracy is much higher than the maximum test accuracy. However, com-
pared to the results of the experiments on the neural network with 1 hidden layer
without batch normalization, the training scores are worse in this experiment while
the test scores are slightly better.
The training costs show some big differences between algorithms. Nadam had the
lowest average training cost and the highest training accuracy, both with quite a
distance to the other algorithms. The standard versions of Adam, AdaMax, and
AMSGrad, as well as `1−4-Adam, have the closest minimum average training cost,
immediately followed by `ada-Adam. AbsAdam and SGD with Nesterov momen-
tum are slightly worse, but the worst performing algorithms are again the other
SGD versions (including SGD with handbrake) and ExpAdam, which is the overall
worst performing algorithm with almost 1.6 times as high minimum average train-
ing cost as Nadam.
Plots of the average training cost over the course of the runs are displayed in Fig-
ure E.5. It can be seen that Nadam has the lowest average training cost during the
entire run, while ExpAdam has the highest one. Apart from this latter algorithm
and AbsAdam, which perform worse than Adam, there is no clear difference in per-
formance visible between the standard Adam algorithm and the new versions. Fig-
ure E.5d shows that SGD with handbrake has the usual performance: better than
standard SGD, but worse than the other two SGD versions.
The minimum test costs reached by the algorithms are also displayed in Table 7.4.
The values of the different algorithms are quite similar, between 1.36 and 1.4. AdaMax
had the best result, followed by AMSGrad. The worst results are from the SGD ver-
sions and ExpAdam, but SGD with handbrake was able to outperform the other
SGD versions this time. The standard Adam version was slightly outperformed by

7.5. MLP with 3 hidden layers on CIFAR10 61

both the `1−4 and the `ada version.
Figure E.4 shows for the different algorithm groups the average test cost per itera-
tion during the 5 runs. The plots are all zoomed in on the part of the plot with the
valley. The lines in the full plots were again of the same typical shape encountered
in all plots of test cost so far. The lines of the different algorithms are very close to
each other, but it can be seen that AdaMax reaches the lowest value. Moreover, it
seems that ExpAdam reached the valley in its curve somewhat later than the other
algorithms did. Similar to the plots of the training cost of this experiment, in Fig-
ure E.6c no clear difference between standard Adam and the `1−4 and `ada versions
is visible. AbsAdam and ExpAdam however have a somewhat higher minimum av-
erage test cost. Figure E.6d shows that SGDHB, although a bit slower than the other
algorithms, managed to reach a lower average value on the test cost than the other
SGD algorithms.

7.5 MLP with 3 hidden layers on CIFAR10

The neural networks tested on the CIFAR10 data set so far were not able to reach
a very high accuracy on the test set, 52% at the highest. In the experiments with
neural networks on the MNIST data set however the algorithms reached accuracies
far above 90%. This level of performance is not expected on CIFAR10, since already
a lot of systems have been trained on it and only much more complicated ones were
able to reach such a performance. However, the performance could in theory be
better with some additional hidden layers in the neural network. Therefore, in this
experiment a network with 3 hidden layers is used to see what the difference in
performance would be.

7.5.1 Experimental setup

The neural network has 32 · 32 · 3 = 3072 input nodes, followed by a first hidden
layer of 500 nodes. This layer is followed by a second hidden layer of 200 nodes and
a third hidden layer of 50 nodes. Finally, there is the output layer with 10 nodes for
the 10 different classes. In every layer, the ReLU activation function is used. As can
be seen, the deeper in the network the smaller the size of the layer becomes. This is
chosen with the use of the rule of thumb "It is good to have the size of the hidden layers
between the size of the input layer and output layer." (Russell and Norvig, 2016).
The algorithms tested in this experiment are only the ones from the selected group.
They have all been optimized in a similar way as in the previous experiments. Every
considered parameter setting is tested for 3 runs of each 5 iterations with a batch
size of 128, and the setting with the smallest training cost reached is chosen to be the
optimal one. These optimal parameter settings are displayed in Table A.13.
The experiment itself is also conducted in a similar manner as the previous ones.
Each algorithm is tested for 5 runs each lasting 40 iterations with a batch size of
128. Every 20 mini-batches the average training cost and accuracy over these mini-
batches are calculated and the current performance on the test set is determined.

7.5.2 Results (L)

The results of this experiment can be seen in Table 7.5. In terms of training cost, it
is clear that the new SGD algorithm with handbrake is by far the worst performing
algorithm. The other algorithms seem to be divided into two groups for the training
cost: the other SGD algorithms plus AbsAdam and ExpAdam reach a training cost

62 Chapter 7. Experiments on a multi-layer perceptron

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.268 90.80% 1.392 52.95%
SGDmom 0.220 92.46% 1.370 53.42%
SGDNAG 0.234 92.07% 1.372 53.48%
SGDHB 0.528 82.59% 1.397 52.82%
Adam 0.131 95.49% 1.353 54.21%
AdaMax 0.087 97.10% 1.359 54.04%
Nadam 0.131 95.61% 1.345 54.37%
AMSGrad 0.128 95.64% 1.360 54.09%
AbsAdam 0.208 92.86% 1.367 53.82%
`1−4−Adam 0.115 96.08% 1.349 54.50%
ExpAdam 0.180 94.19% 1.341 53.98%
`ada−Adam 0.112 96.19% 1.347 54.30%

TABLE 7.5: Results of all algorithms on the CIFAR10 data set using
an MLP with 3 hidden layers. For both the training set and test set
the minimal cost and maximal accuracy (after 40 iterations over the
entire training set) averaged over 5 runs with randomly shuffled data

are displayed, and per column the best value is highlighted.

between 0.18 and 0.25, and the other algorithms (all adaptive learning rate ones)
manage to get a value smaller than 0.14, with AdaMax having the very best score
of 0.087. The standard Adam algorithm was outperformed on the reached training
cost by both the new `1−4 variant and the new `ada version.
Plots of the algorithms grouped together about the average training cost reached
per iteration over the training set are displayed in Figure E.7. The line of the SGD
algorithm with handbrake seems to have a somewhat different course than the other
lines. It goes along with the rest until about the 20th iteration, but after this point
it reaches a sort of valley from which it also goes up again at the end of the runs.
The rest of the algorithms are clearly grouped together as described above, although
ExpAdam did seem to make more progress during the second part of the runs than
the other algorithms. Moreover, it seems that in the first half of the runs Nadam
reached the lowest average training cost, but it was overtaken by AdaMax which
then took the lead. In the end, Nadam was also outrun by the `1−4 and `ada versions
of Adam.
The minimum test costs reached for the algorithms are closer to each other than
the minimum training costs. However, SGD with handbrake had also in this case
the worst score of 1.397, closely followed by standard SGD with 1.392. All SGD
algorithms performed worse than all adaptive learning rate algorithms. ExpAdam
was able to reach the lowest minimum test cost with 1.341, but `1−4-Adam took the
highest test accuracy. These two versions along with `ada-Adam all outperformed
standard Adam on the minimum test cost reached.
The plots in Figure E.8 show the average test cost reached per iteration over the 5
runs. Note that these plots are all zoomed in, fixated on the part of the plot with the
valley. This can also be seen by the values on the x-axis, which show that a big part
on the right side of the plot has been taken out.
It can clearly be seen that, probably due to the described lag in the training cost of
ExpAdam with respect to the other algorithms (see Figure E.7), ExpAdam reaches
its minimum test cost two to four iterations over the training set later than the other
algorithms. However, it manages to reach a lower minimum value than the others.
SGD and SGDHB both seem to have the worst performance. In Figure E.8d it can
be seen that SGDNAG and SGDmom reach a more or less equivalent minimum test
cost. Figure E.8c shows that standard Adam has only a better result than the Abs

7.6. MLP with 3 hidden layers and batch normalization on CIFAR10 63

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.178 93.81% 1.337 53.74%
SGDmom 0.168 94.05% 1.334 53.95%
SGDNAG 0.156 94.48% 1.334 54.01%
SGDHB 0.196 93.13% 1.341 53.75%
Adam 0.138 95.31% 1.314 54.34%
AdaMax 0.123 95.74% 1.317 54.35%
Nadam 0.147 94.83% 1.317 54.63%
AMSGrad 0.117 95.95% 1.314 54.55%
AbsAdam 0.155 94.64% 1.327 54.01%
`1−4−Adam 0.134 95.45% 1.317 54.21%
ExpAdam 0.145 94.92% 1.328 54.26%
`ada−Adam 0.137 95.31% 1.312 54.43%

TABLE 7.6: Results of all algorithms on the CIFAR10 data set using
an MLP with 3 hidden layers and batch normalization. For both the
training set and test set the minimal cost and maximal accuracy (after
40 iterations over the entire training set) averaged over 5 runs with
randomly shuffled data are displayed, and per column the best value

is highlighted.

version. Moreover, it can be seen that the better performing versions reach their
minima (slightly) later than the standard version.

7.6 MLP with 3 hidden layers and batch normalization on
CIFAR10

The addition of batch normalization to the network with 1 hidden layer led to a
slightly higher performance on the test set, but a worse minimum cost and maxi-
mum accuracy on the training set. In this experiment, it is tried to find out if this
effect also occurs for the neural network with 3 hidden layers.

7.6.1 Experimental setup

The general architecture of the neural network in this experiment is the same as in
the previous one, but now batch normalization layers are added: one to the output
of the first hidden layer and one to the output of the second hidden layer. For this
experiment, only the algorithms in the selected group have been tested. The algo-
rithms have been optimized in the usual way: by taking the parameter setting that
yielded on average over 3 runs the smallest training cost after 5 iterations over the
training set with a batch size of 128. The obtained parameter settings for every algo-
rithm are displayed in Table A.14.
The experiment itself is also conducted in the usual way. Every optimized algorithm
is tested on 5 runs each lasting 40 iterations over the entire training set. A batch size
of 128 is taken, and after every 20 mini-batches the average training cost and accu-
racy over those mini-batches are determined and the performance on the test set is
calculated.

7.6.2 Results (M)

The results of this experiment can be seen in Table 7.6. The average training cost of
all algorithms seems to be a bit lower than in the previous experiment, but the best
result (now from AMSGrad) is much higher than the lowest average training cost

64 Chapter 7. Experiments on a multi-layer perceptron

reached in the previous experiment. In terms of the test cost however, the scores
seem to be somewhat lower and the lowest score (from `ada-Adam) is also smaller
than the one in the previous experiment.
SGDHB again has the worst performance regarding the minimum average training
cost reached, followed by the other SGD versions from which SGDNAG performed
the best. This algorithm is only slightly worse than the worst adaptive learning rate
algorithm, which is AbsAdam. The worst performing state of the art adaptive learn-
ing rate algorithm is Nadam. This is a bit of a surprise, since in the previous experi-
ments this algorithm was among the best performing, if not the very best. The stan-
dard version of Adam was outperformed by both the `ada and `1−4 versions. Plots of
the average training cost per iteration over the 5 runs for each algorithm can be seen
in Figure E.9. The plots are zoomed in on the last couple of iterations to make the
difference in performance between the various algorithms more clearly visible. The
SGD algorithms are clearly worst performing together with AbsAdam, and SGDHB
is the very worst. Figure E.9c shows the various Adam algorithms. ExpAdam has a
much higher cost than the other algorithms, but `1−4-Adam, `ada-Adam, and some-
times also standard Adam seem to take turns for the smallest average training cost.
The test costs of the algorithms are very close to each other: all between 1.31 and
1.341. The worst scores are again from the SGD algorithms, with SGDHB having the
very worst. From the adaptive learning rate algorithms, the Exp and Abs versions of
Adam have the highest minimum costs reached, and the other algorithms are very
close to each other: 1.312 to 1.317. Standard Adam was only outperformed by the
`ada version. Finally, Nadam reached the highest test accuracy. Plots of the average
test cost for each iteration over the 5 runs are displayed in Figure E.10. These plots
are again zoomed in on the part of the plot with the valley, since the lines again have
the same typical shape as in the plots of the test cost in the previous experiments. It
seems that in this case all algorithms reach their minimum value for the test cost at
more or less the same iteration. These plots do therefore show the same result as the
column of the Min test cost in Table 7.6: SGDHB has the worst score, and `ada-Adam
reached the lowest cost on the test set.

65

Chapter 8

Convolutional neural network
experiments

For the image data in the MNIST and CIFAR10 data sets a standard multi-layer per-
ceptron can be a good classifier. However, a convolutional neural network (CNN) is
almost always an even better classifier, due to the use of its kernels. In this chapter,
three experiments are described each involving a CNN. The first experiment is on
the classification of the MNIST data set, while the other two are on the CIFAR10 data
set. For each experiment, the network architecture and the experimental setup are
described, after which the obtained results are discussed.

8.1 CNN on MNIST

In the experiments with a neural network with 1 hidden layer on the MNIST data
set, almost all algorithms were able to reach a perfect score (100% accuracy) on the
training set, while having more than 95.0% accuracy on the test set. This means
that there is not much room for improvement on the training set, but on the test set
the CNN could have a better result. Moreover, since this research is in the first place
about the performance of the newly developed optimization algorithms with respect
to the state of the art ones, this experiment also gives an indication if the difference
in performance in the experiments on MLPs also occurs when a CNN is used.

8.1.1 Network architecture

The convolutional neural network that is used in this experiment is adapted from
https://github.com/vinhkhuc/PyTorch-Mini-Tutorials. The architecture of the
network consists of multiple layers. The network starts with a convolutional layer
of 5 kernels, each of size 5x5, followed by a max-pooling layer with a 2x2 window
and a ReLU layer. After this a second convolutional layer is included, this time
with 20 kernels of size 5x5. After this, a drop out layer is included with the default
probability of 0.5. Again a max-pooling layer with a 2x2 window and a ReLU layer
follow. After this, the 2D output is converted to 1D using a custom implementation
of a "Flatten" module added to the PyTorch package. The obtained vector of 320
values goes through a hidden layer of 50 nodes, and after this the ReLU activation
function is applied. Next up is another dropout layer with the default probability of
0.5, and finally the output layer.

https://github.com/vinhkhuc/PyTorch-Mini-Tutorials

66 Chapter 8. Convolutional neural network experiments

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.0444 98.61% 0.0589 98.34%
SGDmom 0.0455 98.55% 0.0604 98.29%
SGDNAG 0.0405 98.69% 0.0565 98.41%
SGDHB 0.1386 96.30% 0.1190 96.73%
Adam 0.0410 98.70% 0.0562 98.44%
AdaMax 0.0410 98.74% 0.0555 98.49%
Nadam 0.0406 98.72% 0.0545 98.41%
AMSGrad 0.0470 98.50% 0.0607 98.31%
AbsAdam 0.0418 98.69% 0.0572 98.40%
`1−4−Adam 0.0424 98.67% 0.0581 98.41%
ExpAdam 0.0803 97.52% 0.0812 97.59%
`ada−Adam 0.0395 98.75% 0.0544 98.48%

TABLE 8.1: Results of all algorithms on the MNIST data set using
a convolutional neural network with 2 convolutional layers (second
with dropout) followed by a fully connected hidden layer of 50 nodes
and dropout. For both the training set and test set the minimal cost
and maximal accuracy (after 200 iterations over the entire training
set) averaged over 5 runs with randomly shuffled data are displayed,

and per column the best value is highlighted.

8.1.2 Experimental setup

In this experiment, only the optimization algorithms from the selected group are
tested. Every algorithm is optimized by tuning its parameters. Several configura-
tions per algorithm have been tested during 3 runs of each 40 iterations over the
entire training set, using a batch size of 128. The parameter setting that reached the
on average smallest training cost is chosen to be the optimal one. The obtained pa-
rameters are displayed in Table A.7.
The experiment is conducted by running each optimized algorithm over 5 runs.
Each run lasted 100 iterations, and again a batch size of 128 is used. After every
iteration, the average training cost and the training accuracy are calculated, and the
current performance on the test set is determined.

8.1.3 Results (N)

The results of this experiment can be seen in Table 8.1. The algorithms seem to reach
a bigger minimum average training cost and smaller training accuracy, but a smaller
minimum average test cost and a higher test accuracy than in the experiments with
the MLPs.
The `ada-Adam algorithm turns out to perform the best of all algorithms on the train-
ing cost and accuracy. It is the only algorithm with a minimum training cost below
0.04, but most of the other algorithms are not far behind. Only SGD with hand-
brake momentum and ExpAdam have a much higher minimum average training
cost. The state of the art SGD algorithms do not seem to be inferior to the adap-
tive learning rate algorithms in this experiment: SGDNAG even manages to obtain
the second-best score on the minimum average training cost reached. The standard
Adam algorithm is only outperformed by the `ada-version.
The plots in Figure D.7 show for this experiment for different algorithm groups the
average training cost reached per iteration over the 5 runs. The plots are slightly
zoomed in, such that the differences between the algorithms are more clearly visi-
ble. Only the plot showing all algorithms is not zoomed in, such that the SGDHB
performance can also be seen. This performance is quite bad since it does not only

8.2. CNN on CIFAR10 67

reach a minimum average training cost nearly as low as the other algorithms but also
starts to increase its training cost again after about 30 iterations over the training set.
This makes the shape of the plot of SGDHB unique among the plots of all algorithms.
Furthermore, the plots show that ExpAdam is also performing worse than most of
the algorithms. However, contrary to SGDHB it manages to keep on decreasing its
training cost until the last iteration. The other algorithms are quite close to each
other, but Figure D.7b shows that AMSGrad is also performing slightly worse than
the others, and the gap seems to increase towards the end of the run. Figure D.7c
shows that, except for ExpAdam, there is hardly any difference in performance be-
tween the Adam versions. At the start of the runs it seems that AbsAdam takes the
lead, but at the end it reaches a similar minimum value as standard Adam, `1−4-
Adam and `ada-Adam.
Looking at the scores on the minimum test cost reached, it turns out that also here
`ada-Adam has the best performance, directly followed by Nadam. It reached the
second highest test accuracy reached, just behind AdaMax. It seems that the algo-
rithms with the worst score on the training cost also have the highest values for the
minimum test cost reached. Apart from these algorithms, the scores of the various
algorithms lie quite close to each other: between 0.054 and 0.061. It seems that the
SGD algorithms are somewhat behind the adaptive learning rate algorithms on the
test set, but this is also only a narrow gap. The standard version of the Adam algo-
rithm again is only outperformed by the `ada variant.
Figure D.8 shows for the various algorithm groups the average test cost per itera-
tion during the 5 runs. These plots are also zoomed in to enhance the visibility of
differences in performance, only Figure D.8 shows the full plot to keep SGDHB in
view. This algorithm again has a very bad performance, and this is probably a con-
sequence of the progress in the training cost. Its average test cost plot is somewhat
similar to its average training cost plot: decrease until about 30 iterations, and after
that slow increase with at the end suddenly a big increase. In general, the plots of
the training cost and test cost for all algorithms look quite similar. A major differ-
ence is that the group of algorithms with the best performance keeps on decreasing
its training cost, however their test costs seem to have converged after about 20 it-
erations after which it stays at the same level. This is unlike the test cost plots in
the experiments on logistic regression or an MLP, where a typical valley occurred
somewhere in the first half of the iterations after which the test cost started to slowly
increase again. The plots show that the best performing algorithms are very close to
each other, and the various Adam algorithms except for ExpAdam do therefore also
have a similar performance.

8.2 CNN on CIFAR10

Similarly to the MNIST data set also for the CIFAR10 data set an experiment is con-
ducted with a convolutional neural network. The results of the experiments with an
MLP showed that these learning systems were not able to reach a very high test ac-
curacy with any optimization algorithm, also the addition of two extra hidden layers
did not really work. The maximum test accuracy obtained in all these experiments
was 54.63% by the Nadam algorithm. On the training cost, the results were some-
what better, but an even close to perfect score was never reached: the maximum here
was 97.10% by AdaMax. This means that there is quite some room for improvement
for a CNN.

68 Chapter 8. Convolutional neural network experiments

8.2.1 Network architecture

The convolutional neural network used in this experiment consists of 2 convolu-
tional layers followed by a fully-connected layer. The first convolutional layer uses
six kernels of size 5x5 on the 3D input (2D images from 3 different channels in the
RGB data structure), after which the ReLU activation function is applied and max-
pooling is performed over 2x2 windows. The result is put into another convolutional
layer, this time with 16 kernels of size 5x5. Again the ReLU activation function is ap-
plied, and max-pooling with a 2x2 window is included. The result is transformed
from the 3D matrix to a vector using the customary implemented module "Flatten".
The result, which includes 400 values, is directly fully connected to the output layer
of 10 nodes, for the different classes in the data set. Cross-entropy is again used as
the loss function.
Note that the order of ReLU and max-pooling is switched around in this network
with respect to the CNN used on the MNIST data set. This order does not really
matter since max-pooling is only a reduction operation leaving the maximum value
from the set. Applying the activation before or after therefore does not matter for the
result. The only difference is computation time since max-pooling takes away values
to which otherwise also the activation function would be applied. Since the ReLU
function, which is a computationally very cheap function, is used, the difference in
computation time would also be quite small.

8.2.2 Experimental setup

The group of algorithms tested in this experiment consists of the algorithms from the
selected group, plus a single extra algorithm which is `1−4-Nadam. This algorithm
is included to find out if the effect of this new variant on the Adam algorithm also
manifests for the Nadam algorithms.
The algorithms are all optimized in the usual way. For all algorithms, different pa-
rameter settings are tested during 3 runs where each run lasts 20 iterations over the
training set. A batch size of 128 is used. The configuration that reached the smallest
average training cost was selected as the optimal one. The final parameters for all
algorithms can be found in Table A.11.
The experiment itself is conducted by running each optimized algorithm during 5
runs of each 40 iterations. Again a batch size of 128 is used, and after every 20
mini-batches, the average training cost and accuracy are calculated over these last
20 mini-batches. Furthermore, the performance of the current network on the test
set is determined.

8.2.3 Results (O)

The results of this experiment are displayed in Table 8.2. It can be seen that the scores
on the training set do not meet the scores obtained in the experiments with an MLP,
but the scores on the test set are much better.
Looking at the scores on the minimum average training cost reached, it turns out
that standard Nadam has reached the smallest value, directly followed by AMS-
Grad and `1−4-Nadam. This means that the (small) increase in performance on the
test set for `1−4-Adam with respect to standard Adam does not apply to the Nadam
algorithm. This variant of Adam is also the only one that outperforms the standard
version. ExpAdam is the worst performing algorithm of all, while AbsAdam is only
slightly better than the SGD algorithms, which make up the rest of the group of

8.2. CNN on CIFAR10 69

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.960 66.69% 1.084 62.96%
SGDmom 0.953 66.77% 1.091 62.71%
SGDNAG 0.950 66.96% 1.093 62.89%
SGDHB 0.966 66.58% 1.095 62.89%
Adam 0.930 67.59% 1.078 63.22%
AdaMax 0.939 67.30% 1.081 63.45%
Nadam 0.905 68.55% 1.040 64.47%
AMSGrad 0.907 68.52% 1.045 64.59%
AbsAdam 0.945 67.04% 1.089 62.77%
`1−4−Adam 0.927 67.87% 1.065 63.90%
ExpAdam 1.084 62.33% 1.143 60.01%
`ada−Adam 0.939 67.31% 1.080 63.10%
`1−4−Nadam 0.915 68.30% 1.054 64.00%

TABLE 8.2: Results of all algorithms on the CIFAR10 data set using
a convolutional neural network with 2 convolutional layers and one
fully connected layer. For both the training set and test set the min-
imal cost and maximal accuracy (after 40 iterations over the entire
training set) averaged over 5 runs with randomly shuffled data are

displayed, and per column the best value is highlighted.

worst performing algorithms. SGD with handbrake momentum could not outper-
form the other SGD algorithms.
Plots of the average training cost per iteration over the 5 runs of each algorithm can
be seen in Figure E.11. ExpAdam is clearly by far the worst performing algorithm,
although at the very start standard SGD has the highest score. Furthermore, it looks
like SGDNAG has the best score in the first part of the runs, but then the two Nadam
versions take over. Figure E.11f shows that during the first 25 iterations the `1−4
version performs better and that the standard version only surpasses it near the end
of the runs. This is not the case for the Adam algorithms, whose plot in Figure E.11c
is slightly zoomed in to make the difference between the versions more clearly vis-
ible. These algorithms seem to have an almost equal plot while outperforming the
other versions during the entire runs. Figure E.11d shows that SGDHB has the lead
over standard SGD for the biggest part of the runs, and only at the end it is sur-
passed.
The values of the average minimum test costs reached in Table 8.2 show that also
here Nadam has the best performance, and once again AMSGrad and `1−4-Nadam
follow at a small distance. It seems that for each algorithm the relative perfor-
mance on the training set carries through in the relative performance on the test
set. Again ExpAdam is worst performing, followed by the SGD algorithms (from
which SGDHB has the worst score) and AbsAdam. However, standard SGD is the
best performing SGD algorithm in this case, while it was, except for SGDHB, the
worst performing algorithm on the training set. Standard Adam is again only out-
performed by its `1−4 variant.
The plots of the various algorithm groups showing the average test cost per iteration
over the 5 runs are displayed in Figure E.12. These plots seem to be very similar to
the corresponding plots of the training cost. This is different from the test plots in
other experiments, where often a typical learning effect on the test set occurred, re-
sulting in a valley in the first part of the plot followed by a slow increase in test cost,
but more similar to the plots obtained in the experiment with a CNN on MNIST. In
this case however, it seems that after 40 iterations over the training set the point in
the learning process where the test cost increases again or at least stabilizes is not yet

70 Chapter 8. Convolutional neural network experiments

reached. This could mean that an even lower test cost could be reached using this
convolutional neural network when it is trained for more iterations.

8.3 CNN with batch normalization on CIFAR10

In the experiments with CIFAR10 on the MLPs, the results show that the addition
of batch normalization to the deep learning system in general improves the perfor-
mance on the test set, while slightly worsening the performance on the training set.
Since the results of the previous experiment still keep plenty of room for improve-
ment, it is investigated in this experiment if this effect also occurs when a convolu-
tional neural network is used instead of a standard multi-layer perceptron.

8.3.1 Network architecture

The convolutional neural network is built up in a same way as the one used in the
previous experiment, but now batch normalization is included. The network starts
with a convolutional layer with six kernels of size 5x5 on the 3D input (2D images
from 3 different channels in the RGB data structure), after which batch normaliza-
tion is performed, the ReLU activation function is applied and max-pooling is added
over 2x2 windows. The result is put into another convolutional layer, this time with
16 kernels of size 5x5, followed by batch normalization. Again the ReLU activation
function is applied, and max-pooling with a 2x2 window is included. The result is
transformed from the 3D matrix to a vector using the custom implemented module
"Flatten" added to the PyTorch package. The result, which includes 400 values, is
directly fully connected to the output layer of 10 nodes, for the different classes in
the data set. Cross-entropy is again used as the loss function.

8.3.2 Experimental setup

In this experiment, only the algorithms in the selected group are considered. The
parameters of all algorithms are optimized in the usual way, by taking the configura-
tion that reached on average over 3 runs the smallest training cost after 20 iterations
over the entire training set with a batch size of 128. The resulting parameters are all
displayed in Table A.12.
In the experiment itself, each optimized algorithm is tested during 5 runs each last-
ing 40 iterations over the training set with a batch size of 128. Every 20 mini-batches
the average training cost and accuracy are calculated, and the current performance
on the test set is determined.

8.3.3 Results (P)

The results of this experiment are displayed in Table 8.3. It can be seen that for all
algorithms the performance on both the training set and the test set has increased
compared to the previous experiment.
The algorithm with the smallest minimum average training cost reached turns out
to be SGD with Nesterov momentum. The SGD algorithms are not clearly inferior to
the others regarding the training cost, although standard SGD is the second worst al-
gorithm on this statistic after ExpAdam. The gap between this latter algorithm and
the rest is smaller than in the previous experiment: its minimum average training

8.3. CNN with batch normalization on CIFAR10 71

Algorithm Min training cost* Max training acc Min test cost Max test acc
SGD 0.9112 68.44% 1.0321 64.87%
SGDmom 0.8952 69.00% 1.0309 64.71%
SGDNAG 0.8769 69.57% 1.0224 65.16%
SGDHB 0.9082 68.54% 1.0378 64.48%
Adam 0.8985 68.88% 1.0339 64.50%
AdaMax 0.8811 69.46% 1.0241 65.05%
Nadam 0.8782 69.50% 1.0219 65.00%
AMSGrad 0.8976 68.78% 1.0415 64.30%
AbsAdam 0.9061 68.55% 1.0378 64.54%
`1−4−Adam 0.8879 69.10% 1.0242 65.05%
ExpAdam 0.9267 67.90% 1.0409 64.27%
`ada−Adam 0.8972 68.94% 1.0280 64.78%

TABLE 8.3: Results of all algorithms on the CIFAR10 data set using
a convolutional neural network with 2 convolutional layers and one
fully connected layer with batch normalization. For both the train-
ing set and test set the minimal cost and maximal accuracy (after 40
iterations over the entire training set) averaged over 5 runs with ran-
domly shuffled data are displayed, and per column the best value is

highlighted.

cost is only 0.05 higher than the one for SGDNAG. SGD with handbrake manages
to outperform standard SGD but performs worse than the other two. Looking at the
different versions of Adam, it turns out that standard Adam is outperformed by the
`1−4- and `ada variants.
Plots of the training cost reached per iteration averaged over 5 runs of the various
algorithm groups can be seen in Figure E.13. The plots are all zoomed in on the right
side of the plot with the minimum values, such that differences are more clearly vis-
ible. This makes only the part of the lines visible after about 12 to 30 iterations (so
ExpAdam needed about 18 more iterations to reach the training cost of Nadam at
iteration 12). In this part of the plot, it can be seen that Nadam and SGDNAG more
or less take turns in the leadership, with AdaMax and `1−4-Adam close behind. This
latter algorithm has during the iterations visible in the plot always a better score than
standard Adam, but it seems that the size of the gap stays roughly the same which
would mean that the lead has been gained in the first 15 iterations of the runs. `ada-
Adam seems to compete with standard Adam, while AbsAdam performs somewhat
worse. SGDHB has the lead over standard SGD, but it seems that the latter slowly
catches up with it.
Looking at the scores on the minimum average test cost reached in Table 8.3 it turns
out that Nadam has the best score of 1.0219 which is about 0.018 smaller than on the
CNN without batch normalization. SGDNAG however is not far behind and even
manages to reach the highest average accuracy on the test set. The scores of the al-
gorithms are very close to each other: the difference between AMSGrad, which has
the worst score of 1.0415, and Nadam is less than 0.02. SGDHB is not able to outper-
form any of the other SGD algorithms on the test set but does outperform several
of the adaptive moment algorithms. Standard Adam is again only outperformed by
the `1−4- and `ada variants. Figure E.14 shows for the different algorithm groups a
plot of the test cost reached per iteration over the training set, averaged over the
5 runs. These plots are also zoomed in on the part of the plot with the minimum
values for the algorithms to make the differences more clearly visible. It can be seen
that the plots have roughly the same shape as the plots of the training cost, similarly
to the plots of the results from the previous experiment. So probably also here the

72 Chapter 8. Convolutional neural network experiments

test cost could be decreased further by optimizing the weights for more iterations on
the training set. Figure E.14d shows that SGDNAG takes a big lead in the first half
of the runs and that the other algorithms only slowly catch up during the second
part. Furthermore, SGDHB is at the end overtaken by standard SGD. Figure E.14b
shows that Nadam is the leading adaptive learning rate algorithm during the entire
runs, and `1−4-Adam is constantly second. Standard Adam has a reached minimum
value for the test cost that the `1−4 variant already reached after 22 iterations over
the training set, which is about 15 iterations earlier. Furthermore, there seems to be
more difference in this test plot between standard Adam and its `ada variant than
in the plots of the training cost, with the variant taking a bigger lead. AbsAdam
performs slightly worse than the standard, while ExpAdam seems to be the worst
performing algorithm during the entire runs. However, ExpAdam seems to almost
catch up with AbsAdam and AMSGrad at the end of the runs with quite a steep
decrease in the line, so maybe after some additional iterations it could even catch up
with standard Adam.

8.4 Comparison of CNN and MLP

Given the results of the several experiments on MNIST and CIFAR10, a small com-
parison can be made of the performances on multi-layer perceptrons and convolu-
tional neural networks.
The results suggest that the CNN can reach higher scores on the test set than the
MLP. In the experiments on an MLP, the minimum test cost was always reached
somewhere in the first part of the runs, and after that it often increases again while
the training cost kept decreasing. This is a sign of overfitting the network on the data
in the training set, which made the MLP reach a lower minimum training cost than
the CNN. The results of the CNN’s on the CIFAR10 data set however indicate that at
the end of the runs the network might not be fully optimized such that the minimum
test cost has been reached since this value is still decreasing. Nonetheless, it already
reached a test cost lower than the MLPs managed to reach at their minimum, so the
CNN performed much better. This applies also to the MNIST data set, in which the
CNN did reach the minimum test cost for most optimization algorithms in the first
part of the runs, but after that it managed to keep it at that level.
Another observation of the results is that the addition of batch normalization seems
to have less influence on the performance of the CNN than for the MLP. This might
suggest that the use of shared weights in the kernels, and of course in the case of
the CNN on MNIST also the inclusion of dropout in the network, already leads to a
significant amount of regularization in the network.

73

Chapter 9

General discussion

In the previous five chapters, several experiments are described in which the exist-
ing optimization algorithms for gradient descent in deep learning systems are com-
pared. All these experiments together make up for a big pile of results left for inter-
pretation. In this chapter, it is tried to highlight the most important or noteworthy
aspects in this pile of results, and to find out the reasons behind them.

9.1 Summary of results

As already noted in section 3.3 which describes the general methodology of the ex-
periments conducted in this thesis, it is not convenient for a final performance com-
parison to compare the algorithms on each individual experiment. Instead, the scor-
ing system also described in that section is used for this purpose. The results of this
are displayed in Table 9.1. This table shows for each algorithm the points obtained
from the performance ranking on each individual experiment. These experiments
are named A to P such that the table would fit on the page, and the correspond-
ing experiment is indicated by the letter between brackets in the titles of the result
section of every experiment in this thesis. As also indicated in the section which
includes the description of this scoring system: the ranking criterion of each exper-
iment is indicated by an asterisk (*) behind the name of the considered statistic in
their respective result tables.
It is nice to see that the state of the art algorithms appear in the ranking in the ta-
ble more or less in the chronological order of proposal: the only thing here is that
the AMSGrad algorithm should be higher than Nadam, but apart from this is (from
worst to best) SGD-SGDmom-SGDNAG-Adam-AdaMax-AMSGrad-Nadam a per-
fect reflection of the historical development of optimization algorithms for gradient
descent in neural networks. Since AMSGrad was proposed as an improvement of
Adam and not of Nadam (they can even be combined into NAMSGrad, which by
the way does not automatically make up for a superior algorithm, as shown in the
first couple of experiments in this thesis), these results indicate that every step in the
developmental process is indeed an improvement of the previous one. It therefore
also shows that the adaptive learning rate algorithms are superior to the standard
SGD algorithms.
In that light, the results show a possible next step in the progress towards the opti-
mal algorithm, since both `1−4-Adam as well as `ada-Adam appear on the very top
of the ranking. Their score differs by only a single point, but it differs quite signifi-
cantly from Nadam, which has a steady third place. The standard version of Adam
only appears as sixth, just before AbsAdam. ExpAdam has a bad score since it is
the worst among the adaptive learning rate algorithms and also below SGD with
Nesterov momentum. SGD with handbrake momentum also has a bad score. It was
intended as an improvement for SGDmom, but the results show that it is hardly an

74 Chapter 9. General discussion

ALG A B C D E F G H I J K L M N O P tot
`1−4−Adam 12 12 11 11 8 12 12 8 10 7 9 10 10 6 10 9 157
`ada−Adam 6 11 10 12 12 11 11 9 11 10 7 11 8 12 8 7 156
Nadam 3 7 8 6 10 9 10 10 7 12 12 8 6 10 12 11 141
AMSGrad 5 9 9 10 11 7 4 6 9 11 10 9 12 3 11 6 132
AdaMax 7 3 6 2 6 5 6 12 12 9 8 12 11 8 7 10 124
Adam 4 8 7 8 5 8 3 7 6 8 11 7 9 9 9 5 114
AbsAdam 10 10 12 9 7 6 5 11 4 4 5 5 5 7 6 4 110
SGDNAG 8 5 3 3 4 4 8 5 8 5 6 3 4 11 5 12 94
ExpAdam 9 2 5 7 9 10 9 1 1 6 1 6 7 2 1 1 77
SGDmom 11 4 4 4 3 3 7 3 3 3 4 4 3 4 4 8 72
SGDHB 1 6 2 5 2 1 2 4 2 2 3 1 1 1 2 3 38
SGD 2 1 1 1 1 2 1 2 5 1 2 2 2 5 3 2 33

TABLE 9.1: The score for each algorithm from the selected group ob-
tained in every experiment conducted in this thesis. The best per-
forming algorithm among this group in a single experiment gets 12
points, second best 11, etc., and the worst performing gets 1 point.
The points for every algorithm are accumulated in the rightmost col-
umn, and the algorithms are in descending order of this final score.

improvement of standard SGD.
It must be said that the attempt made in Table 9.1 to summarize the differences in
performances between the algorithms in the experiments ignores how much the re-
sults differed. However, the small analyses of the results of each experiment showed
that often the differences between the best scoring algorithms were very small, while
in most of the cases the worst algorithms reached a much higher minimal cost than
average. This might indicate that the more recent a development in optimization
techniques is proposed, the smaller the improvement in performance gets. The
scores also ignore the difficulty of the task. For example, the Rosenbrock function
is much easier to optimize than a CNN for CIFAR10. It can also be seen that, when
the experiments on Rosenbrock and XOR are removed, suddenly Nadam performs
best, but Adam is still outperformed by `1−4-Adam and `ada-Adam. The results
on the experiments showed that the more complicated the used classifier becomes,
the smaller the differences in performance between the optimization algorithms be-
comes. This might indicate that for bigger systems the optimization algorithm has
less influence, probably due to the many weights to optimize and thus several ways
to reduce the cost.

9.2 Analysis of algorithms

In this section, it is tried to analyze and interpret the results of the five different new
optimization algorithms, and to find out for each of them if it is an improvement.
This is done using the results in Table 9.1 and some of the feature plots in Appendix
C. These kinds of plots are available for all experiments with MNIST or CIFAR10
(experiments F to P in Table 9.1), and since there are eight different features (as de-
scribed in section 3.3) for at least four considered groups per experiment, it is at least
impractical to include them all in this thesis. Moreover, for some statistics the plots
from different experiments turn out to be quite similar. Therefore it is decided to
use the feature plots from only two of the experiments as a reference for each algo-
rithm group. As first experiment the one with the most similar order of considered
algorithms when compared to the final order is chosen, and as second experiment
the one with the most unsimilar order. This turns out to be experiments J (CIFAR10

9.2. Analysis of algorithms 75

on MLP with 1 hidden layer) and N (MNIST on CNN) for the SGD algorithms, and
experiments P (CIFAR10 on CNN with batch normalization) and H (MNIST on MLP
with 1 hidden layer) for the Adam variants.

9.2.1 SGD with handbrake

As already indicated, this algorithm turned out to be a failure, since the purpose was
to at least level the performance of SGDmom and SGDNAG, but the results showed
it could barely outperform standard SGD. Table 9.1 shows that the algorithm is of-
ten among the two worst performing algorithms, and its highest scores are sixth and
seventh on two of the experiments on XOR.
In the introduction of this algorithm in Chapter 3, it was reasoned that the hand-
brake would prevent the weights to go uphill (due to the momentum term) after a
(long) downhill movement, so a bit like the idea behind Nesterov accelerated gradi-
ent momentum. In this way, the weights can make use of the momentum term when
it is still safe to do so, and get rid of it the moment the gradient starts to point in the
opposite direction. This would in theory improve the performance of SGD with stan-
dard momentum. Except for three incidental better scores, the results show clearly
no improvement but retrogression with respect to SGDmom.
To get an idea about the reasons why the algorithm does not work as expected, the
feature plots of the SGD algorithms are considered for experiments J (most similar to
final performance results) and N (most unsimilar). The feature plots of experiment
J are displayed in Figure F.1. In this experiment SGDNAG performed best, followed
by SGDmom, SGDHB, and finally standard SGD. Figure F.1c shows that the better an
algorithm performed, the bigger the obtained gradients on average were. This could
also be derived from Figure F.1a, which shows the average gradient: the value for
SGD lies constantly very close to zero, while SGDHB’s values are somewhat bigger
(and on average almost everywhere positive), and SGDNAG and SGDmom reach
much bigger values both on the positive and negative side. The plots of the stan-
dard deviations of the gradient and absolute gradient are very similar to the plot
of the average absolute gradient, but not exactly the same. So from this it can be
concluded that averaged over the five runs in the experiment, the standard SGD al-
gorithm got on average (over the gradients in the mini-batches per iteration) much
smaller gradients over the entire run than the other algorithms. So this is a remark-
able difference, but it is more important what the algorithm does with the gradients.
Figure F.1b and Figure F.1d try to give some answers by showing the average delta
weight and the average absolute delta weight per iteration averaged over the five
runs in the experiment. It is clearly visible that for this statistic standard SGD has
the highest value over the entire runs, while SGDmom and SGDNAG are close to
each other and have the smallest values and SGDHB is somewhere in between. This
means more or less that the algorithms with on average small absolute gradients
perform big absolute weight updates. The reason for this is the size of the learning
rate of each algorithm: Table A.9 shows that SGD uses a much higher learning rate
than the others (0.18), where SGDHB has 0.05 and the other two both use 0.02.
When the feature plots of the other considered experiment, CNN on MNIST, are
analyzed, one of the first things that are noticed is the very big positive average
gradient and delta weight of SGDHB at the end of the runs, while the ones for the
other algorithms stay much closer to zero. This can also be seen in the plot of the
average absolute gradient in which SGDHB has much higher values than the other
algorithms, and in the plot of the average absolute delta weight which shows that
SGDHB performs on average hardly any weight updates except for the very end.

76 Chapter 9. General discussion

The standard deviation plots are again very similar to their respective average abso-
lute feature plots.
So the differences between these plots and the ones analyzed above are the big posi-
tive values at the end of the runs for SGDHB on all statistics, and the higher average
absolute gradient during the entire runs. This can indicate that the weights in the
system keep on getting bigger gradients in both directions (average gradient close to
zero) for multiple dimensions (higher absolute gradient) but somehow no momen-
tum is built up, which is probably due to the handbrake mechanism that keeps on
slowing the learning process down. At the end suddenly a very high average gradi-
ent occurs, and also the average absolute gradient becomes bigger, which could in-
dicate that suddenly one or a couple of very high gradients are encountered, or that
most gradients point into the same direction. In either way would this be a good
opportunity to enhance the performance of the network, but it is strange that this
occurs so late in the training process. Therefore it can also be caused by some bad
previous updates which moved the system out of the local minimum. This is prob-
ably the reason that SGDHB performed in this experiment worst of all algorithms.
SGD did slightly better, followed by SGDmom and SGDNAG. This last algorithm
also reached the second best score among all tested algorithms.
So the reason that SGDHB has such a bad performance might be that the handbrake
is used too much, i.e. hardly any momentum is built up probably mainly due to the
occasional bumps that are present in areas with in total a steep downhill gradient.
Moreover, this leads to unstable behavior in which the weights can move out of a
(local) minimum in the error space.
A possibly better version of this algorithm would remove the momentum term be-
fore the gradient starts to point into another direction instead of afterwards when
the weights have already gone "uphill" a bit. This could be implemented using some
technique similar to Nesterov momentum, which also looks ahead to see where the
current update with momentum would shift the weights to. This idea could be re-
searched in the future.

9.2.2 Different GHC methods

The different gradient history collection methods for adaptive learning rate algo-
rithms are first discussed separately in terms of the general results in Table 9.1. At
the end, they are all analyzed using the feature plots from the considered experi-
ments.

Absolute gradient

The Adam algorithm with the GHC method that uses the absolute value of the gra-
dient in the exponentially decaying average performed in general slightly worse
than Adam with the standard GHC method. In the experiments on the Rosenbrock
function and the XOR problem it performed better than the state of the art variant,
but in the experiments on MNIST and CIFAR10 it managed to outperform standard
Adam in only 3 of the 11 cases. Therefore it reached at the end a score just worse
than Adam. In the experiments where the method was also implemented in and
compared to other state of the art algorithms (like RMSprop and Adagrad), the ma-
jority of the Abs variants managed to outperform their standard counterparts in the
Rosenbrock and XOR experiments as well (especially on the convergence rate on the
XOR networks without batch normalization), but also performed worse on the ex-
periment with logistic regression on MNIST. So it seems that for easy problems this

9.2. Analysis of algorithms 77

method is an improvement of the standard, but for the harder problems it becomes
worse. It can also be the case that the method gets worse when the neural networks
are bigger.

Changeable norm

The `1−4-Adam algorithm, in which the used norm in the GHC can be changed from
2 to a value between 1 and 4, and in which if needed also a certain increase or de-
crease over iterations can be included, shows very good results in the vast majority
of the experiments. It turns out that the algorithm gets on 13 of the 16 experiments
a higher amount of points than the standard version, as can be seen in Table 9.1.
Moreover, it has the highest number of points of all algorithms, making it the best
performing algorithm. When the implementations of this method in other state of
the art algorithms, as tested in the first couple of experiments in this thesis, are con-
sidered it turns out that in general the standard versions are here outperformed as
well. Note that in the majority of the experiments this variant uses the same learn-
ing rate as the standard Adam algorithm, for which it was optimized. Also note
that the option to increase or decrease the norm over epochs or iterations is omitted
most of the times. The use of the different norm, constant throughout the entire opti-
mization process, alone causes the increase in performance of the algorithms, which
made `1−4-Adam the very best overall scoring algorithm.
However, also for the `1−4-Adam algorithm there seems to be a slight decay in per-
formance when the networks get bigger and/or the problems get more complicated.
In the experiment on Rosenbrock and XOR it is in 4 of the 5 cases among the top 2
best-performing algorithms, while in the other 11 experiments it manages to reach
the top 2 only twice. In the experiments that it reaches a lower rank, it is often out-
performed by Nadam and `ada-Adam, and sometimes also by AdaMax, AMSGrad,
or even SGDNAG. This indicates that the GHC method might be an improvement
of Adam, but it is not always superior.

Adaptive norm

The algorithm with an adaptive norm, `ada-Adam, was proposed as a more dynam-
ical variant of the `1−4-Adam algorithm. This GHC method used a different norm
for each weight in each update, calculated using a basic norm (between 1 and 4) mi-
nus the ratio of the exponentially decaying average of absolute gradients divided by
the maximum obtained absolute gradient. The idea behind this was to decrease the
norm the moment a bigger gradient is encountered, and in this way it was tried to
allow more exploration in the case of a small gradient and less exploration for a big
gradient.
The results of the `ada-Adam algorithm are of a similar level as from `1−4-Adam, so
very good and much better than the standard version of Adam. It reached the second
place, 1 point behind the first place. It was able to be the best performing algorithm
in 3 experiments, from which 2 on the XOR problem. It managed to outperform
standard Adam in 13 of the 16 experiments. The effect of better performance on
smaller networks and/or easier problems, as Abs and `1−4 had, is also here present,
but it seems to be somewhat less.

78 Chapter 9. General discussion

Exponential function

The final new GHC method tested used, instead of a norm, an exponential func-
tion to collect the gradients. The exponential decaying average used exponential
gradients, and the logarithmic function of the result was taken. This method was
implemented to see if something other than the use of norms would also work.
The results in Table 9.1 clearly show that this is not the case. The ExpAdam algo-
rithm is among the worst performing algorithms, even behind SGDNAG. Moreover,
in 5 cases the algorithm performed the very worst. On the other hand, it managed to
reach four top 4 positions (two of them on Rosenbrock or XOR), and it outperformed
standard Adam in four experiments, making the algorithm not as bad as SGDHB.
Nonetheless, the results seem to indicate that not every function is suitable to use in
a GHC method.

Analysis of feature plots

To have some insight in the difference in optimization strategies between the differ-
ent GHC methods, the feature plots are considered of experiments P (CIFAR10 on
CNN with batch normalization) and H (MNIST on MLP with 1 hidden layer).
The plots of experiment P, which is the one with the most similar, in this case even
the exact same, result as the final order in Table 9.1 considering the Adam algo-
rithms, are displayed in Figure F.4. The plot of the average delta weight does not
give much information: all algorithms seem to have a plot that is decreasing during
the first couple of iterations, after which it gets more or less stable at the same value.
All algorithms also have a slightly oscillating line such that it becomes quite diffi-
cult to view them separately, except for ExpAdam which seems to have much less
oscillation than the other algorithms. The value of this algorithm also approaches
quicker the value of zero. The plot of the average gradient gives some more infor-
mation. Again all lines are heavily oscillating (especially ExpAdam and `ada-Adam),
but it is clearly visible that this former algorithm at the start has a much lower av-
erage gradient than the others. These other algorithms all have their plot similarly
shaped, again first decreasing and then more or less stable around the same value.
The plots of the average absolute gradient and average absolute delta weight give
more information about the differences between the algorithms. In the first plot,
Adam and `ada-Adam seem to have more or less the same plot, which slowly de-
creases. AbsAdam constantly has a smaller value, and is also decreasing, as well as
`1−4-Adam but this algorithm has constantly a slightly bigger value. ExpAdam has
a plot that is much different since it starts at a small value and rapidly increases and
finally slows down again. It is a bit like a logarithmic function, which is probably a
coincident with the use of a logarithmic function in the GHC method of ExpAdam.
The plot of the average absolute delta weight shows for all algorithms a relatively
high value in the first iteration and a rapid decrease direct afterwards. For the rest
of the runs, ExpAdam has a very low value, the value of AbsAdam is somewhat
higher, and the other three algorithms have even higher values. These three algo-
rithms have a slowly decreasing plot towards the end, while the line of AbsAdam
slowly decreases. Standard Adam has the highest value, directly followed by `ada-
Adam and `1−4-Adam.
The second experiment considered in this analysis is with the neural network with 1
hidden layer on MNIST (experiment H). In this experiment the AbsAdam algorithm
performed best of the Adam algorithms, followed by `ada-Adam, `1−4-Adam, Adam,
and lastly ExpAdam. The plots of this experiment are displayed in Figure F.3. Both

9.2. Analysis of algorithms 79

the plot of the average gradient and the plot of the average delta weight do not show
big differences between the algorithms, except for the very first (couple of) iterations.
It seems in this early phase that the `1−4-Adam algorithm gets much bigger gradi-
ents on average than the other algorithms, both in the initial negative gradients as in
the hill towards the positive side afterwards. However, the ExpAdam algorithm per-
forms by far the biggest weight updates on average in this phase. The figures with
the average absolute gradient and average absolute delta weight do show more dif-
ferences between the algorithms. In both plots, it can be seen that ExpAdam reached
on average higher absolute delta weights over the entire run, and also higher abso-
lute gradients but these only in the second half of the runs. This could indicate that
this algorithm keeps on oscillating around a (local) minimum in the error landscape,
only slowly moving towards it (indicated by the slow decrease in absolute gradient).
This would explain the slow progress made by ExpAdam, which was also noticed
in the plots of training cost in multiple experiments, and the bad performance of this
algorithm.
During the first couple of iterations the other algorithms reach higher absolute gra-
dients on average, with Abs and `1−4 reaching the highest. These two algorithms
however have the smallest absolute delta weight at the start. It is also remarkable
that during the second half the particularly AbsAdam and to some extent also `1−4-
Adam seem to receive only very small gradients, and hence only perform very small
updates on the weights. Standard Adam and `ada-Adam keep on receiving bigger
gradients and performing bigger delta weights on average more or less all the way
to the end of the runs. This could mean that the latter two are still busy converg-
ing towards a minimum in the error landscape, while the former two already found
their particular (locally) optimal configuration. Especially AbsAdam shows this be-
havior, and this can be a reason for the result that this algorithm performed best in
this experiment.

Conclusions per GHC method

From these analyses it can be concluded that the bad performance of the ExpAdam
is probably due to its disability to properly translate the size of the gradient to the
importance of it: the feature plots of one of the experiments showed that even in the
case that a high amount of big gradients is encountered, the algorithm only performs
very tiny weight updates, while those of the other considered experiment showed
that even when the algorithm performs bigger updates the obtained gradients re-
main high. These are both examples of misinterpreting the importance of a certain
gradient, which makes the algorithm much slower in convergence/optimization
than the standard algorithm. This GHC method is clearly not the way to go for
improvement of the standard method.
The Abs GHC method uses the absolute value of the gradient in the exponentially
decaying average instead of the squared value. As the feature plots indicated, the
gradients always have very small values, so it can be said safely that they are always
between -1 and 1. This means that the absolute value of a gradient is always bigger
than the squared value, and hence the square root of it is also always bigger. This
square root is in the denominator in the scaling factor of the update rule, and hence
this factor should become smaller when Abs is used. This would cause the algorithm
to take smaller steps. This can of course be compensated by a higher learning rate
for the Abs algorithm, and according to the optimal parameter values as displayed
in the tables in Appendix A this is indeed the case: AbsAdam often uses a learning

80 Chapter 9. General discussion

rate 10 or more times higher than standard Adam. However, it seems that this does
not compensate entirely. The proof in Appendix G shows that this is true since it
is proven that the parameter configuration of Adam cannot be changed such that it
completely mimics the behavior of the Adam algorithm with the Abs GHC method.
As the feature plots showed, the AbsAdam algorithm received on average smaller
gradients and performed also smaller weight updates. This second fact can be due
to the working of the Abs method as described above, while the smaller gradients
could be a consequence of this. This is probably the main reason that AbsAdam
generally performed slightly worse than standard Adam. The superior performance
of AbsAdam on the Rosenbrock function and three of the experiments on the XOR
problem could also be explained by this, since during the optimization process of
these problems much bigger gradients are encountered (in Rosenbrock even much
higher than 1, which would turn around the reasoning above and make the scaling
factor bigger when Abs is used, which makes it take bigger steps and in this problem
this leads to faster convergence). So it seems that Abs might be a good method to
use in a problem where the error landscape is full of big gradients, but a less good
idea to use in other cases, which unfortunately also include more realistic data like
MNIST and CIFAR10.
`ada-Adam and `1−4-Adam both are able to change the norm used in the exponen-
tially decaying average and in the scaling factor, and by doing this try to change
the rate of importance of a gradient. The key factor here is the decay parameter in
the exponentially decaying average. Since the gradient, after taken to a power, is
first multiplied by this decaying factor before the root is taken, the norm that is used
does make a difference. Again it can be assumed that the gradients are (very) close
to zero, or at least between -1 and 1. When the same decay factor is used, a bigger
norm will lead to a bigger value in the denominator, as can be seen in the following
three calculations of vt and

√
vt in the first optimization step, in which respectively

a norm of 1, 2 and 3 are used and a gradient of 0.002 and momentum of 0.999 (as
recommended by the authors (Kingma and Ba, 2014)), are assumed:

v0 = 0.999 · 0 + (1− 0.999) · (|0.002|)1 = 2e− 06; 1
√

v0 = 2e− 06

v0 = 0.999 · 0 + (1− 0.999) · (|0.002|)2 = 4e− 09; 2
√

v0 ≈ 6e− 05

v0 = 0.999 · 0 + (1− 0.999) · (|0.002|)3 = 8e− 12; 3
√

v0 = 2e− 04

This means that when a bigger norm is used, the value in the denominator of the
scaling factor becomes bigger and thus when everything else remains the same,
smaller steps will be made. In Appendix G it is proven that this effect cannot be
imitated by the standard Adam algorithms when it uses some different parameter
configuration. The proof shows that in the first optimization step the norm does not
matter (which can also be seen in Figure 3.1), but in later optimization steps no pa-
rameter configuration can compensate for this effect. However, the shown effects do
not match the observations in Figure 3.1. In this plot, a higher norm leads to more
exploration and bigger steps. It is tried to explain this difference by plotting four
different measurements over the first 50 iterations of the optimization processes as
displayed in Figure 3.1. These plots can be seen in Figure 9.1, and it seems to be the
case that the main cause is the denominator of the scaling factor in the update rule,
which gets higher for lower norm values, and especially very high for the `1-norm.
This can only be the case when the vt−1 term in the exponentially decaying average
becomes much bigger for lower norms since the plot of the absolute gradient shows
that the obtained gradients do not differ very much. Looking at the values for v0 in

9.2. Analysis of algorithms 81

FIGURE 9.1: Plots of four measurements during the first 50 iterations
of the runs as displayed in Figure 3.1: average absolute gradient, av-
erage absolute weight update, average absolute m̂t and average abso-

lute n
√

v̂t.

the equations above, this seems indeed to be the case: when the norm is increased by
one, v0 gets (in this case) almost thousand times smaller. In later values of v the vt−1
term is multiplied by the same value for all algorithms, so the difference remains.
The lower values for later vt terms for higher norms lead to bigger step sizes, and
hence (somewhat) bigger gradients, but these can apparently not counterweight the
difference in the vt−1 term.
When the parameter settings of the `1−4-Adam and `ada-Adam algorithms are ob-

served in the tables in Appendix A, it can be seen that in 11 of the 16 experiments
a norm higher than 2 is chosen for `1−4-Adam and `ada-Adam. These include the
experiments on Rosenbrock and XOR, as well as the experiments with a single hid-
den layer neural network on MNIST, and CNN on CIFAR10. In the rest of the cases,
only one of the two algorithms used a norm higher than 2. In other cases, especially
the two experiments with logistic regression, a norm close to 1 turned out to be the
best choice. However, as can be seen in Table 9.1, in both cases the standard Adam
algorithm was outperformed. This seems to show that for different problems a dif-
ferent norm needs to be used. The choice of `2 in Adam and other state of the art
adaptive learning rate algorithms is a good one, and also has a strong background
in the variation theory, but clearly in almost all cases considered in this thesis the
use of some other norm outperforms the `2 norm in standard Adam. Looking at the
comparison and consequences of the different norms (as explained in the equations
above), this could mean that for different problems other methods to determine the

82 Chapter 9. General discussion

importance of a gradient must be used. How this mechanism exactly works is not
completely clear yet, but according to the results, the adaptive norm as proposed in
the `ada variant, which slightly lowers the norm the moment a big gradient is en-
countered to encourage more exploration the moment low gradients are obtained,
seems to be at least a step in the right, and hopefully optimal, direction.

83

Chapter 10

Conclusions

In this thesis, some newly invented techniques for optimization algorithms for gra-
dient descent in deep learning systems have been investigated. A total of five dif-
ferent methods were described and considered. The first one tries to incorporate a
sort of handbrake in the existing SGD algorithm with momentum, resulting in the
SGDHB algorithm. The other four all tried to improve the existing state of the art
algorithms that use adaptive learning rates, especially Adam which is currently the
most popular algorithm in the field. All possible improvements were variants on
the mechanism in Adam and other adaptive learning rate algorithms which collects
information about the history of the gradients, in this thesis named the gradient his-
tory collection (GHC) method. The standard method uses a `2 norm, and in the
possible improvements this is changed into a method that uses absolute values in
the exponentially decaying average of past gradients (Abs), a method that can use
a different norm between `1 and `4 and can increase or decrease this value accord-
ing to a fixed scheme over time (`1−4), a method related to the previous one that
uses an adaptive norm based on the previously encountered gradients (`ada), and a
method that does not really use a norm, but instead tries to collect information of
the gradient history using an exponential function in combination with its inverse,
the natural logarithm (Exp).
These newly invented GHC methods and the SGDHB algorithm have been tested
in 16 different experiments on several optimization problems, including the MNIST
and CIFAR10 data set, in different deep learning systems, either an MLP or CNN, or
in a pure optimization setting. In the experiments on the more easy problems, some
of the new GHC methods are tested in all state of the art algorithms for which they
are suited. In the other experiments only a subset of the optimization algorithms,
consisting of all SGD versions as well as Adam and all its derived versions, has been
tested.
The results on all the experiments show in general that the SGDHB algorithm is not
an improved version of the SGD algorithm with momentum at all: it barely outper-
forms the standard SGD algorithm. The Exp GHC method also has very bad results,
while the Abs GHC method is slightly worse than the standard. The `1−4 and `ada
variants however have a much better performance, and even outperform on average
the state of the art algorithms based on Adam, like Nadam, AdaMax, and AMSGrad.

84 Chapter 10. Conclusions

10.1 Answers to the research question

The research question in the introduction of this thesis was stated as follows:

How can the state-of-the-art optimization algorithms for gradient descent in
neural networks be adapted, such that the new variant outperforms its standard version

in convergence rate and -speed?

Looking at the requirements for the research question mentioned in the first chapter,
which an algorithm needs to meet to be a good candidate to be proposed as an im-
provement of the state of the art algorithms, it is clear that SGDHB, ExpAdam, and
AbsAdam all are not suited since they do not meet the most important requirement
which is performing better on the training data. The remaining two algorithms,
`1−4-Adam and `ada-Adam do meet this first requirement, as can be seen in Table 9.1.
Looking at the results on the test data in the experiments on MNIST and CIFAR10
(this is not applicable to the experiments on XOR and Rosenbrock), these variants
have in 8 of the 12 experiments a better result than standard Adam, so it can be said
that they also meet this requirement. The final requirement is about the time it takes
for the optimization process. This might be a downside of these two variants since
they take more time than standard Adam. They both include the calculation of the
gradient to the power of some value, which takes more time than the squared op-
eration in Adam. Additionally for `ada-Adam, extra time is needed to calculate the
norm used in the update for every parameter, in which the calculation of the new
exponentially decaying average of past absolute gradients takes the biggest part.
All this must be done for every weight parameter in the network in every param-
eter update. Unfortunately, it was not exactly measured how much extra time this
took, but looking at the file names of the runs (which include end times, and the
previous run’s end time is the current run’s start time) this can be estimated. Taking
the computationally most intensive experiment, which is CIFAR10 on the convo-
lutional neural network with batch normalization, as the most extreme example, a
single run with Adam took on the Peregrine cluster about one hour and 35 minutes,
while it took with `1−4-Adam and `ada-Adam about 1 hour and 40 minutes. So this
is slightly longer, but to put things in perspective: using the SGDNAG algorithm,
that does not need to calculate a learning rate for every individual parameter at all,
it took about one hour and 30 minutes. Moreover, since the methods perform better
than the standard algorithm, it needs fewer epochs to reach a similar performance
level and hence also less time than indicated above. So this means that the extra time
needed is not significant enough to be a bottleneck for the newly proposed variants.
Moreover, since they were of course customary implemented in PyTorch and since
the implementations of the algorithms that are already in the package are heavily
optimized, it is likely that these new versions can also be implemented in a more
efficient way.
Looking at all the results, it can be concluded that the `1−4 and `ada GHC methods
do fulfill all requirements to be a candidate algorithm to be proposed as an improve-
ment of the state of the art algorithms. These methods provide therefore good an-
swers to the research question in this thesis.

10.2 Influence on the research field

The deep learning field is currently one of the most popular fields within artificial in-
telligence, and therefore also one of the fastest developing fields. If the new methods

10.2. Influence on the research field 85

as proposed and described in this thesis that improve the general performance of the
Adam algorithm and other adaptive learning rate algorithms would be published in
some scientific journal, it could be picked up by the community as an interesting
new method to use in their learning systems. However, there is no real guarantee
for this. For example, the Adam algorithm became quickly after publishment very
popular, while improved versions of Adam, like Nadam, did not really take over
the role as the most used optimization algorithm. However, the `1−4 and `ada GHC
methods proposed in this thesis might open some new doors and lead to even better
performing and more sophisticated versions.

10.2.1 Future work

This is also one of the main aspects of the ideas for future work coming from the
research conducted in this thesis: it was tried to understand and explain the inter-
nal workings of the new GHC methods to come up with reasons why they perform
better or worse than the standard method, but not all questions could be answered.
Future research can be done to find out the exact reasons for the difference in per-
formance, and investigate the interaction between the GHC method and the error
landscape of the data. A better understanding of this could lead to a better GHC
method, which would probably use an adaptive norm.
Other research could be done about GHC methods other than with a norm. The
Exp method showed that the use of an exponential function in combination with the
natural logarithm was no good idea, but maybe the use of some other function and
its inverse will have good results. In theory, every function could be used for this
purpose, as long as its output value increases for bigger inputs. An example method
that could work is an alternative version of the Exp method described in this the-
sis, which takes the natural logarithm of the multiplication of the e-powers of the
previously obtained absolute gradients. In that way, due to the mathematical rules
behind the use of a logarithm (ln(ex · ey) = x + y), the magnitudes of the gradients
could possibly be considered in a better fashion. It would need some research to
incorporate the decay factor in the method, an option could be to put this factor in
the power term.
The methods proposed in this thesis, especially the ones with good results, could
also be tested on different deep learning systems, such as a recurrent neural network
as the LSTM (Hochreiter and Schmidhuber, 1997) or a capsule network (Sabour,
Frosst, and Hinton, 2018), to find out if the improved performance also applies in
these kinds of systems. They could also be tested in systems with a different, and
possibly more advanced, method than backpropagation for the calculation of the
gradients.
Finally, the adapted version of SGDHB as already described in the discussion section
of this algorithm could be tested to see if it would be an improvement of SGD with
standard momentum.

87

Appendices

89

Appendix A

Optimal parameter settings in the
experiments

This appendix contains for each experiment in this thesis a table with the optimal
parameter settings for each algorithm. The method to obtain these values differs per
experiment, and is described in detail in the corresponding section in the thesis.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.0021 - -
SGDmom 0.002 0.9 -
SGDNAG 0.0017 0.9 -
SGDHB 0.002 0.01 -
Adagrad 0.95 - -
AdaDelta 1.0 0.999999 -
RMSprop 0.0015 0.9 -
Adam 0.85 γ1 = 0.9, γ2 = 0.999 -
AdaMax 0.85 γ1 = 0.9, γ2 = 0.999 -
Nadam 0.43 γ1 = 0.9, γ2 = 0.999 -
NadaMax 0.23 γ1 = 0.9, γ2 = 0.999 -
AMSGrad 0.97 γ1 = 0.9, γ2 = 0.999 -
NAMSGrad 0.15 γ1 = 0.9, γ2 = 0.999 -
Absgrad 0.15 - -
AbsDelta 1.0 0.9 -
Absprop 0.0015 0.9 -
AbsAdam 0.35 γ1 = 0.9, γ2 = 0.999 -
AbsNadam 0.08 γ1 = 0.9, γ2 = 0.999 -
AbsAMSGrad 0.007 γ1 = 0.9, γ2 = 0.999 -
AbsNAMSGrad 0.0035 γ1 = 0.9, γ2 = 0.999 -
`1−4−Adagrad 0.2 - Λ0 = 2, λ = 0.01, Λmax = 3
`1−4−AdaDelta 1.0 0.999999 Λ0 = 3, λ = 0, Λmax = 3
`1−4−RMSprop 0.0015 0.9 Λ0 = 2, λ = 0, Λmax = 2
`1−4−Adam 0.38 γ1 = 0.9, γ2 = 0.999 Λ0 = 2, λ = 0.01, Λmax = 3
`1−4−Nadam 0.33 γ1 = 0.9, γ2 = 0.999 Λ0 = 2, λ = 0.1, Λmax = 3
`1−4−AMSGrad 0.27 γ1 = 0.9, γ2 = 0.999 Λ0 = 2, λ = 0.01, Λmax = 3
`1−4−NAMSGrad 0.2 γ1 = 0.9, γ2 = 0.999 Λ0 = 1, λ = 0.01, Λmax = 2
ExpAdam 0.99 - -
`ada−Adam 0.93 - Λ0 = 3, γP = 0.9

TABLE A.1: Optimal parameter settings for all algorithms on the
Rosenbrock function. Note that the smoothing parameter η used by
all adaptive methods is constantly set to 1e − 08. Also note that for
AbsDelta, no parameter setting resulted in a convergence towards the

minimum.

90 Appendix A. Optimal parameter settings in the experiments

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.99 - -
SGDmom 0.85 0.9 -
SGDNAG 0.95 0.9 -
SGDHB 0.96 (0.9) 0.9 -
Adagrad 0.84 (0.2) - -
AdaDelta 1.0 0.9 -
RMSprop 0.04 (0.01) 0.99 -
Adam 0.03 - -
AdaMax 0.01 - -
Nadam 0.02 - -
NadaMax 0.23 - -
AMSGrad 0.05 - -
NAMSGrad 0.03 - -
Absgrad 0.95 - -
AbsDelta 1.0 0.96 (0.9) -
Absprop 0.25 0.99 -
AbsAdam 0.7 - -
AbsNadam 0.28 - -
AbsAMSGrad 0.55 - -
AbsNAMSGrad 0.41 - -
`1−4−Adagrad 0.13 - Λ0 = 3, λ = -1E-06, Λmin = 2
`1−4−AdaDelta 1.0 0.9 Λ0 = 3, λ = 0, Λmax = 3
`1−4−RMSprop 0.075 (0.02) 0.99 Λ0 = 3, λ = 0, Λmax = 3
`1−4−Adam 0.12 - Λ0 = 3, λ = 0, Λmax = 3
`1−4−Nadam 0.02 - Λ0 = 3, λ = 0, Λmax = 3
`1−4−AMSGrad 0.05 - Λ0 = 3, λ = 0, Λmax = 3
`1−4−NAMSGrad 0.04 - Λ0 = 1 (3), λ = 1E-06 (0), Λmax = 2 (0)
ExpAdam 0.003 (0.005) - -
`ada−Adam 0.11 (0.12) - Λ0 = 3

TABLE A.2: Optimal parameter settings for all algorithms on a net-
work with 2 nodes in the hidden layer for the XOR problem. A few al-
gorithms use a different learning rate in the networks with batch nor-
malization, and `1−4−NAMSGrad also uses a different power sched-
ule. These are given between parentheses behind the parameter val-

ues for the network without batch normalization.

Appendix A. Optimal parameter settings in the experiments 91

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.98 - -
SGDmom 0.99 0.9 -
SGDNAG 0.99 0.9 -
SGDHB 0.95 0.9 -
Adagrad 0.75 (0.35) - -
AdaDelta 1.0 0.9 -
RMSprop 0.12 (0.03) 0.99 -
Adam 0.05 - -
AdaMax 0.16 - -
Nadam 0.09 - -
NadaMax 0.3 (0.15) - -
AMSGrad 0.11 - -
NAMSGrad 0.08 - -
Absgrad 0.99 - -
AbsDelta 1.0 0.97 -
Absprop 0.85 (0.27) 0.99 -
AbsAdam 0.99 - -
AbsNadam 0.99 - -
AbsAMSGrad 0.99 - -
AbsNAMSGrad 0.99 - -
`1−4−Adagrad 0.38 - Λ0 = 3, λ = -1E-06, Λmin = 2
`1−4−AdaDelta 1.0 0.9 Λ0 = 3, λ = 0, Λmax = 3
`1−4−RMSprop 0.021 (0.07) 0.99 Λ0 = 1, λ = 1E-06, Λmax = 2
`1−4−Adam 0.19 - Λ0 = 3, λ = 0, Λmax = 3
`1−4−Nadam 0.07 - Λ0 = 3, λ = 0, Λmax = 3
`1−4−AMSGrad 0.18 - Λ0 = 3, λ = 0, Λmax = 3
`1−4−NAMSGrad 0.08 - Λ0 = 2, λ = 0, Λmax = 2
ExpAdam 0.01 - -
`ada−Adam 0.13 (0.9) - Λ0 = 3

TABLE A.3: Optimal parameter settings for all algorithms on a net-
work with 5 nodes in the hidden layer for the XOR problem. A few
algorithms use a different learning rate in the networks with batch
normalization. These are given between parentheses behind the pa-

rameter values for the network without batch normalization.

92 Appendix A. Optimal parameter settings in the experiments

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.99 - -
SGDmom 0.25 0.9 -
SGDNAG 0.25 0.9 -
SGDHB 0.99 0.2 -
Adagrad 0.99 - -
AdaDelta 1.0 0.99 -
RMSprop 0.01 0.99 -
Adam 0.01 - -
AdaMax 0.04 - -
Nadam 0.01 - -
NadaMax 0.04 - -
AMSGrad 0.01 - -
NAMSGrad 0.01 - -
Absgrad 0.99 - -
AbsDelta 1.0 0.99 -
Absprop 0.12 0.99 -
AbsAdam 0.14 - -
AbsNadam 0.13 - -
AbsAMSGrad 0.12 - -
AbsNAMSGrad 0.15 - -
`1−4−Adagrad 0.99 - Λ0 = 1.9, λ = 0, Λmax = 1.9
`1−4−AdaDelta 1.0 0.99 Λ0 = 2.5, λ = 0, Λmax = 2.5
`1−4−RMSprop 0.01 0.99 Λ0 = 1.2, λ = 0, Λmax = 1.2
`1−4−Adam 0.01 - Λ0 = 1.1, λ = 0, Λmax = 1.1
`1−4−Nadam 0.01 - Λ0 = 1.1, λ = 0, Λmax = 1.1
`1−4−AMSGrad 0.01 - Λ0 = 1.1, λ = 0, Λmax = 1.1
`1−4−NAMSGrad 0.01 - Λ0 = 1.1, λ = 0, Λmax = 1.1
ExpAdam 0.01 - -
`ada−Adam 0.01 - Λ0 = 1.2, γP = 0.9

TABLE A.4: Optimal parameter settings for all algorithms using lo-
gistic regression on the MNIST data set.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.7 - -
SGDmom 0.11 0.9 -
SGDNAG 0.12 0.9 -
SGDHB 0.4 0.9 -
Adam 0.002 - -
AdaMax 0.015 - -
Nadam 0.002 - -
AMSGrad 0.004 - -
AbsAdam 0.02 - -
AbsAMSGrad 0.06 - -
`1−4−Adam 0.002 - Λ0 = 4.0, λ = 0, Λmax = 4.0
`1−4−AMSGrad 0.004 - Λ0 = 1.5, λ = 0, Λmax = 1.5
ExpAdam 0.001 - -
`ada−Adam 0.002 - Λ0 = 2.3

TABLE A.5: Optimal parameter settings for all algorithms using an
MLP with 1 hidden layer of 100 nodes on the MNIST data set.

Appendix A. Optimal parameter settings in the experiments 93

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.2 - -
SGDmom 0.06 0.9 -
SGDNAG 0.04 0.9 -
SGDHB 0.065 0.9 -
Adam 0.0004 - -
AdaMax 0.003 - -
Nadam 0.0003 - -
AMSGrad 0.002 - -
AbsAdam 0.0065 - -
`1−4−Adam 0.0004 - Λ0 = 3.1, λ = 0, Λmax = 3.1
ExpAdam 0.0002 - -
`ada−Adam 0.0004 - Λ0 = 3.0

TABLE A.6: Optimal parameter settings for all algorithms using an
MLP with 1 hidden layer of 100 nodes and batch normalization on

the MNIST data set.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.2 - -
SGDmom 0.02 0.9 -
SGDNAG 0.015 0.9 -
SGDHB 0.01 0.9 -
Adam 0.001 - -
AdaMax 0.005 - -
Nadam 0.001 - -
AMSGrad 0.002 - -
AbsAdam 0.01 - -
`1−4−Adam 0.001 - Λ0 = 1.9, λ = 0, Λmax = 1.9
ExpAdam 0.0001 - -
`ada−Adam 0.001 - Λ0 = 2.8

TABLE A.7: Optimal parameter settings for all algorithms using a
convolutional neural network with 2 convolutional layers (second
with dropout) followed by a fully connected hidden layer of 50 nodes

and dropout on the MNIST data set.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.045 - -
SGDmom 0.005 0.9 -
SGDNAG 0.007 0.9 -
SGDHB 0.02 0.9 -
Adam 0.0007 - -
AdaMax 0.0022 - -
Nadam 0.001 - -
AMSGrad 0.0007 - -
AbsAdam 0.006 - -
AbsAMSGrad 0.006 - -
`1−4−Adam 0.0007 - Λ0 = 1, λ = 0, Λmax = 1
`1−4−AMSGrad 0.0007 - Λ0 = 1.1, λ = 0, Λmax = 1.1
ExpAdam 0.0005 - -
`ada−Adam 0.0007 - Λ0 = 1.3, γP = 0.9

TABLE A.8: Optimal parameter settings for all algorithms using lo-
gistic regression on the CIFAR10 data set.

94 Appendix A. Optimal parameter settings in the experiments

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.1 - -
SGDmom 0.015 0.9 -
SGDNAG 0.015 0.9 -
SGDHB 0.045 0.9 -
Adam 0.0009 - -
AbsAdam 0.011 - -
`1−4−Adam 0.0009 - Λ0 = 1.2, λ = 0, Λmax = 1.2
ExpAdam 0.0005 - -
`ada−Adam 0.0009 - Λ0 = 2.0, γP = 0.9
AdaMax 0.0025 - -
Nadam 0.001 - -
AbsNadam 0.011 - -
`1−4−Nadam 0.001 - Λ0 = 2.5, λ = 0, Λmax = 2.5
`ada−Nadam 0.001 - Λ0 = 2.5, γP = 0.9
AMSGrad 0.0008 - -
AbsAMSGrad 0.011 - -
`1−4−AMSGrad 0.0008 - Λ0 = 1.3, λ = 0, Λmax = 1.3

TABLE A.9: Optimal parameter settings for all algorithms using an
MLP with 1 hidden layer of 200 nodes on the CIFAR10 data set.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.18 - -
SGDmom 0.02 0.9 -
SGDNAG 0.02 0.9 -
SGDHB 0.05 0.9 -
Adam 0.0015 - -
AbsAdam 0.015 - -
`1−4−Adam 0.0015 - Λ0 = 1.6, λ = 0, Λmax = 1.6
ExpAdam 0.001 - -
`ada−Adam 0.0015 - Λ0 = 2.2, γP = 0.9
AdaMax 0.0025 - -
Nadam 0.0015 - -
AMSGrad 0.001 - -

TABLE A.10: Optimal parameter settings for all algorithms using an
MLP with 1 hidden layer of 200 nodes and batch normalization on

the CIFAR10 data set.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.06 - -
SGDmom 0.01 0.9 -
SGDNAG 0.02 0.9 -
SGDHB 0.04 0.9 -
Adam 0.003 - -
AbsAdam 0.02 - -
`1−4−Adam 0.003 - Λ0 = 2.7, λ = 0, Λmax = 2.7
ExpAdam 0.0003 - -
`ada−Adam 0.003 - Λ0 = 2.0, γP = 0.9
AdaMax 0.011 - -
Nadam 0.002 - -
AMSGrad 0.002 - -

TABLE A.11: Optimal parameter settings for all algorithms using a
convolutional neural network on the CIFAR10 data set. The CNN
consists of a convolutional layer with 6 5x5 filters with ReLU and
max-pooling, followed by a second convolutional layer with 16 5x5
filters with ReLU and max-pooling, and finally fully connected layer

leading towards the ten output nodes.

Appendix A. Optimal parameter settings in the experiments 95

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.08 - -
SGDmom 0.01 0.9 -
SGDNAG 0.01 0.9 -
SGDHB 0.05 0.9 -
Adam 0.004 - -
AbsAdam 0.03 - -
`1−4−Adam 0.004 - Λ0 = 2.3, λ = 0, Λmax = 2.3
ExpAdam 0.0006 - -
`ada−Adam 0.004 - Λ0 = 2.3, γP = 0.9
AdaMax 0.007 - -
Nadam 0.003 - -
AMSGrad 0.006 - -

TABLE A.12: Optimal parameter settings for all algorithms using a
convolutional neural network with batch normalization on the CI-
FAR10 data set. The CNN consists of a convolutional layer with 6
5x5 filters with ReLU and max-pooling, followed by a second con-
volutional layer with 16 5x5 filters with ReLU and max-pooling, and
finally fully connected layer leading towards the ten output nodes.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.22 - -
SGDmom 0.02 0.9 -
SGDNAG 0.025 0.9 -
SGDHB 0.085 0.9 -
Adam 0.0007 - -
AbsAdam 0.012 - -
`1−4−Adam 0.0007 - Λ0 = 2.6, λ = 0, Λmax = 2.6
ExpAdam 0.0002 - -
`ada−Adam 0.0007 - Λ0 = 2.15, γP = 0.9
AdaMax 0.0029 - -
Nadam 0.0008 - -
AMSGrad 0.0009 - -

TABLE A.13: Optimal parameter settings for all algorithms using an
MLP with 3 hidden layers of 500, 200, and 50 nodes on the CIFAR10

data set.

Algorithm Learning rate (α) Momentum (γ) Other parameters
SGD 0.06 - -
SGDmom 0.01 0.9 -
SGDNAG 0.01 0.9 -
SGDHB 0.02 0.9 -
Adam 0.0002 - -
AbsAdam 0.0036 - -
`1−4−Adam 0.0002 - Λ0 = 2.6, λ = 0, Λmax = 2.6
ExpAdam 0.0005 - -
`ada−Adam 0.0002 - Λ0 = 1.7, γP = 0.9
AdaMax 0.0009 - -
Nadam 0.001 - -
AMSGrad 0.0005 - -

TABLE A.14: Optimal parameter settings for all algorithms using an
MLP with 3 hidden layers of 500, 200, and 50 nodes and batch nor-

malization on the CIFAR10 data set.

97

Appendix B

Performance plots on the
Rosenbrock function

This appendix includes for every algorithm considered in the experiment on the
Rosenbrock function a plot with the trajectory of the algorithm from the point (1.9,2.8)
towards the end point, which is hopefully the minimum point in the plot at location
(1,1).

98 Appendix B. Performance plots on the Rosenbrock function

(A) Adagrad (5851) (B) Absgrad (3180) (C) `1−4−Adagrad (7559)

(D) AdaDelta (18855) (E) AbsDelta (≥30000) (F) `1−4−AdaDelta (9691)

(G) RMSprop (5569) (H) Absprop (6282) (I) `1−4−RMSprop (5569)

(J) AMSGrad (380) (K) AbsAMSGrad (4382) (L) `1−4−AMSGrad (253)

FIGURE B.1: Trajectories of the different algorithms on the Rosen-
brock function (part 1). Note that they all start at the same point, at
around (1.9, 2.8). The number of steps for each algorithm is between

brackets in the captions.

Appendix B. Performance plots on the Rosenbrock function 99

(A) Nadam (516) (B) AbsNadam (2251) (C) `1−4−Nadam (418)

(D) NAMSGrad (1684) (E) AbsNAMSGrad (1818) (F) `1−4−NAMSGrad (1356)

(G) SGD (3027) (H) SGD with momentum (344) (I) SGD with Nesterov (358)

(J) SGD handbrake mom. (3037) (K) Adam (620) (L) AbsAdam (297)

FIGURE B.2: Trajectories of the different algorithms on the Rosen-
brock function (part 2). Note that they all start at the same point, at
around (1.9, 2.8). The number of steps for each algorithm is between

brackets in the captions.

100 Appendix B. Performance plots on the Rosenbrock function

(A) ExpAdam (366) (B) `1−4−Adam (144) (C) `ada−Adam (379)

(D) AdaMax (500) (E) NadaMax (676)

FIGURE B.3: Trajectories of the different algorithms on the Rosen-
brock function (part 3). Note that they all start at the same point, at
around (1.9, 2.8). The number of steps for each algorithm is between

brackets in the captions.

101

Appendix C

Cost plots of XOR experiments

FIGURE C.1: The average cost reached per iteration over the training
set for all optimization algorithms on the network with 2 nodes in the

hidden layer.

FIGURE C.2: The average cost reached per iteration over the training
set for all optimization algorithms on the network with 2 nodes in the

hidden layer and batch normalization.

102 Appendix C. Cost plots of XOR experiments

FIGURE C.3: The average cost reached per iteration over the training
set for all optimization algorithms on the network with 5 nodes in the

hidden layer.

FIGURE C.4: The average cost reached per iteration over the training
set for all optimization algorithms on the network with 5 nodes in the

hidden layer and batch normalization.

103

Appendix D

Cost plots of MNIST experiments

(A) All algorithms

(B) Abs algorithms
(C) Adaptive learning rate algo-

rithms (D) Adam algorithms

(E) AMSGrad algorithms (F) `1−4-algorithms (G) SGD algorithms

FIGURE D.1: Plots of the performance of algorithms in various
groups on the experiment with an MLP with 1 hidden layer on
MNIST. The plots show the average training cost per iteration, av-

eraged over 5 runs.

104 Appendix D. Cost plots of MNIST experiments

(A) All algorithms

(B) Abs algorithms
(C) Adaptive learning rate algo-

rithms (D) Adam algorithms

(E) AMSGrad algorithms (F) `1−4-algorithms (G) SGD algorithms

FIGURE D.2: Plots of the performance of algorithms in various
groups on the experiment with an MLP with 1 hidden layer on
MNIST. The plots show the average test cost per iteration, averaged

over 5 runs.

Appendix D. Cost plots of MNIST experiments 105

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE D.3: Plots of the performance of algorithms in various
groups on the experiment with an MLP with 1 hidden layer and batch
normalization on MNIST. The plots show the average training cost

per iteration, averaged over 5 runs.

106 Appendix D. Cost plots of MNIST experiments

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE D.4: Plots of the performance of algorithms in various
groups on the experiment with an MLP with 1 hidden layer and batch
normalization on MNIST. The plots show the average test cost per it-

eration, averaged over 5 runs.

Appendix D. Cost plots of MNIST experiments 107

(A) Abs algorithms (B) AdaDelta algorithms (C) Adagrad algorithms

(D) Adam algorithms

(E) All algorithms

(F) AMSGrad algorithms

(G) Nadam algorithms (H) NAMSGrad algorithms (I) `1−4 algorithms

(J) RMSprop algorithms (K) SGD algorithms (L) Std adaptive algorithms

FIGURE D.5: Plots of the performance of algorithms in various
groups on the logistic regression experiment on MNIST. The plots

show the average training cost per iteration, averaged over 5 runs.

108 Appendix D. Cost plots of MNIST experiments

(A) Abs algorithms (B) AdaDelta algorithms (C) Adagrad algorithms

(D) Adam algorithms

(E) All algorithms

(F) AMSGrad algorithms

(G) Nadam algorithms (H) NAMSGrad algorithms (I) `1−4 algorithms

(J) RMSprop algorithms (K) SGD algorithms (L) Std adaptive algorithms

FIGURE D.6: Plots of the performance of algorithms in various
groups on the logistic regression experiment on MNIST. The plots

show the average test cost per iteration, averaged over 5 runs.

Appendix D. Cost plots of MNIST experiments 109

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE D.7: Plots of the performance of algorithms in various
groups on the experiment with a convolutional neural network on
MNIST. The plots show the average training cost per iteration, aver-

aged over 5 runs.

110 Appendix D. Cost plots of MNIST experiments

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE D.8: Plots of the performance of algorithms in various
groups on the experiment with a convolutional neural network on
MNIST. The plots show the average test cost per iteration, averaged

over 5 runs.

111

Appendix E

Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Abs algorithms (C) Adaptive learning rate algo-
rithms (D) Adam algorithms

(E) AMSGrad algorithms (F) `1−4-algorithms (G) SGD algorithms

FIGURE E.1: Plots of the performance of algorithms in various groups
on the logistic regression experiment on CIFAR10. The plots show the

average training cost per iteration, averaged over 5 runs.

112 Appendix E. Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Abs algorithms (C) Adaptive learning rate algo-
rithms (D) Adam algorithms

(E) AMSGrad algorithms (F) `1−4-algorithms (G) SGD algorithms

FIGURE E.2: Plots of the performance of algorithms in various groups
on the logistic regression experiment on CIFAR10. The plots show the

average test cost per iteration, averaged over 5 runs.

Appendix E. Cost plots of CIFAR10 experiments 113

(A) All algorithms

(B) Abs algorithms (C) Adaptive learning rate algo-
rithms (D) Adam algorithms

(E) AMSGrad algorithms (F) Nadam algorithms (G) `1−4 algorithms

(H) `ada algorithms (I) SGD algorithms

FIGURE E.3: Plots of the performance of algorithms in various groups
on the experiment with an MLP containing a single hidden layer on
the CIFAR10 data set. The plots show the average training cost per

iteration, averaged over 5 runs.

114 Appendix E. Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Abs algorithms (C) Adaptive learning rate algo-
rithms (D) Adam algorithms

(E) AMSGrad algorithms (F) Nadam algorithms (G) `1−4 algorithms

(H) `ada algorithms (I) SGD algorithms

FIGURE E.4: Plots of the performance of algorithms in various groups
on the experiment with an MLP containing a single hidden layer on
the CIFAR10 data set. The plots show the average test cost per itera-

tion, averaged over 5 runs.

Appendix E. Cost plots of CIFAR10 experiments 115

(A) All algorithms

(B) Adaptive learning rate algo-
rithms

(C) Adam algorithms (D) SGD algorithms

FIGURE E.5: Plots of the performance of algorithms in various groups
on the experiment with an MLP with 1 hidden layer and batch nor-
malization on CIFAR10. The plots show the average training cost per

iteration, averaged over 5 runs.

116 Appendix E. Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE E.6: Plots of the performance of algorithms in various groups
on the experiment with an MLP with 1 hidden layer and batch nor-
malization on CIFAR10. The plots show the average test cost per iter-

ation, averaged over 5 runs.

Appendix E. Cost plots of CIFAR10 experiments 117

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE E.7: Plots of the performance of algorithms in various groups
on the experiment with an MLP with 3 hidden layers on CIFAR10.
The plots show the average training cost per iteration, averaged over

5 runs.

118 Appendix E. Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE E.8: Plots of the performance of algorithms in various groups
on the experiment with an MLP with 3 hidden layers on CIFAR10.
The plots show the average test cost per iteration, averaged over 5

runs.

Appendix E. Cost plots of CIFAR10 experiments 119

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE E.9: Plots of the performance of algorithms in various groups
on the experiment with an MLP with 3 hidden layers and batch nor-
malization on CIFAR10. The plots show the average training cost per

iteration, averaged over 5 runs.

120 Appendix E. Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE E.10: Plots of the performance of algorithms in various
groups on the experiment with a neural network with 3 hidden lay-
ers and batch normalization on CIFAR10. The plots show the average

test cost per iteration, averaged over 5 runs.

Appendix E. Cost plots of CIFAR10 experiments 121

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

(E) `1−4-algorithms (F) Nadam algorithms

FIGURE E.11: Plots of the performance of algorithms in various
groups on the experiment with a convolutional neural network on
CIFAR10. The plots show the average training cost per iteration, av-

eraged over 5 runs.

122 Appendix E. Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

(E) `1−4-algorithms (F) Nadam algorithms

FIGURE E.12: Plots of the performance of algorithms in various
groups on the experiment with a convolutional neural network on CI-
FAR10. The plots show the average test cost per iteration, averaged

over 5 runs.

Appendix E. Cost plots of CIFAR10 experiments 123

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE E.13: Plots of the performance of algorithms in various
groups on the experiment with a convolutional neural network with
batch normalization on CIFAR10. The plots show the average train-

ing cost per iteration, averaged over 5 runs.

124 Appendix E. Cost plots of CIFAR10 experiments

(A) All algorithms

(B) Adaptive learning rate algo-
rithms (C) Adam algorithms (D) SGD algorithms

FIGURE E.14: Plots of the performance of algorithms in various
groups on the experiment with a convolutional neural network with
batch normalization on CIFAR10. The plots show the average test

cost per iteration, averaged over 5 runs.

125

Appendix F

Feature plots

In this Appendix the feature plots that are considered in the analysis in the General
Discussion chapter are displayed. For each group of figures, the feature plots show-
ing average values are plotted in a bigger size, while the ones showing a standard
deviation are displayed smaller.

126 Appendix F. Feature plots

(A) Average gradient (B) Average delta weight

(C) Average absolute gradient (D) Average absolute delta weight

(E) STD gradient (F) STD dW (G) STD abs gradient (H) STD abs dW

FIGURE F.1: Feature plots of the SGD algorithms on the experiment
with an MLP with 1 hidden layer on CIFAR10.

Appendix F. Feature plots 127

(A) Average gradient (B) Average delta weight

(C) Average absolute gradient (D) Average absolute delta weight

(E) STD gradient (F) STD dW (G) STD abs gradient (H) STD dW

FIGURE F.2: Feature plots of the SGD algorithms on the experiment
with a convolutional neural network on MNIST.

128 Appendix F. Feature plots

(A) Average gradient (B) Average delta weight

(C) Average absolute gradient (D) Average absolute delta weight

(E) STD gradient (F) STD dW (G) STD abs gradient (H) STD dW

FIGURE F.3: Feature plots of the Adam algorithms on the experiment
with an MLP with 1 hidden layer on MNIST.

Appendix F. Feature plots 129

(A) Average gradient (B) Average delta weight

(C) Average absolute gradient (D) Average absolute delta weight

(E) STD gradient (F) STD dW (G) STD abs gradient (H) STD dW

FIGURE F.4: Feature plots of the Adam algorithms on the experiment
with a convolutional neural network on MNIST.

131

Appendix G

Mathematical proofs ’Abs’, `1−4,
and `ada variants

In this appendix it is tried to prove that the Adam algorithm cannot use a parameter
setting that results in the same behavior as `1−4-Adam or `ada-Adam using a norm
different than `2, or AbsAdam.

G.1 Rewrite Adam update rule

First the Adam update rule must be rewritten to be able to compare it properly to
the new variants. The standard Adam algorithm is as follows:

Θt+1 = Θt − α · m̂t√
v̂t + ε

(G.1)

m̂t =
mt

1− βt
1

(G.2)

mt = β1 ·mt−1 + (1− β1) · gt(Θt) (G.3)

v̂t =
vt

1− βt
2

(G.4)

vt = β2 · vt−1 + (1− β2) · gt(Θt)
2 (G.5)

Equation G.3 can be rewritten as:

mt = (1− β1) · gt(Θt) +
t−1

∑
a=0

(1− β1) · ga(Θa) · βt−a
1

This is the same as:

mt =
t

∑
a=0

(1− β1) · ga(Θa) · βt−a
1

Taking a constant term outside, we obtain:

mt = (1− β1) ·
t

∑
a=0

ga(Θa) · βt−a
1

Since β1 is constant, we can now rewrite Equation G.2 as follows:

m̂t =
(1− β1) ·∑t

a=0 ga(Θa) · βt−a
1

1− β1
=

t

∑
a=0

ga(Θa) · βt−a
1

132 Appendix G. Mathematical proofs ’Abs’, `1−4, and `ada variants

Equivalently, Equation G.5 can be rewritten as:

vt = (1− β2) ·
t

∑
a=0

ga(Θa)
2 · βt−a

2

and Equation G.4 becomes:

v̂t =
(1− β2) ·∑t

a=0 ga(Θa)2 · βt−a
2

1− β2
=

t

∑
a=0

ga(Θa)
2 · βt−a

2

The full update term of Adam in Equation G.1 then becomes:

Θt+1 = Θt − α · ∑t
a=0 ga(Θa) · βt−a

1√
∑t

a=0 ga(Θa)2 · βt−a
2 + ε

G.2 AbsAdam

The Abs variant only differs from the standard algorithm by the use of the absolute
value of the gradient in the exponential decaying average instead of the squared
gradient. So the Abs update rule can be rewritten as:

Θt+1 = Θt − α · ∑t
a=0 ga(Θa) · βt−a

1√
∑t

a=0 |ga(Θa)| · βt−a
2 + ε

It is tried to prove that this update rule is different from the update rule of standard
Adam, so there should be no parameter configuration of standard Adam that would
resemble the Abs version. To prove this, it is tried to set the two update rules equal,
under the conditions that both algorithms start at the exact same weight values and
receive the exact same training examples such that the gradients are the same in the
first optimization step, and α, β1, β2, ε all have values between 0 and 1 (exclusive).
The obtained equation is:

Θt − αx ·
∑t

a=0 ga(Θa) · βt−a
1,x√

∑t
a=0 |ga(Θa)| · βt−a

2,x + εx

?
= Θt − αy ·

∑t
a=0 ga(Θa) · βt−a

1,y√
∑t

a=0 ga(Θa)2 · βt−a
2,y + εy

In this equation both update rules have their own parameters, therefore the mo-
mentum, smoothing term and learning rate parameters have the subscripts x (for
AbsAdam) and y (for Adam).
The base case in this proof is when t = 0, so in the first optimization step of the
learning process. In that step, the equation can be rewritten as:

Θ0 − αx ·
g0(Θ0) · β0

1,x√
|g0(Θ0)| · β0

2,x + εx

?
= Θ0 − αy ·

g0(Θ0) · β0
1,y√

g0(Θ0)2 · β0
2,y + εy

This can be simplified as:

αx√
|g0(Θ0)|+ εx

?
=

αy

|g0(Θ0)|+ εy

G.3. `1−4-Adam and `ada-Adam 133

After this is rewritten using the rule that a
b = c

d equals a · d = b · c, we obtain:

αx · (|g0(Θ0)|+ εy)
?
= αy · (

√
|g0(Θ0)|+ εx)

The momentum parameters are all vanished by now, due to the fact that t = 0 and
no momentum has been built up yet, which leaves only the smoothing term and
the learning rate. Let’s assume εx = εy (after all it is the smoothing term). We
obtain after dividing both terms by (

√
|g0(Θ0)| + ε) (which cannot be zero due to

the smoothing term), and some rewriting:

αx ·
(|g0(Θ0)|+ ε)√
|g0(Θ0)|+ ε

?
= αy

This equation shows that to obtain the same results when t = 0 for AbsAdam and
Adam, at least the learning rate must be different. The learning rate of AbsAdam,
αx must be scaled by a factor (|g0(Θ0)|+ε)√

|g0(Θ0)|+ε
to obtain the right learning rate for Adam

αy. This means that this correct learning rate is dependent on the current gradient,
which makes it impossible to configure the parameters of Adam such that it has
the same behavior as AbsAdam in the first optimization step. This makes it also
impossible to do this for the entire optimization process. Therefore the Abs GHC
method makes an optimization algorithm different from the standard version.

G.3 `1−4-Adam and `ada-Adam

To prove that these algorithms are different from the standard Adam, it must be
proven that the use of a different norm than `2 cannot be compensated by a different
configuration of the other parameters. For sake of easiness, the `1−4-Adam algo-
rithm is used in this proof.
The update term of `1−4-Adam is not much different from the one of standard Adam:
only the square root and the power of 2 in the denominator are substituted for a pa-
rameter value Λ which is for sake of easiness left constant over time:

Θt+1 = Θt − α · ∑t
a=0 ga(Θa) · βt−a

1

Λ
√

∑t
a=0 |ga(Θa)|Λ · βt−a

2 + ε

Now we can set these two equal (for sake of clarity the 2 in the root is added in the
Adam update, and since both algorithms have their own parameters, subscripts of x
(for `1−4-Adam) and y (for Adam) are added to the learning rates, smoothing terms
and momentum parameters). It is assumed that both systems have the same initial
weights and are presented the exact same training data, such that the same gradients
are obtained in the first optimization step. Furthermore it is assumed that α, β1, β2, ε
all have values between 0 and 1 (exclusive), and Λ has a value between 1 and 4 but
not 2. The obtained equation is:

Θt − αx ·
∑t

a=0 ga(Θa) · βt−a
1,x

Λ
√

∑t
a=0 |ga(Θa)|Λ · βt−a

2,x + εx

?
= Θt − αy ·

∑t
a=0 ga(Θa) · βt−a

1,y

2
√

∑t
a=0 ga(Θa)2 · βt−a

2,y + εy

134 Appendix G. Mathematical proofs ’Abs’, `1−4, and `ada variants

Starting with the case where t = 0, this becomes (after some simplification):

αx ·
g0(Θ0)

Λ
√
|g0(Θ0)|Λ + εx

?
= αy ·

g0(Θ0)
2
√

g0(Θ0)2 + εy

This is indeed the case if αx = αy and εx = εy, or in other words if the same values
are used for the learning rate and the smoothing term.
Now for the recursive step, where t > 0. Since we have proven that the same update
can be made at t = 0, we can now assume that the values in Θa and hence gt(Θt)
are the same for both algorithms. However, we have to keep using the values for
the parameters in the case where it did hold for t = 0, so the learning rates and
smoothing terms have the same values. Let’s start with the full update rules, where
subscripts are omitted for the learning rates and smoothing terms:

Θt − α · ∑t
a=0 ga(Θa) · βt−a

1,x

Λ
√

∑t
a=0 |ga(Θa)|Λ · βt−a

2,x + ε

?
= Θt − α ·

∑t
a=0 ga(Θa) · βt−a

1,y

2
√

∑t
a=0 ga(Θa)2 · βt−a

2,y + ε

This can be simplified to:

∑t
a=0 ga(Θa) · βt−a

1,x

Λ
√

∑t
a=0 |ga(Θa)|Λ · βt−a

2,x + ε

?
=

∑t
a=0 ga(Θa) · βt−a

1,y

2
√

∑t
a=0 ga(Θa)2 · βt−a

2,y + ε

When β1,x and β1,y have the same value, the two numerators cancel each other out,
leaving us with the two denominators. Since ε must have the same value in both
terms, this can also be removed. This results in the following:

Λ

√
t

∑
a=0
|ga(Θa)|Λ · βt−a

2,x
?
= 2

√
t

∑
a=0

ga(Θa)2 · βt−a
2,y

Can this be true under the circumstances that Λ 6= 2 and t > 0? Let’s try for an easy
case, in which Λ = 1 and t = 1:

1

∑
a=0
|ga(Θa)| · βt−a

2,x
?
= 2

√√√√ 1

∑
a=0

ga(Θa)2 · βt−a
2,y

After writing the summation terms out, it becomes:

|g0(Θ0)| · β1−0
2,x + |g1(Θ1)| · β1−1

2,x
?
= 2
√

g0(Θ0)2 · β1−0
2,y + g1(Θ1)2 · β1−1

2,y

This can be rewritten as:

|g0(Θ0)| · β2,x + |g1(Θ1)| ?
= 2
√

g0(Θ0)2 · β2,y + g1(Θ1)2

Squaring both sides, we obtain after writing the first expression out:

|g0(Θ0)|2 · β2
2,X + 2 · |g0(Θ0)| · β2,X · |g1(Θ1)|+ |g1(Θ1)|2 ?

= g0(Θ0)
2 · β2,y + g1(Θ1)

2

G.3. `1−4-Adam and `ada-Adam 135

Since a squared value has the same result as the square of the absolute of that same
value, the two last terms in the expressions are the same and can be cancelled out:

|g0(Θ0)|2 · β2
2,X + 2 · |g0(Θ0)| · β2,X · |g1(Θ1)| ?

= g0(Θ0)
2 · β2,Y

Dividing both sides by g0(Θ0)2, we obtain:

β2
2,X +

2 · β2,X · |g1(Θ1)|
g0(Θ0)

?
= β2,Y

So this means that to let the Adam algorithm behave like the `1−4-Adam algorithm
that uses Λ = 1, it needs to have a value for β2 that is equal to the value for β2
used by `1−4-Adam squared plus the (scaled) second obtained gradient divided by
the first obtained gradient. This means that the right parameter configuration is
dependent on the obtained gradients. Therefore it can be concluded that the Adam
algorithm cannot use a parameter configuration such that it behaves the same as
`1−4-Adam and `ada-Adam that use a value for Λ other than 2.

137

Bibliography

Abadi, Martın et al. (2016). “TensorFlow: A System for Large-Scale Machine Learn-
ing.” In: OSDI. Vol. 16, pp. 265–283.

Alpaydin, Ethem (2009). Introduction to machine learning. MIT press.
Chen, Chenyi et al. (2015). “Deepdriving: Learning affordance for direct perception

in autonomous driving”. In: Computer Vision (ICCV), 2015 IEEE International Con-
ference on. IEEE, pp. 2722–2730.

Chen, Mo et al. (2017). “JPEG-phase-aware convolutional neural network for ste-
ganalysis of JPEG images”. In: Proceedings of the 5th ACM Workshop on Information
Hiding and Multimedia Security. ACM, pp. 75–84.

Collobert, Ronan and Jason Weston (2008). “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning”. In: Proceed-
ings of the 25th international conference on Machine learning. ACM, pp. 160–167.

Dozat, Timothy (2016). “Incorporating Nesterov momentum into Adam”. In: Citado
na, p. 53.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods
for online learning and stochastic optimization”. In: Journal of Machine Learning
Research 12.Jul, pp. 2121–2159.

Dugas, Charles et al. (2001). “Incorporating second-order functional knowledge for
better option pricing”. In: Advances in neural information processing systems, pp. 472–
478.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep sparse rectifier
neural networks”. In: Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pp. 315–323.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. Vol. 1.
MIT press Cambridge.

Gunning, David (2017). “Explainable artificial intelligence (XAI)”. In: Defense Ad-
vanced Research Projects Agency (DARPA), nd Web.

Gurney, Kevin (2014). An introduction to neural networks. CRC press.
He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778.

Hinton, Geoffrey et al. (2012). “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups”. In: IEEE Signal Processing
Magazine 29.6, pp. 82–97.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735–1780.

Huang, Gao et al. (2017). “Densely connected convolutional networks”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167.

Jia, Yangqing et al. (2014). “Caffe: Convolutional architecture for fast feature em-
bedding”. In: Proceedings of the 22nd ACM international conference on Multimedia.
ACM, pp. 675–678.

138 Bibliography

Jones, Nicola (2014). “The learning machines”. In: Nature 505.7482, p. 146.
Kalat, James W (2015). Biological psychology. Nelson Education.
Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-

tion”. In: arXiv preprint arXiv:1412.6980.
Krizhevsky, Alex and Geoffrey Hinton (2009). Learning multiple layers of features from

tiny images. Tech. rep. Citeseer.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey Hinton (2012). “Imagenet classifica-

tion with deep convolutional neural networks”. In: Advances in neural information
processing systems, pp. 1097–1105.

LeCun, Yann (1998). “The MNIST database of handwritten digits”. In: http://yann.
lecun. com/exdb/mnist/.

LeCun, Yann et al. (1989). “Generalization and network design strategies”. In: Con-
nectionism in perspective, pp. 143–155.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng (2013). “Rectifier nonlineari-
ties improve neural network acoustic models”. In: Proc. ICML. Vol. 30. 1, p. 3.

Nair, Vinod and Geoffrey Hinton (2010). “Rectified linear units improve restricted
boltzmann machines”. In: Proceedings of the 27th international conference on machine
learning (ICML-10), pp. 807–814.

Nesterov, Yurii (1983). “A method for unconstrained convex minimization problem
with the rate of convergence O (1/kˆ 2)”. In: Doklady AN USSR. Vol. 269, pp. 543–
547.

Nocedal, Jorge and Stephen J Wright (2006). Numerical optimization. Springer.
Noh, Hyeonwoo, Paul Hongsuck Seo, and Bohyung Han (2016). “Image question

answering using convolutional neural network with dynamic parameter predic-
tion”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 30–38.

Paszke, Adam et al. (2017). Pytorch: Tensors and dynamic neural networks in Python with
strong GPU acceleration, May 2017.

Polyak, Boris T (1964). “Some methods of speeding up the convergence of itera-
tion methods”. In: USSR Computational Mathematics and Mathematical Physics 4.5,
pp. 1–17.

Python Core Team (2018). Python: A dynamic, open source programming language. Ver-
sion 3.6.4. Python Software Foundation. Vienna, Austria. URL: https://www.
python.org/.

Qian, Ning (1999). “On the momentum term in gradient descent learning algorithms”.
In: Neural networks 12.1, pp. 145–151.

Reddi, Sashank J, Satyen Kale, and Sanjiv Kumar (2018). “On the convergence of
Adam and beyond”. In: International Conference on Learning Representations.

Rocco, Ignacio, Relja Arandjelović, and Josef Sivic (2017). “Convolutional neural net-
work architecture for geometric matching”. In: arXiv preprint arXiv:1703.05593.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6, p. 386.

Rosenbrock, Howard H (1960). “An automatic method for finding the greatest or
least value of a function”. In: The Computer Journal 3.3, pp. 175–184.

Rumelhart, David E, Geoffrey Hinton, and Ronald J Williams (1986). “Learning rep-
resentations by back-propagating errors”. In: nature 323.6088, p. 533.

Russell, Stuart J and Peter Norvig (2016). Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited.

https://www.python.org/
https://www.python.org/

Bibliography 139

Sabour, Sara, Nicholas Frosst, and Geoffrey Hinton (2018). “Matrix Capsules with
EM Routing”. In: 6th International Conference on Learning Representations, ICLR.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin (2015). “Facenet: A uni-
fied embedding for face recognition and clustering”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 815–823.

Socher, Richard et al. (2012). “Convolutional-recursive deep learning for 3d object
classification”. In: Advances in Neural Information Processing Systems, pp. 656–664.

Sprinkhuizen, Ida G and Egbert JW Boers (1996). The error surface of the 2-2-1 XOR
network: stationary points with infinite weights.

Sprinkhuizen, Ida and Egbert Boers (1999). “The local minima of the error surface of
the 2-2-1 XOR network”. In: Annals of Mathematics and Artificial Intelligence 25.1-2,
p. 107.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.

Sutskever, Ilya et al. (2013). “On the importance of initialization and momentum in
deep learning.” In: ICML (3) 28.1139-1147, p. 5.

Sutton, Richard S and Andrew G Barto (1998). Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge.

Torralba, Antonio, Rob Fergus, and William T Freeman (2008). “80 million tiny im-
ages: A large data set for nonparametric object and scene recognition”. In: IEEE
transactions on pattern analysis and machine intelligence 30.11, pp. 1958–1970.

Walt, Stéfan van der, S Chris Colbert, and Gael Varoquaux (2011). “The NumPy ar-
ray: a structure for efficient numerical computation”. In: Computing in Science &
Engineering 13.2, pp. 22–30.

Whitley, Darrell et al. (1996). “Evaluating evolutionary algorithms”. In: Artificial in-
telligence 85.1-2, pp. 245–276.

Wiering, Marco and Martijn Van Otterlo (2012). Reinforcement learning: State-of-the-
Art. Springer.

Wolfshaar, Jos van de, Marco Wiering, and Lambert Schomaker (2018). “Deep Learn-
ing Policy Quantization.” In: ICAART (2), pp. 122–130.

Zbontar, Jure and Yann LeCun (2016). “Stereo matching by training a convolutional
neural network to compare image patches”. In: Journal of Machine Learning Re-
search 17.1-32, p. 2.

Zeiler, Matthew D (2012). “ADADELTA: an adaptive learning rate method”. In: arXiv
preprint arXiv:1212.5701.

Zhou, YT and R Chellappa (1988). “Computation of optical flow using a neural net-
work”. In: IEEE International Conference on Neural Networks. Vol. 1998, pp. 71–78.

	Abstract
	Introduction
	Current state of optimization algorithms for gradient descent
	Adaptive learning rate methods

	Motivation of the study and research question
	Thesis outline

	Theory
	Introduction to neural networks
	Biological influence
	Perceptron
	Activation functions
	Logistic Sigmoid function
	ReLU function
	Other activation functions

	Loss functions and adapting weights
	Gradient descent
	Logistic regression
	Multi-layer perceptron
	Backpropagation
	Regularization methods
	Dropout layer
	Batch normalization

	Optimization algorithms for gradient descent
	SGD algorithms
	Momentum
	Nesterov Accelerated Gradient

	Adaptive learning rate algorithms
	Adagrad
	AdaDelta
	RMSprop
	Adam
	AdaMax
	Nadam
	NadaMax
	AMSGrad
	NAMSGrad

	Differences and similarities between algorithms
	Building blocks
	Algorithmic framework

	Convolutional Neural Network (CNN)
	Convolutional layer
	Pooling layer
	Architecture of a CNN
	Learning in a CNN
	Reasons to use a CNN

	New ideas for optimization algorithms
	SGD adaptation: handbrake momentum
	Adaptive learning rate algorithms
	Absolute difference
	Alternative norm
	Adaptive norm
	Exponential function

	General methodology
	Experiments
	Used datasets: MNIST and CIFAR10
	Overview of algorithms used in the experiments
	Software

	Scoring system
	Learning feature plots

	Experiment on the Rosenbrock optimization function
	Rosenbrock function
	Experimental setup
	Results (A)
	Discussion
	Differences in behavior of algorithms

	Experiments on the XOR problem
	The XOR problem
	General methodology
	Experimental setup

	Neural network with 2 hidden nodes
	Results (B)

	Neural network with 5 hidden nodes
	Results (C)

	Neural network with 2 hidden nodes and batch normalization
	Results (D)

	Neural network with 5 hidden nodes and batch normalization
	Results (E)

	Discussion

	Experiments with logistic regression
	Logistic regression on MNIST
	Experimental setup
	Results (F)

	Logistic regression on CIFAR10
	Experimental setup
	Results (G)

	Experiments on a multi-layer perceptron
	MLP with 1 hidden layer on MNIST
	Experimental setup
	Results (H)

	MLP with 1 hidden layer and batch normalization on MNIST
	Experimental setup
	Results (I)

	MLP with 1 hidden layer on CIFAR10
	Experimental setup
	Results (J)

	MLP with 1 hidden layer and batch normalization on CIFAR10
	Experimental setup
	Results (K)

	MLP with 3 hidden layers on CIFAR10
	Experimental setup
	Results (L)

	MLP with 3 hidden layers and batch normalization on CIFAR10
	Experimental setup
	Results (M)

	Convolutional neural network experiments
	CNN on MNIST
	Network architecture
	Experimental setup
	Results (N)

	CNN on CIFAR10
	Network architecture
	Experimental setup
	Results (O)

	CNN with batch normalization on CIFAR10
	Network architecture
	Experimental setup
	Results (P)

	Comparison of CNN and MLP

	General discussion
	Summary of results
	Analysis of algorithms
	SGD with handbrake
	Different GHC methods
	Absolute gradient
	Changeable norm
	Adaptive norm
	Exponential function
	Analysis of feature plots
	Conclusions per GHC method

	Conclusions
	Answers to the research question
	Influence on the research field
	Future work

	Appendices
	Optimal parameter settings in the experiments
	Performance plots on the Rosenbrock function
	Cost plots of XOR experiments
	Cost plots of MNIST experiments
	Cost plots of CIFAR10 experiments
	Feature plots
	Mathematical proofs 'Abs', 1-4, and ada variants
	Rewrite Adam update rule
	AbsAdam
	1-4-Adam and ada-Adam

	Bibliography

