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Abstract: In this thesis we compare the performance of two different deep neural networks on
the task of human detection. The first network is Faster regional based convolutional neural
network (Faster R-CNN), the second Single Shot Multibox Detector. The research question is:
Is Faster R-CNN able to achieve a higher mean average precision in comparison to a Single
Shot Multibox Detector? The hypothesis is that Faster R-CNN is able to achieve a higher mean
average precision in comparison to a Single Shot Multibox Detector. We compare both networks
in pairs using ResNet-50 and Inception-V2 as a backbone. Both networks are trained on a subset
of the Pascal VOC 2007+2012 dataset and the performance scores are measured using the COCO
metrics. Each network has been trained 10 times and the averages of each network are compared
with a t-test. After conducting the experiment, the results show that Faster R-CNN was able
to achieve a significantly higher mean average precision in comparison with the Single Shot
Multibox Detector with ResNet-50 and Inception-V2 as a backbone.

1 Introduction

In the last decade research in machine learning has
delivered promising results for real world applica-
tions. The increasing availability of lots of data, the
increase of computer power and the development
of new training strategies all contribute to the in-
creased activity in machine learning. For example
in the field of medicine, machine learning has been
applied to be able to detect cancer (Kourou, Exar-
chos, Exarchos, Karamouzis, and Fotiadis, 2015).
Another subject of research is autonomous driving
vehicles. To enable these vehicles to drive safely
on the road, a lot of sensory data about the envi-
ronment needs to be processed. Object detection is
one specific field of research where machine learn-
ing and more specifically deep learning has been
applied a lot over the last year. One specific task
is to be able to detect humans using camera data
as input. In this thesis we are going to investigate
the performance of different kinds of deep neural
networks on the task of human detection.

The first network we are going to test is the
Faster regional based convolutional neural network
(Faster R-CNN) which was developed by Ren, He,

Girshick, and Sun (2015). The second network is
the Single Shot Multibox Detector (SSD) which
was developed by Liu, Anguelov, Erhan, Szegedy,
Reed, Fu, and Berg (2015). A lot of research has
already been conducted using these specific net-
works. One example is the research where the per-
formance of Faster R-CNN is measured using the
mean average precision on 20 different categories
using the Pascal VOC 2007 dataset (Adam, Za-
man, Yassin, Zainol Abidin, and I. Rizman, 2017).
In the technical report of Yolo-V3 (Redmon and
Farhadi, 2018) there is an overview available of the
performance of Yolo-V3 in comparison with Faster
R-CNN and SSD. On the specific task of human
detection, the research of applying Histograms of
Gradients (HoG) (Dalal and Triggs) is very impor-
tant. Faster R-CNN has also been used as a bench-
mark for the performance of other networks (Liu,
Zhang, Wang, and Metaxas, 2016).

In this thesis the following research question is
at hand: Is Faster R-CNN able to achieve a higher
mean average precision in comparison to a Single
Shot Multibox Detector? The hypothesis is: Faster
R-CNN will achieve a higher mean average preci-
sion when compared with the Single Shot Multibox

1



Detector.

In the next section we discuss the methods. In
this section each deep neural network will be dis-
cussed in detail first. Secondly the train pipeline
will be discussed along with the specific configura-
tions tested. Next the sub setting of the PASCAL
VOC dataset will be explained and lastly how the
models will be evaluated is explained. In section 3
all results will be presented. After the result sec-
tion the research question will be answered in the
discussion section.

2 Methods

2.1 Deep Learning

The term deep learning refers to neural networks
which have multiple hidden layers between the in-
put and output layer. Each hidden layer consists
of a number of nodes and each connection between
nodes of different layers has its own weight. These
weights are being initialized at random first and
then a forward pass is conducted. In supervised
learning there is an error defined based on the tar-
get output of the network and the actual output of
the network. During training this error is minimized
by adjusting the weights slightly using backward
propagation. One architecture which is very suit-
able for explaining the basic concepts of the differ-
ent layers within the architectures is a convolution
neural network (CNN) called VGG-16 (Simonyan
and Zisserman, 2014).

First there is an input layer with the size of the
image. If the input size is 224 × 224 pixels, the
size of the input layer is 224×224×3. Next there is
a convolutional layer with size width × height ×
number of filters. A convolutional layer performs
a convolution between the input and a filter of
size 3×3. The output of this convolution layer de-
pends on the number of filters, the spatial extent
of the filters, the stride and the amount of zero
padding. In the VGG 16 model the first two lay-
ers are convolutional layers with a ReLU activa-
tion function applied to the output. After the two
convolutional layers there is a pooling step which
performs max pooling with a 2×2 filter. Applying
max pooling reduces the size of the input matrix
because for every 2×2 grid only the highest value
is put into the output matrix. This pooling step re-

duces the size from 224×224×64 to 112×112×128.
Next there are two additional convolutional lay-
ers with at the fourth convolutional layer another
max pooling step which reduces the size further
from 112×112×128 to 56×56×256. After another
set of three convolutional layers using 256 filters
with max pooling, there are two block of three con-
volutional layers with 512 filters and max pooling
at the end of every third convolutional layer. Af-
ter the convolutional layers there are two fully con-
nected layers with 4096 nodes. The difference be-
tween the fully connected layers and the convolu-
tional layer is that a neuron within the convolu-
tional layers is only connected to a few nodes of
the previous layer and each node in the fully con-
nected layer is connected with all nodes from the
previous layer. This means that there are in the
first fully connected layer more than 100,000,000
weights. Finally there is an output layer with 1000
nodes using the softmax activation function. Us-
ing this architecture the model could predict up to
1000 classes using a binary vector as output. The
total number of parameters which can be trained is
138,000,000 when trained on the Imagenet dataset
(Deng, Dong, Socher, Li, Li, and Fei-Fei, 2009).

2.2 Faster R-CNN

Faster R-CNN is an object detection network con-
sisting of two stages. The first is a deep fully convo-
lutional network which proposes regions, the second
stage is a Fast R-CNN detector which performs de-
tections on the proposed regions by the first stage.A
schematic overview of the entire Faster R-CNN net-
work is shown in Figure 2.1.

2.2.1 First stage

The first stage is a Region Proposal Network (RPN)
called fast R-CNN (Girshick, 2015). It takes an in-
put image and outputs a set of rectangular bound-
ing boxes. The authors of Faster R-CNN use two
different backbones for feature extraction; VGG-
16 and the ZF-model (Zeiler and Fergus, 2013).
To generate Region Proposals a small network is
slid over the convolutional feature map output of
the last shared convolutional layer. This small net-
work takes as input an n × n spatial window of
the convolutional feature map (in the original pa-
per n = 3). Next each sliding window is mapped to
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Figure 2.1: A schematic overview of the two
stages of the Faster R-CNN network. Taken
from Ren et al. (2015)

a lower dimensional feature and is activated using
the ReLU activation function. This feature is fed
to two fully connected layers; one bounding box re-
gression layer, the other a box classification layer.
Because the small network goes over the input in
a sliding window fashion, the fully connected net-
works are shared across all spatial locations. This
is implemented as an n × n convolutional network
followed by two 1 × 1 convolutional layers for the
box regression and the box classification. See Fig-
ure 2.2 for an example of the small network at one
location sliding over the input image.

Figure 2.2: A schematic overview of the small
network sliding over the input image. Taken
from Ren et al. (2015).

2.2.2 Anchors

At each sliding window location multiple region
proposal are predicted, the maximal number of pos-
sible proposals is denoted as k. The box regression
layer outputs 4k output coordinates for k boxes,
the box classifier layer outputs 2k scores that esti-
mate whether or not the box represents an object
of a certain class. The k proposals are relative to k
reference boxes, commonly referred to as anchors.
An anchor is centered in the sliding window and

has a scale and an aspect ratio. By default three
different scales and aspect ratios are used, yielding
9 anchors for each sliding window position. One im-
portant aspect of this method of anchor box gen-
eration is that it is translation invariant, making it
less likely to overfit the data on small datasets.

2.2.3 Loss function

For training RPNs a binary class label is assigned
for each anchor. It is either part of a class or not.
In Faster R-CNN labels are assigned to two kinds
of anchors; one label to the set of anchors with the
highest Intersection-over-Union (IoU) overlap with
a ground-truth box or the anchor that has an IoU
overlap of 0.7 or higher. A negative label is assigned
if its IoU ratio is lower than 0.3 for all ground-
truth boxes. Using this definition the loss function
is defined (Ren et al., 2015) as:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )

+λ
1

Nreg

∑
i

p∗iLreg(ti, t
∗
i )

i is here the anchor index in a mini-batch, pi is
the predicted probability of anchor i being an ob-
ject. The ground-truth label p∗i is 1 if the anchor is
positive, 0 if the anchor is negative. ti is a vector
representation of the parameterised bounding box
coordinates, while t∗i is that of the ground-truth
box associated with a positive anchor. The classifi-
cation loss Lcls refers to a log loss over two classes
(object vs no object). For the regression loss Lreg,
the robust loss function L1 is used.

2.3 Single Shot Multibox Detector

The Single Shot Multibox Detector (SSD) is a
feed-forward convolutional network that produces a
fixed sized collection of bounding boxes and scores
for the classes present in these bounding boxes. The
base of the SSD network is the standard VGG-16
network with multiple convolutional layers added
behind it as shown in (Liu et al., 2015). These extra
convolutional layers decrease in size and thus en-
ables the network to perform predictions of differ-
ent scales and sizes. Besides the multiscale feature
maps for detection, there are also convolutional pre-
dictors for detection. Each added feature layer can
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produce a fixed set of predictions using a set of
convolutional filters, as shown in Figure 2.3.

Figure 2.3: A schematic overview of the SSD
architecture. Taken from Liu et al. (2015).

A feature layer is of the size m× n with p chan-
nels. A small kernel which predicts parameters of
a potential detection has a size of 3 × 3 × p. This
kernel can produce two types of output; the first is
a score of a certain category, the second is the offset
relative to the default box coordinates. At each of
the m × n locations where the kernel is applied it
produces an output value. The offset of a bounding
box is measured relative to the default bounding
box position relative to each feature map position.

2.3.1 Bounding boxes

In SSD a set of default bounding boxes is associ-
ated with each feature map cell, for multiple feature
maps at the top of the network. The position of the
default bounding boxes relative to its feature map
cell is fixed in a convolutional manner. Next the
offsets of all boxes relative to the default bounding
box shapes is computed along with the class scores
of possible detections within each bounding box for
each feature map cell. For each box there are k rel-
ative locations and each class scores c plus an offset
of 4, the total amount of filters is set to be (c+4)k.
These filters yield together for each location of the
feature map (c+4)×k×n×m outputs. The bound-
ing boxes of SSD are similar to the anchor boxes of
Faster R-CNN, the key difference is however that
SSD applies this process to multiple feature maps
of different resolutions. The authors claim that this
results in a more efficient discretization of the space
of possible output box shapes.

2.3.2 Loss function

The training objective of SSD is a weighted sum
over the localization loss and the confidence loss
defined by (Liu et al., 2015) as:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g))

where N is the number of default boxes. When N =
0, the loss function is set to be 0. α is a parameter
to set the weight of the localization loss, l is the
predicted box and g stands for the ground-truth
box. The localization loss will be explained in more
detail first.

Similar to Faster R-CNN the localization loss is
a smooth L1 Loss between the predicted box(l) and
the ground-truth box(g):

Lloc(x, l, g) =

N∑
i∈Pos

∑
m∈{cx,xy,w,h}

smoothL1(lmi − ĝjm)

Where (cx, cy) is the center of default bounding
box d, w and h denote its width and height. The
smooth L1 function is defined as:

smoothL1(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise

The confidence loss is a softmax loss over multiple
class confidences, denoted as c. Let xpij = {1, 0} be
an indicator for matching the i-th bounding box to
the j-th ground truth box of class p. The confidence
loss is defined as:

Lconf (x, c) = −
N∑

i∈Pos

xpij log(ĉpi )−
∑
i∈neg

log(ĉ0i )

ĉpi =
exp(cpi )∑
p exp(c

p
i )

The first summation in the function states that for
every positive prediction matching with class c the
loss will be reduced with the confidence score of the
current class c in the formula denoted as ĉpi . This
ensures the overall confidence loss will be lowered
with every correct positive prediction. The second
summation states that in the case of a negative
match, the loss will be reduced with the confidence
score of the background class 0, which is denoted
as ĉ0i .
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2.4 Backbones used in this Experi-
ment

2.4.1 ResNet 50

ResNet 50 is a deep neural network which applies
residual blocks (He, Zhang, Ren, and Sun, 2015).
The main goal of residual learning is to explicitly fit
a stack of layers to a residual mapping, instead of
hoping a few sets of layers might fit this mapping.
With H(x) defined as the underlying mapping for
input x, we define the residual function which the
set of layers needs to approximate as:

F (x) = H(x) + x

Sets of layers which are applying residual learning
are refered to as building blocks. Formally a build-
ing block can be described as:

y = (F (x, {Wi}) + x

Here x represent the input, y the output and
(F (x, {Wi}) represents the residual mapping to be
learned. In Figure 2.4 there is a two layered exam-
ple of a building block with as function for F :

F (x) = W2σ(W1x)

with σ being the ReLU function. F (x) + x is per-
formed as an element-wise addition after the set of
layers.

Figure 2.4: A schematic overview of a building
block. Taken from He et al. (2015).

ResNet 50 uses this principle of residuals learned
using the following set of layers: First there is a
convolutional layer with a size of 7 × 7 using 64
filters and a stride of 2. Next there is a 3 × 3 max
pooling layer with a stride of 2. Next there is a
set of 3 building block with convolutional layers of

size 1 × 1 using 64 filters, 3 × 3 using 64 filters,
1 × 1 using 256 filters. Next there are four blocks
with the sizes 1 × 1 using 128 filters, 3×3 using
128 filters and 1 × 1 using 512 filters. After that 6
blocks with the sizes 1 × 1 using 256 filters, 3 × 3
using 256 filters and 1 × 1 using 1024 filters. The
last set of three blocks have convolutional layers
with the sizes 1 × 1 using 512 filters, 3 × 3 using
256 and 1 × 1 using 2048 filters. After the last set
of building blocks average pooling is applied. The
last layer is a fully-connected layer with 1000 nodes
using softmax when trained on ImageNet.

2.4.2 Inception-V2

Inception-V2 was built by Szegedy, Vanhoucke,
Ioffe, Shlens, and Wojna (2015) to reduce the loss
of information due to too much reduction of the
input dimension, better known as the representa-
tional bottleneck. For example instead of using a
patch of size 5 × 5 with n filters at the convolution
an inception module uses two 3 × 3 modules with
the same number of filters. This is done because a
3 ×3 convolution is 2.78 times less computational
intensive as a 5 × 5 convolution (Szegedy et al.,
2015). In the Inception-V2 network the first two 7
× 7 convolutional layers are factorised to a set of
three 3 × 3 convolutional layers. Next there is 3x
Inception layer which factorizes each 5 × 5 convo-
lution to a set of 3 × 3 convolutions as shown in
Figure 2.5.

Figure 2.5: A schematic overview of the 3x in-
ception layer where a 5 × 5 convolution is fac-
torised into smaller 3 × 3 modules. Taken from
Szegedy et al. (2015).

A similar structure is used in the next 5x Incep-
tion layer where n = 7 for a 17 × 17 filter grid as
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shown in Figure 2.6.

Figure 2.6: A schematic overview of the 5x In-
ception layer where n = 7 for a 17 × 17 convolu-
tion. Taken from Szegedy et al. (2015).

The structure of the last Inception 2 layer is
shown in Figure 2.7.

Figure 2.7: A schematic overview of the Incep-
tion 2 layer which expands on the output of the
filter banks. Taken from Szegedy et al. (2015).

After the inception layers there is an 8 × 8 max
pooling layer with a ReLU layer behind it. Lastly
the output layer is again a fully-connected layer
with 1000 nodes which uses the softmax function.

2.5 Experimental Setup

For this experiment, we use the TensorFlow Ob-
ject detection API as a base for training and test-
ing different deep learning networks on the task of
human detection. Four different networks were se-
lected from the TensorFlow Model Zoo to start the
training with:

• Faster R-CNN with ResNet-50 as backbone

• SSD with ResNet-50 as backbone

• Faster R-CNN with Inception-v2 as backbone

• SSD with Inception-v2 as backbone

2.5.1 The PASCAL VOC dataset

For this experiment we use a subset of the PAS-
CAL VOC dataset which is a dataset containing 20
different classes for an object detection challenge
organized by Everingham, Gool, Williams, Winn,
and Zisserman (2009). We extracted all images of
the class person from the PASCAL VOC 2007 and
2012 dataset in such a way that all models can be
trained within TensorFlow. This results in the data
in Table 2.1.

Name
Number
of
images

Number
of
anchor
boxes

Pascal VOC 07+12
training set

13775 28075

Pascal VOC 2007
test for validation set

2097 5227

Pascal VOC 2012
test set

5138 7326

Table 2.1: The number of images and anchor
boxes in each data set used for training and test-
ing all networks.

2.5.2 Training and testing the networks

All networks will be trained and tested using the
config files provided with the models at the Tensor-
Flow model zoo as a baseline, but the number of
iterations of SSD with ResNet 50 was doubled to
achieve a better performance. For each backbone
both Faster R-CNN and SSD will be trained on the
Pascal VOC 07+12 subset and tested on the Pascal
VOC 2012 test set as described in Table 2.1. Each
network will be trained and tested ten times. The
performance of each network will be summarized
using the COCO evaluation metrics from the Ten-
sorFlow Object Detection API. Because we com-
pare the network performances on just one class, we
prefer the COCO evaluation metric over the stan-
dard Pascal VOC metric. The COCO metrics pro-
vide more detailed information about mean Aver-
age Precision (mAP) for different sizes of objects,
along with information about recall, rather than
only an mAP score. The average of all 10 runs will
be compared with a t-test in order to test which
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network performs (significantly) better in terms of
mAP and recall.

3 Results

In this section the average scores over 10 runs will
be presented for both networks using Resnet-50 and
Inception V-2. After the scores there will be an
overview of the t-test statistics. Some output im-
ages of the networks are also provided in this sec-
tion to visualize some performance differences.

ResNet-50

average
precision
@IoU=
0.50:0.95

average
precision
@IoU=0.50

average
precision
@IoU=0.75

Faster R-CNN 0.833 ± 0.003 0.593 ± 0.007 0.681 ± 0.008
SSD 0.796 ± 0.011 0.537 ± 0.021 0.600 ± 0.028

Table 3.1: The average precision and standard
deviations calculated for Faster R-CNN vs SSD
using ResNet-50 on the VOC 2012 test set. In
the first column the average precision measured
from 0.5 till 0.95 at their correspondent IoU
threshold is given, in the second the average
precision measured at an IoU threshold of 0.5
and in the last column the average precision is
measured at an IoU threshold of 0.75.

Resnet-50

average
precision
@IoU=
0.50:0.95
small

average
precision
@IoU=
0.50:0.95
medium

average
precision
@IoU=
0.50:0.95
large

Faster R-CNN 0.061 ± 0.006 0.404 ± 0.014 0.647 ± 0.007
SSD 0.038 ± 0.011 0.310 ± 0.012 0.600 ± 0.022

Table 3.2: The average precision and standard
deviations calculated for Faster R-CNN vs SSD
using ResNet-50 on the VOC 2012 test set. In
the first column the average precision measured
from 0.5 till 0.95 at their correspondent IoU
threshold is given for the small objects, in the
second for medium objects and in the last col-
umn the average recall is given for large objects.

ResNet-50

average
recall
@IoU=
0.50:0.95

average
recall
@IoU=0.50

average
recall
@IoU=0.75

Faster R-CNN 0.484 ± 0.004 0.745 ± 0.008 0.761 ± 0.008
SSD 0.444 ± 0.013 0.694 ± 0.017 0.732 ± 0.014

Table 3.3: The average recall and standard devi-
ations calculated for Faster R-CNN vs SSD us-
ing ResNet-50 on the VOC 2012 test set. In the
first column the average recall measured from
0.5 till 0.95 at their correspondent IoU thresh-
old is given, in the second the average recall
measured at an IoU threshold of 0.5 and in the
last column the average recall is measured at an
IoU threshold of 0.75.

ResNet-50

average
recall
@IoU=
0.50:0.95
small

average
recall
@IoU=
0.50:0.95
medium

average
recall
@IoU=
0.50:0.95
large

Faster R-CNN 0.461 ± 0.016 0.670 ± 0.009 0.792 ± 0.008
SSD 0.476 ± 0.160 0.636 ± 0.014 0.763 ± 0.014

Table 3.4: The average recall and standard devi-
ations calculated for Faster R-CNN vs SSD us-
ing ResNet-50 on the VOC 2012 test set. In the
first column the average recall measured from
0.5 till 0.95 at their correspondent IoU thresh-
old is given for the small objects, in the second
for medium objects and in the last column the
average recall is given for large objects.

As you can see in Table 3.1 Faster R-CNN has
higher scores on all 3 metrics shown in compari-
son to SSD. The difference in mAP measured at
IoU thresholds ranging from 0.50 till 0.95 is sig-
nificant (t(13.55) = -8.94, p <0.05). The difference
in mAP measured at the IoU threshold of 0.75 is
significant (t(11.18) = -7.82, p <0.05). The differ-
ence in mAP measured at the IoU threshold of 0.50
is significant (t(10.74) = -8.58, p <0.05). Accord-
ing to the other t-tests the difference between the
mAP scores of Faster R-CNN and SSD measured
for the classes small, medium and large defections
shown in Table 3.2 are significant (p <0.05). Com-
paring the differences between the recall scores of
both Faster R-CNN and SSD in Table 3.3 with a
t-test show the differences are significant (p <0.05).
The only other metric where the difference is not
significant (t(15.56) = 1.65, p >0.05)), is the aver-
age recall of the group small. There is SSD able to
achieve a higher score than Faster R-CNN. Faster
R-CNN scores higher on 11 metrics in comparison
with SSD. There is a small difference visible for the
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recall score of the class small. However this differ-
ence is not visible for the medium and large detec-
tion classes.

Inception-V2

average
precision
@IoU=
0.50:0.95

average
precision
@IoU=0.50

average
precision
@IoU=0.75

Faster R-CNN 0.843 ± 0.003 0.599 ± 0.007 0.692 ± 0.008
SSD 0.792 ± 0.007 0.525 ± 0.008 0.577 ± 0.012

Table 3.5: The average precision and standard
deviations calculated for Faster R-CNN vs SSD
using Inception-V2 on the VOC 2012 test set.
In the first column the average precision mea-
sured from 0.5 till 0.95 at their correspondent
IoU threshold is given, in the second the aver-
age precision measured at an IoU threshold of
0.5 and in the last column the average precision
is measured at an IoU threshold of 0.75.

Inception-V2

average
precision
@IoU=
0.50:0.95
small

average
precision
@IoU=
0.50:0.95
medium

average
precision
@IoU=
0.50:0.95
large

Faster R-CNN 0.063 ± 0.06 0.405 ± 0.009 0.654 ± 0.007
SSD 0.020 ± 0.005 0.250 ± 0.011 0.604 ± 0.005

Table 3.6: The average precision and standard
deviations calculated for Faster R-CNN vs SSD
using Inception-V2 on the VOC 2012 test set.
In the first column the average precision mea-
sured from 0.5 till 0.95 at their correspondent
IoU threshold is given for the small objects, in
the second for medium objects and in the last
column the average recall is given for large ob-
jects.

Inception-V2

average
recall
@IoU=
0.50:0.95

average
recall
@IoU=0.50

average
recall
@IoU=0.75

Faster R-CNN 0.485 ± 0.004 0.746 ± 0.008 0.762 ± 0.007
SSD 0.445 ± 0.005 0.669 ± 0.007 0.697 ± 0.005

Table 3.7: The average recall and standard de-
viations calculated for Faster R-CNN vs SSD
using Inception-V2 on the VOC 2012 test set.
In the first column the average recall measured
from 0.5 till 0.95 at their correspondent IoU
threshold is given, in the second the average re-
call measured at an IoU threshold of 0.5 and in
the last column the average recall is measured
at an IoU threshold of 0.75.

Inception-V2

average
recall
@IoU=
0.50:0.95
small

average
recall
@IoU=
0.50:0.95
medium

average
recall
@IoU=
0.50:0.95
large

Faster R-CNN 0.473 ± 0.016 0.668 ± 0.009 0.793 ± 0.008
SSD 0.207 ± 0.023 0.527 ± 0.007 0.754 ± 0.006

Table 3.8: The average recall and standard de-
viations calculated for Faster R-CNN vs SSD
using Inception-V2 on the VOC 2012 test set.
In the first column the average recall measured
from 0.5 till 0.95 at their correspondent IoU
threshold is given for the small objects, in the
second for medium objects and in the last col-
umn the average recall is given for large objects.

As you can see in Table 3.5 till Table 3.8, Faster
R-CNN achieves a higher score on all 12 metrics
in comparison with SSD when using Inception-V2
as a backbone. When comparing the mAP scores
measured at the IoU threshold ranging from 0.5 till
0.95, the difference is significant (t(12.71) = -20.58,
p <0.05). Also the difference in mAP scores mea-
sured at the IoU threshold of 0.75 and 0.5 is signifi-
cant (t(17.90)=-22.28, p<0.05 and t(15.73)=-26.14,
p <0.05). According to the other t-tests the differ-
ence between the mAP scores of Faster R-CNN and
SSD measured for the classes small, medium and
large defections are significant (p <0.05). Compar-
ing the differences between the recall scores of both
Faster R-CNN and SSD with a t-test shows the dif-
ferences are very significant (p <0.05). When com-
paring the scores of both networks with ResNet-
50 and Inception-V2, there is no backbone which
scores always higher than the other. Faster R-CNN
scores higher with Inception-V2 on mAP mea-
sured at IoU from 0.50 til 0.95 in comparison with
ResNet-50. SSD on the other hand, scores on the
same metric higher with ResNet-50 as a backbone.

3.1 Images

(a) Faster R-CNN (b) SSD

Figure 3.1: An example output of both networks
using ResNet-50.
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As you can see in Figure 3.1 both networks are able
to detect the person in this figure. Faster R-CNN
produces a lot more outputs with lower confidence
intervals in comparison with SSD, which only pro-
duces one bounding box with a high confidence of
99%.

(a) Faster R-CNN (b) SSD

Figure 3.2: An example output of both networks
using Inception-V2.

As you can see in Figure 3.2 both networks
are able to detect the person in this figure using
Inception-V2 as a backbone. Faster R-CNN pro-
duces two outputs for the same person, SSD pro-
duces one bounding box and it fits the person.

(a) Faster R-CNN (b) SSD

Figure 3.3: Another example output of both net-
works using ResNet-50.

In Figure 3.3 an interesting difference between
Faster R-CNN and SSD using ResNet-50 as a back-
bone can be observed. Faster R-CNN is able to de-
tect all four persons in the picture, while SSD fails
to detect some of the people in the background.

(a) Faster R-CNN (b) SSD

Figure 3.4: Another example output of both net-
works using Inception-V2.

When both Faster R-CNN and SSD use
Inception-V2 as a backbone, you can see in Fig-
ure 3.4 that both Faster R-CNN and SSD detect
the person in front, while two persons in the back-
ground are just detected by Faster R-CNN and
completely ignored by SSD.

4 Conclusion

In this thesis we looked at the performance of deep
neural networks on the task of human detection. In
this experiment we used Faster R-CNN and SSD
both with ResNet-50 and Inception-V2 as a back-
bone. The performance scores of both networks us-
ing Resnet-50 and Inception-V2 can be found in the
previous section. We started this experiment with
the following research question: Is Faster R-CNN
able to achieve a higher mean average precision in
comparison to a Single Shot Multibox Detector?
The hypothesis is that Faster R-CNN is able to
achieve a higher mean average precision in com-
parison to a Single Shot Multibox Detector. Using
the results presented in section 3 we can conclude
the following: In both experiments, with Resnet-50
and Inception V2, Faster R-CNN is able to achieve
a higher mean average precision in comparison to a
Single Shot Multibox Detector on the Pascal VOC
2012 data set. According to the t-test data the dif-
ference in mean average precision between Faster
R-CNN and SSD is significant. Based on this result,
we can’t reject our hypothesis that Faster R-CNN
is able to achieve a higher mean average precision
in comparison to a Single Shot Multibox Detector.
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4.1 Discussion

We found in our experiments that Faster R-CNN
is able to achieve a higher mean average precision
score in comparison with the Single Shot Multibox
Dectector. We think the main reason for Faster R-
CNN scoring higher is the fact that Faster R-CNN
generates 9 different anchor boxes which are trans-
lation invariant. Although SSD applies the same
sort of anchor boxes to different sizes of feature
maps, the performances scores are not at the same
level as Faster R-CNN.

It is very hard to make a good comparison with
previous research scores. The reason for this is
that authors of machine learning algorithms pub-
lish most of the time only the performance scores on
common data set such as Pascal VOC and COCO,
for 20 or 80 classes, instead of just one for the per-
son class. We know from the original paper of SSD
(Liu et al., 2015), that the Single Shot Multibox De-
tector is able to achieve a higher mAP score in com-
parison to Faster R-CNN when using all 20 classes
from the Pascal VOC Challenge. In the research
(Redmon and Farhadi, 2018), a comparison is made
between different versions of Faster R-CNN, SSD
and Yolo-V3 with the mean average precision at
the Intersection of Union at 0.50. This is not a
very good comparison, because not only the net-
works differ, but also the backbones they use differ
from this experiment.

One other thing that makes these comparisons
difficult is the fact that all networks are pro-
grammed using a different network architecture.
Yolo V3 is built on DarkNet by Redmon and
Farhadi and can’t be compared with Faster R-CNN
and SSD using a different backbone. That’s why in
this experiment only networks within the Tensor-
Flow object detection API are compared. This has
been done to ensure no other side effects will influ-
ence the performance score.

For further research one possible suggestion
could be that all deep learning networks use the
same network architecture as a base. If the field
uses one general format, it will become more trans-
parent which network is ’best’. It will also allow
other researchers to conduct experiments with new,
larger data sets more easily.
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