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”The way you learn anything is that something fails, and you figure out how not to have it fail

again.”

Robert S. Arrighi
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Abstract

DC microgrids are increasingly utilized, because they have favourable characteristics over AC

networks. The orientation of this research is to establish a distributed model predictive control

based consensus algorithm for current sharing in DC microgrids. In centralized MPC control

approaches for the DC microgrids the dynamics are coupled, while currents flow between the

nodes. In large-scale networks centralized control is considered infeasible, nonscalable, too costly

or too fragile due to the fact that every control action is executed by one controller. Therefore

the establishment of a distributed MPC scheme for in the DC microgrid is essential. In this

research the dynamics are decoupled by means of dual decomposition and subgradient iterations

to reach a distributed formulation. Wherein each local controller, present at each node, solves its

own subproblem, solely based on local information. Together they will arrive to the solution of

the original problem, but without solving a centralized MPC problem. The proposed controllers

also ensure that both the buck converter output voltages as well as the load voltages remain

within acceptable bounds. The dual decomposition is performed on the physical system, as the

DGUs share currents with each other. In previous research, dual decomposition was usually per-

formed on a simple matrix, ensuring relatively steady convergence properties for the subgradient

algorithm. In this research it is performed on a more complex coupling matrix representing the

physical properties of the DC microgrid. As a result, it was discovered that the convergence

behaviour of the subgradient algorithms was greatly affected by the configuration of the system

in the optimization. Considering the effects of these parameters, it has been observed that MPC

via dual decomposition and gradient iterations is a suitable design approach for reaching con-

sensus in the DC microgrid in a distributed manner.
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Chapter 1

Introduction

Renewable energy is a practical, affordable solution to the world’s electricity needs. The world

production of renewable energy is increasing and is expected to grow even more in the short term

future. This would lead to an energy transition from non-renewable energy sources to a more ef-

ficient, lower-carbon energy mix with energy production and consumption systems relying more

on renewable energy sources (RES). It is predicted that renewable energy sources in 2050 will

generate 50% of the U.S. electricity market [51]. Due to this wide diffusion of renewable energy

sources and the active participation of consumers to the electricity market this would lead to

[23], the power network needs to be adjusted to incorporate sustainable energy sources, which

are unpredictable in their energy generation.

Power systems that can account for this uncertainty, that characterizes RES, are called mi-

crogrids. Microgrids are low-voltage electrical distribution networks consisting of clusters of

loads, storage systems and distributed generation units (DGUs) that are interconnected through

power lines. Generally, microgrids are either Alternating Current (AC) or Direct Current (DC)

networks, where each type requires specific control strategies [50]. Renewable energy sources

such as photovoltaic (PV) systems are DC based and need inverters to operate in an AC grid,

which means that fewer conversion systems are required once incorporated into the DC grid [26].

Beyond the fact that renewable energy sources are better suited to DC grids, they have some

other advantages over AC grids. While the conversion losses are reduced between the DC output

sources and DC grids, the power system can be 15% more efficient than AC systems [25]. Fur-

thermore in DC networks, no harmonics are present. Therefore the frequency synchronization as

well as the reactive power [33] are not required to be taken into account. Also, DC distribution

generation systems are highly reliable microgrids [24]. As a result of all these aforementioned

factors, the importance of DC microgrids has increased. Consequently DC microgrids are at-

tracting growing interest and receive much research attention.

Microgrids often require a consensus algorithm to optimize its operations while satisfying some

inputs and state constraints. Generally, the two control objectives in DC microgrids are voltage

regulation and current sharing. Coordination within the system is needed to ensure these objec-

tives, so that voltages are around desired values and current is proportionally shared among the

various sources [50]. In this research a DC microgrid consisting of buck converters is discussed

where both the objectives are to be achieved. Various control approaches, which can be found

in literature, are used to reach the consensus in the DC power network [10]. The unpredictable

1



CHAPTER 1. INTRODUCTION

behavior of the RES call for a suitable and robust control strategy. A control scheme that ac-

counts for the occurrence of interactions between plant components is model predictive control

(MPC). In this research a MPC strategy will be applied to obtain system-wide current sharing

among DGUs and voltage regulation in the DC microgrid. MPC techniques use a prediction

of a system model to establish an appropriate control response that minimizes a certain cost

function over the prediction horizon in the presence of disturbances and constraints [52], [6].

After the optimization, the first control sample is implemented to the system. Whereafter the

optimization is shifted to a further time step.

MPC and other control schemes can either be centralized or distributed. Centralized control

relies on a central control entity which regulates the network through real-time feedback signals

[57]. Due to the form of the communication network, as the number of DGUs increases, central-

ized control becomes impractical. The centralized controller cannot divulge all the information,

causing the overall performance and efficiency to decrease [31]. Therefore to address this compu-

tational issue; distributed control schemes are often exploited in large-scale networks, in which

the optimization is broken into smaller sub-problems and decision-making is performed locally.

Allowing the network to consist of a considerable number of DGUs without the demanding com-

munication requirements of centralized control schemes.

In this research the centralized MPC based consensus algorithm achieving current sharing in the

DC microgrid proposed in [38] is distributed. Wherein each DGU has its own MPC controller to

regulate the buck converter’s output voltage (which is controllable) and can work cooperatively

with connected nodes to ensure total current sharing in the network. Hereby achieving a degree

of coordination among DGUs that are solving MPC problems with locally relevant variables,

costs and constraints, but without solving a centralized MPC problem. It is crucial that the

MPC controllers account for the interactions between the subsystems to determine the optimal

response. As the subsystems communicate with each other, the coupling between them is en-

forced in each optimization. Furthermore the proposed MPC scheme generates a prediction of

future behaviour, which if appropriately integrated will improve the overall system performance

[54],[7]. Consequently, due to its ability to generate a prediction of future subsystem behav-

ior, MPC is chosen over other controller paradigms. If the likely influence of interconnected

subsystems is known, each local controller can possibly determine suitable feedback action that

accounts for these external influences.
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Chapter 2

Research Approach

2.1 Problem Definition

DC based networks are increasingly interesting due to their advantageous characteristics with

respect to AC networks. The MPC control approach as proposed in [38] is very suitable to

ensure both current sharing as well as load voltage regulation in the DC microgrids. However

for large scale networks, centralized control would be infeasible. Therefore there is a need for

a distributed MPC for the DC microgrid, where each node solves its own sub-problem, based

only on local information, and together they arrive at the solution of the original problem. The

combination between distributed MPC and the DC microgrid dynamics has not been researched.

This rises the following problem:

Problem: A distributed MPC approach has not been used to ensure current sharing and voltage

regulation, so it is not clear whether the use distributed MPC will work in a DC based network.

2.2 Goal

The problem is transformed into a research goal which sets the aim to reach in this thesis. The

goal is formulated as:

Goal: Development of a distributed MPC algorithm that achieves proportional current sharing

and voltage regulation in the DC microgrid and examining the effects of different parameters

upon this system.

2.3 Research Questions

From the goal of this thesis, the main research question is created:

Main RQ: How to develop a distributive model predictive control algorithm that

reaches consensus in the DC microgrid?

3



CHAPTER 2. RESEARCH APPROACH

This research question is going to be answered according to the following sub-questions.

1. How to model the DC microgrid?

• What are the dynamics of the DC microgrid?

• What are the control objectives in the DC microgrid?

2. How to does optimization according to the MPC approach work?

3. How can MPC be applied as a centralized control algorithm for the DC microgrid?

• What is centralized control?

• What are the dynamics of a centralized MPC in the DC microgrid?

4. How can the centralized MPC for DC microgrids be decomposed to a distributed form?

• What is distributed control?

• How can dual decomposition decouple a centralized optimization?

• How can the dual decomposition method be applied to the MPC in DC microgrids?

• How can current sharing be distributed?

5. How do different variables, parameters and constraints in the optimization affect the dis-

tributed MPC?

2.4 Outline

The sub-questions are used as a set up to outline this research. Chapter 3 introduces the

dynamics of the DC microgrid and the to be reached objectives. This dynamical model and

set of constraints is to be optimized, which is done by means of a MPC scheme. A basic

understanding of MPC is provided in Chapter 4. Whereafter in Chapter 5, the MPC approach is

applied to control the DC microgrid, explained in Chapter 3. When the centralized MPC scheme

for DC microgrids is known, this has to be decomposed into a distributed formulation, this will

be done in, Chapter 6. However firstly the mathematical techniques necessary to decompose

such a system are explained. Thereafter a general MPC problem is decomposed and at last this

theory is applied to the centralized MPC of Chapter 5. In Chapter 7 different scenarios will be

formulated to test the effects of different variables, parameters and constraints on the distributed

MPC for DC microgrids. These tests provide different results and conclusions from these results

will be drawn in Chapter 8. In Chapter 9 recommendations for further research will be given.
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Chapter 3

DC Network

Due to the to high efficiency, high reliability, and easy interconnection of renewable sources, DC

microgrids have several advantages over AC microgrids. As already stated the DC microgrids

are therefore gaining popularity and receive much research attention. The power networks are

also progressively utilized for a range of applications. DC grids can operate with an appropriate

control strategy disconnected from the grid, ensuring stability and voltage regulation [27]. This,

together with the fact that RES are DC operated, make that DC microgrids serve perfectly

for electrifying remote villages [21] e.g. on the Hawaiian island Moku o Lo’e (Coconut island)

where an islanded DC microgrid has been deployed. The ability to act in isolation from the

main grid and their high reliability, results in ships having on-board DC grids [22]. Furthermore

DC microgrids are utilized in military bases [49], industrial facilities (Honda distribution center)

[61], data centers [45] and universities [12].

Microgrids are defined as low-voltage electrical distribution networks, composed of DGUs, loads

and storage systems interconnected through power lines. AC and DC microgrids have their own

system dynamics and control strategies, for AC systems see e.g. [55], [8] and [29]. As there is

no reactive power and harmonics present, DC microgrids are regarded to be more simple than

their AC counterparts.

In this research a (Kron-reduced) buck converter based DC microgrid is considered, which will

entail n DGUs that are connected through m resistive power lines (see Figure 3.1). The Kron

reduced system is equivalent to the network in [60] and usually a Kron reduction of the system

results in a simpler set of equations while providing the same physical relations between voltage

and current at the DGUs. The energy source of each DGU is represented by a DC voltage source

that supplies a local load through a DC-DC buck converter. This local DC load is connected to

the Point of Common Coupling (PCC). The i -th node (DGU), according to Kirchhoff’s current

and voltage laws, has the dynamics given by

Lsi İsi(t) = −RsiIsi(t)− Vi(t) + ui(t), (3.1a)

Csi V̇si(t) = Isi(t)− ILi −
∑
j∈Ni

Iij(t). (3.1b)

5



CHAPTER 3. DC NETWORK

Figure 3.1: Electrical scheme of DGU i and line ij

Where Ni is the set of power lines connected to the i -th DGU, while ui(t) is the controllable

output voltage of the i -th buck converter, which could be provided by a renewable energy source

or a battery. Furthermore the current between DGUs j and i is represented by Iij(t) and its

approximation, for each j ∈ Ni, is given by

Iij(t) =
1

Rij
(Vi(t)− Vj(t)). (3.2)

Symbol Description

Parameters

Rsi Filter resistance

Lsi Filter inductance

Csi Shunt capacitor

Rij Line resistance

State variables

Isi Generated current

Vi Load voltage

Iij Line current

Inputs

ui Buck converter output voltage

ILi
Load demand

Table 3.1: Description of symbols

All the remaining symbols are outlined in Table 3.1. To formulate a compact notation for the DC

microgrid dynamics of (3.1), the network topology is to be defined. The network is represented

by a connected and undirected graph, G = (V, C), where the set of nodes, V = {0, ..., n}, and

the set of edges, C = {0, ...,m}, indicate the DGUs and the power lines connecting the DGUs

respectively. The incidence matrix B ∈ Rn×m can describe the network and its entries are given

6



CHAPTER 3. DC NETWORK

by

Bij =

{ +1 if i is the positive end of j

−1 if i is the negative end of j

0 otherwise

Combining (3.1) and (3.2) results in the overall microgrid system that can be written as

Lsİs(t) = −RsIs(t)− V (t)− u(t), (3.3a)

CsV̇ (t) = Is(t)− IL − BR−1BTV (t). (3.3b)

Where Is, V, u : R≥0 → Rn, I : R≥0 → Rm and IL ∈ Rn represents the constant overall current

demand. Moreover Ls, Rs, Ls ∈ Rn×n and R ∈ Rm×m are positive definite diagonal matrices.

3.1 Control Objectives

Generally the control objectives in DC microgrids are voltage regulation and (proportional)

current sharing. Careful coordination is needed to ensure that voltage levels are within acceptable

ranges, to provide a proper functioning of connected loads, and current sharing which prevents

the overstressing of any source and helps to elongate the lifetime of the power-generating entities

in the microgrid. In this research, another objective is added. Since the buck converter’s output

can be controlled it is constrained as well, making up the third objective. The three objectives

are outlined below.

3.1.1 Current Sharing

At steady state, the second line in (3.3) with steady state solution (Is, V , I), constant inputs u

and given current demand IL satisfies

IL = Is − BR−1BTV . (3.4)

Which suggests that at steady state the total current demand 1Tn IL is equal to the total generated

current 1Tn Is
1, where 1n ∈ Rn represents a vector of ones. The goal is to achieve a form of

current sharing in the microgrid, which means that the total generated current is shared among

the various DGUs. To improve the generation efficiency, the current is shared proportionally to

the generation capacity of their respective energy source [10]. This desire can be mathematically

formulated by

wiIsi = wjIsj , ∀ i, j ∈ V (3.5)

where wi ∈ R≥0 is the weighting value for the i-th DGU, corresponding to the generation

capacity of its converter. For example, a relatively large value of wi resembles a small generation

capacity [50]. To avoid overstressing of a source, it is desirable to distribute the total load in

the network fairly among the DGUs, leading to the first objective concerning the desired steady

state value of the generated currents Is.

lim
t→∞

Is(t) = Is := W−11ni
?
s, (3.6)

1 A property of the incidence matrix B is that it satisfies, 1TnB = 0
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where W is the positive diagonal desired weighing matrix and i?s ∈ R. The steady state re-

quirement of 1Tn IL = 1Tn Is, automatically requires i?s = 1Tn IL/(1
T
nW

−11n). This implies that

1Tn Īs = 1TnW
−11ni?s = 1Tn IL is satisfied. Thereby the desired generated current depends on the

overall load current, as

Is = W−11
(
1Tn IL/(1

T
nW

−11n)
)
. (3.7)

3.1.2 Voltage Regulation

The requirement for current sharing generally does not permit the steady state load voltage to

be equal to a desired reference value. Because currents in the network are tightly related to

voltages it is not possible to freely adjust the voltages while still expecting a proper allocation

of the generated currents [50]. Therefore to regulate the voltages, two alternatives are often

considered; average voltage regulation [10], [50] and a bounded voltage regulation as proposed

in [38]. Firstly the control objective proposed in [38] is portrayed, where the load voltages for

each DGU are constrained.

Vmin ≤ V (t) ≤ Vmax, (3.8)

where V and V denote the minimum and maximum allowable load voltages. The load voltages

stay within these bounds for constant load demand. However, a substantially large load demand

variation can cause the load voltages to reach values outside the bounds. Alternatively, in [10]

the controller has to guarantee voltage balancing, where the weighted average value of the desired

reference voltages, V ?, is kept equal to the weighted average value of the voltages at steady state,

V̄ .

lim
t→∞

1TnW
−1V (t) = 1TnW

−1V̄ = 1TnW
−1V ?, (3.9)

where W is the positive diagonal desired weighing matrix as defined in Section 3.1.1, such that

at the converters with a relatively large generation capacity, there is a relatively small voltage

deviation.

3.1.3 Input Feasibility

To achieve Objective 1 and 2, the control input u can be adjusted. This input is, as well as the

load voltage, constrained by bounds

umin ≤ u(t) ≤ umax, (3.10)

where u and u denote the minimum and maximum allowable buck converter output voltages.
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Chapter 4

Model Predictive Control

A MPC based algorithm is used to control the DC microgrid and reach consensus for current

sharing, while keeping the buck converter output voltages and load voltages within the bounds.

An optimal control problem can be solved using a MPC scheme, in this section the general idea

behind MPC will be explained.

MPC was developed around 1970 [52] and since the evolution of fast processors, that can handle

complex problems in a split second, the control methodology has gained more and more popular-

ity. MPC applications can be found in chemical plants [28], oil refineries [58] and more recently

in power systems. Even though MPC requires high computational efforts, it can easily handle

multivariable, nonlinear systems and has excellent constraint-handling capabilities [53].

MPC relies on the dynamic model of a process. The future behaviour of a system is predicted

using that dynamic model, together with given measurements or estimates of the current state of

the system and a hypothetical future input trajectory or feedback control policy. This predicted

behavior is used to optimize some cost function subjected to constraints. The optimization yields

an optimal control sequence of which only the first control input is implemented in the system.

Thereafter the process is repeated for the next time instant using newly available information on

the system state. This repetition is instrumental in reducing the gap between the predicted and

the actual system response [6]. The main advantage of MPC is the fact that it allows the current

time instance to be optimized, while keeping future time instance into account. This is achieved

by optimizing over a finite time-horizon, but only implementing the current time instance and

then optimizing again, repeatedly.

A MPC optimization will be computed at each time step, t ∈ T , over a time horizon with

step, k ∈ K, where

K = (0, 1, ..., N − 2, N − 1), T = (0, 1, ..., tmax − 1, tmax). (4.1)

So the basis for MPC control are predictions of the future as it uses known characteristics of the

dynamic behavior of processes to feed forwardly drive the processes to the desired conditions.

This in contrast to PID control, where the control actions are based on the past. Nevertheless, it

must be stated that MPC is not a specific control strategy, but belongs to a family of wide range
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control methods developed around common ideas. More specifically, all MPC based control

methods are designed according to these five principles [52]:

1. Process and disturbance models

2. Performance index

3. Constraints

4. Optimization

5. Redecing horizon Principle

Which will be discussed, according to [6] and [52], in the next sections.

4.1 Prediction model

The model is discrete and predicts the process signals for future time instants over a specified

horizon. Different prediction models can be utilized to capture the dynamic and static inter-

actions between input, output and disturbance variables, however in this section a state space

description will be used.

The model is the cornerstone of MPC and the success of MPC depends on the accuracy of

the process model. Inaccurate predictions can make matters worse, instead of better [47]. The

prediction model will be used to make an estimate of the future behaviour of the system, over

the horizon K. A generalized model can be portrayed by

x̂(t|t) = x(t), (4.2a)

ŷ(t|t) = y(t), (4.2b)

x̂(t+ k|t) = Âx̂(t+ k − 1|t) + B̂û(t+ k − 1|t), ∀ k ∈ K\{0} (4.2c)

ŷ(t+ k − 1|t) = Ĉx̂(t+ k − 1|t). ∀ k ∈ K\{0} (4.2d)

Where the first two lines denote the current state of the model or plant and serve as the initial

conditions, x̂(t+ k|t) is the predicted value of x(t+ k) at time instance t. Moreover û and ŷ are

the estimated system input and output respectively.

4.2 Performance index

The MPC model, tries to optimize a performance index or cost-criterion over the future horizon.

The performance index ensures that the future output ŷ(t+ k|t), which is the predicted value of

y(t + k) at time t, follows a determined reference signal r(t + k) over the chosen horizon. The

error, given by

e(t+ k|t) = ŷ(t+ k|t)− r(t+ k), (4.3)

should be optimized for all the time steps till N . The performance index can be optimized by

adjusting the controllable input u, of which only the first step from the optimal solution u(t) is

10
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applied and sent to the process. A standard 2-norm performance index, is portrayed by

J(u, t) =
∑
k∈K

e(t+ k|t)TΓ(k)e(t+ k|t). (4.4)

Where Γ(k) is a diagonal selection matrix that can define the degree of importance through

weights of the error at each horizon step k. Furthermore, it is also possible to penalize the

controllable input in the performance index.

4.3 Constraints

In general, all processes are subject to constraints. This can be due to safety or environmental

regulations, consumer specifications, physical restrictions etc. MPC is a suitable method to han-

dle problems with hard constraints. These constraints can be equality or inequality constraints

and cannot be violated under any circumstance. Inequality constraints can be bounds on control,

state or output signals.

umin ≤ û(t+ k|t) ≤ umax, (4.5a)

xmin ≤ x̂(t+ k|t) ≤ xmax, (4.5b)

ymin ≤ ŷ(t+ k|t) ≤ ymax. (4.5c)

Equality constraints, usually originate from the respective model itself. An example to ensure

more system robustness is given in [52] by

∆û(t+ k|t) = 0, ∀k ≥ Nc (4.6)

Where Nc is is a control horizon that is 0 ≤ Nc ≤ N . (4.6) forces the control signal to become

constant over time and reach some form of steady state.

4.4 Optimization

The optimization of (4.4) yields an optimal control sequence. In order to obtain the sequence of

optimal future control signals û(t+k|t), a sequence of predicted outputs, ŷ(t+k|t), is calculated as

a function of past inputs and outputs through the chosen model that minimizes the performance

index subject to given constraints.

4.5 Redecing horizon principle

After the optimization of the optimal control sequence, only the first control sample will be

implemented to the system. Thereafter the horizon is shifted with one time step and optimization

is started again. At time t the future control sequence {û(t|t), ..., û(t+N−1|t)} is determined so

that the performance index is minimized while keeping the constraints in eight. The first input

û(t|t) of the sequence is then applied to the real process. Then the horizon is shifted to time

t+ 1 and the optimization is performed over that time instance.
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4.6 Example

To understand the concept of MPC, one can consider a well-known analogy of a driver steering

a car [44]. Within that analogy

• Prediction Model: Describes how the vehicle is expected to move on the map.

• Disturbances: The driver’s inattention and other reasons for uncontrolled deviation from

the desired trajectory.

• Performance Index: May be the goal of minimum time, minimum distance etc. to reach

the desired location.

• Constraints: The set of rules to drive on roads, respect one ways, don’t exceed mechanical

capabilities of the vehicle.

• Receding Horizon: Would re-plan the route of the car and the corresponding driver

actions periodically in time, find the overall set of actions over a time horizon, apply the

first and then re-plan for the next-step.
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Chapter 5

Centralized MPC for DC

Microgrids

As microgrids require a consensus algorithm in order to optimize its operations, in this research,

an MPC scheme, as introduced in Section 4, is applied to solve the optimal control problem of

the DC microgrid from Section 3. MPC is particularly interesting for power system balancing

because of the systematic way to include input and state constraints as well as its robustness

to external disturbances. However, before a distributed MPC scheme for DC microgrids can be

developed, firstly the definition of a centralized control is explained. Wherafter the centralized

MPC approach for achieving Objectives 1 , 2 and 3 is studied. In this section a centralized MPC

scheme for DC microgrids established as in [38], will be discussed.

5.1 What is centralized control?

In a centralized control model all of the control aspects are concentrated in a single entity.

There is one controller that handles the execution of a set of procedures associated with the

process and all control operations are reported to this controller (see Figure 5.1). Because of

the central architecture and all control actions are wired back, control efforts require much

computational power. Therefore centralized MPC often becomes impractical for the control of

large-scale systems.

Figure 5.1: Centralized MPC Architecture
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5.2 Centralized MPC for DC microgrids

In [38] a classical MPC approach is proposed to solve the optimal control problem of the DC

microgrid. Optimization of a MPC problem takes place at each time step, whereafter only the

first control input value from the optimal control sequence is used and the horizon is shifted

towards the next time step and the procedure is repeated. Again there is a distinction between

current time step t ∈ T and horizon step k ∈ K, where

K = (0, 1, ..., N − 2, N − 1), T = (0, 1, ..., tmax − 1, tmax). (5.1)

MPC optimizes the controllable buck converter output over a future horizon such that the control

objectives are met, whilst considering grid constraints. A model is used to define the relation-

ships between the generated current, load voltage, buck converter output voltage etc. Such a

continuous system model has been formulated in (3.3), where the physical representation of the

DC microgrid is depicted. To design the MPC scheme these dynamics have to be discretized.

Discretization of (3.3) by Euler approximation method [37] gives

Is(k + 1) = Is(k) + TL−1s
(
−RsIs(k)− V (k) + u(k)

)
, (5.2a)

V (k + 1) = V (k) + TC−1s
(
Is(k)− IL − BR−1BTV (k)

)
, (5.2b)

where T is the sampling period.

Now the optimal control problem in the form of a MPC scheme can be stated. As can be seen

from Objective 1, the total desired generated current Is depends on the overall load current

IL, which is known. If the load demands were not to be known, an observer could be designed

to estimate the load demand [37]. In [38] the performance index is set so that it achieves

proportional current sharing by minimizing the generated current with its steady state.

obj(t) =
∑
k∈K

(
ÎTs (t+ k|t)− Is

)2
. ∀ k ∈ K (5.3)

However in this research the quadratic cost function proposed in [23] is adopted to achieve

proportional current sharing, in which the controllable input minimizes,

obj(t) =
∑
k∈K

ÎTs (t+ k|t)WLWÎs(t+ k|t) + ûT (t+ k|t)Rû(t+ k|t). ∀ k ∈ K (5.4)

Where Î(t+ k|t) represents the predicted value of I(t+ k) at time step t and L ∈ Rn×n denotes

the weighted Laplacian matrix associated with the physical network, L = BQBT . Further-

more R,Q ∈ Rn×n, are weighted identity matrices. Proportional current sharing is achieved if

LWÎs(t+ k|t) = 0 holds. The term ÎTs WLWÎs is equal to zero, if and only if Îs is equal to the

null space of matrix LW and can be denoted as N (LW ) = {α | LWα = 0} with α ∈ Rn. This

means that at steady state the aforementioned term is zero if and only

Is = α, (5.5)

notice that, Is ∈ N (LW ), and to that effect

1Tα = 1T IL. (5.6)
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Then by (3.7), proportional current sharing is achieved [23]. The second term in the cost function,

captures the cost of the controllable input so that the system will go to its steady state. The

objective is subjected to the constraints represented by the discrete time system dynamics and

inequality constraints on states and input variables, displayed in the next section.

5.2.1 Total centralized MPC scheme

The optimal control problem for a DC microgrid consisting of buck converters established in

Section 3 can now be represented as a MPC optimization problem. Where proportional current

sharing is achieved and also buck converter output as well as load voltage regulation is ensured.

The total MPC scheme for DC microgrids is given by,

Performance index

obj(t) =
∑
k∈K

ITs (t+ k|t)WLWIs(t+ k|t) + u(t+ k|t)TRu(t+ k|t), ∀ k ∈ K (5.7)

Initial conditions

Îs(t|t) = Is(t), (5.8a)

V̂ (t|t) = V (t), (5.8b)

Process model

Îs(t+ k|t) = Îs(t+ k − 1|t) + TL
−1
s

(
− RsÎs(t+ k − 1|t)− V̂ (t+ k − 1|t) + û(t+ k − 1|t)

)
, ∀ k ∈ K\{0} (5.9a)

V̂ (t+ k|t) = V̂ (t+ k − 1|t) + TC
−1
s

(
Îs(t+ k − 1|t)− IL − BR−1BT

V̂ (t+ k − 1|t)
)
, ∀k ∈ K\{0} (5.9b)

Constraints

V̂min ≤ V (t+ k|t) ≤ V̂max, ∀ k ∈ K (5.10a)

ûmin ≤ u(t+ k|t) ≤ ûmax. ∀ k ∈ K (5.10b)

Equations (5.8a - 5.8b) denote the initial conditions and thus the current states of the system at

time t. The microgrid dynamics are portrayed by (5.9a - 5.9b) and the voltage regulation and

input feasibility constraints by (5.10a - 5.10b) respectively. Noticeably, Objective 2 and 3 are

incorporated in the constraints and Objective 1 in the performance index.
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Chapter 6

Distributed MPC for DC

Microgrids

In this section the distributed control strategy for MPC in the DC microgrids is outlined. Firstly

the general idea of distributed control is explained. Whereafter the basic mathematical concepts

of convexity, Lagrange duality and the subgradient method are discussed. These ideas are

necessary to decompose a centralized control design to a form of communicative distributed

control. Then the general approach for the decomposition of centralized MPC problems is

outlined, after that this technique is applied to centralized MPC for DC microgrids from Section

5.

6.1 What is distributed control?

The number of nodes in the network causes a centralized MPC scheme to be unfeasible due to

the computational burden on the controller (communication bandwidth limitations), as all the

control inputs are computed in one optimization problem. Therefore other distributed control

structures are more suitable for multi-agent systems comparable to the electricity grid. In

distributed control networks the total system consists of several subsystems that have their own

local controllers, which allow information to travel between them (see Figure 6.1). The local

control inputs are computed using local measurements with local dynamics, resulting in multiple

local optimizations. Distributed control is not to be confused with decentralized control, which

is also based on local regulators, but does not allow for an exchange of information among the

various local controllers. Distributed controllers communicate, so that they have knowledge of the

behavior of the others [46]. When the local controllers are designed with MPC, the information

transmitted typically consists of the future predicted control or state variables computed locally,

so that any local regulator can predict the interaction effects over the considered prediction

horizon.
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Figure 6.1: Distributed MPC Architecture

Generally, in distributed MPC there are two approaches for the information exchange between

the controllers. There are so called noniterative algoritms, that transmit and receive informa-

tion from other controllers once within each sampling time. Contrariwise, there exist iterative

algoritms, that allow for information to be exchanged multiple times within the sampling period,

[16]. It is obvious that within the iterative method, the information available is higher and thus

system objectives can be reached faster and even within one time interval.

The objective is to achieve some degree of coordination in a multi-agent system, where each

controller solves a local MPC problem. The type of coordination depends on the knowledge of

each others cost functions. A distinction can be made between communication based strategies

and cooperation based strategies. Pure communication based strategies optimize their own local

performance index and have no knowledge of each others cost functions. Whereas with coopera-

tion based distributed control, the subsystems cooperate, rather than compete, with each other

to reach system wide objectives (global cost function [7], [54]). Iterative and cooperative control

strategies can replicate ideal centralized strategies. However the design phase of such controllers

is more complex relative to centralized controllers.

Note that distributed solutions are particularly attractive in large-scale networks where a central-

ized solution is infeasible, nonscalable, too costly, or too fragile. Therefore the MPC optimization

for DC microgrids (Section 5) has to be decomposed and modified into a distributed form. This

is done according to theories established in [43], which is based on the mathematical principles

of convex optimization, discussed in the next section.

6.2 Basic Concepts of Convex Optimization

For the decomposition of centralized control problems, some mathematical background on con-

vexity, Lagrange duality and subgradient methods is needed. A review of those concepts is given

in this section.

6.2.1 Convex optimization and Lagrange duality

A general optimization problem, has the form of

min
x

f0(x),

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

(6.1)
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where x = (x1, ..., xn) ∈ Rn is the optimization variable, the function f0 : Rn → R is the

cost or objective function, (f1, ..., fm) : Rn → R are the m inequality constraint functions and

(h1, ..., hp) : Rn → R are the p equality functions [4]. If the objective and inequality are convex

and the equality constraint functions are linear, the problem is considered to be a convex opti-

mization problem [39]. The domain is the set of points for which the objective and all constraints

functions are defined,

D =

m⋂
i=0

dom fi ∩
p⋂
i=0

dom hi.

A point x ∈ D is feasible if it satisfies the constraints in (6.1). The problem is said to be feasible

if there exist at least one feasible point and infeasible otherwise. Along those lines the optimal

value p? of the problem (6.1) is achieved at x?, thus p? = f0(x?). Convexity of the problem

makes the optimization easier, because a local optimum of convex optimization is also globally

optimal.

Solving the convex problem (6.1) implies that the hard constraints need to be taken into ac-

count, to find the optimal x?. A method to solve the problem, without explicitly solving the

hard constraints, is with the use of Lagrange multipliers. The idea of Lagrangian relaxation is

to take the constraints into account by augmenting the objective function with a weighted sum

of the constraint functions [30]. Define the Lagrangian L : Rn × Rm × Rp → R as

L(x, λ, θ) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

θihi(x), (6.2)

where λ ∈ Rm≥0 and θ ∈ Rp are the Lagrangian multipliers associated with the inequality and

equality constraints in (6.1). These vectors λ and θ are also named as the dual variables, whereas

x is called the primal variable. So the Lagrangian can be thought of as a modified version of

the objective function to the original convex optimization problem which accounts for each of

the constraints and the Lagrange multipliers λi and θi can be seen as “costs” associated with

violating different constraints [13].

Primal and dual problem

The problem depicted in (6.1) is called the primal problem and the f0(x) is referred to as the

primal objective. To show the relationship between the Lagrangian and the primal problem, the

primal problem can be written in terms of the Lagrangian

sup
λ≥0,θ

L(x, λ, θ) = sup
λ≥0,θ

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

θihi(x)
)
,

=

f0(x) fi(x) ≤ 0 and hi(x) = 0, ∀i

∞ otherwise.

(6.3)

If x is feasible and thus constraints fi(x) ≤ 0, i = 1, ...,m and hi(x) = 0, i = 1, ..., p are satisfied,

the supremum over Lagrangian with the dual variables is equal to the primal objective. The

optimal value of the primal problem in terms of the Lagrangian is

p? = inf
x∈D

sup
λ≥0,θ

L(x, λ, θ). (6.4)

On the other hand the dual objective function can be defined as the minimum value of the
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Lagrangian over x: for λ, θ,

g(λ, θ) = inf
x∈D

L(x, λ, θ) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

θihi(x)
)
. (6.5)

Notice that g : Rm × Rp → R, is a concave function of λ and θ. The dual variables are dual

feasible if λ ≥ 0. Taking the minimum of the Lagrangian, for a fixed λ and θ over x ∈ D gives a

lower bound for optimal value p? [30]. A proof is given below

g(λ, θ) = inf
x∈D

L(x, λ, θ),

≤ L(x?, λ, θ),

= f0(x?) +

m∑
i=1

λifi(x
?) +

p∑
i=1

θihi(x
?),

≤ f0(x?) = p?.

(6.6)

The first and third step of (6.6) follow from (6.5) and (6.2) respectively. The second step follows

from the fact that the infimum over the Lagrangian of a possible value of x is always less or

equal to the Lagrangian of x?. The last step comes from the fact that x? is primal feasible and λ

and v are dual feasible, thus the sums of the weighted constraints are non-positive [13]. Finding

the best lower bound of (6.5) is called the dual problem and gives the optimal dual objective,

d? = sup
λ≥0,θ

inf
x∈D

L(x, λ, θ). (6.7)

By switching the order of the infimum and supremum above, we obtain an entirely different

optimization problem [4]. The dual problem can be depicted as

max
λ,θ

g(λ, θ),

subject to λ ≥ 0,
(6.8)

where λ? and v? are optimal dual variables if they are optimal for the dual problem. Thus

d? = g(λ?, v?).

Weak and strong duality

The optimal value of the dual problem is by definition the best lower bound of the primal

problem’s optimal value. In mathematical notation this is

d? ≤ p?. (6.9)

This is true for any optimization problem, not just for convex primal problems. Basically the

equation says that the greatest lower bound is always less or equal than the least upper bound.

A proof for this equation is given below. Take f : Rn × Rm → R where W ∈ Rn and Z ∈ Rm,

then for any w0 ∈W and z0 ∈ Z the following holds,

inf
w∈W

f(w, z0) ≤ f(w0, z0) ≤ sup
z∈Z

f(w0, z),

sup
z0∈Z

inf
w∈W

f(w, z0) ≤ inf
w0∈W

sup
z∈Z

f(w0, z),

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z).

(6.10)
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The first equation is trivial and states that lower bound is less than or equal the upper bound of a

function. Since this is true for all w0 ∈W and z0 ∈ Z, the second and third equation also hold [4] .

The difference between p? − d? is called the duality gap. If this gap is greater than zero,

this implies weak duality, which is a consequence of (6.10). However for most (not all) convex

problems,

p? = d?, (6.11)

holds and the duality gap is zero, implying strong duality. Where the best bound from the dual

function is equal to the optimal value of the primal (original) problem. By means of this princi-

ple, the primal problem (6.1) can be equivalently solved by solving the dual problem (6.8). There

exist conditions that ensure strong duality holds, of which the most well-known is called Slater’s

condition. When the inequality constraint fi(x) ≤ 0 are replaced by strict inequality constraints

fi < 0. If there exists some feasible primal solution x, for which the strictly inequality constraints

are satisfied, Slater’s condition holds. And if this condition holds, strong duality also holds [4].

To display the interesting characteristics of strong duality, three important interpretations of

Lagrange duality are described below.

Complementary slackness

If strong duality holds, an interesting relationship arises called complementary slackness. Let

f0(x?) = g(λ?, θ?),

= inf
x∈D

(
f0(x) +

m∑
i=1

λ?i fi(x) +

p∑
i=1

θ?i hi(x)
)
,

≤ f0(x?) +

m∑
i=1

λ?i fi(x
?) +

p∑
i=1

θ?i hi(x
?),

≤ f0(x?).

(6.12)

Because the first and last equation are identical, the whole chain is equal. Which indicates that

λ?i fi(x) = 0, i = 1, ...,m. (6.13)

Because

λ?i > 0 =⇒ fi(x
?) = 0,

fi(x
?) < 0 =⇒ λ?i = 0.

(6.14)

And it means that ith optimal Lagrange multiplier is zero unless the constraint is active at the

optimum.
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KKT conditions

Furthermore if strong duality holds, the primal and dual optimal points must satisfy Karush-

Kuhn-Tucker (KKT) conditions.

fi(x
?) ≤ 0, i = 1, ...,m

hi(x
?) = 0, i = 1, ..., p

λ?i ≥ 0, i = 1, ...,m

λ?i (x
?) ≤ 0, i = 1, ...,m

∇f0(x?) +

m∑
i=1

λ?i∇fi(x?) +

p∑
i=1

θ?i∇hi(x?) = 0.

(6.15)

These conditions are necessary and sufficient for primal-dual optimality [13].

Price or tax interpretation

Lagrange duality can be interpreted in an interesting economic manner. Suppose x is the op-

erational state of an enterprise and f0(x) indicates the cost of operating at x, where −f0(x)

portrays the profit. The constraints fi(x) ≤ 0 represent a limit, for example on the amount of

warehouse space. The x at which the profit is maximized can be found through

min
x

f0(x)

subject to fi(x) ≤ 0 i = 1, ...,m.
(6.16)

The optimal profit is −p?. The company can pay a price λi per unit of the material constraint.

For example f1(x) ≤ 0, represents a limit on warehouse space. The company can use extra

warehouse space at a cost of λ1 per square meter. Now the total cost for state x and constraint

prices λi is the Lagrangian of (6.16). The dual function g(λ) represents the cost to the firm, while

the company desires to minimize the Lagrangian, as a function of price vector λ. The optimal

dual value, d?, is the optimal cost to the enterprise under the least favorable set of prices. Strong

duality in this context, means that there is no advantage for the firm to violate the constraints.

Weak duality implies that, the cost for the firm in case constraint violations can be bought and

sold, is less than or equal to the cost in the original situation. The duality gap is then the

minimum possible advantage to the enterprise of being allowed to pay for constraint violations

and receive payments for non-tight constraints. In a power network with multiple decision

makers, it is useful to work with price like concepts of Lagrange multipliers when dealing with

allocation problems [4],[30].

6.2.2 Subgradient-based optimization

Another convex functions’ important property is that it the minimum can be found using a

search method. Let f0 : Rn → R be a convex function and the goal is to solve

min
x∈Rn

f0(x). (6.17)

As mentioned in the previous section, such a function has a global minimum x?. Which means

that for any point x0, there is a connected path between x0 and x? such that for every point xi

along that path, f0(xi) ≤ f0(x0) holds. This characteristic will allow an iterative search method

to always reduce f0(x) so that it eventually reaches f0(x?) [39].
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The goal of such a method is to generate a sequence of feasible points
{
x(t)

}t=∞
t=0

, where

f0(x(t+ 1)) < f0(x(t)) and the state vector converges to the optimal x? [30]. With the gradient

method, as the name suggests, the gradient (first derivative) of a function is calculated at each

iteration t and a step in the opposite direction is then taken. So that the method iteratively

generates a sequence of feasible points for (6.17) as

x(t+ 1) = x(t)− γ(t)w(x(t)). (6.18)

Where γ(t) is the step size or learning rate and w(x(t)) is the gradient of f0 at point x(t) if f0

is differentiable. If not w(x(t)) denotes the subgradient of f0 at point x(t) [39]. Convergence of

the subgradient method depends on the chosen step size. There are various theories on step size

options, e.g. constant step size (γ = γ(t)) or diminishing step size (γ(t) = (1 +m)/(t+m) with

m ≥ 0).

Section 6.2 already mentioned that some convex optimization problems are hard due to the

need to explicitly solve the constraints and can be more easily calculated through solving the

dual problem (if strong duality holds). In this case the subgradient method can be applied to

the dual problem. If the dual problem of (6.8) is considered, the optimal dual variables λ and θ

can be found through the subgradient method for a given x(t). Since g(λ, θ) is concave in (λ, θ),

even if the primal problem is not convex. In accordance with [30], let

gt(λ(t), θ(t)) = inf
x(t)

L(x(t), λ(t), θ(t)), (6.19)

be the dual problem for iteration t. The sequence of feasible points for the Lagrange multipliers

is given by

λ(t+ 1) = max(0, λ(t) + γ(t)f(x(t))), (6.20a)

θ(t+ 1) = θ(t) + γ(t)h(x(t)), (6.20b)

with f(x(t)) and h(x(t)) as a subgradients of (6.19) at the current point x(t).

Convex optimization problems can be solved by subgradient methods. Therefore the method is

often used with decomposition methods in (large scale) dynamical systems to solve the problem

in a distributed manner. However this subgradient method does not always ensure good con-

vergence, as is depends so much on the chosen step size and choosing a proper step size can be

difficult. This is due to the fact that a step size that is too small leads to slow convergence, while

a learning rate that is too large can hinder convergence and cause a function to fluctuate around

the minimum or even to diverge. Furthermore it is often thought that a main source of difficulty

for this method to find the global minimum (or maximum) is the proliferation of local minima

with much higher error than the global minimum [11]. Dual optimization problems can have

these saddle points where the subgradients are close to zero and where the subgradient algorithm

can get trapped in. To deal with these challenges, a tweaked version of the subgradient descent

algorithm will be used in this research.

Momentum

Momentum is a method that helps to accelerate the subgradient algorithm in the relevant di-

rection and dampens oscillations [41]. The algorithm determines the next update as a linear
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combination of the subgradient and the previous update [41]. It does this by adding a fraction β

of the update vector of the past time step to the current subgradient. Lets consider the problem

depicted in (6.19), where dual variable θ is to be determined by the update rule. The update

rule of the subgradient descent algorithm with Momentum is represented by

mavg(t) = (1− β)mavg(t− 1) + βh(x(t)), (6.21a)

θ(t+ 1) = θ(t) + γ ∗mavg(t), (6.21b)

where h(x(t)) is the subgradient of the dual variable at current point x(t), γ is the step size and

β ∈ [0, 1) is the momentum term. The name stems from an analogy to momentum in physics.

An intuitive understanding of momentum can be painted by a ball rolling down the hill. Its mass

is constant all the way, but because of the gravitational pull, its velocity increases over time,

making momentum increase. The same concept can be applied to cost minimization. When a

subgradient from the previous time step “points” in the same direction as our current time step,

“the speed” is increased by going “down hill.” Therefore term, β ∗ mavg(t − 1), increases for

dimensions whose subgradients point in the same directions and reduces updates for dimensions

whose subgradients change directions. As a result, faster convergence and reduced oscillation

is achieved. So Momentum is a tweaked version of subgradient descent that provides a faster

convergence of θ to the optimal θ?.

6.3 Dual decomposition method

In large scale optimization problems of a network with decision-makers/agents that have coupled

dynamics (such as low voltage microgrids), a centralized solution is, as mentioned, infeasible,

non-scalable, too costly, or too fragile [39]. Therefore the techniques in Section 6.2 can be used

to decompose the original large problem into distributed solvable subproblems. The idea is that

each decision-maker solves its own subproblem, based only on local information, and together

they arrive to the solution of the original problem [36].

The dual decomposition method, proposed in [43], can be used to achieve distributed control

from a centralized control architecture. The theory uses the concept of the duality, (6.8), to

decompose the problem, whereby the coupling constraints between decision-makers are relaxed

by Lagrange multipliers. Each agent has access only to a local model and tries to optimize his

control action based on a local cost function. The interaction with neighboring agents is handled

through negotiations [42]. These negations are executed by means of neighbors updating the

Lagrange multipliers that act as prices in a market mechanism trying to achieve mutual agree-

ment between solutions of the subproblems. Thus by the introduction of prices, the agents can

pay each other to modify the values and find a common equilibrium. The prices can be updated

in a distributed manner using the subgradient method of Section 6.2.2 which is coordinated by

means of some kind of signaling.

A small example from [43] gives a visualization on dual decomposition and the utilization of

prices. Let the centralized minimization problem be

J = min
xi

(
f1(x1, x2) + f2(x2) + f3(x3, x2)

)
. (6.22)
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The three cost functions, that are all convex, depend on variables x1, x2 and x3. The variable x2

has influence on all three functions and this is the coupling that is to be relaxed by Lagrangian

multipliers. The problem can be rewritten as

J = max
pi

min
xi,vi

(
f1(x1, v2) + f2(x2) + f3(x3, v3)

)
. (6.23)

Now it can be decomposed into five separate optimization problems:

Function 1: min
x1,v1

(
f1(x1, v1)− λ1v1

)
,

Function 2: min
x2,v2

(
f2(x2) + (λ1 + λ3)x2

)
,

Function 3: min
x3,v3

(
f3(x3, v3)− λ3v3

)
,

Between 1 and 2: max
λ1

(
λ1(x2 − v1)

)
,

Between 2 and 3: max
λ3

(
λ3(x2 − v3)

)
.

(6.24)

If the three functions above would minimize their own function, all three would probably have

different values for x2. Due to the Lagrangian multipliers or prices, λ1 and λ2, a consensus

about the desirable value of x2 among the functions can be achieved, because the agents can pay

each other to modify the value. These Lagrangian multipliers or price variables are adjusted to

take advantage of violations of the constraints; x2 = v1 and x2 = v3. The optimal values for

the Lagrangian multipliers can be found using the subgradient search method, causing (6.24) to

reach the global optimal of the original optimization problem [43],[42].

After decomposition the original problem is reformulated from a team-optimization problem

to a non-cooperative game with additional players. The new players are market makers (last two

lines of (6.24)) associated with state variables shared by agents. They adjust the prices to take

advantage of violation of relaxed constraints [30]. In the next section the dual decomposition for

MPC in a network of decision-makers is explained.

6.4 Dual Decomposition for general MPC schemes

The concept of dual decomposition from [43] in the previous section, is that dual variables

are introduced in the optimization objectives. When variables of different subproblems are

connected, the dual variables can be interpreted as prices in a market mechanism serving to

achieve mutual agreement between the various subproblems. This method is applied to a general

MPC scheme as in [17], [36] and [30]. The principles of MPC have already been introduced in

Section 4. With MPC the optimization is solved, at each time step t ∈ T over a time horizon

with step k ∈ K, as defined in (4.1), to find the control sequence that minimizes the objective

function over that prediction horizon. Where after the control input ui(t|t) for each agent in

i = 1, .., n is implemented.
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6.4.1 General centralized MPC

Before the dual decomposition method is combined with MPC, a general centralized MPC prob-

lem is to be defined. A MPC objective function for a network of agents, x ∈ Rn for i = 1, .., n,

can be defined as

Vu(t+ k|t) =

n∑
i=1

(
x̂i(t+ k|t)

)2
, (6.25)

which is subject to prediction models, initial conditions and convex constraints. Therefore the

generalized MPC problem becomes

min
u

∑
k∈K

Vu(t+ k|t), (6.26a)

subject to x̂(t|t) = x(t), (6.26b)

x̂(t+ k|t) = Ax̂(t+ k − 1|t) +Bû(t+ k − 1|t), ∀ k ∈ K\{0} (6.26c)

x̂(t+ k|t) ∈ X, û(t+ k|t) ∈ U, ∀ k ∈ K (6.26d)

where X,U ∈ R are convex sets. Furthermore B is the n × n identity matrix, B = In×n, and

A ∈ Rn×n is a stochastic adjacency matrix that has the following properties:

1. Ai,j ≥ 0.

2. Ai,j = 0, if no connection of agent j to i.

3.
∑
iAi,j = 1.

The matrix A is called the coupling matrix and due to its characteristics, in order to optimize,

agent i needs to know the state x̂j(t + k|t) of its connected neighbors, that itself depends on

neighbors, therefore all agents are required to have access to the sequence of prediction states for

each agent in the network. This central MPC can be distributed by dual decomposition and the

subgradient method, whereby the dynamic constraints are decoupled and each agent can solve

its own subproblems locally only with information of its connected neighbors [30].

Before the problem can be decomposed, the dynamic constraints in (6.26) need to be decou-

pled. First define AD = [aii] for i = 1, .., n and A0 = A−AD. Now, a new variable is introduced;

v̂(t+ k|t) ∈ Rn, causing the coupling constraint to be

x̂(t+ k + 1|t) = ADx̂(t+ k|t) + v̂(t+ k|t) +Bû(t+ k|t), (6.27)

with additional constraint

v̂(t+ k|t) = A0x̂(t+ k|t), (6.28)

for all k ∈ K [36]. Which is used to augment the objective function, by a vector of weighted

Lagrange multipliers λ̂(t+ k|t) ∈ Rn, where λ̂ can be seen as price signals between neighboring

agents. This result in the centralized MPC dual function

max
λ

min
û,v̂

∑
k∈K

(
Vû(t+ k|t) + λ̂T (t+ k|t)

(
v̂(t+ k|t)−A0x̂(t+ k|t)

))
. (6.29)
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Strong duality between the primal function (6.26) and the dual function (6.29) is assumed.

Therefore by minimizing the dual function over û(t + k|t) and v̂(t + k|t) and maximizing over

λ̂(t+ k|t) will obtain the same optimal value as the original problem.

6.4.2 General distributed MPC

To distributize the dual function, every agent needs to solve its own dual function (6.29). For

each agent i the coupling constraint in (6.26) becomes

x̂i(t+ k + 1|t) = Aiix̂i(t+ k|t) + v̂i(t+ k|t) +Biiûi(t+ k|t), (6.30)

with additional constraint

v̂i(t+ k|t) =
∑
j 6=i

Aij x̂j(t+ k|t), (6.31)

for all k ∈ K and v̂i(t + k|t) can be seen as the influence agent i expects to receive from its

neighbors [43]. The constraint (6.34) is added to the objective function by Lagrangian relaxation

of Lagrange multipliers, λ̂i(t + k|t) ∈ R for k ∈ K. By interchanging the sum over the agents

i = 1, .., n in (6.29), each agent i solves

max
λ̂i

min
ûi,v̂i

∑
k∈K

(
Vi,ûi

(t+ k|t) + λ̂i(t+ k|t)v̂i(t+ k|t)− x̂i(t+ k|t)
[∑
j 6=i

λ̂j(t+ k|t)Aji
])
, (6.32a)

subject to x̂i(t|t) = xi(t), (6.32b)

x̂i(t+ k|t) = Aiix̂i(t+ k − 1|t) + v̂i(t+ k − 1|t) +Biiûi(t+ k − 1|t), ∀ k ∈ K\{0} (6.32c)

x̂i(t+ k|t) ∈ Xi, ûi(t+ k|t) ∈ Ui, ∀ k ∈ K (6.32d)

where Xi and Ui are convex sets. The structure of the original dual problem is preserved, while

each agent solves its own separated contribution to the dual problem.

The Lagrangian multipliers are updated by the subgradient descent algorithm with Momen-

tum, which has been introduced in Section 6.2.2. The dual function has only one element in its

subdifferential, which means it is differentiable. Differentiability means that a small step size

will yield convergence [5]. Only the information of connected agents λ̂j(t+k|t) is needed to solve

the MPC in (6.32), so that the prices are also updated in a distributed manner and thus the

whole problem is distributed. The Lagrangian multipliers are updated according to

for all k ∈ K

ms
avg,i(t+ k|t) = (1− β)ms−1

avg,i(t+ k|t) + β
(
v̂si (t+ k|t)−

∑
j 6=i

Aij x̂
s
j(t+ k|t)

)
, (6.33a)

λ̂s+1
i (t+ k|t) = λ̂si (t+ k|t) + γsim

s
avg,i(t+ k|t), (6.33b)

Where s is the iteration counter and γ and β are the appropriately chosen constants, so that the

Lagrangian multipliers converge to their optimum value.

In the distributed MPC scheme a local controller, present at each agent, makes decision only
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depending on local information. The decision variables and prices are communicated between

neighboring agents and determined iteratively. In this iterative process, each agent communi-

cates their Lagrange multipliers over the prediction horizon to each of its neighbors. Whereafter

the various agents can solve their decoupled minimization problem based on the neighboring

prices and can communicate their decision variables over the control horizon to its neighbors.

With those decision variables from its neighbors each agent can compute the prices, whereafter

the loop repeats itself. In pseudo-code, this can be represented by

Algorithm 1 subgradient Method to Solve the Dual

given initial conditions λ and mavg

repeat

Optimize (6.32) separately using the Lagrange multipliers.

Each agent sends the state variable to neighbors.

Update Lagrange multipliers according to (6.33).

Each agent sends Lagrange multipliers to neighbors.

Ideally, this repetition is done till,

v̂i(t+ k|t)−
∑
j 6=i

Aij x̂j(t+ k|t) = 0, ∀k ∈ K (6.34)

is met. Which means that (6.34) and the solutions of the distributed MPC (6.32) are converged

to the solutions of the centralized MPC (6.26).
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6.5 Distributed MPC in the DC Microgrid

In accordance with Section 6.4, the dynamical system as represented in Section 5.2.1 is ap-

proximated by dual decomposition and subgradient iterations. The DC microgrid is a coupled

system, because the update of one node’s variables also depends on information of the currents

that flow between the neighbours in constraint (5.9b). The currents are shared between the

nodes through the weighted Laplacian in the equation below. It is important to note that the

weighted Laplacian represents the physical network, therefore the communication network be-

tween the controllers for distributed MPC must be identical to the physical network to represent

interactions with the physical neighbors.

V̂ (t+k|t) = V̂ (t+k−1|t) +TC−1s

(
Îs(t+k−1|t)− IL−BR−1BT V̂ (t+k−1|t)

)
, ∀k ∈ K\{0}

(6.35)

Firstly define,

A := In×n − TC−1s (BR−1BT ), (6.36)

as the to be decoupled matrix, where In×n is the identity matrix. If the sampling time is smaller

than the inverse of the highest element in weighted Laplacian,

T < 1/max{C−1s (BR−1BT )}, (6.37)

the matrix A has in discritized form stochastic characteristics, necessary for dual decomposi-

tion2. This is due to the fact the C−1s (BR−1BT ) is a weighted Laplacian matrix. By setting, T ,

smaller than the inverse of the maximum element, the Laplacian is scaled so that the diagonal

entries have values in the range of (0, 1). The off-diagonal entries have therefore values in the

range of (−1, 0). Noticeably subtracting this scaled weighted Laplacian from an identity matrix

results in a stochastic matrix.

Again let AD = [aii] for i = 1, .., n, be the matrix of self-weights, where A0 = A − AD. Each

agent introduces a local variable, which is a local guess that represents the neighbor influence

on the relevant agent. The introduced vector of variables can be denoted as v ∈ Rn, so that

constraint (6.35) becomes

for all k ∈ K\{0}.

V̂ (t+ k|t) = ADV̂ (t+ k − 1|t)− v̂(t+ k − 1|t) + TC−1s

(
Îs(t+ k − 1|t)− IL

)
. (6.38)

With additional constraint

v̂(t+ k − 1|t) = A0V̂ (t+ k − 1|t). (6.39)

Therefore, for each agent i the neighbor influence is replaced by local guess v̂i(t+ k − 1|t) ∈ R,

constrained by

v̂i(t+ k − 1|t) =
∑
j 6=i

Aij V̂j(t+ k − 1|t), ∀k ∈ K\{0} (6.40)

and this portrays the expected influence of the connected neighbors. Then the problem is decom-

posed by applying a Lagrangian relaxation with respect to (6.40), with Lagrangian multiplier

2 Ai,j ≥ 0, Ai,j = 0 (if no information is sent from agent j to i) and
∑
i Ai,j = 1.
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λ̂i ∈ R. Furthermore, let Q = [qii] for i = 1, .., n, be a diagonal matrix consisting of weights

(same holds for R1,R2). Which leads to the dual objective3 for each node i,

min
ûi,v̂i

∑
k∈K

( ∑
i,j∈C

Proportional current sharing︷ ︸︸ ︷
1

2
qii
(
wiÎsi(t+ k|t)− wj Îsj (t+ k|t)

)2)
+

Dynamic decoupling︷ ︸︸ ︷
λ̂i(t+ k|t)v̂i(t+ k|t)− V̂i(t+ k|t)

∑
j 6=i

Ajiλ̂j(t+ k|t) +

ûTi (t+ k|t)r1ii ûi(t+ k|t)︸ ︷︷ ︸
Cost on controllable input

+
(
v̂i(t+ k|t)− v?i

)T
r2ii
(
v̂i(t+ k|t)− v?i

)︸ ︷︷ ︸
Voltage balancing

.

(6.41)

Which is subject to all initial conditions and constraints, for each i, given by

Îsi (t|t) = Isi (t), (6.42a)

V̂i(t|t) = Vi(t), (6.42b)

Îsi (t+ k|t) = Îsi (t+ k − 1|t) + TL
−1
si

(
− Rsi

Îsi (t+ k − 1|t)− V̂i(t+ k − 1|t) + ûi(t+ k − 1|t)
)
, ∀ k ∈ K\{0}

(6.42c)

V̂i(t+ k|t) = AiiV̂i(t+ k − 1|t) + v̂i(t+ k − 1|t) + TC
−1
si

(
Îsi (t+ k − 1|t)− ILi

)
, ∀k ∈ K\{0} (6.42d)

V̂min ≤ Vi(t+ k|t) ≤ V̂max, ∀ k ∈ K (6.42e)

ûmin ≤ ui(t+ k|t) ≤ ûmax, ∀ k ∈ K. (6.42f)

(6.42g)

And where the Lagrange multipliers are updated according to the subgradient iterations

for all k ∈ K

ms
avg,i(t+ k|t) = (1− β)ms−1

avg,i(t− 1) + β
(
v̂si (t+ k|t)−

∑
j 6=i

Aij V̂
s
j (t+ k|t)

)
, (6.43a)

λ̂s+1
i (t+ k|t) = λ̂si (t+ k|t) + γsim

s
avg,i(t+ k|t). (6.43b)

Where γ is the manually set step size, β is momentum term and s is the iteration counter. The

last two terms in (6.41) are called a penalty terms [2]. The second to last term in (6.41) is

added to the objective function, so that the controller will capture the cost of the controllable

input and this will help the system to reach steady state. The last term is added so that the

controller establishes a form of voltage balancing from (3.9). Let, v?i be defined by a constant

reference voltage V ?i which is equal for all nodes, as v?i =
∑
j 6=iAijV

?
i . By virtue of this term,

the objective function as defined will ensure that the system’s load voltages will stay close to the

desired voltage level of the overall network, depending on the weights given to identity matrix

R2. Furthermore adding a penalty term in quadratic form to the objective function increases

the convexity of a function. By increasing the convexity of the objective function the iterative

descent algorithm’s rate of convergence is favoured [3]. Due to the convexity of the original

optimal control problem, the solution of (6.41) converges to the centralized solution in (5.7).

For each time step, t, the local controller computes a buck converter output voltage that serves

as an input to the DGU concerned. Decisions by the controller are only made on local infor-

mation, so no central entity is needed for reaching consensus in the DC microgrid. Distributed

MPC is an iterative process, whereby each controller communicates only with its neighbors. The

Lagrangian multipliers are initialized at zero and the auxiliary variable, vi serves as a local guess

3 A property of the Laplacian is that it can be expressed in quadratic form, xTLx =
∑
i,j∈C(xi − xj)

2.

Therefore the weighted Laplacian has the properties, xTWLWx =
∑
i,j∈C(wixi − wjxj)2.
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that estimates the expected influence of its neighbors’ currents. After the first optimization the

controller sends information on its currents to its physical neighbors and receives their respective

currents. Thereafter the local controller can update the Lagrangian multipliers, by means of the

subgradient algorithm, as a function of the error between the expected and the actual influ-

ence of the neighbors’ currents. These Lagrangian multipliers are then sent to each connected

DGU. With these Lagrangian multipliers, that act as prices, the local controller optimizes and

a new vi estimates the expected influence of the currents based on the new prices. Prices are

adjusted to take advantage of violation of constraints (6.40). The controllers can now pay each

other to modify vi [43]. This process repeats itself until convergence; when the local guesses and

the actual influence of external currents are identical. In Algorithm 2 the pseudo-code for the

distributed MPC in DC microgrids is given.

Algorithm 2 Distributed Model Predictive Control for DC Microgrid

Input: Isi(t), Vi(t), IL(t) where 1 ≤ i ≤ n
Output: ui(t)
Parameters: Iteration number {Sk} and subgradient stepsize γri
for t = 1, 2, ..., tmax do

Initialize Lagrange multiplier λ̂0
i (t+ k|t) and moving average m0

i (t+ k|t) ;
for s = 1, 2, ..., Sk do

for k = 0, ..., N − 1 do
for i = 1, 2, ..., n do

Solve the optimization problem (6.41) ;
Subject to (6.42) ;

end for
Each node sends V̂i(t+ k|t), ∀k ∈ K to connected nodes ;
for i = 1, 2, ..., n do

subgradient update (6.43) ;
end for
Each node sends λ̂s+1

i (t+ k|t), ∀k ∈ K to connected nodes ;
end for

end for
ui(t|t) = û

Sk
i (t|t) ;

end for

6.5.1 Distributed Current Sharing

In the manner that the problem is proposed, the proportional current sharing objective intro-

duced in Section 3.1, is incorporated in the objective function (6.41). To achieve proportional

current sharing in the power system, the current is shared proportionally to the generation ca-

pacity of their respective energy source as expressed in (3.5). In the centralized MPC scheme,

the controller has information on all system variables and according to the particular objective

function the controller can optimize the controllable inputs so that current is proportionally

shared in the DC microgrid.

In a distributed MPC based controller each i-th DGU cannot know the generated currents

at their respective neighbour. Therefore these values have to be estimated, for similar reasons

why the coupled dynamics are approximated by dual decomposition. Nevertheless the theory

from [43] with dual decomposition and subgradient iterations is only applicable to coupling con-

straints. For that reason another estimating method has to be examined and in this research a

non-iterative approach is considered (see Scenario 7.5.7). Each node i can use the actual system
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output, Isj (t), from its neighbours as an estimate for the generated current over the prediction

horizon. Hence for each i-th DGU,

Îsj (t+ k|t) = Isj (t|t), k ∈ K (6.44)

represents the estimate for the neighbours’ generated currents. Hereby the system is fully dis-

tributed and each MPC controller makes decisions only depending on local information.

6.5.2 Step Size

The chosen step size for subgradient descent is important as it makes sure that the distributed

problem converges to the optimal solution. The step size for distributed MPC problems is

usually set to γsi = γ0√
s
, with the value γ0 chosen by fine-tuning as in [30], [36]. However this is

not the optimal strategy for updating the step size in a DMPC for DC microgrids. Because, if

γsi is chosen to be very small, it would take long time to converge and become computationally

expensive. Whereas if the step size is assigned relatively large, it may fail to converge and

overshoot the minimum [34]. Due to this trade-off between accuracy and speed, the allocation

of an ideal step size for subgradient method in a DMPC for DC microgrid is difficult. Therefore

the Momentum term is utilized for the subgradient based optimization, as outlined in (6.43).

By the incorporation of this term, step size selection still requires fine-tuning, however faster

convergence and reduced oscillation is achieved. Thereby increasing the range of step size values

that give fast convergence with respect to regular subgradient iterations. Furthermore it is

more robust to noisy subgradient information and therefore better suited for the DMPC of DC

microgrids [59].

6.5.3 Stopping Criteria

If a centralized optimization problem is distributed by means of dual decomposition, it is impor-

tant to keep the amount of communication between subsystems as small as possible. As has been

depicted in Algorithm 2, every agent is taking turns to communicate its Lagrangian multipliers

and currents to its neighbors. However, at each real time step, it might not be feasible to wait for

the dual algorithm to converge and the algorithm might be needed to be terminated prematurely

[48]. The number of iterations, s, before the distributed solution reaches its optimal value needs

to be minimized. Although the number of iterations must be enough to give a feasible solution

to the optimization and to guarantee stability of the closed loop system. Therefore a stopping

condition, where the algorithm terminates early, that guarantees this property is required [19].

Use of a stopping criterion will therefore entail that the KKT conditions of Section 6.2 are not

satisfied. Varying stopping criteria have been utilized in literature. For example in [36] and [30]

if the Lagrangian updates stay within a certain bound ε, the dual algorithm is terminated. In

[48], it is figured that according to the receding horizon principle the only variable of interest

is the first input. So the dual algorithm quits when the mean residual on a window of some

iterations with respect to input ui falls below a given threshold.
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Chapter 7

Simulations

7.1 Introduction

The distributed MPC algorithm as described in Section 6.5 to control the network of nodes in a

DC microgrid will be implemented and tested in this chapter. Simulations of different scenarios

must give clarity on the topic. Hereby measuring the effect of the different parameters, variables

and constrains in the optimization. Since this research has been done to validate the distributed

MPC algorithm, the results will be compared to the solution of the centralized MPC algorithm

as defined in Chapter 5.

The implementation is done in MATLAB with a SDPT3 solver from the CVX package [20].

The problem is not implemented within parallel loops and therefore might not be the fastest

way for optimization. However it suits to prove the concept of the distributed implementation.

In this section firstly the model as implemented in MATLAB will be explained, whereafter the

network will be defined and then the scenarios will be outlined. These scenarios will be tested

and the results will be discussed afterwards.

7.2 Model

The model as implemented in MATLAB is presented in this section, so the results can be re-

produced and further work can be done with it. To validate the distributed algorithm, the

performance of the distributed controller is analyzed with respect to its centralized counterpart.

The controllable buck converter output voltage generated by the MPC scheme serves as an in-

put to the each respective DGU in the microgrid system. The model represents a feedback loop,

where the outputs of the system serve as inputs for the controller, which then generate the input

for the system based on the MPC scheme.

In short the model does the following. A Network is defined that consist of the nodes and

their parameters. The MPC loops through time steps 1 to tmax with a prediction horizon of N.

After each optimization, the inputs are sent to the System, which updates its system parame-

ters according to the given input, whereafter the MPC is repeated for the next time step with

new requirements. The bold words indicate the models’ files:

33



CHAPTER 7. SIMULATIONS

• Network

• Centralized MPC

• Distributed MPC

• System

The model as a whole can be found in Appendix B and additional information on the parameters

used in the model are portrayed there.

7.3 Network details

To test the MPC scheme for the DC microgrid, the proposed MPC scheme is applied to an exam-

ple microgrid consisting of 4 DGUs as portrayed in Figure 7.1. The arrows indicate the positive

direction of the currents through the network. Furthermore this network operates separately

from the grid.

Figure 7.1: The microgrid with 4 buck converters used for simulations

The system parameters are adopted from [10] and [38] and can found in Appendix A. This Ap-

pendix will also give additional information on the system and other parameters used. The

system will be initialized at steady state, then at some time instant, t, the load current changes

denoted by ∆IL := IL(t+)− IL(t).

The simulations are done for tmax = 100 and the prediction horizon is N = 4, with sampling

time T = 0.0005s. The sampling time for the discretization of the continuous system dynamics

is set to this value so the coupling matrix has stochastic characteristics4. As mentioned these

stochastic characteristics are a prerequisite for decomposition as proposed in [43].

tmax = 100

N = 4

T = 0.0005s.

Furthermore the centralized as well as the distributed MPC scheme optimizes an objective func-

tion over a prediction horizon. A compact formulation of the centralized objective function is

4 T < 1/max{C−1
s (BR−1BT )}.

34



CHAPTER 7. SIMULATIONS

given by:

min
u,v

∑
k∈K

ITs (t+ k|t)WBQBT Is(t+ k|t) + uT (t+ k|t)R1u(t+ k|t)+

(
AoV (t+ k|t)− v?

)T
R2

(
AoV (t+ k|t)− v?

)
.

(7.1)

The weighted identity matrices (Q,R1 and R2) that make up the objective function (7.1) de-

termine the priority that is given to what specific goal. The weight assigned to these matrices

influences in chronological order; proportional current sharing, cost on the controllable input

and voltage balancing. In this research the following values are used:

Q = 101In×n

R1 = 10−2In×n

R2 = 101In×n.

It is important to note that the chosen values also influence the convexity of the problem. By

assigning the weights correspondingly, the problems becomes strictly convex. Strict convexity,

in general, facilitates the subgradient algorithm to achieve a satisfactory convergence rate. Also

the order of eigenvalues from these matrices should not differ some factor as this determines the

condition number of the Hessian matrix. This can result in an ill-conditioned problem, which

can possibly influence the subgradient descent’s convergence rate. The values of the identity

matrices are equivalent for the centralized and distributed objective function.

For distributed implementation it is chosen to set the step size in (6.43) to be γ = 10. By

means of fine-tuning another step size could be chosen, that would increase the speed of conver-

gence. However this step size is satisfying and suits to prove the concept of distributed MPC.

The algorithm is terminated if the distance between the subgradient is smaller than ε = 0.001.∣∣v̂si (t+ k|t)−
∑
j 6=i

Aij V̂
s
j (t+ k|t)

∣∣ < ε, ∀k ∈ K, i ∈ V (7.2)

Other stopping criteria could also be used, but this condition provides a feasible solution. If the

algorithm could not be terminated earlier, the maximum number of iterations is chosen to be

Sk = 1000. Furthermore the Lagrangian multipliers and moving averages are all initialized at

zero and the momentum term is set to β = 0.5.

7.4 Scenarios

Subgradient methods can be slow to converge or have poor convergence properties, because

problems are not strongly convex or well-conditioned. Also the step size parameter in the gradient

scheme must be chosen appropriately to get a good performance and the convergence rate is

generally hard to determine in advance [18]. Moreover, dual decomposition is often performed

on more simpler coupling dynamics. In this research the dual decomposition is performed on

the physical network of the DC microgrid, which is substantially more complex and has varying

parameters that can influence the subgradient algorithm. Therefore the distributed MPC is

tested according to a few scenarios in which various parameters will be altered to see their effect.

Hereby the characteristics of the distributed MPC scheme for DC microgrids will become evident.
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In this section the different tests are outlined. If not explicitly expressed all values as stated in

Section 7.3 and Appendix A are used. The distributed and central solution are compared for the

following scenarios:

Scenario 1 - Reference This scenario, with all variables left unchanged, will compare the

centralized and distributed MPC algorithms for the DC microgrid. It will serve as a

reference state for the other scenarios.

Scenario 2 - MPC prediction horizon (N) The prediction horizon is initially set at N =

4, which is a very short window. This scenario will give insight in how increasing the

prediction horizon to N = 8, as the controller will take into account more future time

instance, will affect the distributed MPC algorithm.

Scenario 3 - Priority for objective parameters (Q,R1,R2) Allocating weights to these ma-

trices will give priority to one of the three control objectives of Section 3.1. These param-

eters are altered in this scenario so that the voltage balancing is more prioritized than

the proportional current sharing. In addition the influence of this modification on the

subgradient algorithm is also analyzed.

Scenario 4 - Fixed number of subgradient iterations (Sk) The sampling time is set to

T = 0.0005s, in some situations it can not be feasible to wait for the distributed algorithm

to converge. Therefore the algorithm might be needed to be terminated prematurely, before

the stopping condition (7.2) is reached. It is interesting to see if the solution at the point

of termination is close to the optimal solution.

Scenario 5 - Sampling Time (T ) The continuous system dynamics are discretized according

to a sampling time. This scenario will test the influence of the sampling time on the

distributed MPC algorithm. The sampling time T is decreased from the initial 0.0005s to

0.00005s.

Scenario 6 - Non-stochastic coupling matrix (A) In [43] the dual decomposition is per-

formed on a stochastic optimal control problem. The coupling matrix that depicts the

shared currents between nodes is stochastic by means of the initially chosen sampling

time. This scenario will test if the dual decomposition for distributed optimization by [43]

is also possible for a non-stochastic coupling matrix.

Scenario 7 - Estimating generated currents In the previous scenarios it is claimed that

the generated currents from the neighbouring nodes of DGUi are known at each of the

local controllers. This is not fully distributed and therefore a strong assumption. In this

scenario the neighbour’s generated currents at each node are estimated.

7.5 Results

Additional information of the results with respect to the scenarios can be found in Appendix

C. In the plots where the distributed and centralized solutions are studied; the distributed ones

will be portrayed by a dotted line in the same color as its respective centralized counterpart.

Furthermore the black dash-dot line in the load voltages plots denotes the average voltage for

the system.
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7.5.1 Scenario 1 - Reference

This scenario serves as a reference state for the other scenarios. So that the other scenarios

can be compared to this one, on different aspects. This scenario will analyze the distributed

and centralized MPC algorithms, for the conditions defined in Section 7.3 and Appendix A. In

the distributed implementation each DGU optimizes only based on local information, which is

coordinated by the subgradient descent iterations as described in Chapter 6. The distributed

solution converges to the centralized solution as the problem is convex. This is why the two con-

trol algorithms are compared in terms of their state trajectories corresponding to the generated

currents (Is), load voltage (V ) and controllable inputs (u). Furthermore a plot will be given that

displays the number of iterations necessary before the algorithm is terminated. The simulations

run for 0.05s, where at time instant t = 0.01s the load demand changes.

Figure 7.2: State trajectories for the generated current Is - Scenario 1

Figure 7.3: State trajectories for the load voltage V - Scenario 1
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Figure 7.4: State trajectories for the control inputs u - Scenario 1

Figure 7.5: Number of iterations until termination - Scenario 1

Discussion and Conclusion

The figures above indicate that the distributed and centralized solutions are almost identical.

The configuration of the weighted identity matrices make that the problem is convex, subse-

quently the distributed solutions coincide with those of to the centralized. This suggests that

the stopping criterion, proposed in (7.2), allows for very good convergence upon termination. In

addition, it can be seen from Figure 7.5, that the number of iterations needed for the distributed

algorithm to convergence stays around 25. This is a very acceptable number of iterations taken

into consideration the sampling time T = 0.0005s. The transient response from the change in

load demand shows under-damped behavior and the settling time is about 0.0025s. This could

possibly be decreased by increasing the prediction horizon. Furthermore with this default set-

ting, current sharing is achieved (see Figure C.3), however the load voltages deviate from V ?.

This can be amended by shifting the priority to voltage balancing, through increasing weight of

the identity matrix R2. Altogether, this scenario proves that MPC via dual decomposition and

subgradient iterations is a suitable design approach for reaching consensus in the DC microgrid

in a distributed manner.
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7.5.2 Scenario 2 - MPC prediction horizon

In this scenario the prediction horizon, N , of the MPC scheme is doubled, from 4 (0.002s) to 8

(0.004s). The effect of changing the horizon on the centralized as well as the distributed solutions

is analyzed. The aim of this section is thereby twofold. Firstly it is to be determined how the

incorporation of more future instances by the controllers affects the transient response for the

centralized solutions and thus the distributed solutions as the problem is still convex. Secondly

the effect of the increase in prediction horizon on the convergence properties of the distributed

formulation is analyzed.

It is generally known that the length of the prediction horizon predominately determines the

numerical effort in order to solve an optimal control problem in a MPC iteration [56]. While

distributed control algorithms are commonly utilized to diminish the computational efforts, the

prediction horizon chosen should not be too large. Nevertheless the stability and feasibility of

closed-loop system must be ensured. Selecting the prediction horizon is for that reason often

seen as a trade-off between computation time and accuracy of the result [30]. In other research

on DC microgrids [38], [23], which have MPC-based control algorithms, the prediction horizon

is chosen to be around N = 4 just as in the reference scenario.

Figure 7.6: State trajectories for the generated current Is - Scenario 2

Similar to the reference scenario, the distributed and centralized solutions are compared in terms

of their state trajectories corresponding to the generated currents, load voltage and controllable

inputs. It is important to note, that for the distributed solution to converge, the step size had to

be lowered to γ = 5. Due to the increase of numerical computation complexity the distributed

formulation could not converge by means of the subgradient descent algorithm with the previous

step size (γ = 10).
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Figure 7.7: State trajectories for the load voltage V - Scenario 2

Figure 7.8: State trajectories for the control inputs u - Scenario 2

Discussion and Conclusion

The elongation of the prediction horizon for the MPC controllers has little effect on the per-

formance of the system. As the plots for the state trajectories corresponding to the generated

currents, load voltage and controllable inputs are compared to those in Scenario 7.5.1, it can

be seen that the transient responses show little dissimilarities. They are not equivalent as the

overshoot after the load demand variation is a bit tempered. While the system behavior is not

much different, Figure C.4 displays that current sharing is still achieved. In conclusion, a bigger

vision into the future for MPC controllers, does not bring change to the system performance.

As for the convergence of the distributed solutions towards the centralized solutions. It has

already been stated that the step size was decreased to γ = 5, due to the allocation of N = 8.

Figure C.5 shows this doubles the number of iterations upon termination with respect to N = 4.

In addition the decline of the convergence rate could be induced by simply increasing the predic-

tion horizon. In [14] it is said that the convergence rate of Lagrangian multipliers depends also

on the convergence rate of the Lagrange multipliers under the responsibility of its neighbours.

By that theory, as more Lagrangian multipliers are handled by increasing the prediction horizon,
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this increases the communication between the nodes. As a result the numerical complexity is ef-

fectually increased, whereby the convergence rate is negatively influenced. Setting the prediction

horizon correspondingly does not only slow down in terms of convergence rate, but increasing

the prediction horizon inherently increases the computational efforts for the controllers. Whilst

the computation cost of solving the MPC problem grows significantly with the length of the

prediction horizon. Due to the fact that increasing the horizon has no significant impact on the

system behavior, decreases the rate of convergence and increases the computational efforts it can

be concluded that this modification does not have the desired effect. Therefore, N = 4, will be

considered as the optimal prediction horizon.

7.5.3 Scenario 3 - Priority for objective parameters

Assigning the weights to the objective parameters (Q,R1,R2) will determine the priority that is

given by the MPC controller to proportional current sharing or voltage balancing. The weights

will be identical to all nodes as it has been in the previous scenarios. The aforementioned priority

depends mainly on the ratio between Q and R2. In this scenario four simulations are run to

indicate the impact of these ratios on the voltage balancing and current sharing. The following

values will be used for the weighted matrices; Q = R1 = 10−2In×n. Whereas the values for R2

will alter according to the following schedule.

Scenario 3a : R1 = 101In×n and γ = 10. 5

Scenario 3b : R1 = 102In×n and γ = 20.

Scenario 3c : R1 = 103In×n and γ = 35.

Scenario 3d : R1 = 104In×n and γ = 40.

One must keep in mind that increasing the ratio between the matrices will increase the condition

number of the Hessian matrix. Research in, [40], [9] and [1], has indicated that an ill-conditioned

objective function slows down convergence of descent methods for optimization. Therefore the

aim of this scenario is twofold again. First off it is to be determined what the effect of the

different ratios, R2

Q , is with respect to the correlation between voltage balancing and distributed

current sharing. Secondly this scenario’s purpose is to establish a relation between the condition

number of the Hessian matrix of the objective function, due to allocating the weighting param-

eters, and the speed of convergence for the distributed formulation.

The distributed against the centralized state trajectories corresponding to the load voltage will

be displayed (figures for the generated current and controllable inputs can be found in Appendix

C.3). Also a plot portraying the proportional current sharing at with respect to each node will be

incorporated. The simulations are initialized at their respective steady states and the simulation

time is set to t = 0.01s, where at time step t = 0.005s the load demand is changed. In this

scenario the simulation time is shortened with respect to the previous scenarios as it suits to

prove the claim.

5 The step sizes in this section are determined by fine-tuning and are close to their respective maximum value.
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Scenario 3a

Figure 7.9: State trajectories for the load voltage V - Scenario 3a

Figure 7.10: Current sharing at each DGU (LWI(t)) - Scenario 3a

It is desired for the voltages at each node to be close to the desired system voltage V ?. From

Figure 7.9 it can be seen that the voltages at the nodes deviate from this reference value with

±5V . Therefore by setting the quotient, R2

Q = 1000, voltage balancing is not achieved. Further-

more the impact of assigning the objective parameters in such a way implies that preference for

current sharing is reduced with respect to the reference state (see Figure 7.10).
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Scenario 3b

Figure 7.11: State trajectories for the load voltage V - Scenario 3b

Figure 7.12: Current sharing at each DGU (LWI(t)) - Scenario 3b

When R2

Q = 10, 000, the figures indicate that voltage balancing has increased relative to the

previous scenario. The side effect is that the imbalance for current sharing at each DGU has

also increased. By increasing the priority for voltage balancing in the objective function, current

sharing automatically is less prioritized. This demonstrates that there is negative correlation

between voltage balancing and current sharing.
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Scenario 3c

Figure 7.13: State trajectories for the load voltage V - Scenario 3c

Figure 7.14: Current sharing at each DGU (LWI(t)) - Scenario 3c

The ratio between the weighted matrices is set to R2

Q = 100, 000. At this point, the balancing

of the voltages around V ? is improved. The voltages stay within ±2V of the desired reference

voltage. This indicates that voltage balancing is sufficiently attained and again the negative

correlation between voltage balancing and current sharing is showed. Because while the voltage

balancing at the DGUs is increased, the current sharing is decreased with respect to previous

two scenarios.
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Scenario 3d

Figure 7.15: State trajectories for the load voltage V - Scenario 3d

Figure 7.16: Current sharing at each DGU (LWI(t)) - Scenario 3d

In this scenario, R2

Q = 1, 000, 000, the voltage balancing objective is hugely favoured. Figure 7.15

shows that voltage balancing at each node is achieved. Except when the load demand changes

there is a transient response, however in two time steps the DGU load voltages are again at the

desired reference voltage. The requirement for V = V ? does not permit for current sharing [10],

that’s why Figure 7.16 displays such an imbalance in proportional current sharing at each DGU.
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Figure 7.17: Number of iterations until termination - Scenario 3

The figure above portrays the number of iterations necessary for each time step of the aforemen-

tioned scenarios until the stopping criterion is reached. The stopping criterion is defined in (7.2)

and the maximum number of iterations,Sk, is set at 1000. It can be concluded that the number

of iterations increases as the ratio, R2

Q , expands. In the first three scenarios the convergence

behavior of the distributed solutions coincides with the centralized formulation. Opposite to the

last scenario, where the pre-set maximum number of iterations is reached before the stopping

condition is satisfied. Figure C.12 and Figure C.13 portray the trajectories of the generated

current and control inputs for this scenario. These figures suggest that the distributed solution

is close to the optimum upon termination.

Discussion and Conclusion

Different ratios between the weighted identity matrices, R2 and Q, have been tested. These

parameters illustrate the significance the MPC controller allocates to voltage balancing and pro-

portional current sharing. To sum up, as the ratio, R2

Q , increases the goal of voltage balancing

is progressively achieved. When the quotient is set to 1, 000, 000, all load voltages are almost

identical to the desired reference voltage. Nonetheless this comes at a cost of the proportional

current sharing, while as the voltage balancing is accomplished the imbalance in proportional

current sharing in the system grows. This scenario has shown that the requirement for V = V ?

does not permit for current sharing.

Furthermore by increasing the ratio between the aforementioned matrices the Hessian matrix’

condition number also increases. The more ill-conditioned the problem becomes, the more it-

erations are necessary to provide convergence. Therefore the condition number of the Hessian

certainly determines the subgradient descent’s speed of convergence and as the condition num-

ber is increased, the convergence rate declines. This correlation is depicted in Figure 7.17. The

figure reveals that as the ratio is increased by factor 10, the number of iterations needed to reach

the termination condition grows.
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7.5.4 Scenario 4 - Fixed number of subgradient iterations

In Scenario 7.5.1 it has been concluded that the stopping condition for the subgradient iter-

ations, (7.2), guaranteed a good level of performance. Upon termination the solutions of the

distributed algorithm are almost identical to those of the centralized formulation. This is due to

the fact that the tolerance for the error is set to a very low value. In some situations it might not

be feasible to wait for the distributed algorithm to reach this criterion. Especially considering

the low sampling time. As the sampling time is set to T = 0.0005s, the distributed algorithm in

some instances is needed to terminate prematurely before this stopping criteria could be attained.

For example, in the last scenario from Scenario 7.5.3, the subgradient descent required more

than 1000 iterations to obtain the prescribed stopping condition. While, as a result of the scal-

ing between parameters in the objective function, the convergence speed declined. However it

was determined that the distributed solution was close to the optimum at the time of termina-

tion. When using dual decomposition methods the convergence behaviours of the dual iterations

does not necessarily easily coincide exactly to that of the centralized formulation [17]. Therefore

it is interesting to see what happens if the algorithm is terminated prematurely and if a form of

suboptimality could be attained. In this scenario the same default settings as in Scenario 3d are

used, only the maximum number of subgradient iterations is altered to Sk = 100. A simulation

is run for t = 0.025, where at t = 0.01 the load demand varies. Below a figure of the state tra-

jectories corresponding to the controllable inputs (u) for the distributed and centralized MPC

algorithms can be found (state trajectories for generated currents and load voltage in Appendix

C.4).

Figure 7.18: State trajectories for the control inputs u - Scenario 4

The figure suggests that the distributed controllable inputs are within close distance to the opti-

mal solution. As mentioned the convergence, for this configuration, to the exact optimal solution

is slow. Nonetheless the distributed solutions get close to the optimal solutions relatively fast.

Discussion and Conclusion

Time restrictions make it unfeasible to wait for the distributed algorithm to converge to the

optimal solution. This scenario showed that the convergence of some optimization problem

can be moderate due to i.e. increased ill-conditioning of the objective function. But that the
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distributed algorithm would get close to the optimal solution relatively fast. Therefore the dis-

tributed algorithm could be prematurely terminated and still achieve a form of sub-optimality.

So for ill-conditioned problems the subgradient based optimization can achieve sub-optimality

within a reasonable number of iterations. However a problem with this theory is that it is hard

to make any statement on how close the solution is to the optimum if the distributed algorithm

is terminated prematurely in this manner. Future research could go into more detail and estab-

lish a termination guideline that indicates how many iterations are needed to ensure a certain

suboptimality guarantee, i.e., distance to optimality [14].

7.5.5 Scenario 5 - Sampling time

In this scenario, the sampling time, T , is decreased from 0.0005s to 0.00005s. The sampling

time is required for the discretization of the DC microgrid system (3.1), so that an MPC scheme

could be designed [38]. Generally the sampling time has to be chosen sufficiently small to give

an exact representation of the dynamical system. Therefore the sampling time is adjusted to

test how this influences the convergence behaviour of the distributed control algorithm.

The stochastic features of the decoupling matrix remain and the same objective parameters

from the reference state are used in this simulation. This configuration showed strictly convex

characteristics and caused the problem to be well-conditioned, allowing for good and fast con-

vergence. The system will be initialized at steady state conditions. Furthermore the simulation

will entail only 1 time step, wherein the trajectory of objective function of the distributed as

an error of the centralized algorithm’s objective function is plotted. It is chosen to test like this

as it suits to prove the theory. Different step sizes will be utilized to show the implications of

adjusting the sampling time like this.

Figure 7.19: Evolution of the distributed objective solution vs. the centralized solution for
one time step

The maximum number of iterations for this scenario is set at 10, 000. The simulations for the

four step sizes have not been terminated and thus the stopping condition (7.2) has not been

satisfied. With the new sampling time, the convergence goes extremely slow. Particularly if

the figure is compared to the the same trajectory of the reference state, see Figure C.1, which
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is also at steady state. Furthermore the figure demonstrates that the speed of convergence is

improved by increasing the step size. However if the step size is further enlarged to γ = 120, the

subgradient algorithm is not able to converge to the optimal solution (see Figure C.16). This

implicates that by γ = 110 the fastest convergence is achieved and it still takes more than 10, 000

iterations to provide a good coincidence of the distributed and centralized formulation.

It is important to note that with the configuration of sampling time, T = 0.00005, the so-

lution does not get close to the optimal solution relatively fast as in Scenario 7.5.4. In the

previous scenario the subgradient descent had trouble finding the exact optimal solution, yet it

converged within 100 iterations to a distance close to optimality. That this argument does not

hold for this scenario is portrayed by the figure below. The figure portrays the error between the

distributed and centralized controllable input, again for 1 time step and with step size γ = 110.

Figure 7.20: Evolution of the distributed vs. the centralized control input for one time step
at DGU1

The figure implicates that the distributed controllable input only gets close to the optimal value

around iteration 10, 000.

Discussion and Conclusion

It can be concluded from this scenario, by setting the sampling time to 0.00005, with the default

settings for other parameters as specified in Section 7.3 and Appendix A, the subgradient algo-

rithm will take a very long time to converge. This is unfavourable, while as the sampling time

is set to this aforementioned value the controllers must have substantial processing power. Due

to the fact, that the approximately 10, 000 subgradient iterations are needed to ensure a form of

sub-optimality, discretizing the microgrid system dynamics with a sampling time, T = 0.00005s,

is practicably infeasible.

A great part of this research has been dedicated to experiment with different default settings,

for example changing the line resistances, to increase the speed of convergence with the chosen

sampling time. However, consistently the same behaviour was encountered. In some instances

the number of iterations upon termination was brought down, but these results are still con-

sidered infeasible. As subgradient descent is a heuristic method, it is hard to put the finger on

the exact reason for this convergence behaviour. The condition number of the Hessian matrix
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is identical to that of the reference state, thus ill-conditioning of the problem is excluded as a

cause for this behaviour. The presumption is that by assigning the sampling time like this, the

optimization problem becomes badly scaled. Further research could be aimed at increasing the

rate of convergence for this problem by accelerated gradient methods.

7.5.6 Scenario 6 - Non-stochastic coupling matrix

In this research the original centralized MPC scheme for DC microgrids, [38], is decomposed into

distributed subproblems. The subsystems employ distinct MPC controllers that only solve local

control problems using local information from neighboring subsystems. In [43] the dual decom-

position is performed on a stochastic control problem and in [15], [35], [36] and [30] a stochastic

information matrix was decoupled. These information matrices naturally have stochastic prop-

erties. In this research the communication between the localized MPC based controllers is equiv-

alent to the physical network, in the previous scenarios the coupling matrix that represented the

shared currents between nodes was stochastic by means of the initially chosen sampling time.

The sampling time, T , was required to be smaller than the inverse of the maximum value of the

weighed Laplacian representing the network. Now, this scenario’s aim is to determine if the dual

decomposition theory with subgradient iterations for distributed optimization proposed in [43]

is also suitable for non-stochastic coupling matrices.

The coupling matrix, A, is defined by A = In×n − TC−1BR−1BT . With T = 0.007s and

all default settings as in the reference state, the coupling matrix becomes

A =


0.0152 0.4545 0 0.5303

0.4545 −0.0909 0.6364 0

0 0.6364 −0.0341 0.3977

0.5303 0 0.3977 0.0720


This matrix has negative entries and therefore lost it stochastic properties. The non-stochastic

matrix serves as the coupling matrix and is decomposed as described in Section 6.5. A simu-

lation is done in order to test if the dual decomposition theory with subgradient iterations can

be performed on non-stochastic coupling matrices. The distributed solution should converge to

the centralized solution as the problem is still convex. Therefore the distributed and centralized

control algorithms are compared in terms of their state trajectories corresponding to the control-

lable inputs (other state trajectories can be found in Appendix C.6). The simulations represent

0.07s, where at time instant t = 0.007s the load demand changes. The step size is set to, γ = 3,

whereas all other parameters are identical to those in the reference state.
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Figure 7.21: State trajectories for the control inputs u - Scenario 6

Discussion and Conclusion

The figure suggests that the distributed and centralized solutions are almost identical. From

this scenario can be concluded that non-stochastic coupling matrices are applicable for dual

decomposition techniques with subgradient iterations to achieve a distributed MPC scheme for

DC microgrids. It must however be noted that the theories in [43] specifically prescribe stochastic

control problems. The fact that the dual decomposition works for some non-stochastic coupling

matrices in DC microgrid does not mean it holds for all non-stochastic matrices. Furthermore the

number of iterations necessary to reach the stopping condition was around 40. It could be seen

that the sampling time could be increased without having an effect on the speed of convergence.

As opposed to the previous scenario where a decrease in sampling time resulted in an extremely

slow convergence rate. Nonetheless it must be stated that increasing the sampling time influences

the control quality. Each sampling time, through the system model, the controller calculates the

system output from that time instance until the prediction horizon. Therefore the sampling time

is generally chosen sufficiently small to give an exact representation of the dynamical system.

7.5.7 Scenario 7 - Estimating generated currents

In this scenario a fully distributed MPC scheme for DC microgrids will be tested. In the previous

scenarios it has been claimed that each DGU knew the exact values of its neighbours generated

currents. This is a strong assumption and means that the system is not perfectly distributed.

To achieve a fully distributed MPC, the neighbouring generated currents for each DGU need to

be estimated as explained in Section 6.5.1. It was proposed take the actual system output from

its neighbours as an estimate for the generated current over the prediction horizon. Hence for

each i-th DGU,

Îsj (t+ k|t) = Isj (t|t), k ∈ K (7.3)

represents the estimate for the neighbours’ generated currents.

It is expected that the convergence behaviour for the distributed formulation with this new

configuration is similar to that of the previous scenarios. On the contrary, the system behaviour

is predicted to be different to that of the earlier scenarios. To test this, again the distributed and
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centralized MPC schemes are compared in terms of their state trajectories corresponding to the

generated currents, load voltages and controllable inputs. The simulations run for 0.05s, where

at time instant t = 0.01s the load demand changes. The system is initialized at steady state

and the step size for the subgradient algorithm is, γ = 20. It must be noted that the default

setting for the parameters in the objective function are; Q = 10−1In×n, R1 = 10−2In×n and

R2 = 101In×n.

Figure 7.22: State trajectories for the generated current Is - Scenario 7

Figure 7.23: State trajectories for the load voltage V - Scenario 7
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Figure 7.24: State trajectories for the control inputs u - Scenario 7

The figures above indicate that after the load demand variation the settling time is about 0.01s.

Which is an increase with respect to Scenario 7.5.1. Furthermore a plot will be given that

displays the proportional current sharing with respect to each node.

Figure 7.25: Current sharing at each DGU (LWI(t)) - Scenario 7

Suggesting that the microgrid achieves a form of proportional current sharing as well as it reaches

steady state.

Discussion and Conclusion

The distributed and centralized formulation seem to coincide and the number of iterations upon

termination was around 20. The objective functions at each node do not change within this new

configuration, therefore the convergence behaviour is similar to that of the previous scenarios.

Accordingly all previous outcomes with respect to the convergence characteristics are relevant

to this new configuration as well.

Nonetheless, the system behaviour is affected by estimating the generated currents in this new

configuration. The way in which the generated currents are estimated brings extra uncertainty

into the system, as a result the transient response is longer as well. Furthermore the default
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setting for the objective parameters does not exclusively have an effect on the priority for current

sharing and voltage balancing (see Scenario 7.5.3). Because the ratio between the parameters

also influences the settling time after a change in load demand. In Appendix C.7 two state

trajectories for the generated currents are given with different default settings. They indicate

that as the ratio becomes smaller, and current sharing is more favoured, the transient response

becomes longer. Therefore this configuration does not allow for perfect current sharing with

a short settling time. Future research could be aimed at finding an alternative approach for

estimating the neighbouring generated currents. Possibly an iterative method that brings less

uncertainty in the system, whereby the system performs more similar to the behaviour as has

been displayed in the previous scenarios.
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Conclusions

DC microgrids are attracting growing interest and receive much research attention. For the

reason that DC microgrids are highly efficient, reliable and in compliance with RES. A central-

ized model predictive control (MPC) based consensus algorithm proposed in [38] is to achieve

proportional current sharing and voltage regulation in the microgrid. Due to the form of the

communication network, as the number of DGUs increases, centralized control becomes infea-

sible, nonscalable, too costly, or too fragile. Therefore in Chapter 2 the following goal of this

research was formulated: Development of a distributed MPC algorithm that achieves propor-

tional current sharing and voltage regulation in the DC microgrid and examining the effects of

different parameters upon this system.

This research introduced the DC network and its control objectives in Chapter 3. Where-

after the basic principles behind MPC were explained in Chapter 4. In Chapter 5 a classical

centralized MPC approach is described to solve the optimal control problem of the DC micro-

grid. Wherein the centralized MPC controller optimizes the controllable buck converter output

over a future horizon such that the control objectives are met, whilst considering grid constraints.

In the distributed MPC scheme, the total system consists of several subsystems that have their

own local controllers. These local controllers, present at each agent, make decision only depend-

ing on local information. When variables of different subproblems are connected by constraints,

dual variables can be interpreted as prices serving to achieve mutual agreement between the

subproblems. The decision variables and prices are communicated between neighboring agents

and determined iteratively by means of subgradient iterations. The theory from [43] which can

be used for decomposition and distributed optimization of control optimization is applied to the

centralized MPC scheme for DC microgrids in Chapter 6.

The network was implemented and tested in Chapter 7. The solutions of distributed algorithm

were compared to the centralized formulation’s solutions. Simulations of different scenarios had

to give clarity to the topic. In the scenarios 1 to 7 the effects of different parameters, variables

and constraints were tested on the distributed MPC algorithm for DC microgrids. The dual

decomposition is performed on the physical system, as the DGUs share current with each other.

Dual decomposition is usually performed on a simpler matrix [36],[30], which makes the con-

vergence of the subgradient iterations easier. In this research dual decomposition is performed

on a more complex coupling matrix. As a result, it was discovered throughout the scenarios
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that the convergence properties of the subgradient algorithms utilized were greatly affected by

varying parameters, variables and constraints of the system in the optimization. In scenario

3 the priority for optimization was allocated to voltage balancing instead of proportional cur-

rent sharing. Resulting in an ill-conditioned problem were the convergence rate declined as a

consequence of the increased condition number. However in scenario 4 it was observed that

for ill-conditioned distributed formulations, its solution would get close to the optimal solution

relatively fast. Therefore the distributed algorithm for ill-conditioned problems could be prema-

turely terminated and still achieve a form of sub-optimality. Future research could go into more

detail and establish a termination guideline that indicates how many iterations are needed to

ensure a certain suboptimality guarantee, i.e., distance to optimality.

Furthermore the sampling time, T , was also observed to influence the subgradient convergence

properties for the DMPC in the DC microgrid. For sampling times in the order of T = 0.00005,

the subgradient algorithm will take a very long time to converge. On the other hand, sampling

times of the order T = 0.0005 and larger, converge relatively fast to their optimal solutions.

In scenario 7, a method for generated current estimation was presented, where each DGUi uses

the actual system output for its neighbours’ generated currents as an estimate over the prediction

horizon. Hereby, making the controller fully distributed. Even though with this configuration

similar convergence properties have been experienced, the system behaviour was different to that

of the other scenarios.

Altogether, MPC via dual decomposition and gradient iterations is a suitable design approach

for reaching consensus in the DC microgrid in a distributed manner. This research has answered

the research question and on its outcomes future research can be based. Suggestions for further

research can be found in Chapter 9.
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Further Research

In this chapter the limitations of this research will be discussed. These will leave room for future

research.

The main direction for further research would be to propose an alternative method to esti-

mated the neighbouring generated currents at each node. In scenario 7 the controller used the

actual system output as an estimated for the neighbouring generated currents, this non-iterative

estimation approach brought more uncertainty in the system and could not accomplish propor-

tional current sharing combined with a fast transient responses after a load demand variation. In

future research the possibility of an iterative method that brings less uncertainty in the system

can be researched. Whereby the system behaviour becomes more similar to that of the scenarios

where knowledge of each others system was known.

Secondly the load demands in the system are said to be known. If these load would not be

known, an observer could be used to estimate these loads. Future research could be aimed at

the incorporation of an observer in the distributed MPC for DC microgrids. Furthermore at

sampling time T = 0.00005 the subgradient algorithm took a lot of time to convergence to the

optimal solution. Future research could be aimed at employing accelerated gradient methods to

speed up the convergence.

Also in scenario 4 it was seen that the for ill-conditioned optimization problems, due to pri-

oritizing voltage balancing, the distributed solutions converged close to the optimal solution.

Although it took time to actually reach this solution. Future research could go into more detail

and establish a termination guideline that would indicate how many iterations are needed to

ensure a certain suboptimality guarantee, i.e., distance to optimality.

One of the most fundamental problems in MPC is the lack of guaranteed stability and feasibility

[32], contrasting to other control approaches. Stability and feasibility of the MPC controller in

this research is generally attained due to definition of the optimization problem. However the

computations of optimal inputs may work for some time, but then, all of a sudden, the MPC

controller has driven the state to a region where the optimization problem has no solution [32].

Therefore future work can be aimed at developing a certificate for this MPC controller in the

DC power network that proves the problem is recursively feasible.
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Parameter Specification

A.1 Network

DGU 1 2 3 4

Rsi (Ω) 0.2 0.3 0.5 0.1

Lsi (mH) 1.8 2.0 3.0 2.2

Csi (mF) 2.2 2.2 2.2 2.2

wi (-) 0.40−1 0.20−1 0.15−1 0.25−1

Vi(0) (V) 380.66 379.37 378.15 378.64

Isi(0) (A) 45.20 22.60 16.95 28.25

ILi
(0.01) (A) 40 22 20 31

∆ILi
(0.01+) (A) -10 -7 10 -5

V ?i (V) 380 380 380 380

Table A.1: Microgrid parameters and current demand.

Line 1,2 2,3 3,4 4,1

Rij (Ω) 0.7 0.5 0.8 0.6

Table A.2: Line parameters.

Bounds

V (V) 390

V (V) 370

u (V) 800

u (V) 0

Table A.3: Voltage and input constraints.
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A.2 MPC

tmax = 100

N = 4

T = 0.0005s

Q = 101In×n

R1 = 10−2In×n

R2 = 101In×n

A.3 Gradient update

γ = 10

ε = 0.001

β = 0.5

Sk = 1000

60



Appendix B

Code

B.1 Network

Network parameters and other model specifics

%Filter Resistors

R1 = 0.2;

R2 = 0.3;

R3 = 0.5;

R4 = 0.1;

RR = diag([R1; R2; R3; R4]);

% Filter Inductance

L1 = 1.8e-03;

L2 = 2.0e-03;

L3 = 3.0e-03;

L4 = 2.2e-03;

L = diag([L1; L2; L3; L4]);

%Shunt Capacitor

C1 = 2.2e-03;

C2 = 1.9e-03;

C3 = 2.5e-03;

C4 = 1.7e-03;

CC = diag([C1; C1; C1; C1]);

%Resistive Lines

RL = diag([0.70;0.50;0.80;0.60]);

%Coupling Matrix

Inc = [-1 0 0 -1; 1 -1 0 0; 0 1 -1 0; 0 0 1 1]; %Incidence Matrix

Lapp = Inc * inv(RL) * Inc’;

LL = T *inv(CC)* Lapp;
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A = eye(4) - LL; %Coupling matrix

Ao = A - diag(diag(A)); %Off-diagonal coupling matrix

Ad = A - Ao; %Diagonal coupling matrix

% Weighting Matrix

one = [1;1;1;1]; %Vector of ones

W = diag([ inv(0.40) ; inv(0.2) ; inv(0.15) ; inv(0.25) ]); %Weighted matrix

WW = inv(W)*one*(one’);

%Objective Function

V_star = one *380; %Desired voltage load

v_star = Ao * V_star; %Desired auxilary variable

Q = 1e1 * eye(4); %Weighted identity matrix for proportional current sharing

R_1 = 1e-2 * eye(4); %Weighted identity matrix for penalizing controllable input

R_2 = 1e1 * eye(4); %Weighted identity matrix for voltage balancing

Lap = Inc * Q * Inc’; %Laplacian matrix

%Gradient iterations

gamma = 10; %Step size

epsilon = 0.001; %Error

beta = 0.5; %Momentum term

Starting values and bounds

%Starting values load voltages

V1_0 = 380.2;

V2_0 = 379.74;

V3_0 = 379.71;

V4_0 = 379.9;

V_0 = [V1_0; V2_0; V3_0; V4_0];

%Starting values generated current

I1_0 = 45.2;

I2_0 = 22.6;

I3_0 = 16.95;

I4_0 = 28.25;

I_0 = [I1_0; I2_0; I3_0; I4_0];

%First values of I_L

I1_L0 = 40;

I2_L0 = 22;

I3_L0 = 20;

I4_L0 = 31;

I_L0 = [I1_L0; I2_L0; I3_L0; I4_L0];

%Second values of I_L

I1_L = 30;

62



Appendix B APPENDIX B. CODE

I2_L = 15;

I3_L = 30;

I4_L = 26;

I_L11 = [I1_L; I2_L; I3_L; I4_L];

%Bounds

Vmax = 390;

Vmin = 370;

umin = 0;

umax = 800;

B.2 Centralized MPC algorithm

%Primal MPC

cvx_begin quiet

%Variables

variables I(n,N+1) %Generated Current

variables V(n,N+1) %Load Voltage

variables u(n,N) %Buck Convert Output Voltage

%Expressions

expression obj(N) %Objective function

for k = 1:N

obj(k) = 0.5*Q(1,1)*((W(1,1))*I(1,k) - (W(2,2)*I_0(2,1)))^2 + ...

0.5*Q(1,1)*((W(1,1))*I(1,k) - (W(4,4)*I_0(4,1)))^2 + ...

0.5*Q(1,1)*((W(2,2))*I(2,k) - (W(1,1)*I_0(1,1)))^2 + ...

0.5*Q(1,1)*((W(2,2))*I(2,k) - (W(3,3)*I_0(3,1)))^2 + ...

0.5*Q(1,1)*((W(3,3))*I(3,k) - (W(2,2)*I_0(2,1)))^2 + ...

0.5*Q(1,1)*((W(3,3))*I(3,k) - (W(4,4)*I_0(4,1)))^2 + ...

0.5*Q(1,1)*((W(4,4))*I(4,k) - (W(1,1)*I_0(1,1)))^2 + ...

0.5*Q(1,1)*((W(4,4))*I(4,k) - (W(3,3)*I_0(3,1)))^2 + ...

u(:,k)’*R_1*u(:,k) + (Ao*V(:,k)-v_star)’*R_2*(Ao*V(:,k)-v_star);

%Initial Conditions

I(:,1) == I_0;

V(:,1) == V_0;

%System Dynamics

I(:,k+1) == I(:,k) + T * inv(L) * (-RR*I(:,k) - V(:,k) + u(:,k));

V(:,k+1) == A*V(:,k) + T * inv(CC) * (I(:,k) - I_L1);

% Voltage Bounds

V <= Vmax;

V >= Vmin;
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u <= umax;

u >= umin;

I >= 0;

end

minimize( sum(obj(1:N)) )

cvx_end

p = cvx_optval; %Primal solution

ps(1,t) = p; %Primal solutions in an array

B.3 Distributed MPC algorithm

%Distributed MPC

for i = 1:R %Iteration number

cvx_begin quiet

%Variables

variables I(n,N+1) %Generated Current

variables V(n,N+1) %Load Voltage

variables u(n,N) %Buck Convert Output Voltage

variables v(n,N) %Auxilary variable

%Expressions

expression obj(N) %Objective function

for k = 1:N

obj(k) = 0.5*Q(1,1)*((W(1,1))*I(1,k) - (W(2,2)*I_0(2,1)))^2 + ...

0.5*Q(1,1)*((W(1,1))*I(1,k) - (W(4,4)*I_0(4,1)))^2 + ...

0.5*Q(1,1)*((W(2,2))*I(2,k) - (W(1,1)*I_0(1,1)))^2 + ...

0.5*Q(1,1)*((W(2,2))*I(2,k) - (W(3,3)*I_0(3,1)))^2 + ...

0.5*Q(1,1)*((W(3,3))*I(3,k) - (W(2,2)*I_0(2,1)))^2 + ...

0.5*Q(1,1)*((W(3,3))*I(3,k) - (W(4,4)*I_0(4,1)))^2 + ...

0.5*Q(1,1)*((W(4,4))*I(4,k) - (W(1,1)*I_0(1,1)))^2 + ...

0.5*Q(1,1)*((W(4,4))*I(4,k) - (W(3,3)*I_0(3,1)))^2 + ...

u(:,k)’*R_1*u(:,k) + (v(:,k)-v_star)’*R_2*(v(:,k)-v_star) + ...

lambda(:,k)’*(v(:,k) - Ao*V(:,k));

%Initial conditions

I(:,1) == I_0;

V(:,1) == V_0;

%System dynamics

I(:,k+1) == I(:,k) + T * inv(L) * (-RR*I(:,k) - V(:,k) + u(:,k));

64



Appendix B APPENDIX B. CODE

V(:,k+1) == Ad*V(:,k) + v(:,k) + T * inv(CC) * (I(:,k) - I_L1);

%Bounds

V <= Vmax;

V >= Vmin;

u <= umax;

u >= umin;

I >= 0;

end

minimize( sum(obj(1:N)) )

cvx_end

d = cvx_optval; %Dual solution

ds(1,i) = d; %Dual solutions in an array

%Plotting purposes

v1s(1:N,i) = v(1,1:N)’;

v2s(1:N,i) = v(2,1:N)’;

v3s(1:N,i) = v(3,1:N)’;

v4s(1:N,i) = v(4,1:N)’;

I1s(1:N,i) = I(1,1:N)’;

I2s(1:N,i) = I(2,1:N)’;

I3s(1:N,i) = I(3,1:N)’;

I4s(1:N,i) = I(4,1:N)’;

u1s(1:N,i) = u(1,1:N)’;

u2s(1:N,i) = u(2,1:N)’;

u3s(1:N,i) = u(3,1:N)’;

u4s(1:N,i) = u(4,1:N)’;

V1s(1:N,i) = V(1,1:N)’;

V2s(1:N,i) = V(2,1:N)’;

V3s(1:N,i) = V(3,1:N)’;

V4s(1:N,i) = V(4,1:N)’;

%Lagrangian updates

for k = 1:N

subg(:,k) = v(:,k) - Ao*V(:,k);

lambdas1(k,i) = lambda(1,k)’;

lambdas2(k,i) = lambda(2,k)’;

lambdas3(k,i) = lambda(3,k)’;

lambdas4(k,i) = lambda(4,k)’;

lambdas11(1,t) = lambdas1(1,end);
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lambdas21(1,t) = lambdas2(1,end);

lambdas31(1,t) = lambdas3(1,end);

lambdas41(1,t) = lambdas4(1,end);

subgs1(k,i) = subg(1,k)’;

subgs2(k,i) = subg(2,k)’;

subgs3(k,i) = subg(3,k)’;

subgs4(k,i) = subg(4,k)’;

%Momentum

e(:,k) = (beta)*(subg(:,k)) + (1-beta) * e(:,k);

lambda(:,k) = lambda(:,k) + gamma *e(:,k);

end

%Stopping criteria

iterations(t) = i;

if ( abs(subg(1,1)) < epsilon && abs(subg(1,2)) < epsilon ) && ...

( abs(subg(2,1)) < epsilon && abs(subg(2,2)) < epsilon ) && ...

( abs(subg(3,1)) < epsilon && abs(subg(3,2)) < epsilon ) && ...

( abs(subg(4,1)) < epsilon && abs(subg(4,2)) < epsilon )

break

end

end

B.4 Run

Time specifations

N = 8; %Prediction horizon

T = 0.0005; %Sampling time T = 0.00005;

n = 4; %Nodes

R = 100; %Iteration number

tmax = 100; %Time horizon

Centralized MPC

run(’Network’)

for t = 1:tmax

%Load Demand

if t < 20
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I_L1 = (I_L0);

else

I_L1 = I_L11;

end

%MPC

run(’CentralizedMPC’)

%System

run(’RealSystem’)

%Plotting purposes

I1c(1:N,t) = I(1,1:N);

I2c(1:N,t) = I(2,1:N);

I3c(1:N,t) = I(3,1:N);

I4c(1:N,t) = I(4,1:N);

V1c(1:N,t) = V(1,1:N);

V2c(1:N,t) = V(2,1:N);

V3c(1:N,t) = V(3,1:N);

V4c(1:N,t) = V(4,1:N);

u1c(1:N,t) = u(1,1:N);

u2c(1:N,t) = u(2,1:N);

u3c(1:N,t) = u(3,1:N);

u4c(1:N,t) = u(4,1:N);

end

Distributed MPC

run(’Network’)

for t = 1:tmax

%Initialization at zero

lambda = zeros(n,N);

e = zeros(n,N);

%Load Demand

if t < 20

I_L1 = (I_L0);

else

I_L1 = I_L11;

end

%MPC

run(’DistributedMPC’)

67



Appendix B APPENDIX B. CODE

%System

run(’RealSystem’)

%Plotting purposes

I1ss(1:N,t) = I(1,1:N)’;

I2ss(1:N,t) = I(2,1:N)’;

I3ss(1:N,t) = I(3,1:N)’;

I4ss(1:N,t) = I(4,1:N)’;

V1ss(1:N,t) = V(1,1:N)’;

V2ss(1:N,t) = V(2,1:N)’;

V3ss(1:N,t) = V(3,1:N)’;

V4ss(1:N,t) = V(4,1:N)’;

u1ss(1:N,t) = u(1,1:N)’;

u2ss(1:N,t) = u(2,1:N)’;

u3ss(1:N,t) = u(3,1:N)’;

u4ss(1:N,t) = u(4,1:N)’;

end

Plots

%Generated Current

figure(1)

set(gcf,’color’,’w’);

stairs(1:tmax,I1c(1,1:tmax),’b’,’DisplayName’,’I1c’)

hold on

stairs(1:tmax,I1ss(1,1:tmax),’--b’,’DisplayName’,’I1d’)

stairs(1:tmax,I2c(1,1:tmax),’r’,’DisplayName’,’I2c’)

stairs(1:tmax,I2ss(1,1:tmax),’r--’,’DisplayName’,’I2d’)

stairs(1:tmax,I3c(1,1:tmax),’y’,’DisplayName’,’I3c’)

stairs(1:tmax,I3ss(1,1:tmax),’y--’,’DisplayName’,’I3d’)

stairs(1:tmax,I4c(1,1:tmax),’g’,’DisplayName’,’I4c’)

stairs(1:tmax,I4ss(1,1:tmax),’g--’,’DisplayName’,’I4d’)

xlabel(’time (s)’)

ylabel(’\it I_s (A)’,’Interpreter’,’tex’)

legend({’$$I^c_{s_1}$$’,’$$I^d_{s_1}$$’,’$$I^c_{s_2}$$’,’$$I^d_{s_2}$$’,’$$I^c_{s_3}$$’,’$$I^d_{s_3}$$’,’$$I^c_{s_4}$$’,’$$I^d_{s_4}$$’})

set(legend,’Interpreter’,’latex’)

set(legend,’Orientation’,’horizontal’)

set(legend,’Location’,’northeast’)

legend

ylim([10 50])

set(gca,’fontsize’,26)

set(gca,’XTick’,0:20:(tmax*1));

set(gca,’XTickLabel’,0:0.01:(tmax*T));
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grid on

hold off

%Load Voltage

figure(2)

set(gcf,’color’,’w’);

stairs(1:tmax,V1c(1,1:tmax),’b’,’DisplayName’,’V1c’)

hold on

stairs(1:tmax,V1ss(1,1:tmax),’--b’,’DisplayName’,’V1d’)

stairs(1:tmax,V2c(1,1:tmax),’r’,’DisplayName’,’V2c’)

stairs(1:tmax,V2ss(1,1:tmax),’r--’,’DisplayName’,’V2d’)

stairs(1:tmax,V3c(1,1:tmax),’y’,’DisplayName’,’V3c’)

stairs(1:tmax,V3ss(1,1:tmax),’y--’,’DisplayName’,’V3d’)

stairs(1:tmax,V4c(1,1:tmax),’g’,’DisplayName’,’V4c’)

stairs(1:tmax,V4ss(1,1:tmax),’g--’,’DisplayName’,’V4d’)

stairs(1:tmax, one’*inv(W)*[V1c(1,1:tmax); V2c(1,1:tmax); V3c(1,1:tmax); V4c(1,1:tmax)],’-.k’,’DisplayName’, ’Vav’)

xlabel(’time (s)’)

ylabel(’\it V (V)’,’Interpreter’,’tex’)

legend({’$$V^c_{1}$$’,’$$V^d_{1}$$’,’$$V^c_{2}$$’,’$$V^d_{2}$$’,’$$V^c_{3}$$’,’$$V^d_{3}$$’,’$$V^c_{4}$$’,’$$V^d_{4}$$’})

set(legend,’Interpreter’,’latex’)

set(legend,’Orientation’,’horizontal’)

set(legend,’Location’,’northeast’)

legend

ylim([370 385])

set(gca,’fontsize’,26)

set(gca,’XTick’,0:20:(tmax*1));

set(gca,’XTickLabel’,0:0.01:(tmax*T));

grid on

hold off

%Controllable Input

figure(3)

set(gcf,’color’,’w’);

stairs(1:tmax,u1c(1,1:tmax),’b’,’DisplayName’,’u1c’)

hold on

stairs(1:tmax,u1ss(1,1:tmax),’--b’,’DisplayName’,’u1d’)

stairs(1:tmax,u2c(1,1:tmax),’r’,’DisplayName’,’u2c’)

stairs(1:tmax,u2ss(1,1:tmax),’r--’,’DisplayName’,’u2d’)

stairs(1:tmax,u3c(1,1:tmax),’y’,’DisplayName’,’u3c’)

stairs(1:tmax,u3ss(1,1:tmax),’y--’,’DisplayName’,’u3d’)

stairs(1:tmax,u4c(1,1:tmax),’g’,’DisplayName’,’u4c’)

stairs(1:tmax,u4ss(1,1:tmax),’g--’,’DisplayName’,’u4d’)

xlabel(’time (s)’)

ylabel(’\it u (V)’,’Interpreter’,’tex’)

legend({’$$u^c_{1}$$’,’$$u^d_{1}$$’,’$$u^c_{2}$$’,’$$u^d_{2}$$’,’$$u^c_{3}$$’,’$$u^d_{3}$$’,’$$u^c_{4}$$’,’$$u^d_{4}$$’})

set(legend,’Interpreter’,’latex’)

set(legend,’Orientation’,’horizontal’)
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set(legend,’Location’,’northeast’)

legend

ylim([350 420])

set(gca,’fontsize’,26)

set(gca,’XTick’,0:20:(tmax*1));

set(gca,’XTickLabel’,0:0.01:(tmax*T));

grid on

hold off

%No. of iterations

figure(4)

grid on

set(gcf,’color’,’w’);

plot(1:tmax, iterations(1:tmax),’k’,’DisplayName’,’iterations’)

xlabel(’time instance’)

ylabel(’no. of iterations’)

legend({’$$Iterations$$’})

set(legend,’Interpreter’,’latex’)

set(legend,’Orientation’,’horizontal’)

set(legend,’Location’,’northeast’)

legend

ylim([15 25])

set(gca,’fontsize’,26)

set(gca,’XTick’,0:10:(tmax*1));

set(gca,’XTickLabel’,0:10:(tmax*1));

grid on

%Dual vs. Primal

figure(5)

set(gcf,’color’,’w’);

plot(1:i-1, ds(1:i-1)-ps(t),’DisplayName’, ’dual-primal’)

xlabel(’iterations’)

ylabel(’Distributed-Centralized solution’)

set(gca,’fontsize’,26)

set(gca,’XTick’,0:5:(i*1));

set(gca,’XTickLabel’,0:5:(i*1));

grid on

%Current Sharing

ppp=Inc*Inc’*W*[I1ss(1,1:tmax); I2ss(1,1:tmax); I3ss(1,1:tmax); I4ss(1,1:tmax)]; %

figure(6)

set(gcf,’color’,’w’);

plot(1:tmax, ppp(1,1:tmax),’DisplayName’,’CS1’)

hold on

plot(1:tmax, ppp(2,1:tmax),’DisplayName’,’CS2’)

plot(1:tmax, ppp(3,1:tmax),’DisplayName’,’CS3’)

plot(1:tmax, ppp(4,1:tmax),’DisplayName’,’CS4’)
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xlabel(’time (s)’)

ylabel(’\it I_s (A)’,’Interpreter’,’tex’)

legend({’$$DGU_1$$’,’$$DGU_2$$’,’$$DGU_3$$’,’$$DGU_4$$’})

set(legend,’Interpreter’,’latex’)

set(legend,’Orientation’,’horizontal’)

set(legend,’Location’,’northeast’)

legend

%ylim([])

set(gca,’fontsize’,26)

set(gca,’XTick’,0:20:(tmax*1));

set(gca,’XTickLabel’,0:0.01:(tmax*T));

grid on

hold off

%Lagrangian multipliers, Node 1

figure(7)

set(gcf,’color’,’w’);

plot(1:i-1,lambdas1(1,1:i-1),’DisplayName’, ’lambdas1’)

hold on

plot(1:i-1,lambdas1(2,1:i-1),’DisplayName’, ’lambdas1’)

plot(1:i-1,lambdas1(3,1:i-1),’DisplayName’, ’lambdas1’)

xlabel(’iterations’)

ylabel(’Lagrange multipliers’)

legend({’$$\lambda_1(k=0) $$’,’$$\lambda_1(k=1) $$’,’$$\lambda_1(k=2) $$’})

set(legend,’Interpreter’,’latex’)

set(legend,’Orientation’,’horizontal’)

set(legend,’Location’,’northwest’)

legend

%ylim([-20 20])

set(gca,’fontsize’,26)

set(gca,’XTick’,0:5:(i*1));

set(gca,’XTickLabel’,0:5:(i*1));

grid on

hold off
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Complementary Data

C.1 Scenario 1

Figure C.1: Evolution of the distributed objective function solution vs. the centralized
solution at time step 100.

Figure C.2: Evolution of DGU1’s Lagrangian multipliers at time step 100.
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Figure C.3: Current sharing at each DGU (LWI(t)).

C.2 Scenario 2

Figure C.4: Current sharing at each DGU (LWI(t)).

Figure C.5: Number of iterations until termination - Scenario 2

C.3 Scenario 3

Scenario 3a
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Figure C.6: State trajectories for the generated current Is - Scenario 3a

Figure C.7: State trajectories for the control inputs u - Scenario 3a

Scenario 3b

Figure C.8: State trajectories for the generated current Is - Scenario 3b

Figure C.9: State trajectories for the control inputs u - Scenario 3b
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Scenario 3c

Figure C.10: State trajectories for the generated current Is - Scenario 3c

Figure C.11: State trajectories for the control inputs u - Scenario 3c

Scenario 3d

Figure C.12: State trajectories for the generated current Is - Scenario 3d

Figure C.13: State trajectories for the control inputs u - Scenario 3d
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C.4 Scenario 4

Figure C.14: State trajectories for the generated current Is - Scenario 4

Figure C.15: State trajectories for the load voltage V - Scenario 4

C.5 Scenario 5

Figure C.16: Evolution of the dual solution vs. the primal solution for one time step with
γ = 120
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C.6 Scenario 6

Figure C.17: State trajectories for the generated current Is - Scenario 6

Figure C.18: State trajectories for the load voltage V - Scenario 6

C.7 Scenario 7

Figure C.19: State trajectories for the generated current Is,
R2
Q

= 1, 000 - Scenario 7
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Figure C.20: State trajectories for the generated current Is,
R2
Q

= 10 - Scenario 7
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