

faculty of science
and engineering

1

Control theory for
discrete-time systems

Internship MSc Applied Mathematics

January - March 2019

Student: J.J. Koning, S2406829

Company/Institute: Schut Geometrical Metrology, Groningen

Internal UoG supervisor/first assessor: dr. ir. B. Besselink

External supervisor: G. Schut, MSc

Internal UoG second assessor: prof. dr. M.K. Camlibel

Abstract

In this report the results of my internship at the company Schut Geometrical
Metrology are documented. We investigate how a discrete-time representation of
a process can be obtained and how we can estimate future process outputs from
such a representation. For this we use a Kalman filter. We then use the obtained
estimations to control the process using a PID controller.

2

Contents

1 Introduction 4
1.1 The company . 4
1.2 Control theory for discrete-time systems 4

2 Discrete-time systems 5
2.1 Discrete time and continuous time . 6
2.2 Relation between h(t) and h[n] . 6
2.3 Relation between y(t) and y[n] . 7

3 BIBO Stability 9

4 The z-domain 10
4.1 The Z-transform . 10
4.2 Discrete-time systems in the z-domain . 11
4.3 Stability in the z-domain . 13

5 Transforming between discrete and continuous time 15
5.1 Relation between the transfer function and the system function 15
5.2 Transforms between z- and s-domain . 16
5.3 Construction of discrete-time systems from measurement data 17

6 Feedback control of discrete-time systems 20
6.1 The PID controller . 21
6.2 Feedback control using measurement prediction 22

7 Concluding remarks and discussion 24

References 27

3

1 Introduction

1.1 The company

Schut Geometrical Metrology (SGM) is an international organisation that is specialized
in the development and production of precision measuring apparatus. SGM has five of-
fices throughout Europe. My internship took place at the office in Groningen, consisting
of approximately 45 employees. The office consists of the following departments:

• Sales Department,

• Accounting Department,

• Human Resources Department (HR),

• Storage, Packaging and Distribution Department,

• Electronics and Hardware Department,

• Testing and Product Support team,

• Software Development Department.

In the past 11 weeks I have been working at the software development department.

1.2 Control theory for discrete-time systems

The aim of my internship was to improve the control inputs for directing the measuring
systems. For this aspect of the research we mainly focused on finding a precise estimation
of the current and future states of the machine. Furthermore, we aimed to realize useful
simulations of a measuring instrument (hypothetically), to get more insight in the precise
effect of control inputs that we intend to apply to the machine. For this, it is of interest to
consider discretizations that take place when the computed input is sent to the processor,
and when the measurements are obtained (for each, say, 0.1 µm that the machine has
traveled, the processor receives a pulse). The latter purpose is especially useful if one
wants to try a new method without applying it directly to an actual machine, which is
of interest for research that is done at SGM.

In general, a system can be used to give a description of the dynamics of a process,
allowing one to gain insight in the expected behavior of the process. The processes that
take place in the measuring systems at SGM operate in discrete time, which is why we
are interested in a discrete-time description of the dynamics. In this report we elaborate
on how a process can be represented by a discrete-time system. We give an overview
of the theory that is involved in defining such a system and how a discrete-time system
can be transformed into a continuous-time representation and vice versa. To learn more
about system identification for discrete-time systems, one can consult e.g. [6]. Once
we have established this theory, we investigate how a process can be controlled using
feedback. For this we consider a PID controller.

In order for the machine to run more smoothly, we are interested in predicting the
output of the processes as accurately as possible. For example, if there are delays in
the measurements, we are interested in estimating the unknown current process output.

4

Furthermore, it is sometimes beneficial to find a prediction of future states to base our
control input on. To obtain a good prediction, we use a so-called Kalman filter. A
Kalman filter is a filter that uses a model of the process to estimate the current or
future output of the process. Generally, a Kalman filter is used to overcome noise in the
measurement data as well, see [7]. However, in this report this aspect of the Kalman
filter is left out, and can be seen as a possible extension for further research.

Throughout the internship, simulations of the results for several example processes
have been performed using Mathematica. For one such process, the plots that were
found are presented in the report.

2 Discrete-time systems

A discrete-time system can be viewed as a representation of a certain process, where each
time step in the system represents a specified amount of time in the process, called the
sampling period T . Throughout this work we will refer to the actual physical behavior
of a machine or apparatus as the process, and we refer to a mathematical description of
this behavior as a discrete- or continuous-time system.

From an engineering perspective, a discrete-time system represents a process by simply
mapping a discrete-time signal called the input, to a discrete-time signal called the
output. As they are discrete-time signals, both the input and the output are represented
by sequences x[n] = x(nT) and y[n] ≈ y(nT) respectively, where x(t) and y(t) are
the real-time input and output signals of the process. Given the first few entries of
the output, i.e. the initial conditions, the system maps a given input sequence to its
corresponding output sequence, which gives an approximation of the process output.

A system is said to be linear if for any two constants α1, α2 ∈ R and any two input
sequences x1[n], x2[n], the output corresponding to the input x[n] = α1x1[n] + α2x2[n]
with initial conditions zero is given by y[n] = α1y1[n] + α2y2[n], where y1[n] and y2[n]
are the outputs corresponding to the inputs x1[n] and x2[n] respectively. The system is
said to be shift invariant if for any input sequence x[n] with corresponding output y[n]
and any constant n0 ∈ Z, the output corresponding to the input sequence x[n − n0] is
given by the sequence y[n − n0]. We say that the system is causal if for any constant
n0 ∈ Z, the output at time n0 depends only on the input for n ≤ n0.

In the continuous-time case, linear systems are often described using linear differential
equations. The discrete-time equivalent of a differential equation is the so-called differ-
ence equation. Generally, a discrete-time system described by a difference equation can
be written as

N∑
k=0

aky[n− k] =

M∑
r=0

brx[n− r], (1)

where a0, a1, . . . , aN and b0, b1, . . . , bM are constant coefficients with a0 6= 0. Notice that
a0 6= 0 ensures that the system is causal. In the following we mainly focus on systems
described by difference equations.

In the next section we will see how a discrete-time representation for a given process
can be obtained. For this we use an important characteristic of the process, called the

5

impulse response.

2.1 Discrete time and continuous time

An important characteristic of a process is its response to an impulse. For continuous-
time systems, this is interpreted as the response to the so-called impulse function δ(t),
which is defined by

δ(t) =

{
∞ if t = 0,

0 otherwise,
(2)

constrained to
∫∞
−∞ δ(t)dt = 0. The response of the process to this input function is

called the impulse response of the process, and it is denoted by h(t). For processes
described by linear systems, the impulse response allows one to compute the output
of the process corresponding to any input function x(t) via the following formula (see
Section 3.1 in [5]):

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ. (3)

A discrete-time representation of the process can be defined by requiring that the
response of the discrete-time system to the so-called unit impulse sequence approximates
the impulse response of the process. The unit impulse sequence is defined by

δ[n] =

{
1 if n = 0,

0 otherwise.
(4)

The output y[n] that results from applying the unit impulse sequence is referred to as
the impulse response of the system, and we denote it by h[n]. In Chapter 5 we will
discuss a means to find h[n] for a given impulse response h(t), such that h[n] represents
the impulse response of a discrete-time system.

Just as in the continuous-time case, the impulse response of a linear discrete-time
system can be used to compute the response to any input sequence x[n]. To see this,
notice that we can write x[n] as the sum of impulses x[n] =

∑∞
n=−∞ x[k]δ[n− k]. Since

the response to δ[n− k] is given by h[n− k], it follows from linearity of the system that
the response to x[n] can be written as

y[n] =

∞∑
k=−∞

x[k]h[n− k]. (5)

In the next section we try to find a relation between the process output and the output
of the system.

2.2 Relation between h(t) and h[n]

As mentioned, for a given process with impulse response h(t), one is interested in finding
a discrete-time system for which the impulse response h[n] gives a representation of h(t).
The actual requirement is that h[n] ≈ Th(nT), where T is the sampling period. The

6

scaling by T has a valid reason. To understand this, notice that h[n] can be interpreted
in two ways. On the one hand, we want it to be a representation of the impulse response
of the process h(t). On the other hand, h[n] is simply the output of the discrete-time
system to the sequence δ[n], which can be interpreted as a discrete representation of the
input function

uT (t) =

{
1 if 0 ≤ t < T ,

0 otherwise.
(6)

According to (3), the output corresponding to this input function, which should be

approximated by h[n], is given by yT (t) =
∫ T

0 h(t − τ)dτ . Notice that the integral can
be approximated by Th(t) if T is small enough. Hence h[n] ≈ yT (nT) is achieved by
requiring h[n] ≈ Th(nT). Figure 1 shows the impulse response of a certain process
together with the impulse response of a discretization with sampling period T = 1

2 that
is based on the requirement h[n] ≈ Th(nT) (the precise derivation of h[n] from h(t)
will be dealt with in Chapter 7). The process output yT (t) is also presented. From
this plot it becomes clear that h[n] is indeed close to yT (t), but that it was intended to
approximate Th(t).

Th(t)

h[n]

yT (t)

Figure 1: Impulse Response

2.3 Relation between y(t) and y[n]

Now consider the situation where we apply an input x(t) to a given process, for which
a discrete-time representation is given. The output of the discrete-time system is then
given by (5). Substituting x[k] = x(kT) and h[n] ≈ Th(nT) into this expression yields

y[n] ≈
∞∑

k=−∞
Tx(kT)h((n− k)T). (7)

7

Hence, y[n] basically gives an approximation of the response of the process to an impulse
at each time step k with weight Tx(kT). In other words, y[n] gives an approximation
of the response of the process to the sampled representation of the input function x(t),
given by

xq(t) :=
∞∑

k=−∞
Tx(kT)δ(t− kT). (8)

To gain more insight into this fact, we compare the response of a process to the step
function with its discrete-time representation in the following example.

Example 2.1 (Step response). In this example we investigate how the step response
of a process is related to the step response of a discrete-time representation. The step
response of a process and of a discrete-time system, denoted by g(t) and g[n], are defined
by the responses to the inputs

u(t) :=

{
1 if t ≥ 0,

0 otherwise,
u[n] :=

{
1 if n ≥ 0,

0 otherwise,
(9)

respectively. Note that the sampled representation of u(t) is given by uq(t) =
∑∞

k=0 Tδ(t−
kT). According to the preceding discussion, g[n] gives an approximation to the corre-
sponding process output gq(t) :=

∑∞
k=0 Th(t − kT). This is illustrated in Figure 2,

which shows a plot of the response gq(t) of the process for T = 1
2 , together with the step

response g[n] and the actual step response of the process. Here we see that g[n] indeed
gives a discrete-time representation of gq(t), which in turn is an approximation of the
step response g(t).

gq(t)

g[n]

g(t)

Figure 2: Step Response

8

3 BIBO Stability

In this chapter we discuss a form of stability for discrete-time systems, namely bounded
input bounded output (BIBO) stability. BIBO stability basically means that the output
of the process will be bounded whenever the applied input sequence is bounded.

Recall that a sequence x[n] is said to be bounded if there exists a constant M ∈
R,M ≥ 0 such that |x[n]|≤M for all n ∈ Z. Then stability of discrete-time systems can
be defined as follows.

Definition 3.1 (BIBO stability). A discrete-time system is said to be bounded-input
bounded-output stable (BIBO stable) if its output y[n] is bounded for any bounded input
x[n].

The following theorem gives a necessary and sufficient condition for BIBO stability
on the impulse response of the system.

Theorem 3.1. A discrete-time system is BIBO stable if and only if its impulse response
h is absolutely summable, i.e., Sh :=

∑∞
n=−∞|h[n]|<∞.

Proof. Suppose that the system is BIBO stable. Consider the input sequence

x[n] =

{
−1 if h[−n] < 0,

1 otherwise.
(10)

Notice that this implies x[n]h[−n] = |h[−n]| for all n ∈ Z. Since x[n] is a bounded
sequence, the corresponding output sequence y[n] is bounded as well, i.e. there exists a
constant M ∈ R such that |y[n]|≤M for all n ∈ Z. Hence

M ≥ |y[0]|=
∣∣∣ ∞∑
k=−∞

x[k]h[−k]
∣∣∣ =

∣∣∣ ∞∑
k=−∞

|h[−k]|
∣∣∣ =

∞∑
k=−∞

|h[k]|, (11)

which shows that h is absolutely summable.
Conversely, suppose that h is absolutely summable and let x[n] be any bounded se-

quence with bound M . Then, by the triangle inequality,

|y[n]|=
∣∣∣ ∞∑
k=−∞

x[k]h[n− k]
∣∣∣ ≤ ∞∑

k=−∞
|x[k]||h[n− k]|≤M

∞∑
k=−∞

|h[n− k]|≤MSh, (12)

which shows that y[n] is bounded. This completes the proof.

In practice, the condition Sh < ∞ from the above theorem is not easily verified and
hence does not seem very useful. However, we will use it to find more insightful conditions
in the last section of the next chapter.

9

4 The z-domain

It is often useful to convert systems from a time-domain representation into a frequency-
domain representation. In the continuous-time case this can be done using the Laplace
transform, transforming a system in the time domain into the frequency domain, also
referred to as the s domain. For discrete-time systems, one can apply the so-called Z-
transform, which can be viewed as the discrete-time equivalent of the Laplace transform.
The Z-transform transforms a sequence from the step domain into the corresponding
frequency domain, which is referred to as the z domain.

4.1 The Z-transform

In this section we provide a definition for the Z-transform, we discuss its domain (also
called the region of convergence (ROC)), give some properties such as linearity, and give
an expression for the inverse Z-transform. In the next section we apply the Z-transform
to discrete-time systems.

Definition 4.1 (Z-transform). The Z-transform of a sequence x[n] is defined by

X(z) = Z{x[n]} :=

∞∑
n=−∞

x[n]z−n, z ∈ C. (13)

The unilateral Z-transform of a sequence is defined as

UZ{x[n]} := Z{x[n]u[n]} =
∞∑

n=−∞
x[n]u[n]z−n =

∞∑
n=0

x[n]z−n, z ∈ C, (14)

with u[n] defined in (9).

The Z-transform is defined at points z ∈ C where the infinite series (13) converges.
The set of these points is called the region of convergence (ROC). The well known root
test states that a series

∑∞
n=1 an converges if lim sup

n→∞
n
√
|an| < 1. To apply the root test,

notice that the series in (13) can be written as

Z{x[n]} = x[0] +

∞∑
n=1

x[n]z−n +

∞∑
m=1

x[−m]zm. (15)

By the root test, a sufficient condition for convergence of the above expression is given
by

lim sup
n→∞

n
√
|x[n]z−n| < 1, lim sup

n→∞
n
√
|x[−n]zn| < 1 ⇐⇒ r < |z|< R, (16)

where r = lim sup
n→∞

n
√
|x[n]| and R = 1/

(
lim sup
n→∞

n
√
|x[−n]|

)
. If lim sup

n→∞
n
√
|x[−n]| = 0,

this condition simplifies to |z|> r, in which case the region of convergence contains
the set {z ∈ C | |z|> r}. Otherwise, the region of convergence contains the annulus
A = {z ∈ C | r < |z|< R}.

The following theorem provides some properties of the Z-transform. These properties
can easily be verified by directly applying the definition (13).

10

Theorem 4.1 (Properties of the Z-transform). Given arbitrary sequences x[n], x1[n]
and x2[n] with Z-transforms X(z), X1(z) and X2(z) and ROC’s given by sets R,R1 and
R2 respectively, the Z-transform satisfies the equalities stated below. For each equality
a sufficient condition on z for convergence of the corresponding Z-transform is given.

1. Z{α1x1[n] + α2x2[n]} = α1X1(z) + α2X2(z), for any α1, α2 ∈ R, z ∈ R1 ∩R2,

2. Z{x[n− n0]} = z−n0X(z), for any n0 ∈ Z, z ∈ R,

3. Z{anx[n]} = X(z/a), for any a ∈ R, z ∈ aR,

4. Z{nx[n]} = −z d

dz
X(z), z ∈ R,

where aR = {z ∈ C | z/a ∈ R}.

To transform a function from the frequency domain to a sequence, the following the-
orem provides an expression for the inverse Z-transform. This transformation can be
used to retrieve a sequence in case only its Z-transform is known.

Theorem 4.2 (Inverse Z-transform). Let X(z) be the Z-transform of the sequence x[n]
defined in the region |z| > R. Then x[n] can be retrieved from X(z) by the inverse
Z-transform

x[n] = Z−1{X(z)} =
1

2π i

∮
C
X(z) zn−1 d z, (17)

where C is any positively (counterclockwise) oriented curve in the complex number plane
that lies in the region |z| > R and winds around the origin.

The most common way to find the inverse Z-transform of a given function is to use a
table of Z-transform pairs. An example of such a table is given in Appendix A. Note that
the Z-transform of each of the sequences in this table is given by a rational function of z.
To use such a table, one needs to write the function in a suitable form, for example as a
linear combination of functions that appear in the table, and use the properties given by
Theorem 4.1. An important class of functions for which the inverse Z-transform can be
computed in this way is the class of rational functions. In Mathematica, the inverse Z-
transform of certain functions can be computed using the command InverseZTransform.
The scope of this command includes rational functions.

4.2 Discrete-time systems in the z-domain

In the z-domain, the behaviour of a given discrete-time system can be characterized
using its so-called system function H(z), which is defined as the Z-transform of the
impulse response. The system function can be viewed as the discrete-time equivalent of
the transfer function. Similar to the transfer function, the system function relates any
possible input to the output of the system in the frequency domain. For linear systems,
this relation can be written as Y (z) = H(z)X(z), where X(z) and Y (z) denote the

11

Z-transforms of the input and output sequences respectively. Hence, if an expression for
the output is given in terms of the input, the system function can be computed as

H(z) = Y (z)/X(z). (18)

To find a representation of a system of the form (1) in the z-domain, we simply take the
Z-transform on both sides of the equation. Using linearity and the translation property
stated in Theorem 4.1, we obtain

N∑
k=0

akz
−kY (z) =

M∑
r=0

brz
−rX(z). (19)

This equality can be solved for Y (z) as

Y (z) =

∑M
r=0 brz

−r∑N
k=0 akz

−k
X(z). (20)

From this expression it becomes clear that the system function is given by

H(z) =

∑M
r=0 brz

−r∑N
k=0 akz

−k
. (21)

Recall that for causal systems we have N ≥ M , and hence H(z) is a proper rational
function if and only if the system is causal.

In case the system function H(z) is a rational function, as in the above case, the poles
and roots of H(z) are referred to as the system poles and system roots. Their continuous-
time equivalent are the poles and roots of the transfer function of the system. In the
next section we will see that the poles of a system play an important role in determining
stability of the system.

Example 4.1. To illustrate the usefulness of a representation of the system in the z-
domain, consider the following situation. Suppose that we want the output of a given
system to track a certain reference signal ŷ[n], that is, we want to find an input sequence
x̂[n] such that the output satisfies y[n] = ŷ[n] for all n. By definition of the system
function, this is the case if and only if Ŷ (z) = H(z)X̂(z), where X̂(z) and Ŷ (z) denote
the Z-transforms of x̂[n] and ŷ[n] respectively. This yields X̂(z) = H−1(z)Ŷ (z). Hence,
from the representation of the system in the z-domain the input sequence that does the
job is seen to be

x̂[n] = Z−1{H−1(z)Ŷ (z)}. (22)

In fact, because of the relation Y (z) = H(z)X(z), one can easily ”invert” a system by
simply taking the inverse of the system function.

12

4.3 Stability in the z-domain

In this section we try to find conditions for stability in the z-domain. We do this
for causal systems that are described by a difference equation of the form (1). In the
previous chapter, we saw that the system function of such systems is a proper rational
function. In this section we derive conditions for BIBO stability in terms of the poles of
the system function. We will see that a system is BIBO stable if and only if all its poles
have magnitude smaller than 1. In general, poles that satisfy this property are referred
to as stable poles.

First, let us write H(z) in terms of its poles for the special case where all poles have
multiplicity one. Since H(z) is a proper rational function, its partial fraction expansion
is given by

H(z) = A0 +
N∑
k=1

Ak

z − pk
, (23)

where A0, A1, . . . , AN ∈ C are nonzero constant coefficients and {p1, . . . , pN} are the
poles of H(z). In the general case, H(z) has r ≤ N distinct poles {p1, . . . , pr} with
multiplicities {n1, . . . , nr} respectively. In that case, the summation in (23) runs up to

k = r, and for each k ∈ {1, . . . , r}, we replace the term Ak
z−pk by

∑nk
m=1

Ak,m

(z−pk)m for some
Ak,1, Ak,2, . . . , Ak,nk

∈ C. Note that Ak,nk
6= 0, since pk has multiplicity nk. Thus, the

partial fraction expansion of H(z) is given by

H(z) = A0 +
r∑

k=1

nk∑
m=1

Ak,m

(z − pk)m
. (24)

Before we move on to the main result, we deduce an expression for the impulse response
in terms of the poles of the system function as well, using the above equation. Recall
that the system function is the Z-transform of the impulse response. Hence, taking the
inverse Z-transform of (24) and using the fact that the Z-transform is linear, we obtain

h[n] = Z−1{A0 +
r∑

k=1

nk∑
m=1

Ak,m

(z − pk)m
} = A0δ[n] +

r∑
k=1

nk∑
m=1

Z−1{
Ak,m

(z − pk)m
}. (25)

The inverse Z-transform of 1
(z−pk)m is given by

Z−1
{ 1

(z − pk)m

}
=

Πm−1
r=1 (n− r)

m!
pn−mk u[n− 1]. (26)

Substituting this into (25) yields

h[n] = A0δ[n] +

r∑
k=1

nk∑
m=1

Ak,m
Πm−1

r=1 (n− r)
m!

pn−mk u[n− 1]. (27)

From this expression it can already be seen that if one of the poles of the system function
has magnitude greater than 1, then limn→∞ h[n] = ∞, which implies that the system
is not BIBO stable. This observation brings us to the following theorem, which states
that BIBO stability is equivalent to stability of all system poles.

13

Theorem 4.3. Consider a system with rational system function H(z). The system is
BIBO stable if and only if all poles of H(z) have magnitude smaller than 1.

Proof. First, suppose that the system is BIBO stable. Suppose, for contradiction, that
H(z) has a pole p with magnitude greater than or equal to 1. By Theorem 3.1 we know
that Sh is finite. Since p is a pole of H(z), we have limz→p|H(z)|= ∞. Hence, there
exists a constant δ > 0 such that for all z ∈ C with |z− p|< δ we have |H(z)|> Sh. This
implies that we can find z with |z |> |p| such that H(z) > Sh. Since |p|≥ 1 and |z |> |p|,
we have |z |−n≤ 1 for all n ≥ 0. Hence we can write

Sh =

∞∑
n=−∞

|h[n]|=
∞∑
n=0

|h[n]|≥
∞∑
n=0

|h[n]z−n|≥
∣∣∣ ∞∑
n=0

h[n]z−n
∣∣∣ = |H(z)| > Sh, (28)

which is a contradiction. Hence all poles of H(z) must have magnitude smaller than 1.
To prove the converse, we again use the result from Theorem 3.1. To use this theorem,

we first compute the absolute value of h[n] from (27). By the triangle inequality we can
write

|h[n]|≤ |A0|δ[n] +

r∑
k=1

nk∑
m=1

|Ak,m|
∣∣∣Πm−1

r=1 (n− r)
m!

pn−mk

∣∣∣u[n− 1]. (29)

Then it follows that

∞∑
n=−∞

|h[n]| ≤ |A0|+
∞∑

n=−∞

r∑
k=1

nk∑
m=1

|Ak,m|
∣∣∣Πm−1

r=1 (n− r)
m!

pn−mk

∣∣∣u[n− 1]

=

r∑
k=1

nk∑
m=1

|Ak,m|
∞∑

n=−∞

∣∣∣Πm−1
r=1 (n− r)

m!
pn−mk

∣∣∣u[n− 1]

=

r∑
k=1

nk∑
m=1

|Ak,m|
∞∑
n=1

∣∣∣Πm−1
r=1 (n− r)

m!
pn−mk

∣∣∣.
(30)

From this expression it becomes clear that h[n] is absolutely summable if for all k ∈
{1, . . . , r} and m ∈ {1, . . . , nk} we have

∞∑
n=1

∣∣∣Πm−1
r=1 (n− r)

m!
pn−mk

∣∣∣ <∞. (31)

By the ratio test, this holds if limn→∞ |an+1

an
| < 1, where an =

Πm−1
r=1 (n−r)

m! pn−mk . We have

lim
n→∞

|an+1

an
| = lim

n→∞

∣∣∣Πm−1
r=1 (n+ 1− r)pn+1−m

k

Πm−1
r=1 (n− r)pn−mk

∣∣∣ = lim
n→∞

∣∣∣Πm−1
r=1 (n+ 1− r)
Πm−1

r=1 (n− r)

∣∣∣|pk|. (32)

As Πm−1
r=1 (n + 1 − r) and Πm−1

r=1 (n − r) are polynomials of the same degree, both with
leading coefficient 1, we have

lim
n→∞

Πm−1
r=1 (n+ 1− r)
Πm−1

r=1 (n− r)
= 1. (33)

14

It is well known that the limit of the absolute value of a sequence converges to the
absolute value of the limit. In other words, the above equality implies

lim
n→∞

∣∣∣Πm−1
r=1 (n+ 1− r)
Πm−1

r=1 (n− r)

∣∣∣ = |1|= 1. (34)

Substituting into (32) yields limn→∞ |an+1

an
| = |pk|, which is smaller than 1 by assumption.

Hence, the ratio test tells us that (31) holds for all k ∈ {1, . . . , r} and m ∈ {1, . . . , nk},
which implies that h[n] is absolutely summable. By Theorem 3.1 we conclude that the
system is BIBO stable.

Similar results can be obtained for the continuous-time case. In fact, it is well-known
that a continuous-time system is BIBO stable if and only if all its poles (i.e. the poles
of the transfer function) have negative real part, see Theorem 3.21 in [5]. Therefore, a
pole of a continuous-time system is said to be stable if it has negative real part.

5 Transforming between discrete and continuous time

In this chapter we try to find a means to obtain a discrete-time system of the form (1)
to represent a given process. We will also see how a continuous-time representation of
the process, e.g. an expression for h(t), can be found from a discrete one. To learn more
about system identification, one can consult e.g. [6]. This book also contains theory on
Kalman filtering. Furthermore, an interesting survey on transforming between discrete-
time and continuous-time representations is given by [1].

In Chapter 4.2 we saw how the system function can be used as a representation of the
system. In the following section we investigate the relation between the system function
and the transfer function of the process. For this we use the requirement on h[n] and
h(t) that we discussed in Section 2.2.

5.1 Relation between the transfer function and the system function

Recall that the transfer function of a process is defined as the Laplace transform of the
impulse response, i.e.,

Ĥ(s) =

∫ ∞
−∞

h(t)e−stdt. (35)

To compare the transfer function to the system function, recall that we require the
impulse responses of the system and the process to satisfy h[n] ≈ Th(nT). Hence,
discretizing the above integral we find that h[n] ≈ Th(nT) is equivalent to

Ĥ(s) =

∞∑
n=−∞

∫ (n+1)T

nT
h(t)e−stdt ≈

∞∑
n=−∞

Th(nT)e−snT ≈
∞∑

n=−∞
h[n](esT)−n. (36)

Notice that the latter term is equal to the Z-transform of the impulse response h[n] with
esT substituted for z. Since the Z-transform of h[n] is given by H(z), it follows that

Ĥ(s) ≈ H(esT). (37)

15

Hence we have found a relation between the system function and the transfer function
of the process that is equivalent to h[n] ≈ Th(nT). For a given process, a discrete-time
system that represents the process can thus be obtained by substituting z = esT into the
transfer function of the process. This substitution can be seen as a transform between
the z-domain and the s-domain with inverse s = 1

T ln(z). In the next section we discuss
other transforms that can be used to find a system function, which might be desirable
over z = esT .

5.2 Transforms between z- and s-domain

Using a transform between the z- and s-domain, one can transform a continuous-time
representation of a process into a discrete-time one and vice versa. We have already
seen that, if T is small, the transform z = esT leads to an accurate relation between the
system function and the transfer function. A major drawback of this transform however,
is that substituting the exponential function z = esT into the rational function H(z) in
general does not yield a function that represents the transfer function of a process. To
obtain a useful relation between the system function and the transfer function, we aim to
find a rational transform z = f(s) that approximates z = esT , which we can substitute
into H(z).

A simple approximation to the exponential that comes to mind is esT ≈ 1 + sT . The
transform z = 1 + sT is often referred to as the Forward Euler Transform. Using this
transform, a system function can be obtained from Ĥ(s) as H(z) := Ĥ(1

T (z−1). Notice

that each pole p of Ĥ(s) is mapped to a pole 1 + pT of H(z). Now, recall from Chapter
3 that in the s-domain, poles are stable if they have real part less than 0, and in the z-
domain if they have magnitude less than 1. Clearly, the Forward Euler Transform could
map a stable pole of Ĥ(s) to an unstable pole of H(z). Hence, a stable continuous-time
representation might be transformed to an unstable discrete-time one, or vice versa.

To find a transform that does preserve stability, consider the following approximation
to the exponential function:

esT =
esT/2

e−sT/2
≈ 1 + sT/2

1− sT/2
. (38)

The transform that is based on this approximation is known as the Bilinear Transform.
It is defined by

z =
1 + sT/2

1− sT/2
, s =

2

T

z − 1

z + 1
. (39)

A consequence of the following lemma is that the bilinear transform preserves stability.
Notice that the factor 2/T can be omitted without loss of generality.

Lemma 5.1. A complex number z has magnitude less than 1 if and only if the number
s = (z − 1)/(z + 1) has real part less than 0.

Proof. We can write the relation between s and z as

s =
z − 1

z + 1
=
z + 1

z + 1
· z − 1

z + 1
=
|z|2−1 + z − z
|z + 1|2

. (40)

16

Since z − z is purely imaginary for any z ∈ C, it follows that Re(s) = |z|2−1
|z+1|2 , which is

less than zero if and only if |z|< 1.

The bilinear transform can be used to transform a continuous-time representation of
a process into a discrete-time one while preserving stability. Mind that the transform
can also be used to convert a discrete-time system into another discrete-time system
that represents the same process with a different sampling period T2. Given a discrete-
time system with system function H(z), one first obtains the transfer function Ĥ(s) of

a continuous-time representation by plugging z = 1+sT/2
1−sT/2 into H(z). After that, one

transforms this representation to a discrete-time one with sampling period T2 by substi-
tuting s = 2

T2

z−1
z+1 into Ĥ(s). Put shortly, the system function of a discrete-time system

that represents the process with sampling period T2 can be obtained by substituting the
following expression for z into the system function H(z):

z =
1 + sT/2

1− sT/2
=

1 + T
T2

z−1
z+1

1− T
T2

z−1
z+1

=
z + 1 + T

T2
(z − 1)

z + 1− T
T2

(z − 1)
. (41)

5.3 Construction of discrete-time systems from measurement data

In this section we investigate how one can obtain a discrete-time system of the form (1)
for a given process, if measurements of the impulse response h(t) are available. Here we
are interested in finding second- and third-order systems, i.e. systems of the form (1)
with N = M = 2 and N = M = 3.

First, consider the case N = M = 2. Since we want to find a discrete-time system
whose impulse response approximates h(t), we first try to find a suitable impulse response
of a continuous-time second-order system and use the theory from the previous section
to transform this to a discrete-time representation.

In this work we are interested in systems for which the impulse response is of the form

h̃(t) = e−at(b cos(ct) + d sin(ct)), a, b, c, d ∈ R. (42)

The same analysis can be done for other second-order systems as well. The ideas are the
same for those cases. Furthermore, the book [6] also describes various methods to obtain
discrete-time models from sampled data, which might be useful for further research.

For a system with an impulse response of the form (42), note that in order to ensure
limt→∞ h̃(t) = 0 it is sufficient to require a > 0. Using the Mathematica function
NonlinearModelFit, one can then compute appropriate parameters a, b, c, d such that
h̃(t) ≈ h(t). This can be done by creating a list of data points data from h(t), and then
running the command
NonlinearModelFit[data,Exp[-a t](b Cos[c t]+d Sin[c t]),{a,b,c,d},t].

Once a fit h̃(t) has been found, a corresponding discrete-time system with sampling
period T can be found as follows.

17

1. Compute the transfer function (assuming a > 0 and h̃(t) = 0 for t ≤ 0):

H̃(s) = L{h̃(t)}

=

∫ ∞
0

e−ste−at(b cos(ct) + d sin(ct))ds

= e−(a+s)t (bc− da− ds) sin(ct)− (ab+ bs+ cd) cos(ct)

a2 + 2as+ c2 + s2

∣∣∣∣∞
t=0

=
ab+ cd+ bs

a2 + c2 + 2as+ s2
.

(43)

2. Transform H̃(s) to the z-domain using the bilinear transform to obtain the system
function:

H(z) = H̃(s)
∣∣∣
s= 2

T
z−1
z+1

. (44)

3. Since H̃(s) is a rational function, H(z) is rational as well. Hence we can easily
retrieve the parameters a0, a1, a2 and b0, b1, b2 in (21) that define the discrete-time
system.

In case measurements of the step response of the process are available, one can also fit a
function g̃(t) that represents the step response of a system to the data. For systems that
have an impulse response of the form (42) whose step response approaches 1 as t→∞,
g̃(t) is of the form

g̃(t) = 1 + e−at(b cos(ct) + d sin(ct)), a, b, c, d ∈ R. (45)

Once a fit has been found, we want to find the transfer function of the system H̃(s). For
this, we use the fact that it relates the input and output of the system via L{y(t)} =
H̃(s)L{x(t)}. Hence

H̃(s) =
L{g̃(t)}
L{u(t)}

= sL{g̃(t)} = 1 +
(ab+ cd)s+ bs2

a2 + c2 + 2as+ s2
. (46)

Now that the transfer function has been found, steps 2 and 3 as listed above can be
applied to find the corresponding discrete-time system.

For third-order systems we follow the same steps, where we use the following form for
the impulse and step response respectively:

h̃(t) = e−at(b cos(ct) + d sin(ct)) + fe−gt, a, b, c, d, f, g ∈ R,
g̃(t) = 1 + e−at(b cos(ct) + d sin(ct)) + fe−gt, a, b, c, d, f, g ∈ R.

(47)

Note that a, g > 0 is a sufficient condition for limt→∞ h̃(t) = 0.

Example 5.1. In this example we consider a process described by a 4th order system
of the form (1) with the following parameters

a1 = 3.343 a2 = −4.462 a3 = 2.839 a4 = −0.7249

b0 = 0.0384 b1 = −0.01186 b2 = −0.05623 b3 = 0.01489 b4 = 0.02083.
(48)

18

Suppose that this system gives an exact representation of the process, and that we only
have knowledge of a list of samples from the step response of the process. In this example
we want to find a third-order discrete-time system to describe the process.

First we find an appropriate function g̃(t) using the command NonlinearModelFit in
Mathematica, as explained above. We find the function

g̃(t) = 1− 0.84 e−0.075t + e−0.033t(0.08 sin(0.64t)− 0.16 cos(0.64t)). (49)

Figure 3 shows the step response of the process together with g̃(t). The figure also shows
the data points that we used to find the fit.

ym(t)

y(t)

Figure 3: Third order fit

To find the discrete-time system corresponding to g̃(t), we apply the procedure that
was described above. First, we compute the transfer function H̃(s) = sL{g̃(t)} using
the command LaplaceTransform which yields

H̃(s) ≈ 0.12s2 + 0.073s+ 0.030

s3 + 0.14s2 + 0.41s+ 0.030
. (50)

Then we find the system function by substituting s = 2/T (z − 1)/(z + 1). We choose
the sampling period T = 1. This yields

H(z) =
0.069− 0.026z−1 − 0.056z−2 + 0.038z−3

1− 2.5z−1 + 2.4z−2 − 0.87z−3
, (51)

with the corresponding difference equation given by

ΣDT :
y[n] =2.5 y[n− 1]− 2.4 y[n− 2] + 0.87 y[n− 3]

+ 0.069x[n]− 0.026x[n− 1]− 0.056x[n− 2] + 0.038x[n− 3].
(52)

19

Remark 5.1. In finding the discrete-time system corresponding to the step response g(t),
we lose some precision in the transformation from the s-domain to the z-domain. This
can be overcome by using a different discretization method. For this, define the sampled
version ĝ[n] of g(t) as ĝ[n] := g(nT). The system function Ĥ(z) corresponding to the
step response ĝ[n] can be computed directly as

Ĥ(z) =
Y (z)

X(z)
=
Z{ĝ[n]}
Z{u[n]}

= Z{ĝ[n]}z − 1

z
, (53)

yielding a discretization Σ̂DT which does not involve an approximation. The only re-
quirement is that the Z-transform of ĝ[n] can be computed, which is generally the case
if ĝ[n] is obtained from (45) or (47). Figure 4 shows a plot of the step response g(t) from

g(t)

Σ̂DT

ΣDT

Figure 4: Two discretizations. Σ̂DT is obtained by sampling the step response g(t), and
ΣDT is obtained via the bilinear transform.

Example 5.1 together with the step response of the discretization Σ̂DT that is found from
(53), and the step response of ΣDT in (52). From this plot we see that Σ̂DT indeed gives
an exact discretization, whereas ΣDT is not exact due to the transformation from the s
domain to the z domain.

6 Feedback control of discrete-time systems

In this chapter we investigate how one can control the output of discrete-time systems
using output measurements. This type of control is referred to as feedback control. The
most commonly used feedback controller in engineering practices is the so-called PID
controller. In the next section we give a definition of the PID controller together with
an example. After that, we will see how a so-called Kalman filter can be used to deal
with delays in the measurement data. Let us start by introducing the PID controller.

20

6.1 The PID controller

Given a discrete-time system and a target, i.e. a sequence r[n] that we want the output
to track, a PID controller takes the output of the system and computes a new input for
the system such that y[n] approaches r[n]. Specifically, a PID controller computes the
error e[n] := r[n]− y[n− 1] from the available measurement y[n− 1] and computes the
control input x[n] as

x[n] = Kpe[n] +Ki

n∑
k=1

e[k] +Kd(e[n]− e[n− 1]), (54)

where Kp,Ki and Kd are the controller parameters. The first term in the above expres-
sion is referred to as the proportional action, the second is referred to as the integral
action, and the third is called the derivative action, hence the name of the controller.
The following block diagram gives a schematic representation of the control loop con-
sisting of the system with a PID controller. For a more extensive discussion on PID
controllers and parameter tuning, see [3].

Figure 5 shows a plot of the system from Example 5.1 interconnected with a PID
controller. The parameters Kp = 1.5, Ki = 0.048 and Kd = 25 are found by tuning
them using the Mathematica function Manipulate.

PID System
x+r e y

−

y

r[n]

ym[n]

Figure 5: PID controller

21

6.2 Feedback control using measurement prediction

In many situations, one is interested in predicting future outputs of a process. For
example, if the measurements that are available for a PID controller are delayed by a
number of steps, it can be advantageous to compute an estimation of the process output
at the current time step. In this section we investigate how this can be done.

A delayed measurement y[n − τ] can be seen as an estimation of the current output
y[n] of the process. An unsophisticated estimation, that is. It basically assumes that
the output remains constant on the interval [n − τ, n]. However, if some knowledge of
the process dynamics is available, one can try to predict the course of the output based
on previous measurements and hence obtain a better estimation. This is precisely the
underlying idea of a so-called Kalman filter. A Kalman filter is a filter that predicts the
future output of a process based on an available model of the process. To learn more
about the Kalman filter, see e.g. [7], [2]. In Section 5.3 we saw a means to obtain a
model of the process from measurement data. For now, let us assume that a system Σ
of the form (1) is available for our Kalman filter, where we assume that a0 = 1 without
loss of generality. The system can be written as

Σ : y[n] = −
N∑
k=1

aky[n− k] +

M∑
r=0

brx[n− r]. (55)

Furthermore, we assume that at each time step n, the computed input x[n] is available.
To give a definition of the Kalman filter, let us start with the case τ = 1, so the

measurements ym[k] are available for all k ≤ n − 1. We aim to find an expression for
ym[n] in terms of Σ. First, we try to find an expression for the entire output sequence ym
in terms of the approximate model Σ. For this, we need the inverse Σ−1 of the model,
which can be found by simply inverting the rational function H(z) and deducing the
corresponding difference equation, as explained in Chapter 4.2. This yields

Σ−1 : x[n] =
1

b0
y[n] +

N∑
k=1

ak
b0
y[n− k]−

M∑
r=1

br
b0
x[n− r]. (56)

Notice that the inverse model is not necessarily stable, even if Σ is stable. The idea
behind the inverse model is illustrated in Figure 6, where the measurements ym are
applied to it to obtain a sequence xm. Applying xm to the model we obtain the sequence
ym again. The clearest way to see this relation mathematically is from the z-domain:
let Ym(z) and Xm(z) denote the Z-transforms of ym and xm respectively. Then by

Σ−1 Σ
ym xm ym

Figure 6: The inverse model

22

definition, Xm(z) = H−1(z)Ym(z), so applying xm to Σ indeed yields the output Y (z) =
H(z)Xm(z) = Ym(z). Hence, for all n we have the following expression for ym[n]:

ym[n] = −
N∑
k=1

akym[n− k] +

M∑
r=0

brxm[n− r]. (57)

Notice that the values xm[n − 1], . . . , xm[n − M] can be obtained from the available
measurements ym[l], l ≤ n − 1, using the inverse model (56). Since the measurement
ym[n] itself is needed to compute the remaining value xm[n], we use the actual input
x[n] as an approximation. In this way, ym[n] can be estimated as

ym[n] ≈ ŷ[n] = −
N∑
k=1

akym[n− k] + b0x[n] +

M∑
r=1

brxm[n− r]. (58)

This procedure can be applied at each time step n to obtain an estimation for ym. This is
how we define a Kalman filter. To summarize, the Kalman filter computes an estimation
ŷ[n] for ym[n] using previous measurements, the last input value x[n] and the values
xm that can be obtained from the previous measurements. Figure 7 gives a schematic
overview of a control loop with a Kalman filter.

PID
ymx

Σ

Kalman filter
Σ−1

+r e

xm

−

ŷ

Figure 7: Kalman filter with the inverse model in a control loop

Now let us generalize this idea to include the case where at step n the measurement
ym[l] is only known for l ≤ n − τ where τ ≥ 1. We initialize the estimated output
sequence ŷ for l ≤ n − τ as ŷ[l] = ym[l]. Furthermore, we define the corresponding
sequence x̂ as

x̂[l] =

{
xm[l] for l ≤ n− τ ,
x[l] for l > n− τ .

(59)

Then for l = n− τ + 1, n− τ + 2, . . . , n we define ŷ[l] recursively as

ŷ[l] = −
N∑
k=1

akŷ[l − k] +

M∑
r=0

brx̂[l − r]. (60)

Then ŷ[n] is an estimation for the measurement ym[n].

23

Example 6.1. Consider again the process from Example 5.1. Let us assume that the
fourth order model is unknown, and that we can measure the output of the process with
a delay of 10 time steps. Then, the delayed measurements can be used to control the
process with a PID controller. Choosing the controller parameters optimally, the process
can be controlled as shown in Figure 8.

r[n]

ym[n]

Figure 8: PID controller with delayed measurements

Alternatively, we can compute an estimation of the current output at each time step
using a Kalman filter, and use the estimation to control the process. For this let us take
the third-order discrete-time system that we found in Example 5.1. The inverse of the
model can be computed by inverting the system function and deducing the difference
equation. Equivalently we can solve the difference equation (52) for x[n]. We find

(61)x[n] = 0.37x[n− 1] + 0.81x[n− 2]− 0.55x[n− 3]

+ 14.4y[n]− 36.3y[n− 1] + 34.8y[n− 2]− 12.6y[n− 3].

At each time step n, we use the above model to compute the values xm[n−10], xm[n−11],
and xm[n− 12] from the available measurements ym. Then we compute the estimation
ŷ[l] for l = n− τ + 1, n− τ + 2, . . . , n defined by (60) and feed e[n] := r[n]− ŷ[n] to the
PID controller. In this way, the controller parameters can be tuned to obtain the result
that is shown in Figure 9.

7 Concluding remarks and discussion

In this report we investigated how a discrete-time representation of a process can be
obtained and how it relates to a continuous-time one. We gave a basic description of
the theory that is involved in obtaining the representations and transforming between

24

r[n]

ym[n]

Figure 9: PID controller using Kalman filter

continuous and discrete time. After that we discussed control theory of discrete-time
systems. In particular, we investigated how discrete-time systems can be controlled
by a PID controller, and how performance of the PID controller can be improved by
predicting process outputs.

In order to obtain a good prediction of the process outputs, we used a so-called inverse
model. However, the inverse model can be highly unstable, even if the model itself is
stable, yielding situations in which the PID parameters can only be chosen small to
prevent oscillatory behavior. This was not elaborated on in the report, but during the
project we also discussed other ways of determining a good prediction. One idea was to
simply let the inverse model out and use the actual input x[n] as an estimation for the
sequence xm[n]. For further research, these ideas can be made more concrete, to provide
a good alternative to the inverse model.

We also saw that the discretization that was obtained via the bilinear transform in-
volved an error, whereas a discretization can also be found by simply sampling the step
response. This discretization does not yield an error, as was explained in Remark 5.1.
This could already yield an improvement to the results from Chapter 6, but we did
not have the time to compute new simulations to include in the report. Even though
the discretization via the bilinear transform is inferior to the sampling method when it
comes to accuracy, the bilinear transform might prove useful in case the Z-transform of
the sampled step response is difficult to find, or in case only the transfer function of a
continuous-time representation is available.

Finally, as mentioned in the introduction and in [7], we did not consider noise in the
measurement data for the construction of the Kalman filter in this project. Since a lot of
literature on Kalman filtering to overcome such noise is available, this could be a topic
of further research.

25

Word of thanks

I would like to thank George Schut for giving me the opportunity to do an internship at
Schut Geometrical Metrology. The problem I have been working on was challenging for
me, since some of the ideas and theories we treated were completely new. It was also very
interesting to discover how the ideas are relevant in practice. Also, the communication
was very pleasant. I have always felt the space to share my thoughts.

I would also like to thank Bart Besselink for showing genuine interest in the internship.
It was really encouraging to see your interest and hear your ideas on the topic.

26

References

[1] R. Agarwal, M. Bohner, D. O’Regan, and A. Peterson. Dynamic equations on time
scales: A survey. Journal of Computational and Applied Mathematics, 141:1–26, 07
2004.

[2] B.D.O Anderson and J.B. Moore. Optimal Filtering. Prentice-Hall, Englewood Cliffs,
NJ, 1979.

[3] K.J. Aström and R.M. Murray. Feedback Systems: An Introduction for Scientists
and Engineers. Princeton University Press, 2008.

[4] L.C. Ludeman. Fundamentals of digital signal processing. Harper and Row, 1986.

[5] H.L. Trentelman, A.A. Stoorvogel, and M. Hautus. Control Theory for Linear Sys-
tems. Communications and Control Engineering. Springer, London, UK, 2001.

[6] M. Verhaegen and V. Verdult. Filtering and System Identification: A Least Squares
Approach. Cambridge University Press, New York, NY, USA, 1st edition, 2007.

[7] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical Report
95-041, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

27

Appendix A: Table of Z-transform pairs

A more extensive version of this table can be found in [4].

Discrete time sequence Z-transform Region of convergence

δ[n] 1 all z

u[n]
z

z − 1
|z|> 1

nu[n]
z

(z − 1)2
|z|> 1

n2u[n]
z(z + 1)

(z − 1)3
|z|> 1

anu[n]
z

z − a
|z|> a

nanu[n]
az

(z − a)2
|z|> a

sin(ωn)u[n]
z sinω

z2 − 2z cosω + 1
|z|> 1

cos(ωn)u[n]
z2 − z cosω

z2 − 2z cosω + 1
|z|> 1

28

