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Abstract

In this thesis we give an introduction to neuromorphic computing, a new computing paradigm.
We suggest memristive devices as potential building blocks for this new computing paradigm.
To motivate that, we exhibit four different mathematical models which describe the mathe-
matical behavior of a memristive device. Here, we make a link between memristive devices and
spike-timing dependent plasticity. Furthermore, we will consider networks of memristive devices
and develop tools for modelling and analysis of their external behavior. We will see that the
dynamical behavior of networks of memristive devices is different from that of a single memris-
tive device. This suggests that proper design of the network structure can be used to achieve
desired memristive behavior needed for using these devices as building blocks for neuromorphic
computing.
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1 Introduction

1.1 Background

Nowadays, almost all of us are in possession of electronic devices such as computers and mobile
phones. We are excited about the handy apps and tools of our devices and most of us use the
Internet on a daily basis. However, not many people are aware of the large amount of energy
consumed by these devices and the Internet. To give an example, doing one search by Google
consumes the same amount of energy as a 60 Watt light to burn for 17 seconds [1], not even taking
into account the energy consumed by the device itself. On top of that, large amounts of energy are
consumed by the data centers which are used to store digital data. This is a motivation for looking
into options to make our devices and data centers more energy efficient. In addition to this, we are
always searching for manners to improve the processing speed of our devices.

Currently, the most recognized electronic device is the computer; a device build out of networks of
transistors which use Boolean algebra. Improving the processing speed of a computer can be done
by increasing the number of these transistors. Gordon Moore, the co-founder of Intel, laid out his
prediction that the number of transistors on integrated processing units would double every two
years, leading to exponential increases in processing speed of computers [2], known as Moore’s law.
This increasing transistor count will not only increase the complexity of the computer, but it will
also require more space and energy. Until now, the increasing transistor count is compensated by
the development of faster transistors of a decreasing size. However, the transistor is approaching
physical limits to further miniaturization [3], and this complex network of transistors is not very
energy efficient as laid out before. This motivates the search for an alternative computing paradigm
which has both a high energy efficiency as well as a high processing speed.

A potential computing paradigm is neuromorphic computing, which is inspired by the biological
concepts of the human brain and hopes to learn from the efficiency of it. This computing paradigm
has potential to be used for the storage and processing of large amounts of digital information.
This makes the paradigm not only interesting for usage in electronic devices as laptops, tablet, and
mobile phones, but also for edge computing, i.e. a method for moving the control of data processing
from centralized data centres to the last edge nodes of the Internet where data is collected and
connected to the physical world [4]. Moving the control from data centers to edge devices, e.g.
routers, will not only limit the necessary growth of data centres, but it will also save energy since
neuromorphic computing devices are expected to be more efficient with data storage than the
current computer architectures. In addition, the data will be stored nearer to the costumer which
makes it cheaper to reach the data [4].
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In order to create a computing paradigm based on the brain, the brain has to be studied more
thoroughly. Open questions as in [5] should be addressed. In addition, physical building blocks
should be developed for neuromorphic computing devices. Suggested building blocks are memristive
devices [4], [6], [7], i.e. resistors with memory storage. These devices are more energy efficient than
the transistors used in the current computing architectures because of their passivity property. In
addition, their dynamical structure gives them potential to mimic the brain. A drawback of the
use of memristors is that there is relatively little known about these circuits elements and how they
can be efficiently used in a circuit. The coupling between the memristors in a network namely still
consumes a lot of energy [8]. Therefore, research needs be done to manners how we can couple
memristors, which mimic the human brain.

1.2 Contribution

In this thesis, we will introduce memristive devices as potential building blocks for neuromorphic
computing. In order to create optimal neuromorphic computing devices, the memristive devices
should have a certain dynamical behavior. This behavior might not be achieved by a single mem-
ristive device. Therefore, in this thesis we will consider networks of memristive devices and we will
develop tools for modelling and analysis of their external behavior.

This thesis is organized as follows. Chapter 2 will introduce the idea of neuromorphic computing
by briefly explaining biological neural networks and linking this to artificial neural networks. In
Chapter 3 we will introduce memristive devices and we will exhibit different mathematical models
which can be used to describe the behavior of such a device. Here, we will also make a link between
memristive devices and synaptic plasticity in the human brain.

In Chapter 4 we will introduce some mathematical and electrical network properties, these will be
utilized in Chapter 5 where we study the dynamical behavior of networks of memristive devices.
Finally, Chapter 6 depicts simulation results of the external behavior of networks of memristive
devices.
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2 Neuromorphic computing

Neuromorphic computing is the name of a computing paradigm that is inspired by the human brain.
It hopes to learn from the efficiency of the human brain to utilize it for tasks as data analysis. To
give some more insight into these ideas, the following chapter will spend time on the functionality
of the human brain to the extend it is known. This will be the starting point for introducing
neural networks, as known from computer science, to eventually sketch the idea of neuromorphic
computing.

2.1 Biological neurons and networks

Neuromorphic computing is inspired by key aspects of biological neurons and networks. Therefore
this section, based on [9], [6] [10], will give an introduction to the functioning of the human brain
relevant for understanding neuromorphic computing. We will do so by first considering the con-
nection between two neurons to later extend this to a network of neurons.

Consider two neurons connected by a synapse, illustrated in Figure 1. Both neurons consist of a
cell body, the so-called soma, and have incoming dendrites and an outgoing branched axon. The
dendrites bring information to the neuron, where the axon sends information to other neurons. The
cell body controls how many of the information received from the dendrites will be send towards
the axon; this depends on the strength of the information. This information comes in the form of
neurotransmitters, a form of chemicals, and are regarded as electrical pulses. These pulses, send
by the cell body of a pre-synaptic neuron towards a post-synaptic neuron are called action poten-
tials or spikes. The number of pulses send by a neuron depends on its membrane potential, the
difference between the voltages at the in- and outside of the cell membrane. When the pre-synaptic
membrane potential exceeds a certain threshold, it will send a pre-synaptic spike through one of its
axon branches towards the synaptic cleft, a small gap that is adjacent to another neuron. The large
voltage potential of this spike causes a variety of membrane channels to open and close allowing
many ionic and molecular substances to flow. Among these substances are "packages" of neuro-
transmitters which are kept in small sacs, called synaptic vesicles. At moments of large voltage
potentials, these synaptic vesicles inside the pre-synaptic cell fuse with the membrane in such a way
that the "packages" of neurotransmitters are released in the synaptic cleft. The neurotransmitters
are then collected by the post-synaptic cell and change the post-synaptic membrane potential.

The effect of the arriving spike on the post-synaptic membrane potential does depend on the prop-
erties of the synapse. An excitatory pulse increases the post-synaptic membrane potential, where
an inhibitory pulse decreases the post-synaptic membrane potential. Both excitatory and inhibitory
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Figure 1: Schematic illustration of neurons (pyramidal cells) and their connections [9].

synapses can have varying strength (or weight) w, but a synapse is either excitatory or inhibitory
and this does not change through time. The weight w determines the efficacy of a pre-synaptic neu-
ron in contributing to the membrane potential of the post-synaptic neuron; it can be interpreted as
the number of neurotransmitter packages released during a pre-synaptic spike. The post-synaptic
neuron rests when its membrane potential is sub-threshold and it fires spikes when the potential
exceeds threshold.

Mathematically, the membrane potential at neuron i can be described as the weighted sum of
incoming activities of the surrounding pre-synaptic neurons as∑

j

wij(t)Sj(t),

where Sj(t) represents the mean activity of neuron j at time t, and wij(t) is the synaptic weight
between neuron i and j. The mean activity of a neuron i, Si(t), represents whether neuron i is at
rest or firing spikes. It can for example be chosen as the rate of generated spikes by neuron i per
millisecond, as depicted in Figure 2. The synaptic weight between neuron i and j is given by

wij(t)


> 0 excitatory synapse,

= 0 no connecting synapse,

< 0 inhibitory synapse.

Considering discrete time-steps, Si depends non-linearly on the mean activity of the other neurons
as

Si(t+ 1) = h

∑
j

wij(t)Sj(t)

 ,
where h(·) is a sigmoidal activation function. Figure 3 shows an example of a sigmoidal activation
function, i.e. Si(t + 1) = tanh (γ(xi(t)− θ)) where xi(t) =

∑
j wij(t)Sj(t). Here, the parameter
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Figure 2: Schematic representation of how the activity of a neuron Si(t) can depend on its spike
pattern [9].

γ represents the gain or steepest slope of the curve and θ gives the value of xi(t) at which the
steepest slope is achieved. The parameter θ is sometimes referred to as the threshold of the acti-
vation function, butnote that this does not directly corresponds to the threshold value in the spike
generation. The sigmoidal activation function is bounded by two horizontal asymptotes. The lower

Figure 3: Example of a sigmoidal activation function with gain γ and threshold θ [9].

asymptote corresponds to minimal activity of a neuron, the neuron being at rest, where the upper
asymptote correspond to maximal activity, the maximal number of spikes generates every second.
Figure 2 shows an example of a sigmoidal activation function with Si = −1 as the lower and Si = 1
as the upper asymptote. The values of these asymptotes can be changed by scaling the activation
function to for example Si = 0 for the resting state and Si = 1 for maximal activity.

2.1.1 Spike-timing dependent plasticity

The synaptic weight wij between two neurons changes in time as a function of the spiking activity
of pre- and post-synaptic neurons. In 1949, Donald O. Hebb found the relation that if neuron i

and j fire at the same time then the excitatory synaptic strength wij increases [11]: "What wires
together fires together". Following this idea, the change of the synaptic strength was described
to be proportional to the product of the firing rates of the pre- and post-synaptic neurons, i.e.
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∆wij ∝ SiSj . Spike-timing dependent plasticity (STDP) is a refinement of this Hebbian learning
rule which takes into account the relative timing of individual pre- and post-synaptic spikes, and
not their mean activity over time. In STDP the change in synaptic weight ∆w is not expressed
in terms of the mean activities Si and Sj , but as a function of the arrival time of a pre-synaptic
spike and the generation of a post-synaptic spike, i.e. the time difference between the post-synaptic
spike at tpos and the pre-synaptic spike at tpre. The difference between these times is given by
∆T = tpos − tpre as depicted in Figure 4. The update of the synaptic weight can be expressed as
a function of ∆T as ∆w = ξ(∆T ). The shape of the function ξ(∆T ) can be interpolated from

Figure 4: Pre- and post-synaptic membrane voltages, i.e. Vmem-pre and Vmem-post, for the situations
of positive and negative ∆T [6].

Figure 5: A Experimentally measured STDP function ξ(∆T ) on biological synapses [12]. B STDP
update function for excitatory synapses, i.e. w > 0. C STDP update function for inhibitory
synapses, i.e. w < 0. [6].

experimental data as shown in Figure 5. Mathematically it can be described as

∆w = ξ(∆T ) =

αpose
−∆T/τpos if ∆T > 0,

−αnege
−∆T/τneg if ∆T < 0,

(1)

where αpos, αneg, τpos, τneg ∈ R are positive constants. Consider Figure 5B, the STDP update
function for excitatory synapses. For positive relative timing, ∆T , the pre-synaptic spike has an
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important role in producing the post-synaptic spike, i.e. the strength of the synapse is increased.
For negative relative timing, the pre-synaptic spike is irrelevant for the generation of the post-
synaptic spike, i.e. the strength of the synapse is decreased. Furthermore, the change ∆w is higher
for small values of ∆T which corresponds to the idea of Donald O. Hebb, namely if two neurons fire
at the same time then the excitatory strength of the synapse between them increases. In the case
of inhibitory synapses the relation (1) should be reversed, see Figure 5C, but similar observations
can be made for the reversed diagram. More information about STDP and its history can be found
in [13].

2.2 Artificial neurons and networks

In the previous section the key aspects of biological neurons and networks have been considered.
These aspects allowed for a mathematical formulation of neural activity and synaptic interactions.
This enables us to simulate the dynamics of neurons and their synaptic connections with artificial
neural networks. In the following, based on [9], simple recurrent and feed-forward neural networks
will be discussed to give an idea of the field of artificial neural networks.

2.2.1 Recurrent neural networks

Consider a network assembled from artificial neurons connected by artificial synapses with weight
w of which an example is shown in Figure 6. The network with very high and unstructured
connectivity forms a dynamical system of neurons which influence each other through synaptic
interaction. The manner in which this happens is based on how biological neurons influence each
other. Namely, considering discrete time-steps, one obtains the activities of the neurons to be of

Figure 6: A networks of N = 5 neurons with unstructured partial connectivity [9].
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the form

Si(t+ 1) = g

∑
j

wij(t)Sj(t)

 (2)

where g(·) is a sigmoidal activation function. Here, the sum
∑
j wij(t)Sj(t) ranges over all j ∈

{1, . . . , N} for which wij(t) 6= 0, where N is the number of neurons in the network. In words, the
activity of a particular neuron depends on the synaptic strengths of the incoming edges. Since the
activity of a particular neuron is given as a function of the preceding activities of the neurons, this
network is called a recurrent neural network. The synaptic strength wij between neuron i and j
may vary over time by adapting it following Hebbian learning, STDP, or another learning rule.

Figure 7 depicts an illustration of an application of recurrent neural networks. Data from a noisy
initial configuration of neuron activities, S(0) =

(
S1(0) . . . SN (0)

)
at time t = 0, is considered,

the dynamics (2) generates a sequence of neuron activities which converge towards a clean con-
figuration. This result is obtained since the weights w between the more active neurons in the
configuration will be stronger where the weights w between the other neurons will become weaker,
as discussed in Hebbian learning and STDP.

Figure 7: Illustration of a retrieval of noisy initial configuration of neuron activities [9].

2.2.2 Feed-forward neural networks

Another type of network architectures are feed-forward neural networks. In these networks, neurons
are arranged in layers and information is processed in a well-defined direction. The network is
determined via synaptic interactions and activations of the form

S
(k)
i (t) = g(k)

∑
j

w
(k)
ij (t)S(k−1)

j (t)

 ,
where g(k) represents the activation function of layer k and S

(k−1)
j (t) represents the activity of

neuron j in layer k− 1. The sum
∑
j w

(k)
ij (t)S(k−1)

j (t) ranges over all j ∈ {1, . . . , N (k−1)} for which
w

(k)
ij (t) 6= 0, where N (k−1) is the number of neurons in layer k − 1 of the network. This means
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that the activity S(k)
i (t) of neuron i in layer k is only determined from the weighted sum of the

activities in the previous layer k− 1. As a consequence, a feed-forward neural network can be seen
as a function that maps the vector of input activations to a single or several output units (neurons).
Figure 8 shows an example of a four-layer feed-forward neural network. The first and last layer

Figure 8: Schematic illustration of a four-layer feed-forward neural network [9].

represent the input and output layer of the network, respectively. The other two layers, which are
neither input nor output layers, are called hidden layers. The illustration displays only two hidden
layers and a single output unit (neuron), but the extension to a network with more hidden layers
or a multiple output units is straightforward.

An application of a feed-forward neural network can be to classify vecotrs in discrete classes.
Namely, if the output activities are discretized, for instance by a step function as activation function
in the last layer, i.e. S(k) ∈ {1, 2, . . . , C} where Ci represents a class, then the feed-forward neural
network represents the classification of input activations

(
S

(0)
1 (t) . . . S

(0)
N (t)

)
into one of the C

classes.

The accuracy and efficacy of a feed-forward neural network will depend on the number of hidden
layers, the number of units per layer, the activation functions at the different layers, and the choice
of the weights. The determination of these parameters might be done using an example data set
with given input and outputs. Tests might be done for different values of the parameters and
different activation functions after which the results should be compared. The term learning in
neural networks is used for this adaptation or fitting process.

Note, that the recurrent and feed-forward neural networks depicted above are just simple networks
inspired by the human brain. The human brain is more complex, it contains in the order of
1012 neurons and the network between them is highly connected, with each neuron having 1000
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neighbours [9]. Also, there are still a lot of open questions about the functionality of the brain and
the mathematical description of it [5].

To summarize, we exhibited two examples of artificial neural networks which are inspired by the
functionality of the human brain. The usage of these computing algorithms which mimic the brain
is referred to as neuromorphic computing. Possible physical building blocks for these artificial
neural networks are the so-called memristive devices. They have the desired properties to mimic
the STDP weight update rule as we will see in the next chapter.
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3 Memristive devices

In the previous chapter, memristive devices were introduced as the potential building blocks for
neuromorphic computing devices, i.e. the functionality of memristive devices can be used to mimic
synapses in the human brain. In this chapter memristive devices will be introduced. In addition,
an overview of different memristive device models as found in the literature will be given.

3.1 Memristor

In 1971, Leon O. Chua introduced a new two-terminal circuit element called the memristor [14].
This element is characterized by a relationship between the charge q(t) =

∫ t
−∞ i(τ)dτ and flux-

linkage ϕ(t) =
∫ t
−∞ v(τ)dτ , i.e. a link between the physical property of matter that causes it to

experience a force when placed in an electromagnetic field and the strength of the electromagnetic
field. The name memristor is a contraction for memory and resistance. This name is introduced
because the memristor can be seen as a resistor whose resistance changes through time depending
on the resistances in the past. Chua argued that the memristor can been seen as the fourth basic
two-terminal circuit element, next to the resistor, capacitor and inductor, as depicted in Figure 9.
All the four two-terminal elements are defined in terms of a relationship between two of the four

Figure 9: The four fundamental two-terminal circuit elements: resistor, capacitor, inductor and
memristor [15]. Here, the voltage, current, charge and flux-linkage are represented by v,i, q and ϕ
respectively.

fundamental circuit variables, the current i, voltage v, charge q and flux-linkage ϕ. Here, a two-
terminal element or one-port can been seen as a black box connected with two nodes, i.e. terminals
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to an outside circuit. The current flowing into the two nodes must be equal and opposite [16,
Chapter 2].

The memristor is characterized by a relation of the type g(q(t), ϕ(t)) = 0. It is said to be charged-
controlled (flux-controlled) if this relation can be expressed as a single valued function of the charge
(flux-linkage). The voltage across a charge-controlled memristor is given by

v(t) = M(q(t))i(t),

where
M(q) = dϕ(q(t))

dt .

Here, M(q) has the unit of resistance, since resistance has the relationship v(t) = Ri(t), it will
henceforth be called the memristance. Similarly, the current of a flux-controlled memristor is given
by

i(t) = W (ϕ(t))v(t),

where
W (ϕ(t)) = dq(ϕ(t))

dt .

In the above,W (ϕ) has the unit of conductance, since conductance has the relationship i(t) = 1
Rv(t),

it will henceforth be called the memductance. Since the charge q(t) =
∫ t
−∞ i(τ)dτ and flux-linkage

ϕ(t) =
∫ t
−∞ v(τ)dτ depend on the history of the current and voltage, the memristance and mem-

ductance indeed depend on the memory of the device.

3.2 Memristive device

In 1976, Leon O. Chua concluded that the memristor is only a special case of a much more general
class of dynamical systems [17], called memristive devices, defined by

ẋ(t) = f(x(t), u(t), t), (3)

y(t) = g(x(t), u(t), t)u(t), (4)

where u(t) ∈ R and y(t) ∈ R define the input and output of the system, and x(t) ∈ Rn denotes the
state with x(t0) = x0 as the initial condition. Both g and f represent continuous functions. We
assume that (3) has an unique periodic solution with the same period as that of the input signal for
any initial condition x0 ∈ Rn. In the special case that the one-port is time-invariant the memristive
device is given by

ẋ(t) = f(x(t), u(t)),

y(t) = g (x(t), u(t))u(t),
(5)
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where g and f are again continuous functions.

Having this general definition of a memristive device in mind, we consider two different types of
time-invariant memristive devices, namely the charge- and flux-controlled memristive device. A
charge-controlled time-invariant memristive device is represented by

ẋ(t) = f(x(t), i(t)),

v(t) = R(x(t), i(t))i(t),

and a flux-controlled time-invariant memristive devices is given as

ẋ(t) = f(x(t), v(t)),

i(t) = G(x(t), v(t))v(t),

where i(t) denotes the current and v(t) the voltage through the device. The functions R and
G are defined to be continuous and represent the memristance and memductance of the devices,
respectively. The function f represents a continuous function as before.

Examples of mathematical models of memristive devices will be treated in Section 3.4. First, some
general properties of memristive devices will be discussed.

3.3 General properties

The memristive device has been introduced as a class of dynamical systems, however, it has some
properties which distinguishes these systems from the wide range of dynamical systems. The most
relevant properties are laid out in this section and more can be found in [17].

3.3.1 Hysteresis loop

As will be depicted in the simulation results in Section 3.4, memristive devices are characterized by
a hysteresis loop going through the origin in an i, v diagram. The hysteresis loop of a memristive
device can be explained by the fact that we assumed that (3) has an unique periodic solution with
the same period as that of the input signal. Namely, consider a voltage-controlled (flux-controlled)
memristive device having a periodic input signal i with the amplitude I0 (v with the amplitude
V0), then since the input signal crosses each value ic ∈ [−I0, I0] (vc ∈ [−V0, V0]) only twice during
one period, and x(t) is assumed to be an unique periodic solution with the same period as that of
the input signal, there exist at most two distinct values for v (i) for each value of the input signal.

The fact that the hysteresis loop goes through the origin follows from (4); this equation ensures
that the output y of the system is equal to zero whenever the input u is equal to zero. Figure 10A
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illustrates a typical hysteresis loop going through the origin. Figure 10B cannot correspond to a
memristive device, because there is a point i∗ which corresponds to more than two distinct values
for v. Furthermore, it can be shown that the area of the hysteresis loop of a memristive device
decreases with the frequency fc of the input signal, and tends to a straight line as fc →∞, for all
bipolar periodic signals and for all valid initial conditions [18].

Figure 10: A. Illustration of the hysteresis loop of a current-controlled memristive device. B.
Incorrect illustration the hysteresis loop of a current-controlled memristive device. [17]

3.3.2 Passivity

One remarkable property of the memristive device is that it is passive, i.e. it is possible to develop
a memristive device without internal power supply [17]. This among other properties makes mem-
ristive devices an interesting option for building blocks for neuromophic computing, since these
devices are more energy-efficient than devices with internal power supply. In order to understand
this idea better, we will first introduce the concept of passivity based on [19], and subsequently
prove that memristive devices are indeed passive.

Consider a time-invariant dynamical system Σ described by

ẋ(t) = f(x(t), u(t)),

y(t) = g(x(t), u(t)),

where f and g represent continuous functions, x(t) ∈ Rn is the state of the system with the initial
condition x(0) = x0, and u(t) ∈ R and y(t) ∈ R are the input and output of the system, respectively.
Define s(u(t), y(t)) : R × R → R as the supply rate function of this system which represents the
amount of energy supplied to the dynamical system at a certain time. An example of an supply
rate function is given

s(u(t), y(t)) = u(t)y(t).
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Furthermore, define S : R→ R+ as the storage function which represents the stored energy in the
system as a function of time. The energy balance of a system given the supply rate s(u(t), y(t)) =
u(t)y(t) is represented by

S(x(t1)) = S(x(t0)) +
∫ t1

t0
u(t)y(t)dt−

∫ t1

t0
d(t)dt. (6)

Here, d(t) ∈ R indicates the dissipated energy from the system, which is negative if there is internal
creation of energy in the system. This equation expresses that the stored energy at time t1, S(x(t1)),
is equal to the stored energy at time t0, S(x(t0)), plus the total externally supplied energy during
the time interval [t0, t1], minus the energy dissipated during the that time interval. We say that a
system is passive if there is no internal creation of energy possible, i.e. d(t) ≥ 0 for all t ∈ R. This
leads to the following definition:

Definition 3.1. A dynamical system of the form Σ is said to be passive if there exists a function
S : R → R+, called the storage function, such that for all x0 ∈ Rn, all t1 ≥ t0, and all input
functions u,

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0
u(t)y(t)dt, (7)

where x(t0) = x0 and x(t1) is the state of the system at time t1 for the initial condition x0 and the
input function u.

The inequality (7) is called the dissipation inequality. In terms of electrical circuit elements passivity
means that we are considering a circuit element which consumes energy but does not generate it.

It follows that a time-invariant current-controlled memristive device

ẋ(t) = f(x(t), i(t)),

v(t) = R(x(t), i(t))i(t),

is said to be passive if there exists a function S : R → [0,∞), such that for all x0 ∈ R, all t1 ≥ t0

and all input signals i,
S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0
i(t)v(t)dt.

Leon O. Chua described the following result on the passivity of the above depicted current-controlled
memristive devices in [17].

Theorem 3.1. A time-invariant current-controlled memristive device is passive if and only if
R(x, i) ≥ 0 for all input signals i, for all t1 ≥ t0, and R(x(t), i) = 0 only if i = 01.

1This assumption is made in order to not conflict with the hysteresis loop characteristic.
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Proof. Assume that R(x, i) ≥ 0 for all input signals i(t) and all t1 ≥ t0. It follows that∫ t1

t0
i(t)v(t)dt =

∫ t1

t0
R(x, i)i2(t)dt ≥ 0 (8)

for all input signals i(t) and all t1 ≥ t0. Define

S(x) = sup
i(t),t1≥t0

−
∫ t1

t0
i(t)v(t)dt (9)

as the storage function of the device. This function defines a storage function since it will always
take a positive value (take t0 = t1 in (9)). Furthermore, by (8) it follows that S(x) = 0 for all input
signals i(t) and all t1 ≥ t0. Hence, the energy balance (6) of the system is given by∫ t1

t0
d(t)dt =

∫ t1

t0
i(t)v(t)dt ≥ 0

for all input signals i and all times t1 ≥ t0. Since this result holds for every time-interval [t0, t1],
we must have that d(t) is non-negative. This implies that there is no internal creation of energy
possible in the system, hence the system is dissipative.

Assume that the device is passive and R(x(t), i(t)) < 0 for some input signal i(t) on the time
interval [t0, t1]. Let the storage function S(x(t)) be defined such that x(t0) is the state of minimum
energy storage, i.e. S(x(t0)) = mint∈R S(x(t)) [20], hence

S(x(t1)) ≥ S(x(t0)) for all t1 ≥ t0. (10)

Our assumption that R(x, i) < 0 implies that∫ t1

t0
i(t)v(t)dt < 0. (11)

Adding (11) to both sides of (10) gives

S(x(t1)) ≥ S(x(t1)) +
∫ t1

t0
i(t)v(t)dt ≥ S(x(t0)) +

∫ t1

t0
i(t)v(t)dt for all t1 ≥ t0

which contradicts our assumption that the device is passive. We conclude that the current-
controlled memristive device can only be passive if and only if R(x(t), i(t)) ≥ 0 for all input
signals i and all t1 ≥ t0.

3.3.3 Polarity

Figure 11 depicts the symbol of a memristive device. Here, we make the distinction between the
positive (left) and negative (right) side of the device, called the polarity of the device. Due to this
polarity, a memristive device will show different hysteresis loops depending on the direction of the
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input current. Therefore, polarity is an important characteristic which need to be considered when
coupling memristive devices, as shown in [18], [21]. In this thesis, we will include the polarity of a
memristive device in the time-invariant memristive device model (5) as

ẋ(t) = f(x(t), pu(t)),

y(t) = g(x(t), u(t))u(t),

where p = 1 when the direction of the memristive device and input current are equal, and p = −1
when they are opposite.

Figure 11: Symbol of a memristive device [22].

Note that the polarity of the memristive device should not be confused with the polarity, i.e. the
sign, of the input signal applied to the device. Since the behavior of a memristive device depends
on its history, applying a (slightly) different input signal will influence the hysteresis loop of the
device. Hence, the polarity of the input signal will also change the hysteresis loop of the device.

3.4 Mathematical models

In the previous section, memristive devices and their general properties are introduced. In this
section, various memristive device models will be exhibited, compared, and their relationship with
the synaptic strength in the human brain will be discussed. We will start with an affine model and
move towards memristive device models that satisfy the general properties of memristive devices
while also mimicking the synaptic strength in the human brain following the STDP weight update
rule.

3.4.1 Affine model

One of the simplest memristive device models is introduced in [21]. This model represents a
flux-controlled memristive device where the memductance W (ϕ(t)) is an affine function of the
flux-linkage ϕ(t) through the device. The affine model is given by

dϕ(t)
dt = v(t),

i(t) = W (ϕ(t))v(t),
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where
W (ϕ(t)) = αϕ(t) + β,

and i(t) is the current through the device and v(t) the voltage drop across it. The parameter α
determines the variation rate of the memductance and β is regarded as the initial memductance
value. Figure 12 shows simulation results obtained for the affine model having the input v(t) =
4 sin(2πtfc+π/3) with the frequency fc = 20 Hz. We note that this simulation result indeed depicts
a hysteresis loop going through the origin as introduced in Section 3.3.1.

Figure 12: Results obtained for the affine model. Left, v(t)-i(t) curves. Right, memductance
compared with the memristor voltage. In this simulation, α = 1.884 mS/Wb, β = 0.25 mS, and
ϕ0 = 0.

3.4.2 Moving wall model

The next memristive device model considered is the so called moving-wall model. This model was
first introduced by scientists at HP labs in 2008 [15] and later widely used by [7], [23], [6], [10], and
others.

The model described in [15] is a charge-controlled memristive device given by

dw(t)
dt = µv

RON
D

i(t), (12)

v(t) =
(
RON

w(t)
D

+ROFF

(
1− w(t)

D

))
i(t), (13)

where i(t) is the current through the device, v(t) the voltage drop across it, and w(t) is a state
variable. This model is based on the idea that the hysteresis property of the memristive device
requires the device to have some sort of atomic rearrangement which modulates the electrical
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current [15]. In order to realize this atomic rearrangement, we consider a thin semiconductor film

Figure 13: Illustration of a semiconductor film with regions having high and low concentration of
dopants, the doped and undoped region respectively, and their corresponding time-varying resis-
tances in series [23].

of thicknessD sandwiched between two metal contacts, as shown in Figure 13. The film is separated
by a moving wall into a region with a high concentration of dopants (for example positive ions)
having a low resistance RON and a region with a low concentration of dopants having a higher
resistance ROFF. The applied current on the memristive device will move the wall which separates
the two regions, i.e. change the variable w, causing the dopants to drift. The total memristance of
this device is dependent on the position of the wall and is determined as a combination of the two
variable resistors connected in series, as shown in Figure 13, and is described by

M(w(t)) = RON
w(t)
D

+ROFF

(
1− w(t)

D

)
, (14)

where we assume that 0 ≤ w(t) ≤ D in order to ensure that M(w(t)) is positive. This function
can be expressed as a function of q(t) by substituting w(t), obtained by (12) as

w(t) = µv
RON
D

q(t) + w0,

into (14) which gives

M(q(t)) = (RON −ROFF)
(
µvRON
D2 q(t) + w0

D

)
+ROFF. (15)

By our assumptions that ROFF > RON and 0 ≤ w(t) ≤ D it follows that the memristance becomes
larger for higher dopant mobilities µv and smaller D. Figure 14 depicts the hysteresis loop going
through the origin and the memristance compared with the memristor current obtained for the
moving-wall model having the input i(t) = 10−3 sin(2πtfc) with fc = 1 Hz.
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Figure 14: Results obtained for the moving-wall model. Left, v(t)-i(t) curves. Right, memristance
compared with the memristor current. In this simulation, µ = 10−10 cm2/sV , D = 10 nm,
RON = 100 Ω, ROFF = 16000 Ω, and x0 = 0.

3.4.3 Spike-timing dependent plasticity model

Keeping the previous two memristive device models in mind, we will make a link between memristive
devices and STDP, this will be done based on [6] and [10].

Consider the flux-controlled memristive device described by

dw

dt = f(w, v),

i = g(w, v)v,

where i is the current through the device, v the voltage drop across it, w is a state variable, and g is
its memductance. For readability the dependence of i, v, and w on t is omitted here. The function
f consists of two parts, fSTDP and fsat, and may describe the ionic drift under electric fields, as
we saw in (12), where the rate of change of w was modeled by a linear dependence on i. In reality
it is more likely that this dependence grows exponentially after a certain threshold boundary. For
the flux-controlled device we are considering here, this dependence can be described as

fSTDP(v) =

Iosign(v)
(
e|v|/vo − evth/vo

)
if |v| > vth,

0 otherwise,

where vth is the threshold boundary, and Io, vo are parameters which may depend on w. The shape
of this function is depicted in Figure 15A. Note that the polarity of the applied voltage is included
in this function. Namely, if a sufficiently large positive voltage is applied to the memristive device
then w will increase, and for sufficiently large negative voltage it will decrease.
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Figure 15: A. Weight update function with exponential growth and thresholds. B. Saturation
function for limiting the range of the weight. [6]

This function fSTDP can be used to make a link between memristive devices and STDP. The
relationship between those two is that the function fSTDP may describe the ionic drift under electric
fields, i.e. the drift of dopants while moving the wall in Figure 14, where STDP represents drift of
packages of neurotransmitters. To make this link precise, consider a neural spike with a shape of
the type shown Figure 16, mathematically expressed as

spk(t) =



A+
mp

et/τ
+−e−t+ail/τ

+

1−e−t−ail/τ
+ if − t+ail < t < 0,

−A−mp
e−t/τ−−e−t−ail/τ

−

1−e−t−ail/τ
− if 0 < t < t−ail,

0 otherwise.

(16)

During a time t+ail, the membrane voltage increases exponentially towards a peak amplitude A+
mp

after which the pre-synaptic neuron fires a spike towards the post-synaptic neuron. The membrane
voltage then changes quickly towards the negative peak amplitude A−mp and returns smoothly to its
resting potential during a time t−ail. The parameters τ−ail and τ

+
ail modify the curvature of the graph.

The memristive device voltage potential can then be expressed as a function of (16) and is given

Figure 16: Illustration of the membrane voltage action potential [6].
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v(t,∆T ) = αposspk(t)− αprespk(t+ ∆T ),

where αpos, αpre are parameters and ∆T = tpos − tpre as before in Section 2.1.1. The synaptic
strength w update can be computed as

dw

dt = f(v(t,∆T )) = dξ(∆T )
dt ,

where ξ(∆T ) is given by (1).

So the weight w of a synapse between two neighboring neurons depends on its history and more
explicitly on the total amount of neurotransmitters received from the pre-synaptic neurons. In
similar fashion, the strength of a memristor, its memristance, depends on the amount of charge q
or flux-linkage ϕ that flowed through it.

Having the relation between fSTDP and STDP in mind, we need to introduce a new function fsat

aimed to keep w inside the boundary [wmin,wmax] and so keeping the memristance of the device
between limits. The function fsat is depicted in Figure 15B, and is mathematically described as

fsat(w) =


ewmin/wo − e|w|/wo if w < wmin,

0 if wmin ≤ w ≤ wmax,

e|w|/wo − ewmax/wo if w > wmax.

The complete memristive device model, as described in [6], is then given by

dw

dt = 1
C

(fSTDP(v)− fsat(w)) ,

i = 1
kr(w + wo)

v,

where C and k are constant parameters. The variable w in this model represents the weight of a
synapse in artificial neural networks. In addition, if we rescale the variable w from the bounded
interval [wmin,wmax] to the interval [0, D], then it represents the parameter of the wall position,
as described in Section 3.4.2. Figure 17 shows simulation results obtained for the STDP model
having the input v(t) = sin(2πtfc) with fc = 10 Hz. Again, this simulation result indeed depicts
a hysteresis loop going through the origin as introduced in Section 3.3.1. Note that this model
does not fully correspond to the model given in [6] because of another way of defining the function
fsat(w).

3.4.4 Improved spike-timing dependent plasticity model

In addition to the STDP model we will introduce an improved STDP model as discussed in [24]. The
authors of this paper claim that there are significant discrepancies between the models we described
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Figure 17: Results obtained for the STDP model. Left, v(t)-i(t) curves. Right, memductance
compared with the memristor voltage. In this simulation, vth = 1 V , Io = 10 µA, vo = 0.1 V ,
wmax = 10 V , wmin = −10 V , kr = 4.50 A, wo = 12.2 V , CMR = 10 mF , and w0 = 0.

so far and published memristive device characterization data. Before, all simulation results for the
different memristive device models showed symmetric v(t)-i(t) curves, i.e. the motion of the state
variable was equivalent regardless of whether it was moving in the positive or negative direction.
However, published memristive device characterization data showed that the motion of the state
variable depends on both its value and the polarity of the applied voltage [25]. The model presented
here will take these different motions of the state variables into account. Also, this model will take
into account that the MIM (metal-insulator-metal) structure of a memristive device imposes an
increase in conductivity beyond a certain voltage threshold. In addition, the model uses many
fitting parameters and therefore it can be used to simulate the effect of a wide class of devices.

In order to take the MIM structure of a memristive device into account, the v(t)-i(t) relationship
is given by

i(t) =

α1x(t) sinh bv(t) if v(t) ≤ 0,

α2x(t) sinh bv(t) if v(t) < 0,
(17)

where α1, α2 and b are parameters used to fit different memristive device structures. The hyperbolic
sinusoid depicted in Figure 18 is used to model an increase in conductivity beyond a voltage
threshold b which is caused by the MIM structure of a memristive device. Devices appear to be
more conductive when v(t) > 0 which is reflected in our model by choosing the parameters α1 and
α2 accordingly. Note that the v(t)-i(t) relation (17) does not satisfy the general memristive device
model as introduces in Section 3.1. However due to the shape of the hyperbolic sinusoid, shown in
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Figure 18, the v(t)-i(t) curve still depicts a hysteresis loop going through the origin.

Figure 18: Illustration of the hyperbolic sinusoid sinh(bv(t)). The hyperbolic sinusoid takes small
values on the interval [−b, b] and grows exponentially outside of that interval.

The v(t)-i(t) relationship also depends on the state variable x(t), which takes values between 0
and 1 and provides the change in memductance based on the physical dynamics of a device. The
change in the state variable is based on two different functions g(v(t)) and f(x(t), v(t)) as

dx(t)
dt = g(v(t))f(x(t), v(t)).

The function g(v(t)) is included to impose that the state x(t) does not change until a certain
threshold is exceeded and is given by

g(v(t)) =


−An

(
e−v(t) − evn

)
if v(t) < −vn,

0 if − vn ≤ v(t) ≤ vp,

Ap
(
ev(t) − evp

)
if v(t) > vp.

In order to include the polarity of the applied voltage, vp represents the threshold for positive v(t)
and vn for negative v(t). These thresholds are viewed as the minimum energy required to impose
a change on the physical structure of the device [24]. The parameters Ap and An indicate how
quickly the state changes once the threshold is surpassed.

The function f(x(t), v(t)) which ensures x(t) to stay between 0 and 1 is described as

f(x(t), v(t)) =



e−αp(x(t)−xp)
(
xp−x(t)

1−xp + 1
)

if x(t) ≤ xp, v(t) > 0,

1 if x(t) < xp, v(t) > 0,

e−αn(x(t)+xn−1)
(
x(t)

1−xn

)
if x(t) ≤ 1− xn, v(t) ≤ 0,

1 if x(t) > 1− xn, v(t) ≤ 0.
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This function is constructed such that it remains constant until x(t) reaches the point xp or xn
after which x(t) is limited. By picking xp and xn differently, this function provides the possibility
to model the state variable dependent of the polarity of the applied voltage. The choice of xp and
xn needed to keep x(t) between 0 and 1 depends on the choice of the parameters in g(v(t)).

Figure 19 shows an example of simulation results obtained for the improved STDP model having the
input v(t) = sin(2πtfc) with fc = 3 Hz. It depicts an hysteresis loop going through the origin, which
is unlike the simulation results of the previous models not symmetric around the origin because this
model takes the polarity of the input voltage into account. More examples of simulated devices can
be found in [24] where it is shown that this model can fit different memristive devices structures.
Also, the parameters in this model can be adjusted such that its state variable mimics the synaptic
weight between two (artificial) neurons.

Figure 19: v(t)-i(t) curves obtained for the improved STDP model. In this simulation, vp = 0.9 V ,
vn = 0.2 V , Ap = 0.1, An = 10, xp = 0.15, xn = 0.25, αp = 1, αn = 4, a1 = 0.076, a2 = 0.06, b = 3,
and x0 = 0.001.

To summarize, we have compared four different memristive device models. The first two where solely
based on the evidence that a memristive device should exist and its expected physical structure,
where the last two models have showed a link between memristive devices and the STDP weight
update rule in (artificial) neural networks. Note that the memristive device models exhibited
above are just some (of the most important) examples of the broad range of models available. In
addition, the simulations above are done for only one set of parameters, the fitting parameters in
all the models can be adjusted to mimic other memristive devices.
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4 Electrical networks and graph theory

In this chapter we will introduce some mathematical preliminaries and preliminaries from electrical
networks.

4.1 Mathematical preliminaries and graph theory

In this section we will introduce graph theory and some other mathematical preliminaries.

4.1.1 Graph theory

Let G = (V, E) be a undirected graph, where V = {1, 2, . . . , N} represents the set of distinct nodes
of the graph and E ⊆ V×V is the set of edges, which consists of unordered pairs (i, j) where i,j ∈ V.
The graph is called simple if it does not contain self-loops, i.e. (i, i) /∈ E for all i ∈ V, nor multiple
edges between two nodes. In addition, the graph is called connected if for any pair of nodes i, j ∈ V
there exists a path connecting them, i.e. there is a sequence of p nodes {n1, n2, . . . , np} such that
(nl, nl+1) ∈ E for all l ∈ {1, 2, . . . , p− 1} with n1 = i and np = j.

Consider a simple undirected graph G = (V, E) with N nodes and M edges. Assume that there are
labels assigned to all the edges such that one of its ends is labeled positive and the other negative.
The incidence matrix D = (dik) ∈ RN×M of the graph is defined as

dik =


1 if i is the positive end of edge k,

−1 if i is the negative end of edge k,

0 otherwise.

For a given node i ∈ V its neighboring set Ni is defined as Ni := {j ∈ V | (i, j) ∈ E}. The
cardinality of the set Ni, denoted as #Ni, gives the number of neighbors of node i. The Laplacian
matrix L = (lij) ∈ RN×N of the graph is defined by

lij =


#Ni if j = i,

−1 if j ∈ Ni,

0 otherwise,

and can be calculated as L = DDᵀ.

An undirected weighted graph G =
(
V, E , {wij}(i,j)∈E

)
is a graph with a positive weight associated
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to every edge. The weighted Laplacian matrix L ∈ RN×N of a weighted graph is defined by

lij =


∑
j∈N iwij if j = i,

−wij if j ∈ Ni,

0 otherwise,

and can be calculated as L = DWDᵀ, whereW = diag
(
{wij}(i,j)∈E

)
∈ RM×M is a diagonal matrix

with {wij}(i,j)∈E as its entries.

The rank of the (weighted) Laplacian matrix of a graph depends on the number of connected
components of the graph, which is equal to one for a connected graph. From [26] we have the
following result about the rank of the incidence matrix of a graph.

Theorem 4.1. Let G be a graph with N nodes and c connected components. If D is the incidence
matrix representing the graph structure of G then rank (D) = N − c.

4.1.2 Schur complement

In linear algebra the Schur complement of a block matrix is defined as follows.

Definition 4.1. (Schur complement, [27, Chapter 0]) Consider the partitioned matrix

M =

A B

C D


with A ∈ Rp×p and D ∈ Rq×q. If A−1 exists then its Schur complement is defined as M/A :=
D − CA−1B. If D−1 exists then its Schur complement is defined as M/D := A − BD−1C. In
addition, if A−1 exists, then

rank (M) = rank (A) + rank (D − CA−1B),

and if D−1 exists, then

rank (M) = rank (D) + rank (A−BD−1C).

The Schur complement is a handy tool to solve linear matrix equalities as

y1 = Ax1 +Bx2, (18)

y2 = Cx1 +Dx2. (19)

Namely, if D−1 exists then x2 can be expressed as

x2 = D−1y2 −D−1Cx1. (20)
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Substitution of this in (18) results in the matrix equality

y1 −BD−1y2 = (A−BD−1C)x1, (21)

which is an equation of order p where our original system was of order p+ q. After solving (21) for
x1 one can simply calculate x2 by substitution of the values of y2 and x1 in (20). Thus, the Schur
complement can be used as a tool to reduce the order of a system of linear equations, making it
easier to solve one.

In addition, the Schur complement can be used to compute the inverse of a block-matrix as:

Theorem 4.2. (Inverse of a block matrix, [27, Theorem 1.2]) Consider the partitioned matrix

M =

A B

C D

 ,
with A ∈ Rp×p and D ∈ Rq×q. Assume that M−1 exists, then

M−1 =

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1C(A−BD−1C)−1BD−1 +D−1

 .
4.1.3 Moore-Penrose inverse

The Moore-Penrose inverse A†, or pseudoinverse, is a generalization of the matrix inverse A−1 to
singular matrices A. The Moore-Penrose inverse A† is defined as the solution to a certain set of
equations as follows.

Definition 4.2 (Moore-Penrose inverse, [28]). The unique solution X to the four equations

AXA = A,

XAX = A,

(AX)ᵀ = AX,

(XA)ᵀ = XA,

is called the Moore-Penrose inverse, denoted as A†.

It can be verified that when A has linearly independent columns, i.e. AᵀA is invertible, A† can be
computed as

A† = (AᵀA)−1Aᵀ,

and constitutes a left inverse of A since A†A = I. Similarly, when A has linearly independent rows,
i.e. AAᵀ is invertible, A† can be computed as

A† = Aᵀ(AAᵀ)−1,

and constitutes a right inverse of A since AA† = I.
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4.2 Electrical Networks

In this section we will introduce some preliminaries from electrical networks which will be utilized
when studying networks of memristive devices.

4.2.1 Kirchhoff’s laws

In this section we will introduce Kirchhoff’s current and voltage law based on [16]. These laws are
important since they can be utilized while studying electrical networks and networks of memristive
devices.

Theorem 4.3 (Kirchhoff’s current law). For any electrical circuit, for any of its nodes, and at any
time, the algebraic sum of all currents across the edges connected to the node is zero.

Theorem 4.4 (Kirchhoff’s voltage law). For any electrical circuit, for any of its loops, and at any
time, the algebraic sum of the voltages across the edges around the loop is zero.

In the next section, Kirchhoff’s voltage law will be used to find a relation between the voltage po-
tentials at the nodes and the voltages across the edges of an electrical circuit. Similarly, Kirchhoff’s
current law will be used to find a relation between the currents at the nodes and across the edges.

4.2.2 Graph theory

Having in mind the theory of graphs, we want to express resisitive circuits and sequentially, in
Chapter 5, networks of memristive devices in terms of graphs.

Consider a simple, undirected, connected and weighted graph G =
(
V, E , {wij}(i,j)∈E

)
with N

nodes, M edges and let the graph structure be specified by the incidence matrix D ∈ RN×M . Let
V =

(
v1 . . . vM

)ᵀ
define the voltages across the edges and I =

(
i1 . . . iM

)ᵀ
the current across

the edges. In addition, consider the vector of nodal voltage potentials ψ =
(
ψ1 . . . ψN

)ᵀ
and

the vector of nodal currents J =
(
j1 . . . jN

)ᵀ
.

An example of this notation is given in Figure 4.2.2. Here, v2 and i2 denote the voltage through
and current across edge 2, respectively. Furthermore, j3 denotes the nodal current at node 3, which
defines the current that can be extracted from the network at node 3. The voltage potential at
node 3, denoted by ψ3, defines the difference between the voltages at the surrounding edges.

It follows from Kirchhoff’s voltage law, that the voltages across the edges are given by

V = Dᵀψ,
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i2

v2
ψ3

j3

Figure 20: Simple electrical network. The voltage through and current across edge 2 are denoted
by v2 and i2, respectively. Furthermore, j3 and ψ3 denote the nodal current and voltage potential
at node 3.

and similarly, by Kirchhoff’s current law, the nodal currents are given by

J = DI. (22)

Now, consider networks of resistors described by the above class of graphs. Let
W = diag

(
{wij}(i,j)∈E

)
∈ RM×M be a matrix whose entries represent the weights of the resistors

on the edges of these networks with the unit of conductance. It then follows by Ohm’s law that
the current and voltage through the edges are related as

I =WV.

Putting this all together, one obtains
J = DWDᵀψ

as the relation between the nodal currents and voltage potentials, where the matrix L = DWDᵀ is
called the weighted Laplacian of the graph G.

In order to describe the external behavior of the network, we split the nodes into NC internal
connection and NB boundary nodes. Correspondingly, we split the nodal currents J and the nodal
voltage potentials ψ as

J =

JB
JC

 , ψ =

ψB
ψC


and the incidence matrix into D =

(
Dᵀ
B Dᵀ

C

)ᵀ
. Using this notation, the relation between the

nodal currents J and voltage potentials ψ is given byJB
JC

 =

LBB LBC
LCB LCC

ψB
ψC

 , (23)

where LBB LBC
LCB LCC

 =

DB
DC

W (
Dᵀ
B Dᵀ

C

)
.
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This partition of the weighted Laplacian matrix can be used to find a relation between the current
and voltage potentials at the boundary nodes NB without considering the current and voltage
potentials at the interconnected nodes, as we will see in the next section.

4.2.3 Kron reduction

In this section, we will utilize the Schur complement in order to find a relation between the current
and voltage potentials at the boundary nodes NB without considering the current and voltage
potentials at the interconnected nodes NC .

As before, the relation between the nodal current J and voltage potentials ψ is equal to (23).
Assuming that the inverse of the block LCC exists, Gaussian elimination of (23) with respect to
the interconnected nodes gives

JB = LredψB + LBCL−1
CCJC , (24)

where Lred is the Schur complement of L with respect to the block LCC , that is,

Lred = LBB − LBCL−1
CCLCB ∈ RNB×NB .

By Kirchhoff’s current law, the sum of the incoming currents at a node is equal to zero, hence it
follows that the currents at the interconnected nodes are equal to zero, i.e. JC = 0. Substitution
of JC = 0 in (24) gives

JB = LredψB,

which is a relation between the boundary currents and voltage potentials which does not depend
on the internal current and voltage potentials. In addition, the accompanying matrix

Lac = −L−1
CCLCB ∈ RNC×NB

gives a relation between the internal and boundary currents as

ψC = LacψB.

This reduction of an electrical network via the Schur complement of the associated weighted Lapla-
cian is called Kron reduction due to its introduction by Gabriel Kron in 1939 [29].
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5 Networks of Memristive Devices

In this chapter, we will use electrical circuit and graph theory to model a network of memristive de-
vices. We will show that a network of memristive devices can be represented by a single memristive
device, and we will develop a method to compute the effective memristance of such a network.

5.1 Circuit-theoretic properties

Consider the memristive device given by (3), (4) which is characterized by the relation g(q(t), ϕ(t)) =
0. In 1971, Leon O. Chua showed that a network of memristive devices connected to the outside
world with the same input as output current is a memristive device itself.

Theorem 5.1 (Closure theorem, [14]). A one-port2 containing only memristive devices is equivalent
to a memristive device.

Proof. Consider an one-port containing K memristive devices. Let ik(t), vk(t), qk(t), and ϕk(t)
denote the current, voltage, charge and flux-linkage of the k-th memristive device, where k =
1, 2, . . . ,K, and let i(t) and v(t) denote the port current and voltage, i.e. the current and voltage
going through the terminals. Assuming that the network is connected, it follows from Theorem 4.1
that we can write N−1 independent equations based on Kirchhoff’s current law, see (22) and recall
that JC = DcI = 0; namely,

αj0i(t) +
K∑
k=1

αjkik(t) = 0, (25)

for j = 1, 2, . . . , N − 1, where αjk is either 1, if the k-th edge is an incoming edge, −1 if it is
an outgoing edge, or 0 if the k-th edge is not linked to node j. Here, N is the total number of
nodes in the network. Similarly, we can write K −N + 2, which is the minimum number of loops
in a connected graph plus one loop including the two terminals, independent equations based on
Kirchhoff’s voltage law; namely,

βj0v(t) +
K∑
k=1

βjkvk(t) = 0, (26)

for j = 1, 2, . . . ,K−N + 2, where βjk is either 1, −1, or 0 if the k-th edge is an incoming, outgoing
edge, or not linked to node j, respectively.

2An one-port or two-terminal is a black box connected with two nodes, i.e. terminals to an outside world. The
current flowing into the two nodes must be equal and opposite.
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If we integrate both equation (25) and (26) with respect to time, we obtain

αj0q(t) +
K∑
k=1

αjkqk(t) + qC = 0 for j = 1, 2, . . . , N − 1,

βj0ϕ(t) +
K∑
k=1

βjkϕk(t) + ϕC = 0 for j = 1, 2, . . . ,K −N + 2,
(27)

where qC and ϕC are constants of integration. Without loss of generality, assume that the devices
are charge-controlled3. Recall that they can be described by

ẋk(t) = f(xk(t), ik(t)),

vk(t) = R(xk(t), ik(t), t)ik(t), (28)

for k = 1, 2, . . . ,K with f and R continuous functions. Furthermore, recall that

ϕk(t) =
∫ t

−∞
vk(τ)dτ, (29)

for k = 1, 2, . . . ,K. By substitution of (28) in (29) we can find a relation between ϕk(t) and qk(t)
as

ϕk(t) =
∫ t

−∞
vk(τ)dτ

=
∫ t

−∞
R(xk(τ), ik(τ), τ)i(τ)dτ

= h(qk(τ), q̇k(τ)),

for k = 1, 2, . . . ,K where we used that qk(t) =
∫ t
−∞ ik(τ)dτ , and h defines a function. Substitution

of this result into (27) gives

αj0q(t) +
K∑
k=1

αjkqk(t) + qC = 0 for j = 1, 2, . . . , N − 1,

βj0ϕ(t) +
K∑
k=1

βjkh(qk(t), q̇k(t)) + ϕC = 0 for j = 1, 2, . . . ,K −N + 2,

hence we have a system of N−1+K−N+2 = K+1 independent equations withK unknowns qk(t),
and the unknown q(t). Hence, solving for ϕ(t), we obtain a relation g(q(t), ϕ(t)) = 0. We conclude
that the one-port containing only memristive devices represents a memristive device itself.

Having this result in mind, we want to derive an expression for the behavior of a memristive device
which is constructed out of a network of memristive devices. This will be done by applying Kron
reduction to network modeling of flux-controlled memristive devices.

3The proof can be easily modified to flux-controlled memristive devices.
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5.2 Mathematical description

Consider a time-invariant flux-controlled memristive device where G only depends on the state w

of the device and not on the voltage through the device. This device is described as

ẇ = f(w, v),

i = G(w)v,

where f and G are continuous functions. Here, G represents the memductance of the device; it is
positive for every w. For simplicity in notation, the time dependence of w, i and v is omitted here.

Having this memristive device in mind, we will consider a network of memristive devices. This
network will be described using a simple weighted graph with the edges of the graph representing
memristive devices. We assume that a memristive device situated at the edge between node i and
j is represented as

ẇij = f(wij , pkvk), (30)

ik = G(wij)vk,

where k is the label associated to the edge between node i and j. The parameter pk represents the
polarity of the device, which is 1 if the applied current is inserted at the positive side of the device
and −1 if the current is inserted at the negative side of the device.

Now, consider the simple undirected weighted graph G =
(
V, E , {G(wij)}(i,j)∈E

)
with N nodes, K

edges, and let the graph structure be specified by the incidence matrix D. Here, the orientation of
the graph is based on the orientation of the memristive devices at the respective edges, i.e.

dik =


pk if the positive end of the k-th memristive device is directed towards node i,

−pk if the negative end of the k-th memristive device is directed towards node i,

0 otherwise.

The weights G(wij) in this graph depend on the dynamics (30). Specifically, the state-dependent
weighted Laplacian of this graph can be calculated as

L(w) = DW(w)Dᵀ,

where W(w) = diag
(
{G(wij)}(i,j)∈E

)
.

As before, let V =
(
v1 . . . vM

)ᵀ
define the voltages across the edges and I =

(
i1 . . . iM

)ᵀ
the current across the edges. In addition, consider the vector of nodal voltage potentials ψ =
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(
ψ1 . . . ψN

)ᵀ
and the vector of nodal currents J =

(
j1 . . . jN

)ᵀ
. By Section 4.2.2 and (30),

it follows that
ẇ = F (w, PV ),

J = DW(w)Dᵀψ,
(31)

defines the relation between the nodal currents and voltage potentials. Here, F is the vector having
as entries f evaluated at the different edges, and P is a diagonal matrix having as entries the
polarities of the memristive devices.

5.3 Kron reduction

In order to find the external behavior of a network of memristive devices, we split the set of nodes
into NC internal connection and NB boundary nodes as before. Here, NB represents the set of
nodes connected with terminals to the outside world. Accordingly, split the nodal currents J and
the nodal voltages potentials ψ as

J =

JB
JC

 , ψ =

ψB
ψC


and the incidence matrix into D =

(
Dᵀ
B Dᵀ

C

)ᵀ
. Using this notation, the relation between the

nodal currents J and voltage potentials ψ is given byJB
JC

 =

LBB(w) LBC(w)
LCB(w) LCC(w)

ψB
ψC

 , (32)

where the weighted Laplacian is partitioned as

L(w) =

LBB(w) LBC(w)
LCB(w) LCC(w)

 =

DB
DC

W(w)
(
Dᵀ
B Dᵀ

C

)
.

This state-dependent weighted Laplacian has many properties, of which some are collected in the
following theorem, which is a generalization of Theorem 3.1 in [30]. These properties will be key
to the subsequent characterization of the external behavior of a memristive circuit.

Theorem 5.2. Consider a simple graph G =
(
V, E , {G(wij)}(i,j)∈E

)
with incidence matrix D. Let

W(w) = diag
(
{G(wij)}(i,j)∈E

)
be a positive definite matrix for each w.

1. The state-dependent weighted Laplacian L(w) = DW(w)Dᵀ is symmetric, positive semi-
definite, and independent of the orientation of the graph. Furthermore, it has all diagonal
elements non-negative, all off-diagonal elements non-positive, and has zero row and column
sums. Hence the vector 1N , the vector of length N consisting of only ones, is in the kernel
of L(w). In addition, the graph G is connected if and only if kerL(w) = span(1N).
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2. If the graph G is connected, then all diagonal elements are positive. Furthermore, the Schur
complement

Lred(w) = LBB(w)− LBC(w)L−1
CC(w)LCB(w)

is well defined, symmetric, positive semi-definite, with positive diagonal elements, non-positive
off-diagonal elements, and with zero row and column sums. In particular, Lred(w) can be
written as DredWred(w)Dᵀ

red, with Dred the incidence matrix of a connected graph Gred.

Proof. 1. Since W(w) is a diagonal matrix, it is evident that L(w) is symmetric. It is also easy
to see that L(w) is positive semi-definite, namely

xᵀL(w)x = xᵀDW(w)Dᵀx = xᵀDW(w)
1
2W(w)

1
2Dᵀx

= ((DW(w)
1
2 )ᵀx)ᵀ(DW(w)

1
2 )ᵀx = ‖(DW(w)

1
2 )ᵀx‖22 ≥ 0.

Let an incidence matrix D represent the orientation of the graph G and let D̂ represent another
orientation for the same graph. These matrices are then related as D̂ = SD where S ∈ RM×M

is a diagonal matrix with entries {sk}Mk=1 where sk = 1 if edge k has the same orientation in
D and D̂, and sk = −1 otherwise. Since S is a diagonal matrix with all entries either 1 or −1,
it follows that Sᵀ = S and SS = I. The weighted Laplacian of the graph G is then given by

L̂(w) = D̂W(w)D̂ᵀ = DSW(w)(DS)ᵀ = DSW(w)SᵀDᵀ

= DSSᵀW(w)Dᵀ = DW(w)Dᵀ = L(w),

where we used that W(w) and S are commutative since both matrices are diagonal. We
conclude that the weighted Laplacian is independent of the orientation of the graph. Fur-
thermore, from Section 4.1.1 it follows that the elements of L(w) are given by

lij(w) =


∑
j∈Ni G(wij) if j = 1,

−G(wij) if j ∈ Ni,

0 otherwise,

and hence all diagonal elements of L(w) are non-negative and the off-diagonal elements are
non-positive. The row sum of L(w) is given by

N∑
j=1

lij(w) = lii(w) +
∑
j∈Ni

lij(w) =
∑
j∈Ni

G(wij)−
∑
j∈Ni

G(wij) = 0,

and hence 1N ∈ ker (L(w)). By the symmetry of L(w) it follows that the column sum of
L(w) is equal to zero as well.
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We are left to show that ker L(w) = 1N if and only if the graph G is connected. By The-
orem 4.1 it follows that rank (D) = N − 1 if and only if the graph G is connected. Hence,
dim (ker Dᵀ) = 1 if and only if the graph G is connected. Furthermore, if we can show that
ker Dᵀ = ker L(w), then dim (ker Dᵀ) = dim (ker L(w)).

Let x ∈ ker L(w), then

L(w)x = 0 ⇒ xᵀL(w)x = 0 ⇒ ‖W(w)
1
2Dᵀx‖22 = 0

⇒ W(w)
1
2Dᵀx = 0 ⇒ Dᵀx = 0 ⇒ x ∈ ker Dᵀ,

where we used that W(w) is a diagonal positive definite matrix. It follows that ker L(w) ⊆
ker Dᵀ. On the other hand, if x ∈ ker Dᵀ, then L(w)x = DW(w)Dᵀx = 0, from which it
follows that ker Dᵀ ⊆ ker L(w). We conclude that ker Dᵀ = ker L(w) which implies that
dim (ker L(w)) = dim (ker Dᵀ). Since 1N ∈ ker L(w) and dim (ker Dᵀ) = 1 if and only if the
graph is connected, it follows that kerL(w) = span 1N if and only if the graph G is connected.

2. If a graph G is connected, then for each node there exists at least one edge linking this node
to another node, implying that each diagonal element of L(w) is positive. We will show that
the Schur complement of L(w) with respect to the last diagonal element of L(w), lNN (w), is
symmetric, positive semi-definite, with positive diagonal elements, non-positive off-diagonal
elements, and with zero row and column sums.

Partition the matrix L(w) as

L(w) =

LN−1(w) l(w)
lᵀ(w) lNN (w)

 ,
where lNN (w) is the last diagonal entry of L(w), and l(w) is the last column of L(w) minus
its last element. Since lNN (w) > 0 for all w, l−1

NN (w) exists, and the Schur complement of
L(w) with respect to lNN (w) is given by

L̂(w) = LN−1(w)− 1
lNN (w) l(w)lᵀ(w).

Since both LN−1(w) and lᵀ(w)l(w) are symmetric, L̂(w) is symmetric as well. In addition, all
elements of l(w) non-positive since they are off-diagonal elements in L(w), this implies that
all elements in lᵀ(w)l(w) are positive. Furthermore, the off-diagonal elements of LN−1(w)
are non-positive, so the off-diagonal elements of L̂(w) are non-positive.

Next, we want to show that the row and column sums of L̂(w) are zero. This will be done by
using that the row sum of L(w) is equal to zero, i.e. 1N ∈ ker L(w). Namely, we have thatLN−1(w) l(w)

lᵀ(w) lNN (w)

1N−1

1

 = 0,
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which implies that

LN−1(w)1N−1 + l(w) = 0,

lᵀ(w)1N−1 + lNN (w) = 0,

and hence

L̂(w)1N−1 = LN−1(w)1N−1 −
1

lNN (w) l(w)lᵀ(w)1N−1

= −l(w) + 1
lNN (w) l(w)lNN (w) = 0,

so 1N−1 ∈ ker L̂(w), and the row sum of L̂(w) is equal to zero. By the symmetry of L̂(w)
it follows that the column sum of L̂(w) is equal to zero as well. Also, since the off-diagonal
elements of L̂(w) are non-positive, the zero row sum implies that the diagonal elements of
L̂(w) are non-negative.

Furthermore, from the assumption that G is connected it follows that rank L(w) = N − 1,
and clearly we have that rank lNN (w) = 1. Theorem 4.1 gives that

rank L(w) = rank lNN (w)− rank L̂(w),

and hence rank L̂(w) = N − 2. This implies that dim
(
ker L̂(w)

)
= 1 from which, together

with the fact that 1N−1 ∈ ker L̂(w), it follows that ker L̂(w) = span (1N−1).

Now, define the undirected graph Ĝ with an edge between the nodes i and j if and only if the
(i, j)-th element of L̂(w) is nonzero. Furthermore, associate to this edge the weight given by
the (i, j)-th element of L̂(w) at time t. Finally, assign an arbitrary orientation to the graph.
The matrices D̂ and Ŵ(w) (at each time t) can then be constructed based on the graph Ĝ,
and we have that L̂(w) = D̂Ŵ (w)D̂ᵀ. Here, the graph Ĝ is connected since we showed that
ker L̂(w) = span (1N−1). This implies that the diagonal elements in L̂(w) are positive.

The above procedure can be applied to all diagonal elements of L(w), hence we have proved
the statement for the Schur complement with respect to any diagonal element of L(w). Notice
that every Schur complement can be obtained by successive application of taking the Schur
complement with respect to the diagonal entries. In the case we want to calculate the Schur
complement of L(w) with respect to LCC(w), we take the Schur complement with respect to
the last diagonal entry of L(w) and repeat this procedure NC − 1 times until we end up with
Lred(w). As before, we associate the matrices Dred and Wred(w) with the graph Gred, build
out of Lred, to obtain Lred = DredWred(w)Dᵀ

red.
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Now, for any connected network of memristive device, we have the relation

JB = Lred(w)ψB

between the boundary currents and voltage potentials. Furthermore, as in Section 4.2.3, the ac-
companying matrix Lac(w) = −L−1

CC(w)LCB(w), which is well-defined by Theorem 5.2, gives a
relation between the internal and boundary currents as

ψC = Lac(w)ψB. (33)

This relation between the internal and boundary currents can be used to rewrite the state of the
system (31) as a function solely depending on the voltage potentials at the boundary nodes; namely,
substitution of (33) in (31) gives

ẇ = F (w, PV ) = F (w, PDᵀψ)

= F

w, P
(
Dᵀ
B Dᵀ

C

)ψB
ψC


= F

w, P

 Dᵀ
B

Dᵀ
CLac(w)

ψB
 .

It follows that the dynamics of any connected network of memristive devices can be described as

ẇ = F

w, P

 Dᵀ
B

Dᵀ
CLac(w)

ψB
 ,

JB = Lred(w)ψB,

where F is the vector having as entries f evaluated at the different edges, and P is a diagonal
matrix having as entries the polarities of the memristive devices.

5.4 Effective Memristance

One way of finding the external behavior of a network of memristive devices is by computing the
effective memristance between the boundary nodes of the network.

Definition 5.1 (Effective memristance). The effective memristance Rij(w) between two nodes
i, j ∈ N of an undirected connected graph with a state-dependent weighted Laplacian L(w) is

Rij(w) = (ei − ej)ᵀL†(w)(ei − ej), (34)

where L†(w) is the Moore-Penrose inverse of L(w), and ei and ej represent the i-th and j-th unit
vector in RN
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The effective memristance between any of the nodes in a graph, and so the effective memristance
matrix R(w) ∈ RN×N of a graph, can be computed using this definition. By definition, R(w)
has zero diagonal elements, and since L†(w) is a symmetric matrix, R(w) is a symmetric matrix
as well. Since we are mainly interested in the external behavior of the network, i.e. the effective
memristance between the boundary nodes, we would like to find a way to compute this without using
the complete weighted Laplacian matrix. To simplify the computation of the effective memristance
between the boundary nodes, we use Kron reduction, and obtain the following result:

Theorem 5.3 (Invariance of resistive properties under Kron reduction). Consider the state-dependent
weighted Laplacian L(w) of a simple undirected connected graph, the corresponding Kron-reduced
state-dependent weighted Laplacian Lred(w), and the effective memristance (34). The effective
memristance Rij(w) between any two boundary nodes is equal when computed for L(w) or Lred(w),
that is, for any i, j ∈ NB, we have that

Rij(w) = (ei − ej)ᵀL†(w)(ei − ej) = (ēi − ēj)ᵀL†red(w)(ēi − ēj),

where ei, ej, and ēi, ēj represent the i-th and j-th unit vector in RN and RNB , respectively.

The previous result states that the effective memristance between the boundary nodes is invariant
under Kron reduction of the interior nodes. Hence, the effective resistance matrix R(w) ∈ RNB×NB ,
which gives the effective memristance between the boundary nodes in the original network, can be
computed from the Moore-Penrose inverse of the Kron-reduces weighted Laplacian Lred(w).

For the proof of Theorem 5.3, we need to establish some identities relating the weighted Laplacian
L(w) and its Moore-penrose inverse L†(w), these results are based on [31].

Lemma 5.1. Let L(w) define the state-dependent weighted Laplacian of a simple undirected con-
nected graph, then a pseudo-inverse of L(w) is given by

L†(w) = U(w)D(w)U(w)ᵀ,

where U(w) is an orthogonal matrix having as entries the eigenvectors of L(w), and D(w) =
diag (1/λ1(w), . . . , 1/λn−1(w), 0) with λ1, . . . , λn−1, 0 the eigenvalues of L(w). Furthermore, 1N ∈
kerL†(w).

Proof. Consider the state-dependent weighted Laplacian L(w) of a connected graph. By Theo-
rem 5.2, L(w) is symmetric, and its eigenvalues satisfy λ1(w) ≥ . . . ≥ λn−1(w) > λn(w) = 0.
Applying the singular value decomposition, see [32, Chapter 6.5], to L(w) gives that there exists
an orthonormal matrix U(w) such that

L(w) = U(w)Σ(w)Uᵀ(w),
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where Σ = diag (λ1(w), . . . , λn−1(w), 0). The columns u1(w), . . . , un−1(w) of U(w) are then the
eigenvectors corresponding to the eigenvalues λ1(w), . . . , λn−1(w). Furthermore, the column un =

1√
n

1N is the eigenvector belonging to the eigenvalue 0. Note that this vector does not depend on
w by the definition of L(w).

The elements of L(w) can then be expressed as

(L(w))ij =
n∑
k=1

λkuikujk,

where the dependence of λk and uij is on w is omitted. Solving the four equations in Definition 4.2,
we can find that the elements of the Moore-Penrose inverse of L(w) are given by

(
L†(w)

)
ij

=
n−1∑
k=1

1
λk
uikujk,

and hence
L†(w) = U(w)D(w)U(w)ᵀ,

where D(w) = diag (1/λ1(w), . . . , 1/λn−1(w), 0). Furthermore, 1N ∈ kerL†(w), since

L†(w)1N = U(w)D(w)Uᵀ(w)1N

= U(w)


1

λ1(w)

· · ·
1

λn−1(w)

0




uᵀ1(w)
. . .

uᵀn−1(w)
uᵀn(w)

1N

= U(w)


1

λ1(w)

· · ·
1

λn−1(w)

0




0
. . .

0
√
n

 = U(w)


0
. . .

0
0

 =


0
. . .

0
0

 ,

where we used that the columns of U(w) are orthonormal, and un = 1√
n

1N .

The following lemma shows an example a way to adapt L(w) such that we obtain a non-singular
matrix. This new matrix L̂(w) is introduced, since we cannot compute the Schur complement of a
singular matrix, consequently we will use the following lemma to prove Theorem 5.3.

Lemma 5.2. Let L(w) define the state-dependent weighted Laplacian of a simple undirected con-
nected graph. Then for any nonzero δ, the matrix

L̂(w) := L(w) + δ

n
1N1ᵀ

N
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is non-singular for any w, and its inverse is given by

L̂−1(w) = L†(w) + 1
δn

1N1ᵀ
N . (35)

Proof. Consider the state-dependent weighted Laplacian L(w) of a simple undirected connected
graph. Let λ1(w), . . . , λn−1(w), 0 represent the eigenvalues of L(w) and u1(w), . . . , un−1(w), un(w)
the corresponding eigenvectors. Then, for any value of δ, λ1(w), . . . , λn−1(w), δ are the eigenvalues
of L̂(w) corresponding to the eigenvectors u1(w), . . . , un−1(w), un(w).
To see this: let k ∈ {1, . . . , n− 1}, then

L̂(w)uk(w) =
(
L(w) + δ

n
1N1ᵀ

N

)
uk(w) = L(w)uk(w) + δ

n
1N1ᵀ

Nuk(w) = λk(w)uk(w),

since the eigenvectors u1(w), . . . , un−1(w) are orthogonal to un = 1√
n

1N , and hence 1ᵀ
Nuk = 0 for

all k ∈ {1, . . . , n− 1}. For k = n, we have that

L̂(w)un =
(
L(w) + δ

n
1N1ᵀ

N

)
un = L(w)un + δ

n
1N1ᵀ

Nun

= 1√
n
L(w)1N + δ

n
√
n

1N1ᵀ
N1N = δ√

n
1N = δun,

hence δ is the eigenvalue belonging to the eigenvector un. We conclude that λ1(w), . . . , λn−1(w), δ
are indeed the eigenvalues belonging to L̂(w), since these eigenvalues are all positive, we conclude
that L̂(w) is non-singular.

In order to show that (35) defines the inverse of L̂(w), we need to use that

L(w)L†(w) = L†(w)L(w) = I − 1
n

1N1ᵀ
N ,

which is proved in [31]. It follows that

L̂−1(w)L̂(w) =
(
L†(w) + 1

δn
1N1ᵀ

N

)(
L(w) + δ

n
1N1ᵀ

N

)
= L†(w)L(w) + L†(w) δ

n
1N1ᵀ

N + 1
δn

1N1ᵀ
NL(w) + 1

n2 1N1ᵀ
N1N1ᵀ

N

= L†(w)L(w) + 1
n

1N1ᵀ
N = I,

where we used that 1N ∈ kerLᵀ(w), and 1N ∈ kerL†(w). Similarly, it can be shown that
L̂(w)L̂−1(w) = I. We conclude that L̂−1(w) defines the inverse of L̂(w).

We are now in the position to prove Theorem 5.3.

Proof of Theorem 5.3. Consider the state-dependent weighted Laplacian L(w) of a simple undi-
rected connected graph. The effective memristance between two boundary nodes i, j ∈ NB of this
graph can be computed as

Rij(w) = (ei − ej)ᵀL†(w)(ei − ej), (36)
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which using Lemma 5.2, is equal to

Rij(w) = (ei − ej)ᵀL̂−1(w)(ei − ej), (37)

since 1ᵀ
N (ei− ej) = 0. Now, we want to use the Schur complement, see Theorem 4.1, to reduce the

right-hand side of (37) to an equation solely depending on the boundary nodes of our network. In
order to do so, we note that (37) can be written as

Rij(w) = (ei − ej)ᵀvij , (38)

with vij a solution to
L̂(w)vij = ei − ej . (39)

The matrix and vectors in (39) can be split into parts corresponding to the interconnected and
boundary nodes as L̂BB(w) L̂BC(w)

L̂CB(w) L̂CC(w)

vBij
vCij

 =

ēi − ēj
0NC

 (40)

where we used that i, j ∈ NB. Since L̂(w) is non-singular, we can apply Theorem 4.1 on (40) to
obtain

ēi − ēj =
(
L̂BB(w)− L̂BC(w)L̂−1

CC(w)L̂CB(w)
)
vBij

= L̂red(w)vBij . (41)

By Theorem 4.2 it follows that L̂−1
red exists, hence (41) can be rewritten as

vBij = L̂−1
red(ēi − ēj).

Substituting this in (38) gives

Rij(w) = (ej − ej)ᵀ
vBij
vCij

 =
(
(ēi − ēj)ᵀ 0NC

)vBij
vCij


= (ēi − ēj)ᵀvBij = (ēi − ēj)ᵀL̂−1

red(ēi − ēj).

Then, since the Moore-Penrose inverse is a generalization of the regular matrix inverse, it follows
that

Rij(w) = (ēi − ēj)ᵀL̂†red(w)(ēi − ēj). (42)

47



Now, we notice that (36) is independent of δ, and hence (42) should be independent of δ as well.
Therefore, we can take the limit of δ → 0, and we obtain:

Rij(w) = lim
δ→0

Rij(w)

= lim
δ→0

(ēi − ēj)ᵀL̂†red(w)(ēi − ēj)

= lim
δ→0

(ēi − ēj)ᵀL†red(w)(ēi − ēj).

Here, we used that

lim
δ→0
L̂†red(w) = lim

δ→0

(
L̂BB(w)− L̂BC(w)L̂−1

CC(w)L̂CB(w)
)

= lim
δ→0

(
LBB(w) + δ

n
1NB1ᵀ

NB

− (LCB(w) + δ

n
1NB1NC )(LCC(w) + δ

n
1NC1NC )−1(LBC(w) + δ

n
1NC1NB )

)
= LBB(w)− LCB(w)L−1

CC(w)LBC(w)

= Lred(w),

which proves the claimed identity (34).

Theorem 5.3 allows us to compute the effective memristance between any two boundary nodes
r, s ∈ NB in our original graph from the Kron reduced weighted Laplacian Lred(w); this can be
used to find an expression for the external behavior of a network.

5.5 Terminal behavior

In this chapter, we used electrical circuit and graph theory to model a network of memristive devices.
These networks are of interest since their external behavior, i.e. characteristic i(t) − v(t) curves,
might be different from that of single memristive devices which is of interest when considering
memristive devices as synapses in artificial neural networks. In the previous section, we showed
how the effective memristance between any pair of boundary nodes in a network of memristive
devices can be computed. Here, we will show how the definition of effective memristance can be
used to express the dynamics of a network of memristive devices by a single memristive device.

Consider a network of K memristive devices and recall that the memristive device situated at edge
k between node i and j is described as

ẇij = f(wij , pkvk),

ik = G(wij)vk.
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In Section 5.3 we saw that any connected network then can be described by

ẇ = F

w, P

 Dᵀ
B

Dᵀ
CLac(w)

ψB
 ,

JB = Lred(w)ψB,

where F is the vector having as entries f evaluated at the different edges, and P is a diagonal
matrix having as entries the polarities of the memristive devices.

Then using Definition 5.3, we can compute the effective memristance between any pair of boundary
nodes. From that it follows that the relation of the current irs and voltage vrs between node
r, s ∈ NB is given by

ẇ = F

w, P

 Dᵀ
B

Dᵀ
CLac(w)

ψB
 ,

irs = 1
Rrs(w)vrs,

(43)

where Rrs(w) denotes the effective memristance between node r, s ∈ NB. This dynamical systems
represents the external behavior of our original network between node r, s ∈ NB and can be seen
as a single memristive device representing the dynamic behavior between two boundary nodes of
the original network of memristive devices.

An important thing to note here is that we found an expression for the external behavior, i.e.
the relation between vrs and irs for r, s ∈ NB, by reducing the network to a graph which solely
contains the boundary nodes of our original graph. However, we did not reduce the number of
state variables, weights, in the network; the state of the external behavior is still given by a K
dimensional weight vector w.

The next section will be used to illustrate these ideas with an example.

5.6 Example

Consider the electrical network depicted in Figure 21. As before, the dynamics of the k-th mem-
ristive device is described by

ẇk = f(w, pkvk),

ik = G(wk)vk,

which makes that the dynamics of the network is given by

ẇ = F (w, PV ),

J = L(w)ψ.
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Figure 21: Interconnection of 5 memristive devices with NB = {1, 2}. Here, i and v are the port
current and voltage of the device, respectively.

Here, F is the vector having as entries f evaluated at the different edges, P is a diagonal matrix
having as entries the polarities of the memristive devices, and L(w) = DW(w)Dᵀ denotes state-
dependent the weighted Laplacian of the graph associated to the network. For this example, the
incidence and weight matrix are given by

D =


1 1 0 0 −1
−1 0 −1 1 0
0 −1 1 0 0
0 0 0 −1 1

 , and W(w) =



G(w1)
G(w2)

G(w3)
G(w4)

G(w5)


,

respectively. Hence, the state-dependent weighted Laplacian L(w) can be computed as

L(w) =


G(w1) +G(w2) +G(w5) −G(w1) −G(w2) −G(w5)

−G(w1) G(w1) +G(w3) +G(w4) −G(w3) −G(w4)
−G(w2) −G(w3) G(w2) +G(w3) 0
−G(w5) −G(w4) 0 G(w3) +G(w4)

 .

Splitting the set of nodes in the boundary nodes NB = {1, 2} and internal connection nodes
NC = {3, 4} gives the relationJB

JC

 =

LBB(w) LBC(w)
LCB(w) LCC(w)

ψB
ψC

 ,
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where

LBB(w) =

G(w1) +G(w2) +G(w5) −G(w1)
−G(w1) G(w1) +G(w3) +G(w4)

 ,
LBC(w) =

−G(w2) −G(w5)
−G(w3) −G(w4)

 ,
LCC(w) =

G(w2) +G(w3) 0
0 G(w4) +G(w5)

 ,
and LCB(w) = LᵀBC(w). It follows that the nodal currents and voltage potentials of the boundary
nodes are related as j1

j2

 = Lred(w)

ψ1

ψ2

 ,
where

Lred(w) = LBB(w)− LBC(w)L−1
CC(w)LCB(w).

By explicitly calculating Lred(w), one finds that the effective memristance between the boundary
nodes is given by

R(w) =
(
1 −1

)
L†red(w)

 1
−1


=
(
G(w1) + G(w2)G(w3)

G(w2) +G(w3) + G(w4)G(w5)
G(w4) +G(w5)

)−1
.

i
Mext

i
−

+
v

Figure 22: External behavior of the network depicted in Figure 21. Here, i and v are the port
current and voltage of the device, respectively.

Now, the network in Figure 21 can be reduced to the memristive device Mext depicted in Figure 22
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which is mathematically described as

ẇ = F (w, PV ),

i = 1
R(w)v

=
(
G(w1) + G(w2)G(w3)

G(w2) +G(w3) + G(w4)G(w5)
G(w4) +G(w5)

)
v,

where i and v are the port current and voltage of the device. Here, the effective memristance
R(w) still depends on the state variables of all the memristive devices in our original network as
we mentioned in the previous section.

Simulation results for this and other networks of memristive devices will be given and compared in
the next chapter.
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6 Simulations

In this chapter, we will show simulation results of the v(t)-i(t) curves and the effective memris-
tances for series, parallel interconnections and random graphs, consecutively. These results will be
compared with the existing relations of effective resistance for networks of resistors. Furthermore,
for the random graphs we will compare the effective memristance between different sets of boundary
nodes, which shows the effect of the network structure on the effective memristance between two
boundary nodes.

Throughout this chapter, we consider networks of memristive devices where a single memristive
device is described by the affine model as

ẇk = pkvk,

ik = (αwk + β)vk.

This makes that the total model can be described as

ẇ = PV = PDᵀψ,

J = L(w)ψ = DW(w)Dᵀψ,

where P is a diagonal matrix having as entries the polarities of the memristive devices. The inci-
dence matrix D specifies the network structure, and the entries of W(w) = diag

(
{αwk + β}Kk=1

)
give the memductances of the memristive devices in the network. Here, K is the number of mem-
ristive devices in the network.

The simulation results are obtained by using the effective memristance, and following the same
calculation steps as in Section 5.6. Furthermore, we used that the differential equation of w can
be rewritten as a function only depending on ψB and not on ψC , see Section 5.3.

All simulations are executed for the parameters α = 1.884 mS/Wb, β = 0.25 mS, and the initial
condition w0 = −0.03 · 1K . Furthermore, a sinusoidal port-voltage v(t) = 4 sin (2πfc + π/3) with a
frequency fc of 20 Hz is applied to the circuit.

6.1 Series interconnection

Consider a series interconnection of K memristive devices, as depicted in Figure 23. Here, the
memristive devices are placed such that the current enters the devices at their negative side.
Figure 24 shows simulation results of series interconnections consisting of 1, 2, 3, and 4 memristive
devices, respectively. It can be seen that the effective memristance between the boundary nodes,
increases with an increasing number of memristive devices.
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Figure 23: Series interconnection of K memristive devices. Here, i and v are the port current and
voltage, respectively.

Figure 24: Results obtained for series interconnections of K memristive devices. Left, v(t)-i(t)
curves. Right, effective memristance between the boundary nodes compared with the port voltage.

This is comparable to the relation we have for networks of resistors. Namely, for a series intercon-
nection of K resistors, the effective resistance is given by

Rtot =
K∑
k=1

Rk,

where Rk denotes the resistance of the k-th resistor in the interconnection, and K is the total
number of resistors.

6.2 Parallel interconnection

Consider a parallel interconnection of K memristive devices, as depicted in Figure 25. Here,
the memristive devices are placed such that the current enters the devices at their negative side.
Figure 26 shows simulation results of parallel interconnections consisting of 1, 2, 3, and 4 memristive
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Figure 25: Parallel interconnection of K memristive devices. Here, i and v are the port current
and voltage, respectively.

devices, respectively. It can be seen that the effective memristance between the boundary nodes,
decreases with an increasing number of memristive devices. This is comparable to the relation we

Figure 26: Results obtained for parallel interconnections of K memristive devices. Left, v(t)-i(t)
curves. Right, effective memristance between the boundary nodes compared with the port voltage.

have for networks of resistors. Namely, for a parallel interconnection of K resistors, the effective
resistance is given by

1
Rtot

= 1∑K
k=1Rk

,

where Rk denotes the resistance of the k-th resistor in the interconnection, and K is the total
number of resistors. Besides the fact that the total memristance of the networks decreases as
we increase the number of memristive devices in the interconnection, we see that the shape of
the effective memristance curve in Figure 26 changes; when the number of memristive devices in
the interconnection increases, the effective memristance curve gets flatter. This is an interesting
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observation since this implies that the shape of the hysteresis loop of the total network of memristive
devices is influenced by the network structure. We will also see this when looking to random graphs
as we do in the next section.

6.3 Random graphs

In Section 5.6, we found a mathematical expression for the external behavior of the network depicted
in Figure 27. Figure 28 depicts a simulation result of this external behavior. Also, the simulation
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Figure 27: Interconnection of 5 memristive devices with NB = {1, 2}. Here, i and v are the port
current and voltage of the device, respectively.

result of a single memristive device described by the affine model and having the same parameters
and input signal as the network is depicted in Figure 28. We note that the effective memristance
of the network is smaller than that of a single memristive device. This can be explained by the fact
that the network in Figure 27 is in fact a parallel connection with three memristive devices, and so
since the port voltage is devided by those three paths in the graph, the effective memristance of the
network is smaller than that of a single memristive device. Also, it is interesting to note that the
shape of the curve is different for the network and the single device. This implies that we can design
memristive devices with differently shaped hysteresis loops out of networks of equal devices, which
is of interest when we consider memristive devices as building blocks for neuromorphic computing.

In addition, instead of considering the effective memristance of a network for only one pair of
boundary nodes, we can consider the effective memristance of a network between different pairs of
boundary nodes. Figure 30 shows a simulation result for the effective memristance between two
different pairs of boundary nodes of the network depicted in Figure 29. We note that the effective
memristance curves, and so the hysteresis loops, for these two different pairs of boundary nodes
depict differently shaped figures. However, if we consider an (almost) symmetric graph as depicted
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Figure 28: Results obtained for the electrical network depicted in Figure 27 compared with those
of a single memristive devices, see Figure 12. Left, v(t)-i(t) curves. Right, effective memristance
between the boundary nodes compared with the port voltage.

in Figure 31, then the external behavior between different sets of boundary nodes which are mir-
rored to each other is similar, see Figure 32.

To summarize, we saw that the structure of a network of memristive devices influences its external
behavior, i.e. different networks leads to a different dynamical behavior of the memristive device
which represents the network of memristive devices. Furthermore, not only the structure of the
network influences the external behavior, but also the set of boundary nodes which are considered.
However, the effective memristance curve and the hysteresis loop depicted similar results when
considering mirrored pairs of boundary nodes in (almost) symmetric graphs. Concluding, we saw
that we can influence the shape of the characteristic hysteresis loop of a memristive device build
out of a network of memristive device by considering different graph structures, and considering
different pairs of boundary nodes.
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Figure 29: Interconnection of 12 memristive devices. Here, we consider NB = {2, 4, 7} as the set of
boundary nodes.

Figure 30: Results obtained for the electrical network depicted in Figure 29. Here, we compared
the external behavior of the network between the boundary node r = 7, and s = 2 and s = 4,
respectively. Left, v(t)-i(t) curves. Right, effective memristance between the boundary nodes
compared with the port voltage.
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Figure 31: Interconnection of 7 memristive devices. Here, we consider NB = {1, 2, 3, 4, 5} as the
set of boundary nodes.

Figure 32: Results obtained for the electrical network depicted in Figure 31. Here, we compared
the external behavior of the network between the boundary node r = 1, and s = 2, s = 3, s = 4,
and s = 5, respectively. Left, v(t)-i(t) curves. Right, effective memristance between the boundary
nodes compared with the port voltage.
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7 Conclusion

In this thesis, we introduced neuromorphic computing as a new computing paradigm whose archi-
tecture is based on artificial neural networks. We did this by briefly explaining biological neural
networks and linking this to artificial neural networks.

Thereafter, we introduced memristive devices, and we saw that they are characterized by a hys-
teresis loop pinched at the origin. Various mathematical models exist for describing the behavior
of memristive devices, some of which can be linked to the synaptic weight update rule spike-timing
dependent plasticity in biological neural networks. Henceforth, we suggested to use memristive
devices as the building blocks for neuromorphic computing architectures. More precisely, we sug-
gested memristive devices as the synaptic weights in artificial neural networks.

Then, in order to realize artificial neural networks with an optimal functionality, the memristive
devices should have a certain behavior, i.e. the hysteresis loop of a device should have a certain
shape. This might not be achieved by single memristive devices which made us consider networks
of memristive devices.

We showed that a network of memristive device represents a memristive device itself, and we de-
veloped tools to describe the dynamical behavior of this memristive device. This is realized by
describing a network of memristive devices as a graph in which the memristive devices correspond
to the edges. Thereafter, we used Kron reduction to reduce the network to a network only consist-
ing of the boundary nodes of the original network. The notion of effective memristance was then
introduced to derive a relation between the currents through and the voltage potentials across the
edges in the reduced network. We concluded this section by using the notion of effective memris-
tance to find a mathematical expression for the dynamical behavior of the single memristive device
representing the original network of memristive devices, also called the external behavior of the
network.

Finally, in the section with simulation results, we compared the effective memristance and char-
acteristic hysteresis loops of various networks of memristive devices. We saw that the network
dynamics of a network of memristive devices does influence the shape of its effective memristance
curve and, consequently that of its hysteresis loop. In addition, we saw that the effective mem-
ristance between different pairs of boundary nodes in the same network already depicts differently
shaped curves. This suggest that certain desired dynamic behavior of memristive devices can be
achieved by proper design of networks of memristive devices.

A goal of future research can be to find mathematical tools to describe the network structure corre-
sponding to desired dynamic behavior, i.e. specific hysteresis loops. When considering the work we
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did until now, a extension of the results can be to not only reduce our original network to a network
consisting of only the boundary nodes, but to also reduce the dimension of the state-dynamics of
the network. Furthermore, it would be interesting to study how the developed mathematical tools
in this thesis can be applied to more general memristive device models, and to networks consisting
of different types of memristive devices as well as additional circuit elements such as capacitors and
inductors.
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