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Abstract

In this report, the results of my internship about the data analysis of
environmental DNA are presented. Environmental DNA is a new tech-
nique that gives a better insight which factors determine the water qual-
ity of lakes. This technique is being developed by Witteveen+Bos and
Datura. Cluster analysis was used to check if the environmental DNA pro-
files of the lakes could be used to categorize the lakes. There were several
methods considered. Namely, the dissimilarity coefficients: Euclidean,
Correlation, Bray-Curtis and Jaccard were used in conjunction with the
linkage methods: Single, Complete, Average, Weighted and Ward. In or-
der to find the best method for this type of dataset the clustering results
of the methods with several filters on the dataset were being compared.
This was done to check for the robustness of the methods. Principal com-
ponent analysis was used in order to visualize the clustering results and
to see if there were there were factors that are characteristic for a cluster.
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1 Introduction

A good method to measure the water quality of lakes, and the effects of any
measures that are taken is essential for water management. It is especially im-
portant to understand which factors determine the water quality. With current
measurement-techniques a part of these factors can be determined. However,
there are still a lot processes that are unknown, especially for bacteria. There
is a new technique called environmental DNA, which is being developed by
Witteveen+Bos and Datura, that could be a better technique that is quicker,
cheaper and gives a better insight which factors determine the water quality.
It is a long running project that lasts several years. A first step is looking for
methods that can analyze the data gathered from environmental DNA. This
data is gathered from twenty lakes in the Netherlands. The locations of the
lakes can be found in Figure 1. More information about the project can be
found in [10] (in Dutch). In this report an overview of several unsupervised sta-
tistical learning techniques, that can be used to analyze environmental DNA,
are given.

The internship was done at Witteveen+Bos which is an engineering and consul-
tancy firm that offers solutions in the fields of water, infrastructure, environment
and construction projects. With a network of 19 offices in 11 countries there
are around 1100 engineers and consultants.

The idea behind environmental DNA, also called eDNA, is that each sample
has it’s own unique eDNA profile. Therefore, a sample from a murky lake filled
with seaweed has a different profile than a sample from a clear lake with a high
diversity in water plants. The objective of the project is to find a so called
fingerprint for eDNA which determines the water quality of the water sample
taken from the lake.

In order to analyze the data from the eDNA statistical learning is used. Sta-
tistical learning can generally be divided into two categories, supervised and
unsupervised learning. In supervised learning there is an outcome measurement
or categorical that we want to predict based on the variables (observations).
With unsupervised learning only the variables are observed and there is no out-
come. Instead the task is to describe how the data is clustered or organized.

The methods that are discussed in this report, cluster analysis and principal
component analysis, are both unsupervised learning methods. We use unsuper-
vised learning because currently there is not enough data to really predict the
outcome (water quality) based on the variables (eDNA) of the samples. Later on
in this project supervised learning methods would be recommended to predict
the water quality of a sample based on eDNA, and to see which factors influence
the water quality. For now unsupervised learning is used to see whether or not
the eDNA profiles of the water samples can be used to categorize the dataset.
When this is the case this gives more confidence that the eDNA profiles can be
used to profile an water sample and later on used as an indication of the water
quality. In addition the methods are used to analyze the data to see if there are
some factors that are characteristic to some clusters which may influence the
water quality.



In the next section it is explained how the eDNA samples are determined, and
what the dataset that contains these samples looks like. In Section 3 several
methods for cluster analysis are described. Section 4 describes how principal
components analysis works. Which software has been used for the data analysis
is described in Section 5. Section 6 presents the results of the cluster analysis.
In Section 7 the results of the principal component analysis are presented. Fi-
nally in the last section the conclusion of this report and the recommendation
is presented.
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Figure 1: Locations of the water samples taken in 2018 per water management.
The color of a location indicates which water management is responsible for this
location.



2 Environmental DNA

In this section it is described how the eDNA samples are determined. In addi-
tion the structure of the dataset that is used for analysis is described.

As explained in the introduction the idea behind eDNA is that each water
sample has a unique eDNA profile. The procedure of determining the eDNA of
a water sample is as follows. From the center of the lake several water samples
are taken and combined in a sample such that the sample contains around one
liter water. The water sample contains both direct and indirect DNA. Direct
DNA comes from species that are entirely contained in the sample like bacteria.
Indirect DNA comes from species that left behind feces, urine or skin cells like
fish. With eDNA we mean all the DNA that is found in a sample. The water
sample is then taken to the laboratory for DNA analysis.

In order to analyze the DNA in the sample polymerase chain recation (PCR)
is used to increase the amount of DNA in a sample so that it can be detected
during the analysis. The process is as follows. A primer binds itself to two
opposing stands of the DNA. Which part of the DNA the primer binds itself
to depends on the primer. There is a primer that binds itself to DNA that is
characteristic for bacteria, eukoryota and fish. During the PCR the region that
lies between these DNA strands will be copied. More information about this
process can be found in [11].

We call each unique DNA sequence that is detected
in a sample an OTU. This stands for Operational
Taxonomic Unit. Sometimes an OTU is unique for
a species. However, it can also occur that an OTU
is the same for a group of related species for a higher
part on the taxonomic level. For instance it is found
that the OTU is a particular kind of bacteria. By a
taxonomic level we mean the relative level of a group
of organisms in a taxonomic hierarchy of the biolog-
ical classification. The main eight taxonomic levels
are shown in Figure 2.

In order to determine which species an OTU be-
longs to a reference database is used. When the refer-
ence database is used to find the matching species for
an OTU it will look for the registered DNA sequence
that is the best match. This match is calculated as a
ratio which we call best identity. When the best iden-
tity of an OTU is 1.0 it should be a perfect match.
However even for this perfect match it does not al-
ways mean that the OTU is indeed equal to the found
species. Sometimes there is a genetic variation within
a species, a error occurred in the lab or the OTU is
not yet in the reference database. When a OTU has
a best identity that is lower than 0.85 it is dropped
from the dataset. This threshold has been decided by
Witteveen+Bos and Datura.

Figure 2: The main
eight taxonomic levels.



2.1 Choice of primer

There are five different primers that can be used for the PCR. The difference
between these primers is which part of the DNA it binds itself to. With a
universal primer as much as possible DNA will be detected. There is also a
bacterial primer which binds itself to DNA characteristic of bacteria so that
after the PCR only DNA from bacteria is detected. Furthermore there is an
eukoryota primer and two primers for fish.

Before we can begin analysis the data we first need to choose which primer
is used. This can be the universal primer or the combination of the bacte-
rial, eukoryota, the two fish primers and universal primer (also called merged
primer). For the merged primer the Universal primer is used to determine the
ratio’s of the bacteria, eukoryota and the fish. For the merged dataset the data
for fish using the two fish primers is also needed as this was not yet available
for the rest of this report only Universal will be used.

2.2 Dataset

The structure of the eDNA dataset! is as follows. Every row in the dataset
corresponds to a unique OTU, this is a DNA sequence of a species found in
the sample. Sometimes the index number of an row is used to indicate that
particular OTU. For this species the name of that species at the taxonomic levels
is given in the associated columns. An example of a couple of taxonomic levels
can be seen in Figure 3. There are a lot of names of a species per taxonomic level
unknown because the reference database that is used to determine the species
is not complete.

Index best_identity superkingdom_name kingdem_name phylum_name class_name subclass_name
a 2.982 Eukaryota nan nan spirotrichea Choreotrichia
1 1 Eukaryota viridiplantae Chlerophyta Chlorophyceae nan
2 8.8636 Bacteria nan Actinobacteria nan nan
3 8.9882 Bacteria nan Firmicutes Negativicutes nan
4 2.8991 Eukaryota Metazoa nan nan nan
5 @.88 nan nan nan nan nan
6 @.8586 nan nan nan nan nan

Figure 3

In addition, there are a lot of OTUs that do not appear in the eDNA database
at all on any taxonomic level or match with a wrong species in the database.
The percentage of unknown species per taxonomic level is given in Tabel 1.

The rest of the columns consist of the samples and per OTU the number of
reeds of that OTU in that sample. The name of a column that contains the
number of reeds is the identification of the sample. Which is in the format:
WM.LOC.YRWK.w, where WM is the abbreviation of the water management,
LOC the first three letters of the name of the lake, YR the last two numbers of

1The eDNA data is contained in the excel file final_uni.zlsz.



the year in which the sample is taken, WK the week number in which the sample
is taken and the w at the end indicates that this is a water sample.

Table 1: The percentage of unknown species per taxonomic level is given in the
column Unknown. The column Dimensions contains the number of variables
(species) on that taxonomic level.

Taxonomic level Unknown (%) Dimensions
Superkingdom 14 4
Kingdom 78 )
Phylum 42 43
Infraclass 98 7
Class 38 100
Subclass 90 30
Order 41 203
Suborder 95 25
Superfamily 98 18
Family 51 309
Genus 54 436
Species 60 488
OTU 0 2720

The number of reeds indicate the number of times that particular DNA
sequence (OTU) is found in the sample. An example of a couple of samples
with the number of reeds of a OTU is given in Figure 4. For the analysis in
this report the data from the samples that are taken in the year 2018 are used.
The water samples are taken from 20 lakes in the Netherlands and the locations
can be found in Figure 1. Generally there are water samples from each of these
locations at four different dates. Namely in the weeks 19, 23, 27 and 32. From
four locations there is only one water sample which is taken in week 31. In total
there are 69 samples.

Index WD.BEU.1825.w  WD.BOW.1825.w NZPWM.1827w  SKKRP.1827.w

a 482 2182 2786 2811

1 a a a a8

2 39519 19818 18662 38778

3 5 5 5 8

4 @ a a8 a

5 a a a a8

B 372383 58531 13247 48815

Figure 4

Not all samples in the eDNA dataset are used for analysis. When samples
has less than 20.000 reeds there is not a lot of biodiversity so it is likely that
the sample does not contain all the species that are in the water. The threshold
of 20.000 is chosen by Witteveen+Bos and Datura. There are 16 samples that



do not meet this requirement and are not used for the data analysis. Therefore
there are 53 samples left. The total number of OTUs for these samples are
2720. Most of the OTUs are only in a few samples. We have that there are
2081 OTUs that occur in less then 5 samples. Therefore the dataset contains a
lot of zeros.

2.3 Transformations

The eDNA dataset contains the amount of species present in a sample. Because
species tend to grow exponentially when conditions are favourable a transfor-
mation can be used to reduce the asymmetry of the data [5]. Several commonly
used transformations are the following:

i Species profile transformation
Using this transformation we get the ratio

_ Yij
Jij = (1)

J+

where y;; is the value of species (rows) ¢ in sample (columns) j, y;, is the
sum over the samples j for species ¢ and ¥;; is the new value.

ii Hellinger
This is a modification of the species profile transformation and is recom-
mended by [5].

B Ui
Yij =y " (2)
Yi+
where y;; is the value of species (rows) ¢ in sample (columns) j and y;, is
the sum over the samples j for species .

iii Log
The log transformation reduces the asymmetry of the species distributions

Uiy = log (yi; +1), (3)

where y;; is the value of species (rows) 4 in sample (columns) j. The one
was added so that the variables that are zero in the original data are again
Z€TO.

iv. Chi-square distance transformation
Using the Chi-square distance transformation we reduce the value of an
abundant species more than that of a rare species. Therefore this transfor-
mation should only be used when we are sure that rare species are a good
indication of special ecological conditions [5].

_ Yij
Yig = Yor — —; 4)
“ o Yj+r/Yi+ (
where where y;; is the value of species (rows) i in sample (columns) j, y;+
is the sum over the species ¢ for sample j, y; is the sum over the samples
j for species ¢ and y., is the sum of values over the whole data table.



2.4 Biomass of an OTU within a sample

Apart from the dataset containing the number of reeds of the OTUs per sam-
ple another measurement has been made. Namely, the amount of biomass in
molecules/liter there is in a sample. Combining the two dataset we can get a
dataset containing the biomass in molecules/liter of that OTU within a sample
(called gPCR). We can do this as follows. First we perform the species profile
transformation on the dataset containing the number of reeds. Now we get the
ratio of a OTU within a sample. Second we multiply this value with the total

biomass? in a sample.

2The total biomass per sample is in a separate file called gPCR.zlsx.
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3 Cluster analysis

In this section several different methods for cluster analysis are described. The
goal of cluster analysis is to partition the measured objects (samples) into sub-
sets, also called clusters, such that the objects that are assigned in cluster are
more similar to each other than to objects in a different cluster. We use cluster
analysis for the eDNA dataset to see whether samples from similar locations
cluster together, which shows that the eDNA profiles of these locations are also
similar.

Cluster analysis algorithms can be divided into the following two categories.

e Partitional
In Partitional clustering the data is partitioned in a predetermined num-
ber of non-overlapping clusters in a single step. Examples of partitional
clustering methods are K-means, K-median and DBSCAN [3].

e Hierarchical

In Hierarchical clustering the number of clusters is not predetermined and
there are sub clusters allowed which are nested clusters that are organized
as a tree. Such a tree is called a dendrogram and an example is seen
in Figure 5. On top of the tree all samples are in one single cluster,
while on bottom each sample builds its own individual cluster. There are
two kinds of hierarchical cluster analysis agllomerative (bottom-up) and
divisive (top-down). Bottom-up is the most commonly used and the most
researched.

0.8

0.6

distance

0.4

0.2

0.0
2 i1 6 4 5 & 1@ 7 0 0 8 u

sample index
Figure 5: An example of a dendrogram, which is a result from a hierarchical
cluster analysis.

For the eDNA dataset we will use agglomerative hierarchical clustering because
in that case the number of cluster does not have to be predetermined. In addition
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the number of clusters can be chosen depending on the level of the dendrogram
cutoff. As an example consider Figure 5 at the first level there are two clusters
Cy={2,3} and C5 = {0,1,4,5,6,7,8,9,10,11,12}. At the second level there are
three clusters Cy = {2,3}, Co = {1,4,5,6} and C3 ={0,7,8,9,10,11,12}.

3.1 Agglomerative hierarchical clustering

As with most clustering methods there are two steps. The first step is to calcu-
late a dissimilarity matrix. The dissimilarity matrix P (sometimes also called
a proximity or a distance matrix) is n by n symmetric matrix, where n is the
number of samples. The elements of the dissimilarity matrix contain the dissim-
ilarities of the samples regarding each other, where P;; the dissimilarity between
sample ¢ and j. There are more than a dozen methods that calculate the dis-
similarity between samples several methods are described in Section 3.2.

The second step is to create the clustering based on the dissimilarity matrix
and to illustrate the results in a dendrogram as seen in Figure 5. The clustering
is done by a linkage method. There are several linkage methods and they are
described in more detail in Section 3.3. The linkage method decides when a
cluster is combined with another cluster and how the new dissimilarity between
a newly formed cluster with the rest is calculated. There are several combina-
tions posible between the method that calculates the dissimilarity matrix and
the method that determines the linkage. There is however not one method that
gives the best result [4]. Although there are some guidelines based on the type
of data in the dataset, the final result for which method works best depends on
the dataset itself. Therefore in Section 6 we test several of these methods on
the eDNA dataset to determine which method gives the best result.

3.2 Dissimilarity coefficients

The dissimilarity matrix P is determined by using a dissimilarity coefficient,
that calculates the dissimilarity between two samples, for every sample. Which
results in a n by n matrix, where n is the number of samples. We have that the
element P, is determined by the dissimilarity d(z,y) between sample x and y.
The resulting matrix is symmetric since we have d(z,y) = d(y,z) and d(z,z) = 1.

There are a lot of coefficients that calculate the dissimilarity between samples.
When the dissimilarity between samples is zero that means that the method
cannot distinguish between the two samples so for the method these samples
are equal. Some coefficients calculate the similarity instead. When the simi-
larity between samples is zero that means that the samples do not share any
characteristics according to the coefficient.

3.2.1 Symmetric vs asymmetric

Dissimilarity methods can be categorized into two categories namely symmetric
and asymmetric. The difference between these two categories is how they deal
with the double zero problem. The double zero problem is the problem on how
to see the similarity between samples when they both contain a zero for that
variable. Depending on the type of data in the dataset both samples having
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a zero at a variable can mean different things. When the variables are mea-
surements then the samples should be more similar when they are zero for that
variable. However when a zero means an absence of a species it should not mean
that the samples are more similar. An absence of a species can have multiple
reasons, it may be because these locations corresponding to these samples have
environmental conditions that are unsuitable for the species, and these condi-
tions may be similar or very different for the two locations [5].

For symmetric coefficients the double zero is treated the same as as any other
value that the samples have in common. So a double presence is treated the
same way as a double presence. Asymmetric coefficients treat double presence
differently then double absence. When a variable is zero for both samples the
dissimilarity does not increase or decrease. When a variable is equal and nonzero
for both samples the dissimilarity decreases.

3.2.2 Symmetric dissimilarity coefficients

Among symmetric methods Euclidean is the most commonly used. The dissim-
ilarity between sample x and y is given as

n

d(z,y) = \| X (i —i)? ()
i=1

When the values of both variables, i.e., z; and y;, are both zero then the sum
in the square root does not increase. So the dissimilarity does not increase and
does not decrease when the values are both are zero. When the values of the
variables are equal, i.e., z; = y;. Then the sum in the square root also does not
increase since (z; — yi)2 =0 when z; = y;. Therefore the dissimilarity does not
increase and does not decrease. So the treatment is the same and therefore the
coefficient is symmetric.

The correlation measures the dependence of the two samples and the function
is
dw,g) =1 - D) (6)
|z = Z[2lly - yl-2
where T is the mean of the elements of x.

3.2.3 Abundance

An example of asymmetric methods are methods that calculate the abundance of
a variable (species). One such method is called the Bray-Curtis coefficient, which
is sometimes also called the percentage difference. The Bray-Curtis coefficient
is mostly used for ecological data. Instead of calculating the dissimilarity, the
similarity between samples is calculated. The similarity s(z,y) is the similarity
between sample = and y. This similarity is given as

2 Z?:l min(xiv yl) (7)
Y T+ Y i

The similarity can be transformed into a dissimilarity by using one of the fol-
lowing formula:

s(z,y) =

d/(x7y) =1- S(.T,y),
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where d is the dissimilarity and s the similarity. Using this transformation for
equation (7) we get
Yic1 Tit L i — 23 min(@i, vi) - X [T - vl

d(x,y) = = = ==L ) 8
(z9) Yic1 Ti+ Xz Yi it i + il ®)

When the values of both variables, i.e., x; and y;, are both zero then the sum on
both the numerator and the denominator does not increase. So the dissimilarity
does not increase and does not decrease when the value of both samples are
zero. When the values of the variables are equal, i.e., x; = ;. Then the sum
of the numerator does not increase, i.e., |z; — y;| = 0. However the sum of the
denominator increases since |x; + y;| > 0 and the dissimilarity decreases.

3.2.4 Presence/absence

An group of methods that contain contain both symmetric and asymmetric
methods are methods that calculate the presence and absence of the variables
(species). There are more than a dozen similarity and dissimilarity coefficients
and they all use the frequencies a, b, c and d, as seen in Figure 6.

Object x5
1 0
a b

¢ i)

Object x;
=

Figure 6: Table of the frequencies a,b,c and d. Here a is given as the number
of species the samples have in common, b the number of species that are only
present in sample x, ¢ the number of species that are only present in sample y
and d the number of species that are not present in either sample.

When d is used to calculate the similarity the method is symmetric and
when d is not used the method is asymmetric. The differences between these
methods are mostly that they assign different weights to the species that are
present in both samples and species that are present in only one of the samples
being compared. Some examples of coefficients that use the presence/absence
and are asymmetric are the following.

The Jaccard similarity is calculated as

a

s(z,y) = 9)

a+b+c

For the dissimilarity we use d(z,y) =1 - s(x,y). We then get the proportion of
the elements that disagree.

An example of a similarity coefficient that gives more weight to the variables
that are present in both samples is the Sgrensen—Dice coefficient. The similarity
between sample = and y is given as

2a

e — 1
2a+b+c (10)

s(x,y) =
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This similarity coefficient will not be used in the analysis as it is only given as
an example.

3.3 Linkage methods

All linkage methods start with defining every sample as a cluster of one. The
clusters that are the closest together are then combined. The function of a
linkage methods uses the dissimilarity matrix, that is made using one of the
methods in the previous section, to calculate the new dissimilarity between
the clusters. The difference between the linkage methods is that they all use
a different function in order to calculate the dissimilarity of the new clusters
Some linkage methods are:

i. Single
ii. Complete

iii. Average
or Unweighted Pair Group Method with Arithmetic mean (UPGMA)

iv. Weighted
or Weighted Pair Group Method with Arithmetic Mean (WPGMA)

v. Centroid
or Unweighted Pair Group Method with Centroid Averaging (UPGMC)

vi. Median
or Weighted Pair Group Method with Centroid Averaging (WPGMC)

vii. Ward

An property of an linkage method as described by [5] is it’s effect on space when
clusters are formed. An linkage is called space contracting when the distance
between clusters decrease as clusters are formed. The consequences of linkage
methods that are space contracting is that clusters with one sample are more
easily merged with clusters that have multiple samples. This is called chaining,
an example can be seen in Figure 7a. The opposite of space contracting is space
dilating. An linkage method is called space dilating when the distance between
samples increases as clusters are formed. A consequence of space dilating meth-
ods is that sample specific clusters are more easily formed with other sample
specific clusters. An example can be seen in Figure 7b.
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Figure 7: The effects of two linkage methods on space.

Let D(C;,Cj) be the dissimilarity between cluster C; and C;. When the
dissimilarity (or distance) between the clusters is preserved after clusters are
formed it is called space conserving. An linkage method is space conserving if

D(Cy,Cy) < D(Cy,Cy) < D(Cy, Cy), (11)

holds for all clusters C;, C, and C};, then the following also holds for all clusters
Cl,Ck and Cj
D(Cl, Z) < D({Cl, Ck}, Cj) < D(Ck, C])

a linkage method is called space contracting. The procedure of a linkage method
is as follows. All linkage methods start with n clusters, assigning each of the
n samples to its own sample-specific cluster. Then the two cluster that have
the lowest value in the dissimilarity matrix are combined in on cluster. The
second step is generally the same for all linkage methods. The third step is
to calculate the new reduced dissimilarity matrix between the clusters. This
process is repeated until one cluster remains. The linkage method all use a
different function in order to calculate the new reduced dissimilarity matrix.
As an example consider the following sample specific clusters: Cy = {z},C5 =
{y},C3 ={z},C4 = {u}, where z,y,z and u are the samples. In the second step
samples = and y are combined in one cluster, i.e., C5 = C; UCy = {x,y}. Then
a new reduced dissimilarity matrix is calculated that contains the dissimilarity
between the new clusters, i.e., the dissimilarity D(Cj3,C3) and D(Cs,Cy4). Using
this new dissimilarity matrix the two clusters with the lowest dissimilarity are
combined in a new cluster.

3.3.1 Single linkage

Single linkage (nearest neighbor) defines the distance between two clusters as
the minimum distance between the elements in that cluster and can seen in
Figure 8. The distance between two clusters C; and C} is defined as

D(Civcj):min(D(Ckvoj)’D(ClaCj))7 (12)

where C; was formed with cluster C and Cj, i.e., C; = Cp uC;. For single
linkage we can also calculate the dissimilarity between every cluster based on
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original dissimilarity matrix calculated in Section 3.2.

D(C;,C5) = _min | (d(@,y)). (13)
Single linkage is space contracting since the distance between clusters decreases.
Therefore a disadvantage of single linkage is that chaining can occur. It can
however be useful to use Single linkage to check if chaining occurs as it gives
some information about the structure of the data, namely that intermediates
are present. Single linkage can also be used to detect outliers in the data, which
are the samples that are added to a cluster at a large distance. For example in
Figure 7a sample 2 is an outlier.

3.3.2 Complete linkage

Complete linkage (furthest neighbor) defines the distance between two clusters
as the maximum distance between the elements and can be seen in Figure 8.
The distance between two clusters C; and C is defined as

D(C’i70j):maX(D(Ckacj)’D(ClaCj))7 (14)

where C; was formed with cluster Cy and Cj, ie., C; = C, U C;. For com-
plete linkage we can calculate the dissimilarity between every cluster based on
dissimilarity matrix calculated in Section 3.2.

D(C;, Cy) = zeg}@gcl(l?(x,y))- (15)

As the algorithm progresses the clusters are moving further away from each
other and the distance between clusters increases. It is therefore a space dilating
method. This is the opposite of single linkage where the distance decreases. An
disadvantage of complete linkage is that samples within a cluster can be more
similar to samples in another clusters than to the samples in its own cluster [7].

3.3.3 Average linkage

Average linkage is a compromise of single and complete linkage. The distance
between clusters is defined as the average distance between all samples from one
cluster to the other cluster and can be seen in Figure 8. The distance between
two clusters C; and C is defined as

TL(Ck)D(Ck,CJ) + TL(C[)D(CZ, CJ)

D(C;,Cy) = n(Ci)n(C;)

(16)

where C; was formed with cluster Cj and Cj, i.e., C; = C, u ;. In addition
n(C;) is the cardinality of cluster C;. The cardinality of a set is the number
of elements in that set. So n(C;) is the number of samples in cluster C;. For
average linkage we can also calculate the dissimilarity between every cluster
based on original dissimilarity matrix calculated in Section 3.2.
1
D(C.C) = ey & Z D), (1)

zeC; yeCy

Average linkage gives equal weight to every member of a cluster. So a larger
cluster has more influence in the distance after a merging when merged with a
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smaller cluster. An consequence of this is that when a smaller cluster is merged
with a larger cluster, where the samples of the larger cluster are similar to
each other because of their common origin, the results may be distorted [3].
Therefore average linkage should only be used when the data is obtained by
simple random or systematic sampling, i.e., the number of samples obtained
per location should be equal.

Cluster B
* K3
% .- &
* -
Cluster A *
. s Single linkage
* .
L Complete linkage

— Average linkage
Aup = (dy3+ dya+ dyg+ oz + oy + dys)/6

Figure 8: Examples of linkage methods: single, complete and average from [4].

3.3.4 Weighted linkage

Weighted linkage gives the clusters that are being merged an equal weight when
determining the new distance. So a smaller cluster is weighted equally to a
larger cluster. The consequence is that the samples in the smaller clusters are
weighed more (which is where the term weighted comes from). The distance
between two clusters C; and () is defined as

D(Ck,Cj) +D(Cl,0j)
2 )

D(Cy,Cy) = (18)
where cluster C; was formed with cluster C, and C; and C; is a remaining
cluster in the forest.

3.3.5 Ward linkage

Ward’s method attempts to minimize the sum of the squared distances of points
from their cluster centroids. The distance D(C;, C};) is determined by how much
the sum of squares increases when the cluster C; and C; are merged, i.e.,

D(C;,Cy) = Z D(x,mciucj)Q— Z D(:z:,mci)Q— Z D(a:,mcj)Q, (19)
zeC;uC; zeC; zeC

where mg, is the centroid of cluster C;. We can write the Ward linkage in the
same form as the previous equations by writing the sum of squares in terms of
pairwise distances [9], i.e.,

> D(z.me,)* = >, D(zy)* (20)

zeC; n(cl) x,yeCixC;
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Using equation (20) we can rewrite equation (19), and we get

(O (G s ()R
D(Cl, Cj) = {TWD(CJ’Ck)z + n(cl) n n(C])D(C], Cl)2
n(Cj) oy 1/2
GAREIGA R

where cluster C; was formed with cluster C} and C; and C} is a remaining clus-
ter in the forest. In addition, n(C};) is the cardinality of cluster C;.

3.3.6 Centroid

Centroid defines the distance between two clusters as the distance between the
centroids, i.e., the mean point of the samples, of the clusters. As average linkage
centroid gives equal weight to the samples in a cluster so that a larger cluster
has more influence in the final distance then a smaller cluster when merged.

3.3.7 Median

As Centroid, Median defines the distance between two clusters as the distance
between the centroids of the clusters. The difference with the centroid method
is that the clusters are given equal weight when merged as in Weighted linkage.

Table 2: Overview linkage methods

Linkage Method Effect on space Additional properties

Single contracting Is susceptible to noise and outliers (can
be used to identify outliers). Can lead
to chaining.

Complete dilating Less susceptible to noise and outliers,
but it can break large clusters [3].
Average conserving Should only be used when the data is

obtained by simple random or system-
atic sampling [5]. Relatively robust [4].

Weighted conserving Preferred when the data is not obtained
by systematic sampling [5].
Centroid conserving Works best with Euclidean distance.

Preferred when the data is obtained by
systematic sampling [5].

Median conserving Works best with Euclidean distance.
Preferred when the data is not obtained
by systematic sampling [5].

Ward conserving Works best with Euclidean distance.
Tends to produce clusters of the same
size [4].

19



4 Principal component analysis

In this section we describe how principal component analysis (PCA) works and
how the result of the analysis can be interpreted when applying PCA to the
eDNA dataset. We want to use principal component analysis to visualize the
results of the clustering analysis (Bray-curtis average linkage). When the clus-
ters are still visible in the biplots of the PCA this gives some more confidence
that the clustering is correct. In addition we want to see if there are species or
OTUs that are characteristic for some clusters.

Principal component analysis is a linear technique that finds new variables (prin-
cipal components) which are linear combinations of the original variables. These
principal components have the properties that they are orthogonal and capture
the maximum amount of variation in the data. The first principal component
captures as much variation as possible. The second principal components cap-
tures the remaining variation in that direction with the constraint of being
orthogonal to the first. The third principal component is orthogonal to the sec-
ond and captures the remaining variation in that direction and the first and so
on.

PCA was created as a dimensional reduction technique as the variation can
be captured by a small fraction of the original dimensions, but it has several
other applications. Namely finding patterns and outliers in the data in addition
to reducing the noise of the data. In Figure 9 it is shown how the 3 dimensional
data is reduced to two dimensional data.
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Figure 9: Going from 3D data to 2D using PCA from [7].

4.1 How PCA works

Principal component analysis works as follows. Let the data consists of n sam-
ples with m variables (the species). First the dataset needs to be standardized
with respect to the species. By standardization we meant that the mean of the
variables needs to be equal to zero and the variance equal to one. This is done
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because the units or scale of the variables may be different and if the data is
not standardized then the PCA will give emphasis on the variables that have
the biggest range (and therefore variation).

For every variable in the dataset the covariance is calculated. The covariance is
the measure of the joint variability between two variables. Let x; be a variable
with 0 < ¢ <m, then the covariance of every x; with every z; is calculated and
given in the covariance matrix C' € R™" as follows.

{cij} = cov(wi, ;) = Z (@0, = 20) (@5, —scj)’
k=1 n-1

where Z; is the mean of the elements of x;. Then, the eigenvectors are calculated
of the covariance matrix C' and are sorted by the eigenvalues from highest to
lowest eigenvalue. The eigenvectors with the highest eigenvalue explain the
most of the variance in the data. The principal component y; is the linear
combination of the original variables and determined as follows.

Yi =a;1T1 + ...+ QinTp, (21)

where a;; is the 7 component in the eigenvector a; and x;,0 < i < n are the orig-
inal variables (after standardization). So the eigenvectors of the convariance
matrix determine the weights in the linear transformation. The eigenvectors
can therefore be used to interpret the principal components. If some elements
a;; are large in an eigenvector a; for a principal component y; then those ele-
ments are important in defining that principal component. In addition if the
correlation is positive and of the same magnitude then the elements in the eigen-
vector are positive and of the same magnitude.

There are now min(n,m) — 1 principal components and the number of dimen-
sion in the dataset can now be reduced to p dimensions by choosing the first p
principal components. How much variation in the data is kept is given by the
explained variance. The explained variance is calculated using the eigenvalues.
Let A, be the sum over all of the eigenvalues. Then the explained variance V;
of the principal component 7 is given by

Ai

V= 2L
W

If the sum of the explained variance of the first p principal components is for ex-
ample 0.95 that means that 95% of the variance in the dataset can be explained
by these principal components. When only the first two or three principal com-
ponents are chosen then the data can be plotted in a two or three dimensional
plot so that the data can be more easily visualized. More information about
how PCA works and its uses can be found in [1] and [2].

4.2 Rotation

When the scores of the principal components have intermediate as well as large
and small ones. Or when the scores of the principal components are all small
it can be can be difficult to interpret. If this happens for most of the principal
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components rotation may be a solution. One of the most used rotations is the
VARIMAX rotation which discussed and used in this report. The VARIMAX
rotation maximizes the sum of the variance of the squared loadings. The load-
ings are the eigenvectors multiplied with the squared root of the eigenvectors,

ie.,
loadings = eigenvectors x \/eigenvalues.

The goal of rotation is that each variable (species) is associated to one principal
component, i.e., the species have a high score for only one principal compo-
nent and low scores at the other principal components. An property of the
VARIMAX rotation is that the rotation is orthogonal and therefore preserves
an essential property of the PCA. In addition the explained variance of the
principal components also remains equal.
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5 Software

The programming language Python was used for the cluster analysis and the
principal component analysis. Python was chosen because it has several pack-
ages which make data analysis easier. In addition Witteveen + Bos has written
some functions in Python scripts which were used as a basis. The data analysis
can also be done in other software languages. Some software languages have
libraries that contain functions for cluster analysis and PCA which makes im-
plementation easier. Examples are Julia, R and Matlab.

In general the following packages were used:

(i) Pandas
The package pandas was used to read and manipulate the eDNA dataset.
The eDNA data that was used was contained in excel files.

(ii) NumPy
NumPy was used for several mathematical functions.

(iii) Matplotlib.pyplot
All of the plots for the data analysis were made using the package Mat-
plotlib.pyplot.

In addition some functions from Witteveen + Bos were used and adapted.
Namely, several function to prepare the data for analysis and delete samples
that contained less than 20.000 reeds. There were also some new functions writ-
ten. Among these function was a function that transformed the data according
the one of the transformations given in Section 2.3.

5.1 Cluster analysis

For the cluster analysis some additional packages were used. Namely,
scipy.spatial.distance in order to calculate the dissimilarity matrix. For the
linkage scipy.cluster.hierarchy was used. In addition some functions were used
and adapted from Witteveen + Bos to preform the final cluster analysis. In
order to compare the cluster results of the methods a couple of new functions
were written. This includes the function that compares two dendrograms with
a plot as given in Figure 10, and some functions that compare the results of the
methods as given in Section 6.2.

5.2 Principal component analysis

For the principal component analysis the package sklearn was used. Which con-
tained functions that were used to preform the PCA. Namely,
sklearn.decomposition.pca and sklearn.preprocessing.StandardScaler. From Wit-
teveen + Bos functions were adapted that perform the PCA for the eDNA
dataset with and without the Varimax rotation.
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6 Results cluster analysis

In this section the results of the cluster analysis for the eDNA dataset are
given. Their is no best recommended method for hierarchical clustering, and
which method preforms better than another method often depends on the data.
Therefore, we will test several methods to see which method provides the most
robust clustering. The dissimilarity coefficients Euclidean, Correlation, Bray-
Curtis and Jaccard will be used in conuction with the linkage methods Single,
Complete, Average, Weighted and Ward.

The eDNA dataset contains a lot species that are rare (around 2081 OTUs
that occur only in 5 samples of the total of 53 samples). Therefore the dataset
contains a lot of zeros and in this case when two variables (species) are zero
for both samples it does not mean that the samples are more similar. Bray-
Curtis and Jaccard both do not look at the OTUs that don’t occur in both
samples and are therefore useful for this kind of data set [5]. Correlation was
not recommended in [5] for comparison between samples, we do use it as as a
comparison because this method was used in a previous cluster analysis for the
eDNA dataset and therefore is used as a comparison to see if the other method
preform better or worse.

6.1 Cluster validation

A cluster algorithm will provide clusters of the data even when there are no
clusters in the data [4]. One method to validate a clustering result of a Hi-
erarchical clustering is the cophenetic correlation. The cophenetic correlation
measures the correlation between the original dissimilarity matrix, as calculated
in step one, with the cophenetic distance matrix. The cophenetic distance be-
tween two samples is the distance in the dendrogram when they are clustered
together. Consider the example of an dendrogram in Figure 5, the cophenetic
distance between sample 6 and 7 is around 0.8, since that is the distance when
they are first together in a cluster. When the cophenetic correlation is close to
one this means that the dissimilarity between samples is preserved after clus-
tering. When this is not the case it means samples in the same cluster are not
necessarily more dissimilar than samples in a different cluster.

For the eDNA dataset another two tests are performed. When more samples
are added to the eDNA dataset it will result in more OTUs and most of the
increase in OTUs will be OTUs that occur in only a few samples. When these
samples are added we do not want an entirely different result from the cluster
analysis. Therefore it will be checked whether or not the cluster analysis is the
same or similar when is is performed again using only OTUs that occur in at
least x4 samples. Another test is to perform the cluster analysis using a subset
of the samples of the eDNA dataset and check whether or not the samples still
cluster together the same.

6.2 eDNA clustering results

The dissimilarity methods Bray-Curtis, Jaccard and Correlation were used with
the linkage methods: Single, Complete, Average, Weighted and Ward. For Cor-
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relation and Jaccard the qPCR data will have the same result as the ratio.
Bray-Curtis and Euclidean will have a different results, will be tested with both.
For the qPCR the data was first transformed using the function log(x + 1), as
recommended by [3]. The one was added so that the variables that are zero in
the original data are again zero.

Without the log transform Bray-Curtis will partially cluster samples together
that have a similar amount of total biomass (per sample over all variables). For
example the sample WF.SNM.1823 with RW.VOL.1823 that have a 1.848 % 108
and 1.969 * 10® respectively. The total biomass of all the samples is between
8.235 % 107 and 1.099 * 10°. On the other hand the cluster DL.OMP.1823 and
SK.KRP.1823 will not form an immediate cluster as the total biomass differs a
lot (1.099  10% and 1.111 % 10® respectively). However these samples will form
a cluster when the log transformation is used.

Single linkage resulted in chaining for every dissimilarity coefficient. We can
therefore conclude that the data contains intermediate points and single linkage
is not a suitable method for finding clusters. There were however two outlier
detected using single linkage. The sample WD.PWT.1823 was considered an
outlier for all distance methods. In addition the sample RW.VOL.1819 was
considered an outlier for both Bray-Curtis and Jaccard.

6.2.1 Test: Cophenetic correlation

The cophenetic correlation for the dissimilarity methods can be seen in Ta-
ble 3. For all dissimilarity methods the Average linkage method gives the high
cophenetic correlation. The highest cophenetic correlation is when using the
Euclidean distance with average linkage and using the ratio data.

Table 3: Cophenetic correlation for all tested methods.

Single Complete Average Weighted Ward

Bray-Curtis (qPCR) 0.7 0.6 0.76 0.63 0.55
Bary-Curtis (ratio)  0.69 0.64 0.78 0.77 0.44
Jaccard 0.73 0.71 0.84 0.67 0.5

Correlation 0.65 0.73 0.79 0.78 0.49
Euclidean (qPCR) 0.85 0.73 0.87 0.83 0.53
Euclidean (ratio) 0.93 0.93 0.96 0.94 0.71

6.2.2 OTU occurs in at least =y samples

For this test the cluster result which was made using all the OTUs was compared
with the cluster result which was made using OTUs that occur in at least x;
samples (with 1 < 25 <15 ). The amount of OTUs deleted by this action for
some values of x5 can be found in Table 4.
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Table 4: Number of OTUs in dataset after deleting species that occur in less
then z, samples.

Number of OTUs kept % OTU kept Number of OTUs deleted

z5=0 2720 100 0

zs=5 639 24 2081
z,=10 253 13 2367
zs=15 238 9 2482

The comparison of the dendrograms of Bray-Curtis using average linkage
with and without the filter x5 =5 can be seen in Figure 10.

Cluster method: braycurtis_average log Cluster method: braycurtis_averagelog minx5
Cophentic correlation: 0.76 Cophentic correlation: 0.73
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Figure 10: Cluster results of Bray-Curtis with average linkage compared with
the results using the filter zs=5.

In addition the correlation coefficients between the cophenetic distance ma-
trix of the original dendrogram (without filter x5) and the cophenetic distance
matrix of the new dendrogram (with filter z;) were calculated. This was done
for values of x5 between 1 and 16. The results for all the dissimilarity coeffi-
cients with average linkage for the ratio data is given in Figure 11 and for the
gPCR data in Figure 12. The plots for all of the linkage methods are given in
Appendix A. Jaccard and Bray-Curtis using qPCR with the log transformation
in conjunction with average linkage provides the most consistent results. For
the Euclidean and Correlation dissimilarity the correlation coefficient decreases
rapidly when x4 increases.
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Figure 11: The correlations coefficients of the cophenetic distance matrix of the
original clustering with the clustering result using the filter 5. The data from
the ratio was used.

average linkage

09
= 08 Distance
5 methods
=] == braycurtis
% = poccard
g 07 —— correlation
5 = euclidean
e
i}
o 086
£
Q
o

05

04

2 4 6 8 10 12 14
minX

Figure 12: The correlations coefficients of the cophenetic distance matrix of the
original clustering with the clustering result using the filter 5. The data from
the qPCR was used together with a Log transformation.

6.2.3 Test: Subset of samples

In this case the results of the cluster analysis where all 53 samples are used are
compared with the cluster analysis where a subset of the samples are used (sam-
ples measured in week 23 and week 25). All distance coefficients in conjunction
with average linkage provided good results in the sense that the distance be-
tween samples using all samples was similar to the distance between samples
using only a subset of the samples. The result of the clustering of Bray-Curtis
using average linkage and with qPCR data and Log transformation is given in
Figure 13.
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Hierarchical Clustering Dendrogram:
Used Method = braycurtis & average, Cophenetic correlation = 0.88

WESNM1BZIW 1

pr— | }

NZPWM1EZE
RWVOL1EZIW
WO 183w
x RWVEM 182w
3
-]
£
o rzLemtsan
=3
E
1
@ wpsow.te2sw
KRR 18280
oLOMP 1823w
WosEU T2
WD 1E28w 1
—— |
00 01 02 03 04 05 06

distance

Figure 13: Bray-Curtis using average linkage and with qPCR data and Log
transform. Only samples taken in week 23 and 25 of the year 2018 were used.

6.2.4 Comparison cluster results

For a final test of the clustering results of the methods we look at which samples
form a clusters. From a ecological point of view we expect that some samples will
form a clusters. For example samples that are taken from the same location but
at a different data. The method Bray-Curtis with average linkage using qPCR.
with the Log transform provided the best clustering, the resulting dendrogram
can be seen in Figure 14. The results of the other clustering method can be
found in Appendix B.

Hierarchical Clustering Dendrogram:
Used Method = braycurtis & average, Cophenetic correlation = 0.76
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Figure 14: Bray-Curtis using qPCR data and average linkage, with all samples.
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6.3 Discussion results

Using average linkage all dissimilarity coefficient had a high cophenetic correla-
tion. The highest cophenetic correlation was with the Euclidean distance using
the ratio data. With the filter of only using OTUs that occur in at least x,
samples the dissimilarity coefficients Jaccard and Bray-Curtis using qPCR, and
Log transform with average linkage provided the best results. For the test using
only a subset of the samples all dissimilarity methods scored well with aver-
age linkage. Overall Bray-Curtis with average linkage using qPCR with the log
transformation provided the most consistent results.
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7 Results PCA

Before we can use the data from the Universal primer of the eDNA dataset we
use a transformation as described in Section 2.3. This is because PCA detects
linear relationships and the species tend to have exponential growth [3]. The
Hellinger and the Log transformation was used. The Hellinger transformation
was used on the dataset containing the number of reeds of an OTU per sample.
The Log transformation was used on the qPCR data as described in Section 2.4.
The Hellinger transformation resulted in a slightly higher explained variance
over the first two principal components. Additionally the Hellinger transfor-
mation was recommended by [8]. Therefore for further analysis the Hellinger
transformation will be used.

7.1 Options data filtering

As mentioned before the eDNA dataset contains a lot of rare species. Namely,
2081 of 2720 species only occur in a few samples. When a PCA is performed a
lot of the variation will be explained using the rare species. There are several
options for this problem. The first is to group the data by taxonomic level. By
this we mean that the data is grouped by the species name of that level. As an
example consider the taxonomic level of superkingdom. This level consists of
Archaea, Eukaryota, Bacteria and unknown OTUs in this dataset. The OTUs
that fall under Bacteria are grouped together in a single row and the ratio or
biomass within a sample is added together. When a species is unknown at that
particular taxonomic level it will be grouped together with the species that are
also unknown. This unknown group will be deleted as it consists of species that
may have nothing in common. The amount of species that are unknown at a
taxonomic level and the dimensions the data is reduced to for every taxonomic
level is given in Table 1.

Another reason to group by taxonomic level is that we are also interested in
how the groups of species at a taxonomic level interact with each other. The
disadvantage of this grouping is that it relies a lot on the reference database.
Some species are unknown in this dataset or listed wrong which influences the
result. For the analysis of the PCA we will only consider the following taxo-
nomic levels: Phylum, Class , Order and Genus. As for the other taxonomic
levels to much of the species are unknown at this level. Therefore a lot of the
data is lost. When this changes in the future the other taxonomic levels can
also be considered.

As we also want to look at the level of OTU we need an additional filter for the
data. One of these filters is that species that occur in less than xs samples will
be dropped. This filter was also used for the cluster analysis in Section 3. The
results of this filter for several values of z, will be shown in Section 7.3.

Another option is to use only the top x; species that have the highest sum
over the samples (after the transformation). This filter will also be used for
the grouping by taxonomic level as these also still contain a large number of
dimension. The results of this filter for several values of z; will be shown in
Section 7.3.
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7.2 Analysis PCA figure

The results of the PCA can be shown in a plot. The first two principal com-
ponents are combined in a 2D plot, the third and fourth are also in a 2D plot
and so on. However as mentioned before for the analysis we will only use the
results of the taxonomic levels: Phylum, Class , Order and Genus. In the plot
the samples are plotted as points and the ten species with the highest princi-
pal components are plotted as vectors of the two principal components. The
number ten is chosen arbitrarily. For more than ten species the plots will be
less clear when looking at the vectors of the species. In this report the color of
a sample depends on which cluster it is in based on the cluster analysis using
Bray-Curtis with average linkage. However the colors can also be determined
by the results of the other method of the cluster analysis, by the date of when
the sample was taken or the location of the sample. In Figure 15 an example

of a plot of the PCA is given. In this case only the species that are known on
Phylum level is used.
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Figure 15: Plot of the samples using the first two principal components at
Phylum level. For this plot no filter was used.

The vectors of the species that are plotted can also be seen as an axis in the
sense that when a sample is close to that vector the sample contains a lot of
that species in comparison to other samples.

7.3 Application to dataset

First a PCA was done for the taxonomic levels: Phylum, Class, Order, genus and
additionally at OTU level. With the exception of Phylum and Class the samples
are mostly clustered together especially at OTU level as seen in Figure 16. The
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reason for this is that the first two principal components only explain around
11% of the variance. Additionally most of this variance is explained by a species
that only occurs in a few samples (in this case the blue and green samples). An
overview of the explained variance for the taxonomic levels without using an
additional filter is given in Table 5.
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Figure 16: Plot of the samples using the first two principal components using
data at OTU level. The Hellinger transformation was used.

Table 5: Explained variance per taxonomic level when using no additional filters.

Taxonomic level Number of principal com- sum of the explained vari-
ponents needed to explain ance for the first 10 prin-
around 75% of the vari- cipal components

ance

Phylum 14 for 76% 63%
Class 21 for 76% 53%
Order 22 for 76% 49%
Genus 24 for 76% 45%
OTU 24 for 75% 40%

7.3.1 OTU occur in at least x, samples

At OTU level using the filter of using only OTUs that occur in x5 = 5 samples
increases the explained variance of the first two principal components. Addi-
tionally the samples are more spread out as can be seen in Figure 17.
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Figure 17: Plot of the samples using the first two principal components at OTU
level. The Hellinger transformation was used. With the filter of using only
species that occur in at least x5 = 5 samples.

7.3.2 Filter using top x; species

The other filter over the data was using only the top z; species over all samples.
The explained variance using only the top z; species for x; = 10,20, 40 is given
in Table 6.

Table 6: Sum of the explained variance for the first 10 principal components
with several values of xy.

Taxonomic level s z; =10 zy =20 xy =40
Phylum 100% 8% 78%
Class 100% 83% 64%
Order 100% 85% 71%
Genus 100% 84% 74%
OTU 100% 85% 73%

When performing a PCA with only the top z; species the explained variance
is much higher. This can also be seen in Figures 18,30 and 31 as the samples are
more spread out. Do note however that is done on a subset of the data. Using
filter for the top x; species for x; = 20, x; = 40 clusters stay mostly together on
the first 6 principal components, for the principal components 7,8,9 and 10 the
clusters are more mixed, although these principal components do not explain a
lot of the variance so that is to be expected.
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In addition we wanted to see if there are species which are characteristic for
a cluster. This is the case for some species namely for the taxonomic level class
we have that cluster 8 stays around insecta for x; = 10,z; = 20 and z; = 40.
In addition cluster 10 is split around spirotrichea and cyptophagia in the plot
of the first two principal components. This can also be seen in Figure 18.
For the taxonomic level genus we see that cluster 9 is around thermostilla for
x; = 10,24 = 20 and z; = 40. This can also be seen in Figure 30. For phylum we
have that cluster 11 and 14 are around cyanobacteria for x; = 10 and x; = 20
which can be seen in Figure 31.
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Figure 18: Plot of the samples using the first two principal components using
data for Class level with x;=40.

7.4 PCA scores

Another thing that can be analyzed are the scores of the principal components.
Which can be used to interpret a principal component. When the coefficients
for a principal component are all the same size that principal component can
be seen as the average of all the variables (species). It can also occur that
only a few are large and the rest are small, the principal component can be
easily interpreted in that case, namely that the variation in that component is
mostly determined by those variables (species). When one species scores high
on a principal component for example 0.9 and another species around -0.8 that
means that these two species are negatively correlated, i.e., samples that one
species do not contain the other species. The scores of the species with the
highest values for the principal components for Phylum level without any filters
is given in Table 8.
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Table 7: PCA scores of three species and the sum of the explained variance for
the first 10 principal components for Phylum level.

principal explained Streptophyta Bacillariophyta Colponemidia
component variance

1 0.19 -0.03 -0.03 0.02
2 0.11 0 0.01 -0.04
3 0.09 -0.02 -0.05 -0.01
4 0.09 -0.01 0.09 0.03
5 0.07 -0.02 0.26 -0.07
6 0.06 -0.02 0.01 0.13
7 0.05 0 0.08 -0.36
8 0.03 -0.08 -0.05 0.02
9 0.03 -0.09 -0.23 0.09
10 0.03 -0.07 -0.01 -0.54

The PCA scores for the other taxonomic levels, with and without filters,
are also difficult to interpret as the scores also contain only low values that are
between -0.3 and 0.3.

7.5 Results Rotation

We perform a rotation on the data with the filter that only the top z; species
are used. Since in that case the explained variance of the principal components
is high and the goal of the rotation is to find important species that explain a
lot of the variation. For z; = 40 we have that 70% of the variance is explained
by the first 10 principal components so a good option would be to rotate to 10.
For z; = 20 we have that 70% of the variance of the data is explained by the
first 7 principal components so a good option would be to rotate to 7.

The plots of the data using the VARIMAX rotation are not as conclusive as
the previous plots, i.e., there are no particular species that are characteristic
for a cluster. The plots for taxonomic level Class and for OTU are given in
Figure 19 and Figure 20 respectively.
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Figure 19: Plot of the samples using the first two rotated principal components.
The Hellinger transformation was used.
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Figure 20: Plot of the samples using the first two rotated principal compo-
nents.The Hellinger transformation was used.

The scores of the principal components are easier to interpret as there are
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some high values and some low values for a species on a principal component.
Since most species have a high value on one principal component and low values
on the rest of the principal components. The first principal component is mostly
determined by Arthropoda, Planctomycetes, Acidobacteria and Phaeophyceae.
In addition the second principal component is determined by the Proteobacteria
and the Cyanobacteria.

Table 8: PCA scores of three species and the sum of the explained variance for
the 7 rotated principal components for Phylum level.

Principal  explained Proteobacteria Bacteroidetes Actinobacteria Arthropoda

compo- variance

nent

1 0.2 -0.25 0.02 0.25 0.75
2 0.15 0.76 0.45 0.37 0.13
3 0.12 0.08 0.21 -0.15 -0.04
4 0.13 0.08 -0.49 -0.01 0.18
5 0.14 -0.08 -0.28 0.12 0.15
6 0.12 -0.18 -0.02 -0.68 0.1
7 0.13 -0.01 0.25 0.09 0.13

7.6 Conclusion

For the PCA we can conclude that cluster stay mostly together. The filters of
using the top 20 and top 40 species (z; = 20 and z; = 40) gives results that are
the most similar to using no filter. In addition there are some species which are
characteristic for a cluster it is not yet known however if these species have any
ecological importance. However it is difficult to interpret the principal compo-
nents as even after using the filter of x; the PCA scores are between -0.3 and
0.3. therefore it is difficult to interpret the principal components.

The VARIMAX rotation was used in order to better interpret the principal
components. For the rotation we found that rotating does help to interpret the
principal components. Most species have a high value on one principal com-
ponent and low values on the rest of the principal components. However it is
not yet known if these species have any ecological importance. In addition after
rotation the clusters are less clear in the plots for most of the taxonomic levels.
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8 Conclusion/Discussion

We used the unsupervised learning methods: cluster analysis and principal com-
ponent analysis, to analyze the eDNA dataset. This was done to check whether
or not the eDNA profiles of the water samples could be used to categorize the
dataset. Namely, when this is the case this gives more confidence that the eDNA
profiles can be used to profile an water sample.

For cluster analysis the result was the samples that were taken from the
same location but at a different data would be in a cluster together. This gives
some confidence that the clustering result is not a random clustering. Several
methods for cluster analysis were described and tested to see if they gave consis-
tent results when using a subset of the data. Overall Bray-Curtis using qPCR
with the log transformation and average linkage provided the most consistent
results. In the plots from the principal component analysis the biggest three
clusters were also clustered together for most of the principal components. As
this was done on several taxonomic levels it gives shows that the clustering is
not random.

In addition we wanted to use principal component analysis to analyze the
data to see if there are species (on any taxonomic level) that are characteristic to
some clusters. There was an additional filter on the data so that the dimensions
of the dataset were reduced. The clusters were still visible for these subsets.
In addition it was found that there are some species which are characteristic
for a cluster it is not yet known however if these species have any ecological
importance. It was difficult to interpret the principal components of the PCA
because the PCA scores were low for all the species. As an option we used
rotation to better interpret the principal components. We found that did help
to interpret the principal components as most species have a high value on one
principal component and low values on the rest of the principal components.
However the clusters were less clear in the biplots for most of the taxonomic
levels for the rotation.

For future analysis it would be recommended to also look into supervised
learning methods when there is more data available.
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Appendix A: Figures correlation coefficients

The correlation coefficients between the cophentic distance matrices of the orig-
inal dendrogram (without filter z:5) and of the new dendrogram (with filter x).
The results for all the dissimilarity coeflicients with average linkage for the ratio
data is given in Figure 21 and for the qPCR data in Figure 22.
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Figure 21: The correlations coefficients of the cophentic distance matrix of the
original clustering with the clustering result using the filter 5. The data from
the ratio was used.
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Figure 22: The correlations coefficients of the cophentic distance matrix of the
original clustering with the clustering result using the filter 5. The data from
the qPCR was used together with a Log transformation.
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Appendix B: Clustering results

Hierarchical Clustering Dendrogram
Used Method = euclidean & average, Cophenetic correlation = 0.96
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Figure 23: The clustering result using Euclidean distance with average linkage.

The data from the ratio was used.

Hierarchical Clustering Dendrogram
Used Method = euclidean & average, Cophenetic correlation = 0.87
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Figure 24: The clustering result using Euclidean distance with average linkage.

The data from qPCR was used together with the Log transformation.
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Hierarchical Clustering Dendrogram:
Used Method = jaccard & average, Cophenetic correlation = 0.84
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Figure 25: he clustering result using Jaccard dissimilarity with average linkage.
The data from the ratio was used.
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Figure 26: The clustering result using correlation dissimilarity with average
linkage. The data from the ratio was used.
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Hierarchical Clustering Dendrogram:
Used Method = braycurtis & average, Cophenetic correlation = 0.78
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Figure 27: The clustering result using Bray-Curtis dissimilarity with average
linkage. The data from the ratio was used.

Hierarchical Clustering Dendrogram
Used Method = braycurtis & average, Cophenetic correlation = 0.76
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Figure 28: The clustering result using correlation dissimilarity with average
linkage.The data from qPCR was used together with the Log transformation.
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Appendix C: Additional PCA figures

PCA based on phylum
using hellinger transformation
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Figure 29: Plot of the samples using the first two principal components using
the Hellinger transformation for Phylum level.
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PCA based on genus
using hellinger transformation
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Figure 30: Plot of the samples using the first two principal components using
data for Phylum level with z; = 20.
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Figure 31: Plot of the samples using the first two principal components using
data for Phylum level with z; = 20.
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