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Abstract

In this paper the cosmological theory of inflation are explored. The initial problems
that gave rise to the idea are discussed as well as the solution inflation provides. In

particular this paper looks at the single field slow-roll model of inflation and its
consequences and predictions. Slow-roll inflation is a field theory in which the inflaton
field φ drives inflation. The precise evolution of this field is determined in large part by
the connected potential, which dominates over the kinetic terms of the action. For the
slow-roll model two specific parameters are introduced, ε and η. These parameters will

guarantee that the model considered follows slow-roll conventions and inflation lasts
long enough to solve the problems it was introduced for. Perturbations of single-field

theory are discussed and worked through. These perturbations on a quantum scale are
the reason for primordial fluctuations, which are scaled up due to inflation to allow for



observables like large-scale structure and temperature anisotropies in the CMB. Higher
order perturbations and non-Gaussian effects are also explored, which place other

limitations on the models. These ideas are presented and worked out explicitly in an
example model in a case study. Finally the Hamilton-Jacobi formalism is considered.
This formalism makes the same predictions to first order but is inherently more exact

and gives rise to attractor behavior of the fields. The differences between regular
slow-roll and the Hamilton-Jacobi formalism are discussed regarding non-Gaussian

terms and the plausibility of measurable differences.
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1 Introduction

The Hot Big Bang model, first considered by Lêmaitre in 1927 is currently the most
widely accepted theory of the early universe [11]. In this model the universe is traced
back to an incredibly dense and hot state at early times. From that state the universe
expanded and cooled, to evolve eventually to the universe we live in. While this model
made some predictions that turned out to be correct, such as the existence of a cosmic
microwave background, it also introduced a few problems that required a solution. The
most prevalent at the time of writing is the theory of inflation. However, inflation is
not without its own problems, such as requiring specific conditions to be met and the
existence of an initial singularity at which physics fails, limiting its predictive power at
the very earliest times of the universe. A few different solutions have been proposed,
such as string gas cosmology and matter bounce [5]. The early universe is still an active
area of research and hence an interesting topic to investigate. In this paper I will explore
a model of inflation, the single field-slow roll model, and how it solves these problems,
as well as the predictions it makes and the triumphs it has, to explain why it is now the
most prevalent theory of the early universe. I will be considering perturbations in the
field and how they can be measured, including non-Gaussian terms. Then I will look
into a specific form of the model, the Hamilton-Jacobi Formalism to discuss how these
non-Gaussianities might translate to this formalism and what differences might pop up,
as well as the size of these differences and whether this formalism would be the next
breakthrough in the field.
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2 Background

2.1 CMB

In 1965 Arno Penzias and Robert Wilson discovered a background signal in on their
antenna telescope. This background was consistent in all directions and whatever they
tried, it would not go away. This background was the first reading of the Cosmic Mi-
crowave Background (CMB). This background radiation was measured and it was found
to be fitted by an almost perfect blackbody spectrum with a temperature of around
2.73K [11]. This is the radiation left over from the very first moments of the universe.
The almost perfect blackbody distribution implies that the source of this radiation was
almost certainly thermal radiation from a blackbody. In the Big Bang model, early
universe all the matter would have been compressed in a much smaller volume and con-
sequently incredibly hot. This hot and dense matter produced blackbody radiation from
its heat. This would explain the existence of this radiation. The other prevalent theory
at the time, the steady state universe, which claimed that the universe existed forever
and has always been expanding could not adequately explain the radiation. This discov-
ery made the Big Bang theory as prevalent as it is now. Even though the radiation would
have been present since the very early universe, that is not the era from which it can be
detected. In the early phases of the universe, it was too hot for the electrons and the
atoms, or before that the quarks to bond. This means the universe was not electrically
neutral and since photons interact with charges, they were scattered continuously. The
universe was essentially opaque, no light could pass through. As the universe cooled
the electrons could bind to the nuclei, in a process known as recombination. This made
the universe neutral and transparent for photons. This is the earliest moment we can
look back to, around 250.000 years after the the beginning of the universe [11], but it
still carries the fingerprint of the earliest periods of the universe when it was emitted,
making it incredibly valuable for research into early-universe behaviour like inflation.
The Universe at the time the CMB was emitted was certainly much hotter than 2.73K,
even though that is the temperature measured today. Because the expansion of the
universe the photons become red-shifted, their wavelength increases as the universe ex-
pands. This causes the photons to lose energy and shifts the spectrum, such that it looks
as if the original blackbody that emitted the radiation was much cooler.
As it turns out, the radiation was not exactly isotropic, there were small temperature
differences on the order of a few mK. A measurement of these anisotropies was done in
1992 by NASA [6] and later improved by WMAP [7]. A skymap made using the data of
the WMAP programme showing the temperature anisotropies of the CMB is presented
in Figure 1. The importace and possible cause of these anisotropies will be adressed
later in this paper.
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Figure 1: A skymap of the temperature anisotropies in the CMB based on the WMAP
and PLANCK PR2 data,

2.2 Technical background

Before treating inflation, first a basis of cosmic dynamics should be laid down. This
is a technical section containing the equations that will be used throughout the rest of
the paper, hence a refresher of these principles will be provided here. In all equations,
the convention c = 1 will be used and for some functions, on subsequent uses, their
dependence on variables will be suppressed. four very important equations are the
Friedmann equations, the Friedmann-Robertson-Walker (FWR) metric and the fluid
equation. These require general relativity to be derived in their most complete form,
however once done their simple form easily allow for their using without the knowledge
of general relativity. The FWR metric is defined as

ds2 = −dt2 + a(t)2(
dr2

1− kr2
+ r2(dθ2 + sin θ2dφ2)) (1)

Which means that in a flat space-time all distances are multiplied by a factor a(t). This
is called a comoving frame, in which spatial components are scaled with the expansion
rate of the universe. Such that even as the universe expands, the variables in this frame
stay scaled properly. The metric can also be written more concisely as

ds2 = gµνdx
µdxν (2)

g is the metric, defined by (-1,a2,a2,a2) and The Friedmann equations are given by [11]

H(t)2 =
8πG

3
ρ(t)− k

R2
0a(t)2

(3)
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where k is the curvature of space, ρ(t) is the energy density of the universe, R0 is the
radius of curvature of the universe, a(t) ≡ 1 at t = t0 and H is the Hubble constant
H ≡ ȧ

a . Usually this equation is normalized with 8πG = R0 = 1
Written in terms of the mass density ρ the Friedmann equation becomes:

ρ =
1

8πG
3H2 +

3k

R2
0a(t)2

The second equation is

ä

a
=
−4πG

3
(ρ+ 3p) =

−1

6
(ρ+ 3p) (4)

Where p is the pressure exerted by the contents of the universe. This pressure can be
represented as P = ωε, where ω is a dimensionless number and depends on the contents
of the universe.[11]. ω = 0 for matter, 1

3 for radiation and -1 for dark matter. This
means that all the pressure generated by dark matter is exactly opposite to its energy
density. Equation 3 and 4 imply that

ρ̇+ 3H(ρ+ P ) = 0 (5)

Can be rewritten as [11]
1

ρ
dρ = −3(1 + ω)

1

a
da

Which leads to
ρ(a) = ρ0a

−3(1+ω) (6)

Substituting this into equation 3 and using H = ȧ
a it follows that

ȧ2 ∝ a−(1+3ω) (7)

Then assuming a(t) follows a power law: a ∝ tx, ȧ ∝ t2q−2. This can be solved for x
using equation 7 to get

a(t) ∝ t2/(3+3ω) (8)

The fluid equation can be derived by considering a sphere of radius R, expanding with
the universe, such that R = a(t)r, where r is some initial constant radius[11]. The
volume of this sphere is given by

V =
4π

3
r3a3

As the universe expands, the volume of the sphere changes as

V̇ = 4πr3ȧa2 = 3V
ȧ

a
= 3V H
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The energy content of the sphere is given as E = V ρ. The change in the energy density
is then

Ė = V (ρ̇+ 3Hρ)

The first law of thermodynamics is

dQ = dE + pdV

In a homogeneous universe, there is no heat flow, dQ = 0 this is called adiabatic expan-
sion. Dividing by dt, the first law can also be written as

Q̇ = Ė + PV̇ = 0

Substituting the previous equation yields

V (ρ̇+ 3Hρ+ 3HP ) = 0

Or
ρ̇+ 3H(ρ+ P ) = 0 (9)

This is the fluid equation, which looks exactly the same in general relativity as well.
Inflation is inherently subject to general relativity and is therefore a field theory. In a
field theory the action and Lagrangian determine the dynamics of the system, with

S =

∫
d4xL

The integral is over d4x, which indicates 3+1 dimensional space. Most variables have
indices, either Greek or Roman indices. An index up indicates all positive values for
spatial components and an index below indicates negative spatial components. Greek
indices like µ or ν range from 0 − 3, where 0 is reserved for the time value. Roman
indices like i or j range from 1− 3, so run over spatial values only. Indices on either side
of an equation should match and contracted indices, with one up and one down create
a Lorentz-invariant variable, that is consistent with special relativity.
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3 Reasons for inflation

The idea of inflation was initially coined as a solution to a few lingering problems in
cosmology, that were difficult to explain and required significant fine-tuning of free pa-
rameters [8]. The new theory of inflation solved these problems without requiring any
fine-tuning of parameters. A universe that started out with a general set of initial con-
ditions could grow into the universe as we measure it today. These problems that had
to be solved by inflation are known as the horizon problem, the flatness problem and
the monopole problem.

3.1 The horizon problem

One of the foundations that modern astronomy rests on is the idea that the universe
is homogeneous and isotropic, the idea that there is no preferred location in space and
no preferred direction to look in. A good example of this is the cosmic microwave
background, the CMB. This radiation has a certain temperature, which is measured to
be approximately constant at 2.73K, with some very small anisotropies [15]. However,
that could not be explained using the models at the time. Estimating the distance the
photons we can observe now travelled can be done using the proper distance, the distance
light travels in a certain time, but where the expansion of the universe is also taken into
account. The proper distance takes the form

dp(t0) =

∫ t0

tls

1

a(t)
dt =

∫ t0

tls

dτ (10)

Where t0 is the current time and tls is the time at which the photons were emitted
and a(t) is the expansion rate of the universe at time t and τ is the conformal time.
These values can be computed and gives a proper distance, of 0.98 ∗ dhor. dhor is the
horizon distance, the distance at which light is too far away to have reached us. The
horizon distance is the distance at which two points were in causal contact between the
time t and a later time t’. The horizon distance is also referred to as the comoving
horizon. This implies that two opposite points in the sky, are at a distance of 1.96
horizon distances away and are unable to exchange any information with each other.
They should not necessarily have the same temperature if they were not in contact with
each other. It can be shown that this would be true for points at an angular separation
of only 1.1 degrees for a total of 1083patches[8]. This should mean that every patch of
sky should have a different temperature to a patch approximately 1 degree away. The
CMB measurements have shown that this is not the case, not just one or two patches
have the same temperature, but the whole sky. At some point in time, these had to have
been in contact and were separated across the universe to allow for this.
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3.2 The Flatness problem

In Einstein’s theory of general relativity, space-time itself can have an intrinsic geometry.
That geometry determines properties such as the expansion and evolution of the universe.
There are three main types of geometry space can have: closed, flat or open. These are
purely geometric, but in 4-dimensional space time, the metric includes time, which leads
to the three different space-times: De-sitter, Minkowski and anti-De-Sitter (ADS) space.
When measured, the curvature of space-time seems to be almost non-existent. That is
not a problem in itself, but if traced back in time, it becomes even more strange. in
equation 3 we can define the critical density as density at which the curvature is 0. The
equation then becomes

H(t)2 = 8πGρcrit (11)

ρcrit =
3H(t)2

8πG

Then we define a parameter Ω, the density parameter as

Ω =
ρ

ρcrit
=

3H2 + 3k
R2

0a(t)2

3H2

|1− Ω| = − k

R2
0a(t)2H2

(12)

|1− Ω| is a measure of the curvature of space, with 1 being very curved and 0 being flat.
It is measured to be [11]

|1− Ω| ≤ 0.005

The curvature of space is quite small now, but it can easily be traced back in time using
these equations. (aH)−1 = 1

ȧ . The time dependence of a is given in equation 8. For

matter a ∝ t1/3 and for radiation a ∝ t1/2. Taking time derivatives shows that for matter
ȧ ∝ t−2/3 and for radiation ȧ ∝ t−1/2. This means that equation 12 increases in time.
As we run time backwards, this value must have been even smaller than it is now. In
the most extreme case, at the Planck time |1− Ω| ≤ 10−62. While it is possible that this
could be merely a coincidence, a mechanism that would make any arbitrary geometry
flat as time passes would be much more likely.

3.3 The Monopole problem

When inflation was initially proposed it was mainly meant as a solution to the horizon
and flatness problem [8]. However, inflation turns out to be a solution to the monopole
problem as well. In the early moments of the universe energies were very high, so
high that the fundamental forces could unite. The weak and electromagnetic force
unite at energies of approximately 1 TeV and the strong and now united electroweak
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force would unite at energies of 1012 TeV. When they decouple at lower temperatures,
there is a sudden drop of symmetries in the system, leading to topological defects.
It is theorized that zero-dimensional defects would be magnetic monopoles [11]. These
monopoles would have energy densities of 1094 TeV m−3 and would dominate the energy
density of the universe after only 10−16 seconds. That would imply magnetic monopoles
would be very abundant throughout the universe, but none have been found yet. The
upper bound on their density parameter Ω is Ω < 5 ∗ 10−16. Some mechaninism was
needed to suppress the density of these monopoles during the evolution of the universe,
to the point where they are now virtually undetectable. It should be noted that altough
several theories require magnetic monopoles, that is the only basis for their possible
existence and it is possible they do not exist, though that does not invalidate inflation.
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4 Inflation solutions

Inflation requires a positive acceleration in the expansion rate of the universe, ä > 0.
Substituting that into equation 4 means that a negative pressure is required, P < −ρ

3 .
Combining equation 3 and equation 4 and integrating gives the expansion rate of the
universe

a(t) ∝

{
t2/3(1+ω) ω 6= −1

eH(t−ti) ω = 1

or

a(t) ∝


t2/3(1+ω) t < ti

eH(t−ti) ti < t < tf

eN t2/3(1+ω) tf < t

Where inflation started at time ti and ended at time tf . Assuming that the expansion
rate is rather large, the ratio is given by

a(tf )

a(ti)
= eN (13)

where N is the number of e-folds which is given as N = H(tf − ti).

4.1 The horizon problem

The proper distance in equation 10 can be modified to give the horizon distance, by
scaling it with the expansion rate of the universe

dhor = a(t)

∫ t

0

1

a(t)
dt (14)

Which can also be written as

dhor =

∫ a

0

1

Ha2
da =

∫ a

0
d ln a

1

aH
(15)

Expressing the horizon distance in an integral over 1
aH , which is known as the comoving

Hubble radius. The early universe was radiation dominated [11] with a time dependence
of a(t) ∝ t1/2. This means the horizon distance at the start of inflation can be written
as

dhor(ti) = a(ti)

∫ ti

0

1

a( tti )
1/2

dt = 2ti

Assuming ai and ti are constant in this period of time. at the end of inflation this was

dhor(tf ) = a(ti)e
N (

∫ ti

0

1

a( tti )
1/2

dt+

∫ tf

ti

1

aeHi(t−tf )
dt)
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The first term has been evaluated already. The second terms evaluates to∫ tf

ti

1

aeHi(t−tf )
dt =

1− e−N

aiHi

assuming am explicit time dependence only.eN is presumed to be quite large, N ≈ 60 to
solve the flatness problem [9], so this simplifies to

dhor = eN (2ti +
1

Hi
) (16)

If we make a few very rough estimates, that N ≈ 60, and 1
Hi
≈ ti this means that the

horizon grew from 10−27m at ti = 10−36s to 15m [11]. This shows that two points that
were very closely packed and in causal contact could be blown up to sizes many orders
of magnitude larger, solving the horizon problem. In Figure 2 a visual representation of
this is given.

Figure 2: A visual representation of the solution of the horizon problem. Points above
the blue line are causally connected. Inflation rapidly pulled them apart, after which
due to the passing of time, they are only causally connected again much later.

4.2 The flatness problem

To solve the flatness problem consider equation 12. If the Hubble constant is assumed
to be constant the equation takes the form

|1− Ω| ∝ 1

a(t)2
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During inflation the expansion rate of the universe is exponential, this equation becomes

|1− Ω| ∝ 1

e2N

Whatever the curvature was at the beginning of the universe, it drops exponentially,
causing it to approach a value of zero very quickly. This mechanism would make any
arbitrary curvature flat after inflation, explaining our observations, without the need to
fix initial condition.

4.3 The monopole problem

The expansion rate of the universe is given by a(t). This is the radial expansion rate.
Hence, the volume of the universe expands at a rate of a(t)3. During inflation the
volume grows as e3N . If magnetic monopoles cannot be created or destroyed the number
density and energy density of magnetic monopoles evolves as nie

−3N . Assuming an initial
number density of 1082m−3 and 65 e-folds, the number density drops to 0.002m−3 and
including the expansion of the universe after inflation this drops further too 10−83m−3

[11]. This density is much smaller than the upper bound on the density measured, thus
explaining why magnetic monopoles have not been detected.
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5 The slow roll model

The slow roll model of inflation is a field theory with a single scalar field φ. φ is called
the inflaton field and is the field that drives inflation. This can be used in Einsteins
equations to find the action

S =

∫
d4x
√
−g(

1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)) (17)

This action can be written as the sum of two terms

S = SGR + Sφ

Where R represents the Ricci tensor, a tensor often used in General relativity. It will
not be used in the following equations. With the action, the Energy-Momentum tensor
for the field φ can be constructed, using the action for φ. The explicit derivation can
be found in the Appendix. The results of these calculations are equations detailing the
pressure P and energy density ρ as a function of φ.

ρ =
1

2
φ̇2 + V (φ) (18)

P =
1

2
φ̇2 − V (φ) (19)

The equation of state corresponding to these parameters is

ωφ =
p

ρ
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
(20)

The equation of state ω has been used a few times before. This has been measured for
various different components of the universe. ω = 0 for matter, 1

3 for radiation and −1
for dark matter. This can eliminate the dependence of either P or ρ from an equation
by substitution at the end, simplifying some equations.

5.1 Equations of dynamics

The values of ρ and P can be substituted into equation 4. Inflation requires a positive
acceleration, ρ+ 3P < 0. This gives the relation

2φ̇2 < V (φ)

To achieve inflation, the potential has to dominate over to kinetic term of the field. This
also leads to the relation between ρ and P that ρ ≈ −P .
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Figure 3: An example of of the potential. The field rolls into the well created by the
potential, which needs to dominate over the kinetic term to make inflation possible.

The fluid equation, equation 9 can be worked out explicitely using

ρ̇ = φ̈φ̇+ V̇

Substituting gives

φ̈
dφ

dt
+
dV

dt
+ 3H

d2φ

dt2
= 0

Dividing out dφ
dt

φ̈+ 3Hφ̇+
dV

dφ
= 0 (21)
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This equation governs the evolution of the field. It looks remarkably similar to the equa-
tion of motion in regular Newtonian mechanics for the variable φ. The term proportional
to φ̇ can be seen as the friction term, which is usually proportional to the velocity. The
term 3H is therefore known as the Hubble friction [9] Another important equation comes
from the flatness problem, where it was shown that

H2 = 3ρcrit

Which leads to the relation

H2 = 3(
1

2
φ̇2 + V (φ)) (22)

This is not a groundbreaking equation like some of the previous ones, but this is a useful
equation for its simplicity. It relates the Hubble parameter to the energy density directly,
and thus to φ̇. This allows for some useful substitutions in some cases.

5.2 Slow-roll parameters

The second Friedman equation, equation 4 can be written differently, introducing a new
variable ε. Using H = ȧ

a , Ḣ = ä
a2
−H2. or

ä

a
= H2(1− ε) (23)

giving

ε =
−Ḣ
H2

(24)

Inflation requires a positive acceleration, meaning ε < 1. That is the first slow-roll
parameter. In De-Sitter space ρ ≈ −p means ε→ 0, which gives a stronger ε� 1. With
the definition earlier, N = Ht, so dN = Hdt, equation 24 can be written as

ε = −dln(H)

dN
(25)

Inflation can last as long as this is satisfied and stops at the moment ε = 1. Inflation
needs to last long enough if it is able to solve the flatness, horizon or monopole problem,
around 60 e-folds, requiring ε to be small during that time. To ensure that holds, a
second slow-roll parameter has to be introduced: η. Because inflation requires that
φ < V (φ). Sustaining this equation requires the field φ to evolve very slowly, to catch
up with the potential relatively late. This implies that, using equation 21, that the

contribution from the acceleration must be very small:
∣∣∣φ̈� Hφ̇, V (φ)

∣∣∣. The slow roll

parameter η fixes this condition:

η =
−φ̈
Hφ̇

< 1 (26)
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Often, the slow-roll parameters are expressed in terms of the potential [9]:

εv =
M2
pl

2
(
V,φ
V

)2 (27)

ηv = M2
pl(
V,φφ
V

)2 (28)

Where M2
pl is the reduced Planck mass, also written as Mpl =

√
mp
8π which is usually

normalized to 1 and the comma in the subscript denotes a partial derivative, with re-
spect to the other subscript. These are not exactly the same as the previous slow roll
parameters, but are related via

εv ≈ ε (29)

η ≈ ηv − εv (30)

Using these definitions it is possible to express the number of e-folds N. N is expressed
as

dN = Hdt

N =

∫ t

t0

Hdt (31)

using the slow-roll assumptions H2 ≈ 1
3V (φ) and φ̇ ≈ −V,φ3H equation 31 can be rewritten

as

N ≈
∫ φi

φf

V

V,φ
dφ

N ≈
∫ φi

φf

1√
2εv

dφ (32)

The number of e-folds is measured to be around 60 to 65 [11]. This is this number
necessary to solve the problems posed earlier. Any model for inflation should produce
around this number of e-folds.
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6 Power spectrum & perturbations

6.1 Power spectra

In the previous section the field φ was assumed to be constant in space and only evolve in
time. This need not necessarily be true however. What happens if small perturbations
to the field φ are introduced? In an equation this can be written out as

φ = φ(t) + δφ(x, t)

To be able to connect these models to something that can be measured a power spectrum
has to be constructed. A power spectrum gives the scale, the size of a certain variable
and can be measured. The power spectrum can be connected to a two-point correlation
function. Such a function measures the correlations between two values, for example
the temperature between two point on the sky in the CMB. The power spectrum of
a function can be seen as a Fourier decomposition for any function living in higher
dimensional spaces and in single-variable space simplifies to a Fourier decomposition.
The two-point correlation function is defined as the expectation value of a field between
two points

ξA =< A(x)A(x+ r) > (33)

where we assume that due to isotropy, the function does not depend on angle, but on
the radius r only [9]. Any function A can be written as a Fourier series defined as

Ak = A0

∫
d3xA(x)e−ik·x

A(x) = A1

∫
d3xAke

+ik·x

The Dirac-delta function is defined as[9]

δ(k) = A0A1

∫
d3xe±ik·x

The integral evaluates to (2π)3, so normalization gives A0A1 = 1
(2π)3

. If we wish to

evaluate the function < AkAk′ > we substitute the previous equations to find

< A0A0

∫
d3xA(x)e−ik·xd3x′A(x′)e+ik·x′ >=

We can write x′ as a perturbation from x, x+ r

< A2
0

∫
d3xd3re−i(k+k′)·xA(x)A(x+ r)e−ikx >=

A0

A1
δ(k + k′)

∫
d3rξA(r)e−ikx (34)
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Which looks a lot like a Fourier transform in itself. The power spectrum can be defined
as the Fourier transform

PA(k) = A0

∫
d3rξA(r)e−ikx

Then the equation simplifies to

< AkAk′ >=
1

A1
δ(k + k′)PA(k) (35)

Where A1 is a free variable. By convention it is often chosen that 1
A1

= (2π)3 [9]. The
variance in the power spectrum is usually defined as

σ2
A =

∫
d ln(k)∆2

A(k)

Where ∆2
A(k) = k3

2π2PA(k), relating the variance with the power spectrum itself. The
Fourier transform allows us to go from position space to momentum space. k signifies
the comoving momentum, so it is scaled with the expansion rate of the universe. This
ensures that k remains constant in time, with a corresponding wavelength λ 1

k . The
evolution of k can be represented graphically with the comoving scale. k is scaled with
the comoving horizon. During inflation it decreases very rapidly and after inflation it
increases quite quickly. A plot of this is given in Figure 4

Figure 4: A visual representation of the evolution of k. The horizontal line is the
wavelength λ. The first crossing is called the Horizon crossing, and the second crossing
is called the re-entry. Whenever the wavelength is larger than the comoving horizon it
is the super-horizon regime, otherwise it is the sub-horizon regime.

There are three distinct regions that can be distinguished, based on the wavelength. The
wavelength starts out smaller than the comoving horizon, in the sub-horizon regime. As
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the universe evolves, the wavelength stays constant, but the horizon becomes smaller
rather quickly due to inflation. Their crossing is aptly known as the Horizon crossing,
and the sub-horizon regime makes way for the super-horizon regime. When matter and
radiation take over, the horizon increases again, until it crosses the wavelength a final
time, which is called re-entry. In the super-horizon regime k

aH is very small much less
then unity, while in the sub-horizon regime it is much larger than unity. At the moment
of horizon crossing k = aH. The dependence of the power spectrum on the scale is given
by the so-called spectral index or tilt. The spectral index is defined as

ns − 1 =
d∆2

A

d ln k
(36)

If there is no dependence on the scale, ∆2
A does not depend on k and ns = 1 The spectral

index can be rewritten as

ns − 1 =
d∆2

A

d ln k
=
d∆2

A

dN

dN

d ln k
(37)

This is a more useful form for some calculations. The spectral index can be measured
in the CMB, this gives a restriction on the power spectrum, which gives the model some
predictive power and is a very useful quantity in defining the dependence of the power
spectrum and is thus invaluable for measuring and defining perturbations in the power
spectrum.

6.2 Perturbations

To look at perturbations the first place to find them is in the metric itself:

ds2 = gµνdx
µdxν

Four perturbations variables for g can be defined such that

gµν,perturbed = gµν + δgµν (38)

: [39]
δg00 = −2a2Φ (39)

δgi0 = a2Bi (40)

δgij = −2a2(Ψδij − Eij) (41)

Where Bi = ∂iB+B̂i and Eij = Esij+E
v
ij+E

t
ij , a scalar, vector and tensor component. all

the introduced perturbation variables without indices and Esij are scalar perturbations.
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In first order, scalar, vector and tensor perturbations can be considered separately. This
gives a new perturbed metric

ds2 = a2(−(1 + 2Φ)dτ2 + 2Bidx
idτ + ((1− 2Ψ)δij + 2Eij)dx

idxj) (42)

Here we run into a problem. By performing a coordinate transformation, perturbation
can be induced or even removed. It is not physically reasonable that a change of origin
would create completely different measurements, so this problem has to be resolved. An
example of a coordinate transformation inducing perturbations can be seen by consid-
ering the unperturbed metric

ds2 = a2(−dτ2 + δijdx
idxj)

and taking the coordinate transformation

~x→ ~̃x = ~x− ε(τ, ~x)

dxi = dx̃i +
dεi

dτ
dτ + ∂kε

idx̃k (43)

then

ds2 = a2(−dτ2 + 2
dεi

dτ
dτdxi + (δij + 2∂jiεj)dx̃

idx̃j (44)

Which means that dεi

dτ = Bi and Êi = εi. By a simple coordinate transformation, two
perturbation have been introduced that were not present before. This is known as the
Gauge problem, where it is currently impossible to tell if any perturbations are physical
or fictitious, due to a coordinate transform. Performing a coordinate transformation on
the scalar perturbation gives [39]

Φ̃ = Φ + ε0
′
+Hε0

B̃ = B − ε0 + ε′

Ψ̃ = Ψ−Hε0

Ẽ = E + ε

Where a prime denotes a derivative with respect to conformal time and H is defined as
H = aH.
Any arbitrary matter scalar, such as φ or ρ transforms as

δσ̃ = δσ + σ′ε0

There are two possible solutions to the Gauge problem, that can both be applied to
solve this problem. The first is to fix the Gauge. That means choosing particular values
of epsilon, such that certain perturbations become 0. An example of this is the uniform
density Gauge. In this Gauge δρ̃ = 0, so δρ = −ρ′ε0, and ε0 = − δρ

ρ′ This gives slices of
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uniform density, but doesn’t completely fix the Gauge. εi can still be fixed, using any of
the other equations, so this still leaves a degree of freedom available. Another example
is the spatially flat Gauge. In this Gauge Ψ̃ = 0 and Ẽ = 0, by setting ε = −E and
ε0 = Ψ

H . This simplifies the metric to

ds2 = a2((1 + 2Φ)dτ2 + 2∂iBdx
idτ + δijdx

idxj)

The other option is to change variables in such a way that they remain invariant un-
der coordinate transformations. These are Gauge invariant variables. Two important
variables are ξ and Q [39]

−ξ = Ψ +Hδρ
ρ′

(45)

The interpretation of the variable ξ is the curvature of a hypersurface, a surface of more
than three dimensions, on slices of constant density. The minus sign is not necessary.
Notations in literature differ and sometimes do or do not include it. When working in
the uniform density Gauge, this can be reduced to

−ξ = Ψ (46)

and in the spatially flat Gauge to

−ξ = Hδρ
ρ′

(47)

The variable Q is defined as

Q = δφ+
φ′

H
Ψ (48)

Q can be reduced to
Q = δφ

in the spatially flat Gauge.
The choice of Gauge is completely arbitrary, any choice is fine. the spatially flat Gauge is
quite convenient, so that is the one that will be used throughout. Tracking the evolution
of these invariant variables is non-trivial, but it can be shown from the Einstein equations
that in momentum space, ξ evolves as : [9]

ξ̇ =
H

ρ+ p
δPnon−adiabatic +O k2

(aH)2

Where δPnon−adiabatic = δp − p
ṗδp. Which is a Gauge invariant quantity in itself. For

adiabative expansion, δpnon−adiabatic is by definition 0, so it reduces to

ξ̇ = O k2

(aH)2

In the super-horizon regime, k
aH � 1, so in effect, on super-horizon scales ξ̇ = 0. From

the moment of horizon exit, to horizon re-entry, the value of ξ remains constant. If it’s
value at horizon exit is known, it is known until it re-enters it again, making it a very
useful variable to work with.
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6.3 Power spectrum

A perturbation in the field φ in any variable can be written as ∂
∂φσδφ. Applying this

to the energy density ρ, in equation 18, we find that in the slow roll regime, where
φ̇2 � V (φ)

δρ =
∂V

∂φ
δφ (49)

Using equation 21 it follows that

∂V

∂φ
= −3Hφ̇ (50)

Combining these equations gives

δρ = −3Hφ̇δφ (51)

Substituting that into equation 47 ,using equations 9, 18 and 19 gives

−ξ =
H

φ̇
δφ (52)

This can be related to the slow-roll parameter ε.

ε =
φ̇2

√
2H2

ξ =
1√
2ε
δφ (53)

This relates the variable ξ to perturbations in the field, which is very convenient and
allows the power spectrum of ξ to be connected to that of δφ.

< ξ ξ >=
1

2ε
< δφ δφ > (54)

To be able to find any perturbations, the action has to be expanded, into a quadratic
term. Otherwise the perturbations are non-existent. It can be shown that the action to
second order in ξ is given by[9]

S2 =

∫
d4xε2(ξ2 − a−2(∂iξ)) (55)

Now we can define a new variable v, known as the Mukhanov variable, defined as

v = zξ (56)

z = 2a2ε (57)
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It is important to note that v is not a scalar, but a scalar field, like ξ is. using integration
by parts on equation 55, switching to conformal time and substituting in the Mukhanov
variable gets the new resulting action

S2 =
1

2

∫
dτd3x(v′2 + (∂iv)2 +

z′′

z
v2) (58)

The field v can be expanded, using the the Fourier definition

v(τ, x) =

∫
d3k

(2π)3
vk(τ)eik·x (59)

Substituting in this definition of v and varying the action in equation 58 with respect to
the field vk, using the Euler-Lagrange equation

(
∂L
∂v′

)′ + ∂i
∂L

∂(∂iv)
− ∂L
∂v

= 0 (60)

this works out to
eik·x

(2π)3
(v′′k + k2vk −

z′′

z
vk) = 0 (61)

There is only a small difference in varying the action with respect to v or vk, only the
factor k2 from the gradient appears extra. Equation 61 is known as the Mukhanov-Sasaki
equation and effectively governs the evolution of the field ξ. To solve this equation the
fields have to be quantized.

6.4 Quantization

In order to quantize the field v, it has to be promoted to a quantum mechanical operator
v̂. This operator should behave exactly like a quantum mechanical harmonic oscillator,
such that

v̂ =

∫
d3k

(2π)3
(vk(τ)âke

ik·x + v∗kâ
†
ke
−ik·x) (62)

Here ak and a†k are annihilation and creation operators respectively. They take a the
harmonic oscillator an energy level lower or higher by acting them as an operator on
an energy state. Because of this the annihilation operator has the constraint that when
acting on a vacuum state, the resulting energy becomes 0, to allow for minimum energy
solutions. In an equation this means

âk |0〉 = 0

Additionally, these operators are normalized by the following commutation relation

[âk, â
†
k′ ] = (2π)3δ(k − k′) (63)
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This is how the creation and annihilation operators are defined, but this requires the
additional constraint

< vkvk′ >=
i

~
(v∗kv

′
k − v∗k ′vk) = 1

This is one of the boundary conditions necessary in order to solve equation 61, but
another boundary condition is necessary to solve it completely. This can be done by
choosing the vacuum state |0〉. A convenient choice is picking a time in the past, when
τ → −∞. This means that k � aH and a(τ)0→ 0. This simplifies equation 61 to

v′′k + k2vk = 0 (64)

This is a simple harmonic oscillator with the solution

vk =
1√
2ω
e−iωt (65)

Which is the positive frequency result for a quantum mechanical harmonic oscillator
[18]. With a frequency ω = k, this gives the result

vk =
1√
2k
e−ikt (66)

With this result the behaviour of vk is fixed for any value of k and because it is related
to the field ξ, the behaviour of δφ is now also quantized. This is a very powerful result,
dictating the behaviour of ξk, which can directly be worked out to the variance and
thus the power spectrum of ξ and thus δφ, it also allows for the computation of the tilt
ns. These are observable in the CMB. From the power temperature map, the power
spectrum can be constructed. with the power spectrum it is possible to work through
these calculations and work out the tilt. These predictions are incredibly powerful in
either confirming the theory up to the measurable accuracy or dismissing it.

6.5 Example

In de-Sitter space, the slow-roll parameter approaches 0. This implies

z′′

z
=
a′′

a
=

2

τ2

. The solution to this equation is given by

vk = α
1√
2k
e−ikt(1− i

kt
) + β

1√
2k
eikt(1 +

i

kt
) (67)

evaluating the equation in the approximation 1
kτ → 0 allows the use of the boundary

condition 66. This gives

α
1√
2k
e−ikt + β

1√
2k
eikt =

1√
2k
e−ikt
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Which gives the solution α = 1, β = 0. The solution are the called the Bunch-Davies
modes and given by

vk =
1√
2k
e−ikt(1− i

kt
) (68)

now we can compute the power spectrum of the field ψ̂k = 1
avk Here the field ψk plays

the role of the perturbations δφ. using equation 35 we find

< ψ̂kψ̂k′ >= (2π)3δ(k + k′)
|vk|
a2

(69)

|vk| =
1√
2k

√
1 +

1

k2τ2

|vk|2 =
1

k3τ2
(1 + k2τ2)

Thus equation 69 can be written as

< ψ̂kψ̂k′ >= (2π)3δ(k + k′)
H2

2k3
(1 + k2τ2)

On superhorizon scales, where kτ � 1, this becomes a constant,

< ψ̂kψ̂k′ >= (2π)3δ(k + k′)
H2

2k3
(70)

and equivalently

∆2
ψ =

H2

(2π)2

Using equation 52 this can now be related to the power spectrum of ξ:

< ξkξk′ >= (2π)3δ(k + k′)
H2
∗

2k3

H2
∗

φ̇2
∗

With the corresponding variance

∆2
ξ =

H2
∗

(2π)2

H2
∗

φ̇2
∗

=
H2
∗

8π2

1

ε
(71)

Where the star denotes that these values are taken at horizon crossing, since ξ remains
constant throughout. ∆2

ξ is also referred to as ∆2
s as a reminder that this is for scalar

perturbations only. Now that the power spectrum of ξ is known and is connected to that
of δφ, this can be measured [15]. The interpretation of these calculations is that there
were small quantum fluctuations in in the early universe. These quantum fluctuations
were subsequently subjected to the inflationary period. Though they were small initially
they were now increased to relatively large sizes. This would be the source of measurable
fluctuations, like the temperature and density fluctuations that can be observed in for
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example the CMB. These fluctuations are important because regions with slightly higher
densities would exert a larger gravitational force, attracting other matter. This would
allow for the formation of large structures and eventually the universe as we know it.
Even though the fluctuations considered here are very small, their effect is very large.
[20]
The spectral index can be computed using the power spectrum. The spectral index for
this field is called the scalar spectral index ns, because it relates specifically to a scalar
field and is defined in equation 37.

ns − 1 =
d ln ∆2 − ξ

dN

dN

d ln k
(72)

Evaluating the first term gives

d ln ∆2 − ξ
dN

=
d ln H2

∗
8π2

1
ε

dN
=

d ln 1
8π2

dN
+ 2

d lnH

dN
− d ln ε

dN

The first term is a constant so evaluates to 0. The second term is the definition of ε in
equation 25. For the final term, it can be shown that [9]

d ln ε

dN
= 2(ε− η)

For solving the term
dN

d ln k

N should be expressed in terms of k or vice versa. Because the equation is considered at
horizon crossing, k = aH, so lnK = ln a + lnH. Using the definition of the number of
e-folds in equation 13, ln a = N , such that

dN

d ln k
=

1
d ln k
dN

=
1

dN+lnH
dN

=

1

1− ε
Assuming that ε is small in this regime, it approximates to

dN

d ln k
≈ 1 + ε (73)

This gives the result for the spectral index that

ns − 1 = (2η − 4ε)(1 + ε) ≈ 2η − 4ε

Because the slow-roll parameters are already assumed to be small, any second order
squared term is negligible. In the slow-roll approximation, these parameters can be
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related to the potential, as in equations 29 and 30. This gives the constraint on any
model with a potential:

ns − 1 = 2ηv − 6εv (74)

The spectral index can be measured and is observed to have a value of ns = 0.9626 ±
0.0057 [17]. This means that the power spectrum is almost completely independent on
the scale. This is a powerful point in favor of slow roll. In slow roll, both ε and η are very
small, so ns − 1 ≈ 0 and ns ≈ 1. This is exactly what the measurements show, so this
is a good indication that slow-roll inflation is a good theory with powerful predictions.
How close the value of ns is to the predicted value is one of the big triumphs of slow-roll
inflation.

6.6 Tensor perturbations

Using a similar argument as before, a second-order action can be constructed with per-
turbations in the tensor terms only. This can be done, because to first order, these
perturbations are separate. The corresponding action in terms of the field vk reads [9]

S =
∑
s

∫
1

2
dτd3k((vs

′
k )2 − (k2 − a′′

a
)vsk

2) (75)

Where in De-Sitter space a′′

a = 2
τ2

, just as in the case for the scalar perturbations. This
is essentially two copies of the earlier action in equation 58.

∆2
h(k) = 2∆2

ψ = 4
H2
∗

(2π)2

Here h is a measure of the tensor perturbations and is responsible for the gravitational
waves and their polarizations. Scalar perturbations do not contribute to to the formation
of gravitational waves, at least not in first order. Higher order derivative terms of
scalar perturbations could lead to the formation of waves. Care should be taken in
normalizations, where factors of 2 have been inserted and Plack masses should be added
for the right units. Then the power spectrum for tensor perturbations is given by

∆2
t =

2

π2
H2
∗ (76)

The ratio of ∆2
S to ∆2

t is known as the tensor-to-scalar ratio. This ratio works out to

r =
∆2
t

∆2
s

= 16ε

This quantity can also be measured and it is observed that r < 0.064. These constraints
combined give upper bounds on the (approximate) slow-roll parameters [17]

εv < 0.0097 (77)
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ηv = −0.010 (78)

Just as in the case of the scalar perturbations, these measurements place restrictions on
any proposed model, narrowing down the possibilities.
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7 Case study

To make use of these ideas and equations, a case study can provide a clear example.
In slow-roll inflation the dominant force is the potential V (φ). This potential should
contain a minimum and then be rise. For this example I will consider a potential of the
form

V = V0(cos
d

φ+ b
) (79)

Where a, b and V0 are variable parameters.The variable d controls the ”steepness” of
both the flat first part of the potential and the well. The variable b controls where the
origin of the plot is located. This potential is shown in figures 5 and 6. The potential
looks like the potential for natural inflation

V = V0(cos
φ

f
+ 1) (80)

The potential has a slightly different dependence on φ, and an extra variable is introduced
for more control over the potential.

Figure 5: The potential used in this case study with a small value of d
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Figure 6: The potential used in this case study with a large value of d. The potential is
much less steep in the potential well, but rolls into it more quickly.

From the potential, the corresponding slow-roll parameters can be computed. The first
slow-roll parameter works out to be

εv =
M2
pl

2

V 2
,φ

V 2
=
M2
pl

2

d2 sin2 d
φ+b

cos2 d
φ+b(b+ φ)4

(81)

Defining the new dimensionless variable Φ = a
b+φ simplifies the formula to

εv =
M2
pl

2(b+ φ)2
Φ2 tan2 Φ (82)

Or alternately, by introducing d instead of b+ φ

εv =
M2
pl

2d2
Φ4 tan Φ
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The second slow roll parameter is given by

ηv = M2
pl

V,φφ
V

= M2
pl

d2 cos Φ
(b+φ)4

− 2d sin Φ
(b+φ)3

cos Φ

ηv = M2
pl(Φ

2 1

(b+ φ)2
− 2Φ

tan Φ

(b+ φ)2
)

ηv =
ΦM2

pl

(b+ φ)2
(Φ− 2 tan Φ) (83)

This can also be written alternatively as

ηv =
M2
pl

d2
Φ3(Φ− 2 tan Φ) (84)

It should be noted that these parameters have to be dimensionless. Making the sub-
stitution to the dimensionless variable makes that more clear. Both b and d have the
same units as φ, such that

Mpl

b+φ is also dimensionless. Secondly, in these calculation, two
asymptotes appear, for both a

b+φ , which implies b 6= −φ and for tan a
b+φ = tan Φ, which

implies that Φ = 6= ±π
2 .

The two slow roll parameters should be small, the first parameter ε gives

M2
pl

2(b+ φ)2
Φ2 tan2 Φ < 1

or in the alternate form
M2
pl

2d2
Φ4 tan2 Φ < 1

Φ2

d
tan Φ >

Mpl√
2

(85)

And from the parameter η we can see

ΦM2
pl

(b+ φ)2
(Φ− 2 tan Φ) < 1

Or in the alternate form
Φ4 − 2Φ3 tan Φ

d2
> M2

pl

Solving for these inequalities is not trivial. Substituting the relation in equation 85 gives

Φ4

d2
−
√

2Φ

d
Mpl > M2

pl

Solving this system of equations first requires transforming the inequility into an equality.
There is a single solution in which all variables are real and Φ = d 6= 0 :

d = 0.732
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Φ = 0.0017

. This also fixes the value for b+ φ:

b+ φ = 441.2

By looking at the inequality, it is clear that for this to hold, either Φ can become larger,
by making b+ φ smaller or d can become smaller, so the real relations become

d < 0.732 (86)

b+ φ < 441.2

Finally, the number of e-folds N can be computed, to provide an extra constraint.

N(φ) =
1

Mpl

∫ φin

φend

dφ√
2εv

This integral can be simplified by making it dimensionless. That can be done by re-
introducing the dimensionless variable Φ. That way, the number of variables under the
integral will be reduced from 3 to 1, while all the variables that carry dimensions can
be pulled out of the integral. It also makes it more clear to see if the final quantity is
indeed dimensionless, since the number of e-folds should not carry any units.

Φ =
d

φ+ b

The integral is over φ, but this can be substituted to integrate over Φ. However, the
variable dφ will require adjusting as well, because we want to go from a variable with
units to one without. Writing dφ in terms of dΦ gives the result.

dΦ =
−d

(φ+ b)2
dφ

dφ =
−(φ+ b)2

d
dΦ =

−d
Φ2

dΦ

Now the equation can be simplified, written only in terms of Φ and d,

N(φ) =
d

M2
pl

∫ Φin

Φend

1

Φ2 tan Φ

−d
Φ2

dΦ =

−d2

M2
pl

∫ Φin

Φend

1

Φ4 tan Φ
dΦ

Even such a simple-looking equation cannot be solved analytically. Inflation requires
that N ≈ 60, so using the value for d obtained earlier, a bound on the integral can be
placed.

−110 <

∫ Φin

Φend

1

Φ4 tan Φ
dΦ < 0
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Fluctuations in the CMB have found a value for φ at the initial time when the CMB
was formed. φin ≈ 15Mpl. Assuming that at that time φ ≈ Φ, the end value of Φ can
be found. Normalizing the Planck mass to 1, it works out that Φend < 0.22. Inflation
ends when εv = 1. using this a definitive value if d can be found: dend ≈ 0.008, which is
indeed smaller than the value computed earlier.
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8 Non-Gaussianities in single-field slow-roll

8.1 ADM model

Non-Gaussianities are any deviations from a Gaussian distribution. All observables are
locked in a statistical configuration, the power spectrum or correlation functions. A
Gaussian distribution only allows for even-point correlation functions. In principle there
would only be a correlation between two points and a 4-point correlation function is the
product of two two-point functions. Any Non-Gaussian term would be due to the non-
linearity of gravity and would lead to an odd-number correlation function. To find the
three-point correlation function for a scalar perturbation, the action has to be expanded
into quadratic and cubic terms. The action can be expressed very conveniently in a
specific formalism, the ADM (named after Richard Arnowitt, Stanley Deser and Charles
W. Misner) formalism. While the quadratic terms in the Lagrangian have already been
looked at in the perturbation section, redoing it in this formalism is still useful to get a
better working of the formalism and use that as a springboard to go to cubic Lagrangian
terms. In the ADM formalism the metric is written as:

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) (87)

Here gij are three-dimensional slices of the metric at constant time. N(~x is the lapse
function and Ni(~x is called the shift function. They act as Lagrange multipliers in the
Lagrangian and are the equivalent of the perturbations Φ and B [24]. The action of a
scalar field φ minimally coupled to gravity is given by

S =
1

2

∫
d4x
√
−g(R− (∇φ)2 − 2V )

As follows from equation 17. Another variable is Eij , which is related to the extrensic
curvature of spatial slices Kij , via the relation Kij = N−1Eij . with

Eij =
1

2
(gij −∇iNi∇jNj)

and
Eii = E

In the ADM formalism, this action becomes [10]

S =
1

2

∫
d4x
√
−g(NR−2NV+N−1(EijE

ij−E2)+N−1(φ̇−N−1∂iφ)2−Ngij∂iφ∂jφ−2V )

(88)
In order to solve the Gauge problem, The gauge should be fixed and a specific gauge
invariant under coordinate transformations should be chosen to make sure any perturba-
tions in the action are physical and not introduced by the transformations. A convenient
Gauge is the comoving Gauge, where the Gauge-invariant variables are

δψ = 0 (89)
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gij = a2((1− 2ξ)δij + hij) (90)

∂ihij = hii = 0 (91)

The difference in this particular choice is that the field is not perturbed, but all per-
turbations are captured in the metric perturbation ξ. From the action the constraint
equation on the Lagrange multipliers N and Ni can be found. The constraint for N can
be found by varying the Lagrangian with respect to N:

∂L
∂N
− d

dτ

∂L
∂Ṅ

The Lagrangian depends only on N , so the second term is 0. taking the derivative gives

R3 − 2V −N−2(EijE
ij − E2)−N−2(φ̇2 −N i∂iφ)2 − gij∂iφ∂jφ

But because the Gauge is fixed with δφ = 0, the terms involving ∂iφ are 0. The constraint
for N is thus

R− 2V −N−2(EijE
ij − E2)−N−2φ̇2 = 0

and the constraint for N i can be found in a similar way and works out to

∇i(N−1(Eij − δijE)) = 0 (92)

These equations can be solved by splitting N i into two parts:

N i = ∂iψi + N̄ i (93)

with the constraint that ∂iN̄ i = 0 The deviation in N can be written as

N = 1 + α

Where α can be written as a power expansion series. To first order

α1 =
ξ̇

H
(94)

∂2
iN

i = 0

and

ψ1 =
−1

a2

ξ

H
+ ∂−2εv ξ̇ = (95)

ψ1 = − ξ

H
+

ξ

H
εv ξ̇ (96)

Where ∂−2 is an anti-derivate, such that ∂−2∂2ξ = ξ.[9] Substituting these solutions
back into the action in equation 88 gives a perturbed action

S =
1

2

∫
a2eξ(1+

ξ̇

H
)(−4∂2ξ−2(∂ξ)2−2V (a2e2ξ))+a3e3ξ 1

1 + ξ̇
H

(−6(H+ ξ̇)2 +φ̇2) (97)
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Where derivatives linear in ψ have been left out and where a can also be written as
a = eH . Using integration by parts and the equations 18,21 and 22. The action can be
written as [10]

S =
1

2

∫
d4x

φ̇2

H2
(a3ξ̇2 − a(∂ξ)2) (98)

or in terms of the slow roll parameter εv

S =

∫
εv(a

3ξ̇2 − a(∂ξ)2) (99)

This is the action for the free field ξ. Like in the discussion about perturbations, switch-
ing over to k-space allows for easier manipulation of the action. The field ξ can be
written as a set of infinite harmonic oscillators with differing spring and mass constants
each.

ξ =

∫
d3k

(2π)3
ξke

i~k·~x (100)

Then the equation of motion in the action can be computed.

δL
δξ

=
d

dt

∂L
∂ξ̇
− ∂L
∂ξ

= 0

The first term can be computed directly, since ξ̇ appears in the Lagrangian explicitely
and gives

d

dt

∂L
∂ξ̇

=
d

dt
(
φ̇2

H2
a3ξ̇)

The second term does not appear explicitely in the Lagrangian, but it does when trans-
forming to k-space. The derivatives then give a factor (ik)2. The equation of motion is
thus

δL
δξ

=
d

dt
(
φ̇2

H2
a3ξ̇k) +

φ̇2

H2
ak2ξk = 0

This field has to be quantized in the same way as the earlier field, such that we can write
ξk as the sum of two independent solutions ξclk and ξcl∗k

ξk = ξclk a
†
~k

+ ξcl∗k a−~k

Where a−~k and a†
−~k

are the standard creation and annihilation operators with the stan-

dard commutation relations. This gives the same equation as before

v′′k + k2vk = 0

which produces the same result as before using the same arguments. Thus lending
credence to this way of tackling the problem. While this method may appear to be more
involved, it can be handled step by step in a similar fashion for most problems, which is
very useful and when using it, the results do not differ at all.
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8.2 Cubic Lagrangian terms

In order to compute the Cubic Lagrangian terms the ADM formalism will be adhered
to. The Gauge chosen will be [10]

δφ = 0

gij = e2H+2ξ ĝij

det(ĝ) = 1 (101)

ĝij = (δij + hij +
1

2
hilhlj + ...)

Higher order terms do not contribute to the action, so first and second order is enough
to define the cubic terms. Using this Gauge and substituting this into the action to find
[10]

S =

∫
eH+ξ(1 +

ξ̇

H
)(−2∂2ξ − (∂ξ)2) + e3H+3ξ 1

2

φ̇

H2
ξ̇2(1− ξ̇

H
)+

+e3H+3ξ(
1

2
((∂i∂jψ)2 − (∂2ψ)2)(1− ξ̇

H
)− 2∂iψ∂iξ∂

2ψ)

Where only terms up to ξ3 and ξ̇3 are included, since ψ is defined in equation 95 and
is linear in ξ and ξ̇. It can be shown that the action is of the order ε2 [10], which
requires a lot a lot of integration and another choice of Gauge and hence will not be
repeated. A dependence of ε2 means that the three-point correlation function will be
heavily suppressed and is unlikely to be measured. To be able to get the three-point
correlation function the field ξ can be expanded using a new variable ξc

ξ = ξc +
1

2

φ̈

φ̇H
ξ2
c +

1

2

φ̇2

H2
ξ2
c +

1

4

φ̇2

H2
∂−2(ξc∂

2ξc) + ... (102)

Where the dots indicate those terms vanish outside the horizon, or are higher order in ε.
Since ξ does not evolve outside the horizon, those terms are negligible and do not need
to be included. When written in this form, the action simplifies to

S3 =

∫
φ̇4

H4
e5Hξ2

c∂
−2ξ̇ + ... (103)

Where the dots are terms of higher order in ε. This action is of higher order, so when
quantized will naturally lead to the higher order terms present in the three-point corre-
lation function, which can be computed from this point.
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8.3 Three point correlation function

The three-point correlation function can be expressed in what is called the interaction
picture. This picture is a mixture of the Schrödinger picture and the Heisenberg picture.
Both vectors and operators carry a time dependence that lead to time dependence in the
observables. This is especially convenient because it allows for interactions to be more
easily computed. In this picture the three-point correlation function can be represented
as [10]

< ξ3(t) >=< Uintξ
3(t)U−1

int >

Where Uint is an operator and given by

Uint = Te
−i

∫ t
t0
Hint(t

′)dt′

Where T gives a time ordering, t0 is an arbitrary early time and Hint is the interaction
Hamiltonian. For the system we are considering, the cubic terms of the Lagrangian, the
Hamiltonian is related to the Lagrangian as

Hint = −Lint

Substituting this in and taking the first order approximation of the exponential

ex ≈ 1 + x

This introduces a commutation relation between ξ3 adn Hint :

< ξ3(t) >= −i
∫ t

t0

< [ξ3(t), Hint(t
′)]dt′ (104)

Where care should be taking when integrating, ξ does not depend on the integration
variable t’. An important variable that has not been addressed until now is the type
of vacuum that is worked in. The type of vacuum used is related to the type of space-
time that is being considered. For this discussion the interacting vacuum will be used,
which in the De-Sitter space-time it is the Hartle-Hawking vacuum [26]. The impact of
choosing the type of vacuum is the region over which the integrations in equation 104
take place. In this case, it is split into three distinct regions: The region outside the
horizon, the region around horizon crossing and the region (deep) inside the horizon.
The benefit of this is that space-time near horizon crossing is very close to De-Sitter
spacetime and the region deep inside the horizon does not contribute due to rapid field
oscillations [10]. If we have a field of the form

ξ = ξc + λξ2
c

The corresponding three-point function would look like

< ξ(x1)ξ(x2)ξ(x3) >=< ξc(x1)ξc(x2)ξc(x3) > +2λ(< ξ(x1)ξ(x2) >< ξ(x1)ξ(x3) > +cyclic)
(105)

39



The cyclic denotes cyclic permutations, such that every possible double combination of
ξ(x1),,ξ(x2) and ξ(x3) will appear. This can be achieved by cyclic permutation where
1→ 2→ 3→ 1. The 2λ appears because of the combination of two two-point correlation
functions. The reason for the redefinition of the field becomes apparent in this way of
writing the correlation function. The first term can be directly computed from the
action of equation 103. This term is to be evaluated near horizon crossing, after which
ξ is constant, which means this computation will be done in De-Sitter space. The first
term evaluates to [10]

< ξ3
c >= (2π)3δ3(

∑
(~ki))

i∏
(2k3

i )

H6∗
˙φ2∗

∫ 0

−∞
dτk2

1k
2
2e
iktτ + cyclic

where kt = k1 + k2 = k3, the sum of all spatial k values. The cyclic permutations on
ki = k1 and kj = k2 mean that every combination is possible where i 6= j. for every
combination there is a symmetric one, which gives a factor 4. This means the integral
can be rewritten as ∫ 0

−∞
dτk2

1k
2
2e
iktτ + cyclic = 4

1

ikt

∑
i>j

k2
i k

2
j

The first term is hence given by

< ξ3
c >= (2π)3δ3(

∑
(~ki))∏

(2k3
i )

H6∗
˙φ2∗

4
1

kt

∑
i>j

k2
i k

2
j

The second term comes from the field redefinition in equation 102. The ξ2
c terms will

translate to summation over k3 :
∑
k3
i . Not forgetting the factor 2, adding these terms

to the previous result gives the final correlation function

< ξ~k1ξ~k2ξ~k3 >= (2π)3δ3(
∑

~ki)
H ∗ 8∗

˙φ4∗
1∏
i 2k3

i

A∗ (106)

Where

A∗ = 2
φ̈∗

φ̇ ∗H∗

∑
i

k3
i +

φ̇2∗
H2∗

(
1

2

∑
i

(k3
i ) +

1

2

∑
i 6=j

(kik
2
j ) + 4

1

kt

∑
i>j

kikj (107)

While it looks as if A is just a constant, contracting so many terms into it, it actually
contains most of the interesting physics. It contains all the dependence of the spectrum
on the momentum k, at the time of horizon crossing. In writing these equations it
is assumed that all k’s are the same order of magnitude, so no term is negligible or
overpowering. It is also possible that one k, say k3 is much smaller than the other two,
so that it crosses the horizon much sooner. The difference in that scenario versus the
one with all same order k’s is that k1 and k2 cross the horizon slightly earlier too, which
only leads to small perturbation in the final result. In that case

< ξ~k1ξ~k2ξ~k3 >≈ (2π)3δ3(
∑
i

k3
i )
H4∗
φ̇2

H4
3∗

φ̇2
3∗

1

2k2
1k

2
2

(
2φ̈∗

H ∗ φ̇∗
+

2φ̇2∗
H2∗

)
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Where the subscript 3 denotes the value at the time k3 crosses the horizon. The final
variable to define is FNL. fNL is a measure of the Non-Gaussianity of the spectrum and
can be measured. fNL is defined as [9]

FNL =
5

18

BR
P 2
R

where BR is the bi-spectrum or three-point correlation function. For this discussion

fNL ≈
5

18

A∑
i k

3
i

. This value has been measured and an upper limit has been placed, using the CMB
and Large Scale Structures [35]. A specific value has not been found and it is unlikely
the CMB will be able to provide anything better than an upper bound of fNL < 3 [32].
These Non-gaussianities are computed for three scalar fields, ξ. It can also be done for
1,2 or 3 graviton fields instead of scalars. These graviton perturbations are the tensor
fluctuations responsible for gravitational waves. Calculations for these fluctuations are
similar, but more involved. For that reason, they will not be reproduced here. These
calculations can be found in the works of Maldacena, where all possible combinations
are worked through [10].
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9 Hamilton-Jacobi formalism

9.1 introduction

In previous discussions the main variable of interest was the field φ and the related field
ξ. These variables give rise to fluctuations which can be measured and place bounds on
inflation. However, it is not the only option of variable choice. Another choice is the
Hubble parameter H or H, where

H(φ) = aH(φ) = ȧ

Since H is the main variable, taking its derivative would be very helpful

∂H

∂φ
=
H ′

φ′
=
−H′ −H2

aφ′

The primes are derivatives with respect to conformal time τ , which is a comoving vari-
able. Using the second Friedman equation

ä

a
= −1

6
(ρ+ 3p)

Where it should be noted that

H′ = ä

a

Remembering

ρ =
1

2
φ2′ + V (φ) = 3H2

p =
1

2
φ̇2′ − V (φ)

It follows that

H2 −H′ = ȧ2 − äa
2

2
(ρ+ p)

∂H

∂φ
= −φ

′

2
(108)

dφ

dt
=
φ′

a
= −2H,φ (109)

Where different notation can be used, by introducing the planck mass. With it intro-
duced the equation becomes

dφ

dt
= −

m2
p

4π
H,φ

For any derivations, this factor will be normalized to 1, but for calculations in specific
models, it will be used, to get all the factors correct. These equations of motion are
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first order differential equations only. That is the power of the Hamilton-Jacobi for-
malism. The equations of motion of regular slow-roll as outlined in equation 21 are of
second order. This makes working in this formalism in principle easier and requires less
computing power. It is very possible that because of this some predictions can only be
computed in this formalism, highlighting its potential usefulness and power. Equation
109 can be integrated to ∫

dt = −1

2

∫
dφ

H ′
(110)

The time t can be related to the Hubble constant and from there the expansion rate a.
From here the Friedmann equation

H2 =
1

3
(
1

2
φ̇2 + V (φ))

can be rewritten as

H2 =
1

3
(2H,φ)2 + V (φ))

(H,φ)2 − 3

2
H2 = −1

2
V (φ) (111)

This is an exact equation, if the Hubble parameter is obtained from equation 110, the
corresponding potential can be computed. In other words, every Hubble parameter has a
corresponding exact potential that can generate that parameter. Explicitly, the potential
as a function of the Hubble parameter is

V (φ) = 3H2 − 2(H,φ)2 (112)

and with the Planck mass introduced

V (φ) =
3M2

p

8π
(H2 −

m2
p

4π
(H,φ)2)

Here these are written down explicitly, but all following variables can be written in this

way. Using the normalization
m2
p

8π = 1 and dimensional analysis, these factors are to be
added whenever the dimensions require.

9.2 Slow-roll

The slow-roll parameter ε has actually already been expressed in terms of H. In equation
25

ε = −d lnH

dN
= −d lnH

Hdt

This is a derivative with respect to time, but from equation 109 this can be rewritten as

dt = − 1

2H,φ
dφ
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It should be noticed that there is a subtle difference here with regular Slow-roll. In
regular slow-roll φ̇ ≈ V,φ, where in the Hamilton-Jacobi formalism, this equation shows
φ̇ ≈ H,φ

−d lnH

Hdt
= − d lnH

(− H
2H,φ

)dφ
=

2H,φ

H

d lnH

dφ
=

εh = 2
H2
,φ

H2

Here the subscript h denotes that this is the slow-roll parameter in the Hamilton-Jacobi
formalism. The parameter η has also already been defined as

η = −
d lnH,φ

dN

Using a similar calculation as before

ηh = 2
H,φφ

H

It should be noted that equation 109 implies that η can also be written as

ηh =
d ln φ̇

dN
=

φ̈

Hφ̇

This is the exact same equation for η as calculated in equation 26, confirming that indeed
the Hamilton-Jacobi formalism is consistent with all previous equations.

9.3 Attractor

If we consider some force that would cause the Hubble parameter to drift slightly from
it’s initial value, what would be the result? Consider a small perturbation

H = H̄ + δH

Where the bar signifies background level. Substituting this parameter into equation 111
we find

H̄,φ
2

+ 2H̄,φδH,φ + δH2
,φ −

3

2
(H̄2 + 2H̄δH + δH2) = −1

2
V (φ)

The original terms in equation 111 are still present and can thus be removed

2H̄,φδH,φ + δH2
,φ −

3

2
(2H̄δH + δH2) = 0
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Since the perturbation δH is assumed to be small, the squares of the perturbations are
negligible. This leads finally to the relation

2H̄,φδH,φ =
3

2
(2H̄δH (113)

Which can also be written as
d ln δH

dφ
=

3

2

H̄

H̄,φ

Integrating over φ to get

δH = δH(φi)exp(
3

2

∫ φf

φi

H̄

H̄,φ
dφ)

Using dN = Hdt = −1
2
H
H,φ

dφ the integral can be solved to find

δH = δH(φi)e
3(Ni−N) (114)

Any potential perturbation from the background will evolve as an inverse exponential
as N increases. This has the effect that since H depends on φ̇ explicitly and φ in the
potential any deviations in these parameters will necessarily also smooth out over time.
Whatever the value of these initial conditions, they are ”attracted” towards a single value
by minimizing the deviation from that solution as the number of e-folds increases. This
makes ruling out models very difficult since all initial conditions would evolve towards
the same final values with only very small differences.

9.4 Example model

One model for Hamilton-Jacobi inflation is called quasi-exponential inflation [19] where
the Hubble constant is proposed as

H(φ) = Hinfexp(

φ
mp

p(1 + φ
mp

)
) (115)

Where p is a free, dimensionless scaling factor and Hinf is a scaling factor with units of
Planck mass. Substituting this Hubble constant into equation 109 gives the result

exp(

φ
mp

p(1 + φ
mp

)
)p(1+

φ

mp
)(1+p+2p2 +p(1+4p)φ+2p2φ2)+e

1
p

∫ ∞
−x

1

zez
dz = −3p2

2π
Hinf t

Where x = 1

p(1+ φ
mpl

)
. In the Hamilton-Jacobi formalism the potential has an exact

solution in terms of the Hubble parameter, as seen in equation 110. In this case

V =
3H2

infm2
p

32π2p2

exp(
2φ
mp

p(1+ φ
mpl

)
)

(1 + φ
mp

)4
((4πp2 − 1) + 16πp2 φ

mp
+ 24πp2 φ

2

m2
p

+ 16πp2 φ
3

m3
p

+ 4πp2 φ
4

m4
p

)
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All the higher order terms in φ are assumed to be small. That reduces the potential to

V (φ) ≈
3H2

infM
2
p

8π
exp(

2φ
mp

p(1 + φ
mpl

)
)

The slow-roll parameters corresponding to this model are

εh =
1

4πp2(1 + φ
mp

)4

ηh =
1− 2p− 2p φ

mp

4πp2(1 + φ
mp

)4
= 1− 2p− 2p

φ

mp
εh

Slow-roll inflation ends when εh = 1, this constraint can be connected to the value of φ
at the end of inflation:

φend = mp(

√
1

2p
√
π
− 1)

The power spectrum in this model can also be calculated. The two-point correlation
function in the Hamilton-Jacobi formalism does not differ form the correlation function
calculated earlier in equation 71. Substituting in the values calculated [19]

∆2
A =

4H2
infp

2

m2
p

exp(

2φ
mp

p(1 + φ
mpl

)
)(1 +

φ

mp
)4 (116)

With the corresponding spectral index

ns = 1−
1 + 2p+ 2p φ

mp

2πp2(1 + φ
mp

)4

Working through the model and equations allowed us to find these values, which can be
measured. This example model shows how the equations can be performed to end up at
these final observable variables.
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10 Discussion on the three-point correlation function in
the Hamilton-Jacobi formalism

The two-point correlation function is the same in the Hamilton-Jacobi formalism as it is
in the regular single-field slow-roll formalism. The three-point correlation function has
not been worked out for the Hamilton-Jacobi formalism however. This formalism seems
to be mainly suited for calculating potentials and slow-roll parameters[38]. In specific
instances it has been computed, in multi-field theory for example [36] [37]. The bis-
pectrum has its origin in Non-Gaussian terms which originate from the non-linearity in
gravity. That makes computations inherently difficult, since they require extensive use
of general relativity. The difficulty in using this formulation is that the main variable H
or H are not fields, hence they cannot be redefined and compute a correlation function
with. Such a function is possible to define with φ and the corresponding redefinition ξ.
The relation between φ and ξ is more direct, whereas the dependence of H on φ depends
on the specific model. The direct connection in regular slow-roll makes it in my opinion
conceptually easier to work on non-Gaussian correlation functions.
Differences in the potential spectra of H and φ might show up due to a different cou-
pling to the potential V (φ). In the Hamilton-Jacobi formalism H is related directly to V ,
with a sightly different dependence of φ̇, being either approximately equal to V in regular
slow-roll or H in Hamilton-Jacobi. In regular slow-roll, the inflaton field is related via
an approximation or an inequality. This more approximate dependence on the potential
could hide smaller terms, perhaps on the order of ε or higher powers. These more exact
properties makes the Hamilton-Jacobi formalism appealing for computations of Non-
Gaussianities, though the uncertain relation of H on the field φ makes this practically
challenging. Picking a Hubble constant to work with is a guess, where a lot of different
options are possible [36], [38]. While the regular method is less exact, this approximate
nature allows for more general statements which can be compared to measurement more
easily [29] [30] [35]. In my opinion, while the exactness is very appealing, the necessity to
choose a specific form of the Hubble parameter makes computing Non-Gaussianities in
the Hamilton-Jacobi formalism less useful than the regular method in its present state.
However, if the proposed Hubble parameters considered are more general, like an arbi-
trary polynomial or periodic function, the predictive power of this type of model should
also increase.
The difference in coupling to the potential is at most on the order of ε, due to the nature
of the approximation. Thus any threepoint correlation function will most likely also
have a differing factor of up to ε. This is not insignificant as it could be the difference
between detectable and invisible, which does create incentive to work in this field.
In conclusion, I believe that in the current state the predictive capabilities of the
Hamilton-Jacobi formalism are limited, due to needing a specific form of the Hubble
parameter. However, the pay-off is potentially very large. Additional work would po-
tentially be able to give an upper bound on the difference between the two formalisms,
which would be a great breaktrough and a great step towards more accurate models.
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11 Appendix

Here the energy-momentum tensor will be constructed and manipulated to find the
pressure and energy density. Starting from the action

S =

∫
d4x
√
−g(

1

2
gµν∂µφ∂νφ− V (φ))

The Energy-Momentum tensor is given by the equation [9]

Tµν =
1

2
√
−g

δ
√
−gL
δgµν

Where δ means varying the Lagrangian, in this case with respect to gµν . Varying with
respect to the metric requires a bit of care. Two important definitions are

δ
√
−g =

−1

2
√
−g

δg =
1

2

√
−gδgµν

Using the Jacobi formula

d Det(gµν = tr(adj(gµν)dgµν)

Using g = Det(gµν , it follows that

δg = g gµνδgµν

Substituting this into equation 11 gives the result:

δ
√
−g =

1

2

√
−g gµνδgµν

The second important formula is[16]

δgµν = −gµαgνβδgαβ

Using the chain rule, varying the Lagrangian becomes

Tµν =
1

2
√
−g

δ
√
−gL
δgµν

=
2√
−g

(
1

2

√
−g gµνL+

√
−g δL

δgµν
)

Substituting the Lagrangian L = 1
2g
µν∂µφ∂νφ− V (φ) back in gives

Tµν = gµν(−1

2
∂αφ∂

αφ− V (φ) + ∂µφ∂νφ

Where care should be taken to make sure the same indices are not reused. The diagonal
entries of the energy-momentum tensor represent the energy density and the pressure of
the field: T00 = ρ and Tij = Pφgij .

T00 = g00(−1

2
∂αφ∂

αφ− V (φ) + ∂0φ∂0φ =
1

2
∂αφ∂

αφ+ V (φ) + φ̇2

48



Tij = gij(−
1

2
∂αφ∂

αφ− V (φ)) + ∂iφ∂jφ

The pressure can be extracted from the equation using gijTij = 3P . The equations for
the energy density and pressure of the field are given as

ρ =
1

2
φ̇2 +

1

2

(∇φ)2

a(t)2
+ V (φ)

P =
1

2
φ̇2 − 1

2

(∇φ)2

a(t)2
− V (φ)

Where the metric in equation 1 was used to scale the space components with the factor
1
a . If we impose homogeneity and isotropy on the field φ, φ does not depend on spatial
position or on angle, φ = φ(t). This simplifies the equations further to find

ρ =
1

2
φ̇2 + V (φ)

P =
1

2
φ̇2 − V (φ)
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