
Exploring Taylor Methods for Fast
and Precise Particle Tracking

Ibai Ceberio
July 4, 2019

Bachelor Research Project Physics
Supervisors:

Dr.ir. C.J.G. Onderwater

Prof. dr. S. Hoekstra

University of Groningen

The Netherlands

Exploring Taylor Methods for Fast and Precise

Particle Tracking

Ibai Ceberio

Abstract

The LHCb experiment is set up to explore what happened after the Big Bang that
allowed matter to build the universe we inhabit today. In this paper an alternative
particle tracking method is described. The potential of this method resides in the
capacity of working in parallel computing. At the same time allows to calculate
the ending parameters without the constant need of numerical integration methods
which are time consuming. The method is being encoded in a c++ script.

Contents

1 Introduction 1

2 Theoretical base 4
2.1 Electromagnetism . 4

2.1.1 Maxwell Equations . 4
2.1.2 Magnetic Rigidity and x3 . 5

2.2 From classic to relativistic view . 5
2.3 Equations of motion . 6
2.4 Taylor series expansion . 6

3 Particle Tracking 9
3.1 Constant Magnetic Field . 9
3.2 Inhomogeneous Magnetic Field . 10

4 Taylor Expansion 12
4.1 Polynomial Order . 12
4.2 Coupling everything . 17
4.3 Validation: vx = 10000 m/s . 17

5 Conclusion 19

A Euler Method 21

B c++ implementation code 25
B.1 Particle Tracking for some arbitrary vx 25
B.2 Fitting Curves . 27

Bibliography 28

List of Figures

1.1 Dipole Magnet of LHCb. [4] . 2
1.2 Magnetic Field map in LHCb. [5] . 2

3.1 Logarithm of the radius over the number of steps taken. 10
3.2 The magnetic field along the y direction. x=0 has been chosen for

the image. 11
3.3 Different momentum electron going through a Gaussian distributed

magnetic field. All the particles enter the magnet in perpendicular to
the x-plane and from the (0,0) position. 11

4.1 x vs y. Different track for each of the vx velocities implemented with
a starting point of x = 0 and y = 0. The plotted curves are for an
electron with py = 1.5 GeV/c coming through a Gaussian distributed
magnetic field with a maximum amplitude of 1.05T. 13

4.2 xout vs xin. The final x position over all the possible inital x positions. 13
4.3 Increasing order polynomial fitting, from second to sixth order, over

the real curve (blue). The curve shows the xout vs xin for a vx = 0
velocity. 14

4.4 Seventh order polynomial fitting(green) over the real curve (red). The
curve shows the xout vs xin for a vx = 0 velocity. 14

4.5 Coefficient a over vx. 15
4.9 Coefficient h over vx. 16
4.10 Polynomial function(blue) versus Euler tracking method(red). 17

2

Chapter 1

Introduction

Scientist have tried to give explanation to several phenomena through years. As
the technology has improved we have being able to explore smaller and smaller
interactions of matter. Particle physics is a branch of physics that works with the
subatomic particles which constitute matter and radiation. Moreover, The Standard
Model of particle physics is the theory enclosing the interaction of particles under
the fundamental forces (gravity is excluded).

However, there are so phenomena that the Standard Model can’t explain. Some
of those are the neutrino oscillations, matter-antimatter asymmetry or the nature of
dark matter and dark energy. Despite of these problems there is a bigger and more
important discussion in the mathematical framework. Both the Standard Model
and general relativity are incompatible under certain conditions. In conclusion the
Standard Model is far for being a complete theory of fundamental interactions.

To discover and develop a new model physicist work in the LHC (Large Hadron
Collider). It is the worlds most powerful particle accelerator and the largest. The
LHC is a 27 km ring of superconducting magnets (see figure 1.1). To boost energy
to the particles involved there are some accelerating structures along the way. Using
magnetic dipoles particles are bend, such that they can collide several times. Thank
to the magnets placed alongside the ring the particle beams can be curved and keep
them in track. As it has being said the magnets are superconducting at temperatures
such as −271.3 oC [2]. Therefore all the magnets are cooled down via a system of
liquid helium. On the other hand there are other type of magnets which focus on
making the beam as narrow and focus as possible so it can collide with the beam
coming from the opposite direction. For the LHCb experiment high precision in
particle tracking is really necessary. Also, because of the high velocities of the
detected particles the bending is going to be really small.

Once the particles collide there is a cascade of smaller particles which decay
and must be detected and analyzed later on. For that several detectors are used.
Generally the data comes at a rate of millions per second (for LHCb). The Worlwide
LHC computing grid deals with all the data in two main steps. In the first one the
data amount is reduced via an algorithm that selects interesting events for physicist.
That narrows the event number to around 100,000 per second. In the second step
the digital reconstruction must be done. Using more specific algorithms the event
number of interest is reduced to only 100-200 events per second [6]. Nevertheless
Physicist continue to refine algorithms to detect even more interesting events.

As we see a fast particle tracking method is needed. Numerical methods have

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Dipole Magnet of LHCb. [4]

proven to be able to determine the tracks with high precision and reliability but
there are time consuming methods. The tracking routines used nowadays, such as
Euler or Runge Kutta, work but they have a problem. As they work sequentially
quite a lot of time is lost in the determination of middle points which not that
important.

The LHCb magnet create an inhomogeneous magnetic fields due to its wide
spectrum (see figure 1.2). Taking into account that the LHCb magnet stay unaltered
for long periods of time we can assume that the magnetic field will remain stable
during the time of the experiment running. Consequently we have the chance of
Taylor expanding the magnetic field so we can track the particle in a later stage.
Knowing the coefficients of the Taylor expansion would lead to a decrease in the
computation time since the same parameters can be used again and again while the
LHCb stays unaltered.

Figure 1.2: Magnetic Field map in LHCb. [5]

2

CHAPTER 1. INTRODUCTION

The aim of this bachelor research project is to calculate the minimum order
of the Taylor expansion for a nice particle tracking in arbitrary magnetic
fields. With the calculated coefficients particle position in the end of the magnet
can be determined with the only need of the initial parameters.

3

Chapter 2

Theoretical base

To begin with the report some basic theory will be introduced for a better under-
standing of the following chapters.

2.1 Electromagnetism

First of all, electromagnetism is a branch of Physics which focuses on the study of the
electromagnetic force, one of the four fundamental interactions. The electromagnetic
force describes the interaction that occurs between electrically charged particles. At
high energies the weak and electromagnetic forces are unified into what is called the
electroweak force.

Primarily both electricity and magnetism are different manifestations of the same
phenomena. This is due to the fact that the particles involved must obey the
Maxwell’s equations (see subsection 2.1.1). Even though electricity and magnetism
are related to each other we will see that for at certain circumstances the electric
field is negligible.

2.1.1 Maxwell Equations

Maxwell’s equations represent one of the most concise ways to state the relationship
between electricity and magnetism. Taking them as a starting point one can explain
almost all the developed relations in the field. Maxwell’s equations are a group of
4 equations which relate distinct aspects of the electromagnetism. First we have
Gauss’ law for electrcity:

∇ · E =
ρ

ε0
(2.1)

meaning that the electric flux out of any closed surface is proportional to the total
charge enclosed within the surface. Secondly we have Gauss’ law for magnetism:

∇ ·B = 0. (2.2)

The physical meaning of the law is that the net magnetic flux out of any closed
surface is 0. After that we come to Faraday’s law of induction:

∇× E = −∂B

∂t
. (2.3)

4

CHAPTER 2. THEORETICAL BASE

In this case the line integral of the electric field around a closed loop is equal to the
negative of the rate of change of the magnetic flux through the area enclosed by the
loop. The last of these set of equations is Ampere’s law. It means that in the case
of static electric field, the line integral of the magnetic field around a closed loop is
proportional to the electric current flowing through the loop and is represented in
the following way:

∇×B = µ0J + µ0ε0
∂E

∂t
. (2.4)

The bases of the equations will be used for simplicity when the equations of
motion are set.

2.1.2 Magnetic Rigidity and x3

The magnetic rigidity is the influence on the motion of charged particles. With
units of T ·m it is a measure of the momentum of a particle. Additionally, it gives
an explanation to the fact that higher momentum particles tend to bend less than
same particles with smaller momentum.

A particle traveling through a uniform magnetic field describes a circular orbit
of radius ρ and the Lorentz force equalling the centrifugal force leads to

R = Bρ =
p

q
(2.5)

where B is the magnetic field, ρ is the gyroradius of the particle under the influence
of the field, p the momentum of the particle and q its electric charge.

The inverse of the bending radius is x3 and it sums up the effects of the momen-
tum, charge and magnetic field in just one variable. This can be useful in further
calculations. At some reference point x3 is defined as:

x3 =
q

p
·B(x0, y0, z0). (2.6)

2.2 From classic to relativistic view

What we are mainly concerned with the LHCb experiment is that particles go almost
as fast as the speed of light. Bearing this in mind it is important to take into account
the relativistic effects that arise in this environment. Our method will have to take
into account this corrections in order to work out.

The Lorentz factor

γ =
1√

1− v2

c2

(2.7)

is used in the calculation of the relativistic mass which we must coupled in the
equations of motion or magnetic rigidity. Taking the limit of v � c, γ ≈ 1 (clas-
sical mechanics). In contrast, at high velocities the Lorentz factor starts to gain
importance and that is why we must consider it.

As a result the momentum of the particle can be expressed in terms of the rest
mass and the velocity of the incoming particle.

p = γm0v =
m0v√
1− v2

c2

(2.8)

5

CHAPTER 2. THEORETICAL BASE

and consequently

x3 =
Bq

p
=

Bq

γm0v
. (2.9)

2.3 Equations of motion

One of the most striking aspects of this problem is to use the correct equations of
motion. For our purpose we will we using cartesian coordinates in a way that the
transverse axes are going to be x (horizontal) and z (vertical). What is more, the
longitudinal axis, the one along the magnetic field, will be defined by y.

We start from the Lorentz force equation:

F = ma = qE + qv ×B. (2.10)

As it has been mentioned in the introduction (see chapter 1) the LHCb experiments
runs with a magnetic field of around 1 T. When a particle with a velocity v ≈ c
enters the magnetic region it gets curved. In case we wanted the particle to be
affected significantly by an electric field we would need to create one of at least
several million V/m because Bv ≈ 3×108 V/m. With this in mind the force exerted
by any electric field will be neglected:

F = ma ≈ qv ×B. (2.11)

Expanding the equation of motion into the coordinates fixed before we get:

ẍ =
q

γm
(ẏBz − żBy), (2.12)

ÿ =
q

γm
(żBx − ẋBz), (2.13)

z̈ =
q

γm
(ẋBy − ẏBx). (2.14)

2.4 Taylor series expansion

In this section an introduction to the Taylor series is given. After that we will
explain how the expansions are going to be useful in our method.

The Taylor series expansion is a representation of a function as an infinite sum
of terms. For a function, f(x) that is infinitely differentiable at a real or complex
number a the Taylor expansion is:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x−a)n = f(a)+

f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2)+

f ′′′(a)

3!
(x−a)3+...

(2.15)
In addition we have the possibility of expanding the serie into more than one

variable. The 2-D Taylor expansion is defined as:

f(x, y) =
∞∑
n=0

 1

n!

n∑
k=0

(
n
k

)
∂nf

∂xn−k∂yk

∣∣∣∣∣
(a,b)

(x− a)n−k(y − b)k
 (2.16)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2!
[fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2] + ...

6

CHAPTER 2. THEORETICAL BASE

where (
n
k

)
=

n!

(n− k)!k!

are the binomial coefficients and

fij =
∂2f

∂i ∂j
.

.
Now that an introduction has been given we can explore another useful property

of the Taylor series. They can be used to solve differential equations. We are going
to make use of this property to fit a polynomial sum to the trajectory of the particle.

To give an example let’s say we have the next equation which needs to be solved:

d2y

dx2
− y = 0. (2.17)

Then we start with a series expansion around x=0 with the form of

y(x) =
∞∑
n=0

anx
n. (2.18)

Taking the second derivative of the expression 2.18 and plugging in into our equation
2.17 leads to

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n = 0. (2.19)

Coming to the realization that the first sum does not start from 0 we can transform
it into a sum starting from 0. If we make the variable change of n′ = n− 2 the first
term of equation 2.19 becomes

∞∑
n′=0

(n′ + 2)(n′ + 1)an′+2x
n′ . (2.20)

Moreover, we want also the exponent of x to be the same in both cases. In
resume we end up having the next equation:

∞∑
n=0

[(n+ 2)(n+ 1)an+2 − an]xn = 0. (2.21)

For this to hold along x, all terms in the sum have to be 0. So

(n+ 2)(n+ 1)an+2 − an = 0, ∀n (2.22)

Solving the equation leaves us with two relations for ak: a2k = a0
(2k)!

, k = 0, 1, 2, ...
and a2k+1 = a0

(2k+1)!
, k = 0, 1, 2, ... To conclude we will put these results into the

general form of y(x) of equation 2.18:

y(x) = a0

∞∑
k=0

x2k

(2k)!
+ a1

∞∑
k=0

x2k+1

(2k + 1)!
. (2.23)

7

CHAPTER 2. THEORETICAL BASE

As the general solution of the equation is y(x) = c1 cosh(x) + c2 sinh(x) and as we
know that

cosh(x) =
∞∑
n=0

x2n

(2n)!
(2.24)

and

sinh(x) =
∞∑
n=0

x2n+1

(2n+ 1)!
(2.25)

we can conclude that the solution found via Taylor series is correct. To determine
the coefficients, either the analytical solution needs to be known, some technique
needs to be developed to relate the coefficients to the differential equation, or we
could fit the polynomials led by numerical solutions.

8

Chapter 3

Particle Tracking

In this chapter we explore the numerical solution of a particle crossing a magnetic
field. We will first explore a constant magnetic field and then a more complex
position depended field which we will later use for Taylor approximation.

3.1 Constant Magnetic Field

When we start to work with different numerical methods one of the first challenges
is to find a discretization stepsize. As we want to have a precise solution we need a
maximum number of points available. Moreover, we know that if we use to many
steps the solution is going to be the most precise possible. However, inserting more
steps means that the computation time is going to be longer also. In this perspective,
a decision has to be made. Do we want a really precise but slow method or do we
want a less precise but faster one instead?

To obtain some experience we will investigate a well known case. If we make a

particle go through a constant magnetic field,
−→
B (x, y, z) = Bz k̂ = const, we expect

it to start making circles.
−→
F = q−→v ×

−→
B then becomes

γm (v̇x ı̂+ v̇y ̂) = q (vyBz ı̂− vxBz ̂).

Applying the Euler method for the differential equation and taking the relativistic
effects into account we finish with the two sets showed next:

vx+1 = vx + h
q

γ m
vyBz, (3.1)

vy+1 = vy − h
q

γ m
vxBz. (3.2)

Hence, implementing the method would give us one of the first answers we need.
During the process different number of steps have been taken and plotted to show
that the more points we use the more precise the solution is going to be. Particularly
in this case the way to see if the points are enough is to try to get the most constant
radius possible. Results are showed in figure (3.1).

Needs to be said that we can’t use all the steps we want. Despite being the-
oretically possible we need to take into account the processing power of standard
computers. If it is not said otherwise and we use double type variables we will be
working with numbers that have a maximum storage capacity of 8 bytes. As a result
if at some point we require more memory the program will crash down. As it can

9

CHAPTER 3. PARTICLE TRACKING

Figure 3.1: Logarithm of the radius over the number of steps taken.

be seeing we reach this point when we get in the neighbourhood of 105 steps. After
the exact value of 105 being tried we have being given back an error and leaded us
to use almost that quantity of steps.

3.2 Inhomogeneous Magnetic Field

In general the magnetic field is not constant. The rare case is the one where the
applied magnetic field is constant indeed. Our next step is going to be to manipulate
the code to include an inhomogeneous magnetic field. Taking as a reference the
magnetic field of the LHCb (see figure 1.2) we will use a Gaussian shaped magnetic
field:

−→
B (x, y, z) = Bz(x, y) k̂ = 1.05 e

(
−x2+(y−5)2

5.5

)
k̂ T. (3.3)

A plot of the magnetic field over the distance can be seeing in figure 3.2. For our
purpose we will be focusing on the symmetry plane because if z 6= 0 the magnetic
field would also have components in the x and y directions (Bx 6= 0, By 6= 0).

Using the data we have from the LHCb [4] we have set up the amplitude of the
magnetic field in 1.05 Tesla and the range of the exponential to the dimensions of
one of the magnets in the LHCb experiment. That means we will have a Gaussian
distributed magnetic field which main value of 1.05 Tesla is going to be in the
(x0, y0) = (0, 5 m) position. Essentially we are satisfying the boundary conditions
given by the dimensions of the magnet.

In connection with the incident electron momentum we have that in order to
reach the detector after exiting the magnets a minimum momentum of 1.5 GeV/c
[3] is required. On the other hand the maximum momentum allowed is 100 GeV/c.
Below is shown the deflection of the different momentum electrons (see figure 3.3).
As we can see the faster the particle the less it is going to be affected by the magnetic
field. The code used for the plot can be found in Appendix A.

10

CHAPTER 3. PARTICLE TRACKING

Figure 3.2: The magnetic field along the y direction. x=0 has been chosen for the
image.

Figure 3.3: Different momentum electron going through a Gaussian distributed
magnetic field. All the particles enter the magnet in perpendicular to the x-plane
and from the (0,0) position.

With this implementation, we can proceed to the next step; finding the Taylor
amplitudes. This is necessary, because although the Euler method can be very
precise, it is very slow. Also Euler like methods, such as Runge-Kutta method will
be similarly slow.

11

Chapter 4

Taylor Expansion

In this chapter a description for the determination of the polynomial coefficients of
the x direction is given. First particle tracking is carried out for different vx values
using the Euler method coding (see Appendix B.1) and the polynomial order is
determined. Secondly, curve fitting is done for all the velocities with the previous
calculated polynomial order. After that stage the coefficients of the equations are
plotted versus the initial vx velocity and curve fitting is done for each order. In the
end the whole equation is written together and some results are obtained.

4.1 Polynomial Order

The aim of this polynomial approach is to define an expression for xout dependable
in xin and V xin. In addition, we want to be able to repeat the same procedure with
V xout, V yout, etc.

We start plotting the particle tracks for different initial velocities. At least for
now we are going to be focusing in how a variation of the initial vx is going to affect
the track this particle is going to have. In accordance with that we need to calculate
the xout for a certain xin. Moreover, we want our polynomial function to be able to
give us the end position for any initial x position as long as we are inside the magnet.
After computing the code for different velocities the results obtained is shown in the
following graph (see figure 4.2). Additionally, the tracks are also shown in figure
4.1. Analyzing the plot we see that, as expected, the initial vx plays an important
role in the upcoming particle track.

The next step we are taking is to see which will be the minimum polynomial order
to fit the curves. We begin with the second order polynomial fitting because it is clear
that we don’t have a linear response. What’s more, we can use the same reasoning
for the second order polynomial function because the curve is not a parabola neither.
After increasing the polynomial order of our function the development of the fitting
curve is shown in figure 4.3.

12

CHAPTER 4. TAYLOR EXPANSION

Figure 4.1: x vs y. Different track for each of the vx velocities implemented with
a starting point of x = 0 and y = 0. The plotted curves are for an electron
with py = 1.5 GeV/c coming through a Gaussian distributed magnetic field with
a maximum amplitude of 1.05T.

Figure 4.2: xout vs xin. The final x position over all the possible inital x positions.

In conclusion, we have to reach the seventh order of the polynomial equation if
we want to fit the curve with enough precision and even though the extreme points

13

CHAPTER 4. TAYLOR EXPANSION

Figure 4.3: Increasing order polynomial fitting, from second to sixth order, over the
real curve (blue). The curve shows the xout vs xin for a vx = 0 velocity.

don’t seem to fit correctly as we can see in figure 4.4.

Figure 4.4: Seventh order polynomial fitting(green) over the real curve (red). The
curve shows the xout vs xin for a vx = 0 velocity.

Once this part is done we come back to figure 4.2. Now that it is known the order
we need we can do the curve fitting for all the 4 different vx velocities. Consequently
we will have 4 different polynomial equations. The reason for that is the expected

14

CHAPTER 4. TAYLOR EXPANSION

dependence of the coefficients on vx. What first was a function of the form

xout = [a+ bx+ cx2 + dx3 + ex4 + fx5 + gx6 + hx7]× xin (4.1)

with all the coefficients being constant has become

xout = [a(x′)+ b(x′)x+ c(x′)x2 +d(x′)x3 +e(x′)x4 +f(x′)x5 +g(x′)x6 +h(x′)x7]×xin
(4.2)

. Inevitably, this means that we will need to do the same polynomial fit for each of
the coefficients. The next table summarizes the data available from the figures:

x’ [m/s] a b c d
0 -3.426 0.6032 0.4548 0.06625

108 -0.01346 2.181 0.3467 -0.1383
−108 -5.147 0.1487 0.06422 0.06466
−7.5 · 107 -4.733 0.1329 01442 0.07987

x’ [m/s] e f g h
0 -0.02081 -0.003468 0.0003182 -8.719·10−5

108 -0.01533 0.005912 0.0002437 -8.719·10−5

−108 0.00196 -0.001602 -6.93·10−5 1.205·10−5

−7.5 · 107 -0.001441 -0.002509 -2.949·10−5 2.642·10−5

We start again plotting the values of a over the velocities in which they were
measured and after the fitting we obtain:

Figure 4.5: Coefficient a over vx.

We will do the same for each of the coefficients. In each of the cases the polyno-
mial order can be different mainly because it might not be the need of more. It is
important to mention that for the case in figure 4.9 the polynomial fitting from Cern
ROOT [1] did not work from the third order on. As a solution the KaleidaGraph
program has been used. In each of the graphs we see how the initial vx affects the
polynomial coefficient. Shall we say that a(x′) = a(vx). That is the reason why we
have plotted the coefficients over the initial vx.

15

CHAPTER 4. TAYLOR EXPANSION

(a) Coefficient b over vx. (b) Coefficient c over vx.

(a) Coefficient d over vx. (b) Coefficient e over vx.

(a) Coefficient f over vx. (b) Coefficient g over vx.

Figure 4.9: Coefficient h over vx.

16

CHAPTER 4. TAYLOR EXPANSION

4.2 Coupling everything

Summing up we have ended up with the next big polynomial equation where xout
not only depends in the initial x but in the vx too.

xo = −3.43 + 2.13 · 10−8 ẋi + 8.46 · 10−17 ẋ2i + 4.33 · 10−17 ẋ3i
+ (0.59 + 1.02 · 10−8 ẋi + 5.64 · 10−17 ẋ2i) xi

+ (0.45 + 3.37 · 10−9 ẋi − 2.49 · 10−17 ẋ2i − 1.96 · 10−25 ẋ3i) x
2
i

+ (0.06− 1.00 · 10−9 ẋi − 1.03 · 10−17 ẋ2i) x
3
i

+ (−0.02− 2.37 · 10−10 ẋi + 1.41 · 10−18 ẋ2i − 1.51 · 10−26 ẋ3i) x
4
i

+ (1.88 · 10−11 ẋi + 5.62 · 10−19 ẋ2i + 1.87 · 10−27 ẋ3i) x
5
i

+ (4.62 · 10−12 ẋi − 2.31 · 10−20 ẋ2i − 3.06 · 10−28 ẋ3i) x
6
i

+ (5.74 · 10−5 − 4.59 · 10−14 ẋi − 9.49 · 10−21 ẋ2i − 4.50 · 10−29 ẋ3i) x
7
i

4.3 Validation: vx = 10000 m/s

In this chapter a confirmation that the polynomial function works is proven. The
polynomial equation versus the real tracking is shown below. We shall remember
that our particle is an electron with py = 1.5GeV/c and vx = 10000. This value for
the horizontal velocity is near to the maximum limit we could use for a particle with
such an energy. In case we tried higher velocity the total velocity of the particle
would have passed the speed of light and it is well known that no particles go faster
than that.

Figure 4.10: Polynomial function(blue) versus Euler tracking method(red).

Overall we see that the polynomial works magnificently in the center values and
starts to fail in the edges. The come up with two main reasons for that. First,
the magnetic field in the magnet limits is almost zero and consequently it is hard
to calculate how the particle is going to respond. On the other hand, we settled
the polynomial order in 7th order. If we want to get better results we just need
to increase the polynomial order to get as much precision as we want. Although

17

CHAPTER 4. TAYLOR EXPANSION

the fitting has being done by eye during this research, comparing with the LHCb
experiment we would like to have a precision of the order of some micrometers [3].

18

Chapter 5

Conclusion

We have developed a possible method to track charged particles through arbitrary
magnetic fields. We wanted to make use of the method to track the particles in
the LHCb experiment. We have implemented a Taylor expansion based polynomial
function. The initial idea was to find a similarly precise and faster tracking method.
Currently used numerical methods need to compute the whole trajectory of the
particle. However, the momenta values which are needed are only the ones saved in
the initial and final positions. Most of the implementation time necessary would be
reduced with a method such as the Taylor expanded function.

For a constant magnetic field the method shows acceptable results. The main
reason is that it doesn’t matter which is the initial position of the particle because
the track will always be circles. Even though we could use the developed method
to get the solution it would be time wasting because we can figure out the solutions
without any computaional calculation.

In the next stage we have started to work with a Gaussian shape magnetic field.
Given the amount of time we have had for this bachelor project we are not being
able to do the following implementations in all three coordinates. That’s why we
have focused in the most interesting one of the 3. The x direction of the experiment
is the most important because the xin fixes how much the particle is going to bend
and consequently, at what x position is going to come out (xout). It wasn’t possible
to compute the polynomial fitting for the y and z directions but having the time it
would be something not to complicated to do.

After that, calculation of the track for several xin values (all the xin inside the
magnet) has being computed using the Euler method shown in appendix A. Next
we have fitted the curve xout versus xin. As we expected the polynomial order
needed wasn’t small and we have being forced to use up to the seventh order to
get a similar curve. As we already knew from experimental results, when the initial
velocity changes the polynomial function coefficients change too. This has led us to
the idea that the coefficients are not constant but they change with the initial vx.
In order to have this solved we have repeated the process for some different values
of the initial velocity. Due to having a seventh order polynomial function we have
done a fitting for each of the coefficients over the velocities.

In the end we have finished with a polynomial function which changes in terms
of initial x position and velocity.

Overall, we have come up with a method that works for arbitrary fields. Unfor-
tunately it is hard to say if it is going to be faster or not. As it has been said we

19

CHAPTER 5. CONCLUSION

need to compute any numerical method before we can figure out the polynomial.
As a result we will need at least the same amount of computational time in the
beginning. I believe there is potential for cases in which the set up is not changed
for long periods. We could do the calculations in the first time periods and then we
could get the next results with ease and rapidly. One of the benefits it has is that it
can be used in parallel programming since all the measurements are independent.

Summing up, we have a method that works but needs of long periods of unaltered
set up in order to be profitable.

20

Appendix A

Euler Method

When trying to solve ordinary differential equations with a given initial value one
of the first and more simple methods that comes to the mind is the Euler Method.
It is a first order method and therefore the local error or error per step is going to
be proportional to the step size. At the same time the error at a given time (global
error) is proportional to the step size. If a small enough step size is used highly
precise tracks can be determined.

We need an ODE of the next form to start with the Euler Method:{
y′(t) = f(t, y(t))

y(t0) = y0

where y0 is the initial value. For a fixed step size we can define the time as tn =
t0 + nh. Moreover, if the that time expression is applied we can put down the
distance between to neighbour points in the next way:

yn+1 = yn + hf(tn, yn)

To translate this into our problem with the charged particle we will use the Lorentz
forces (sartu ekuazioa):{

v̇(t) = q
γm

[v(t)×B(t)]

v(t0) = v0

,

{
ẋ(t) = v(t)

x(t0) = x0

Translating it to the Euler method we have

vn+1 = vn + h · q

γm
[v(t)×B(t)] (A.1)

and
xn+1 = xn + h · vn (A.2)

Both equations are solved in the following c++ code in order to track the tra-
jectory of the electron.

. . .
#include <iostream>
#include <iomanip>
#include <cmath>
#include <TNtuple . h>
#include <TGraph . h>
#include <TMultiGraph . h>
#include <TAxis . h>
#include <TCanvas . h>

21

APPENDIX A. EULER METHOD

#include <TLegend . h>

using namespace std ;

// MAGNETIC FIELD :

Double t Bzx(Double t x){
return exp(−pow(x , 2) / (5 . 5)) ;

}
Double t Bzy(Double t y){

return exp(−pow(y−5 , 2) / (5 . 5)) ;
}

void MF()
{

// CONSTANTS:

Double t c l i g h t =299792458; // In m/ s
Double t mass=9.10938356∗pow(10 ,−31); // In kg
Double t con=5.344286∗pow(10 ,−19); // To go from Gev/c to kg m/ s
Double t q=−1.602∗pow(10 ,−19); // In C

Double t Bz [1 0 0 0 0] ; // We are gonna use 1 .05 T

// MOMENTUM=1.5 AND INITIAL VELOCITY:

Double t py=1.5; // In GeV/c
Double t vx [1 0000] , vy [1 0000] , vz [1 0 0 0 0] ;
vx [0]=0 ;
vy [0]=py∗con /(mass∗ sq r t (1+pow(py∗con , 2) / (pow(mass , 2)∗pow(c l i gh t , 2)))) ;
vz [0]=0 ;

Double t gamma=1/ sq r t (1−pow(sq r t (pow(vy [0] , 2)+pow(vx [0] , 2)) , 2) / pow(c l i gh t , 2)) ;

// INITIAL POSITION AND MAGNETIC FIELD :

Double t xx [100000] , xy [100000] , xz [1 0 0 0 0 0] ;
xx [0]=0 ;
xy [0]=0 ;
xz [0]=0 . 0 ;
Bz [0]=1 .05∗Bzx(xx [0]) ∗Bzy(xy [0]) ;

// STEP SIZE :

Double t time = pow(10 , −7 .5) ; // In seconds
int s t ep s = pow (1 0 , 4 . 9 9) ;
Double t h = time/ s t ep s ;

// EULER METHOD AND PLOTTING:

int i =0;

while (i<s t ep s){
vx [i +1]=vx [i]+h∗q/(mass∗gamma)∗vy [i]∗Bz [i] ;
vy [i +1]=vy [i]−h∗q/(mass∗gamma)∗vx [i]∗Bz [i] ;
vz [i +1]=vz [i] ;

xx [i +1]=xx [i]+h∗vx [i] ;
xy [i +1]=xy [i]+h∗vy [i] ;
xz [i +1]=xz [i]+h∗vz [i] ;

i=i +1;

Bz [i]=1.05∗Bzx(xx [i])∗Bzy(xy [i]) ;
gamma=1/ sq r t (1−pow(sq r t (pow(vy [i] ,2)+pow(vx [i] , 2)) , 2) / pow(c l i gh t , 2)) ;

}

TGraph∗ tg1=new TGraph(steps , xy , xx) ;
tg1−>Se tT i t l e (”py=1.5 GeV/c”) ;
tg1−>SetMarkerStyle (7) ;
tg1−>SetLineColor (kBlue) ;
tg1−>SetMarkerColor (kBlue) ;

// MOMENTUM=2.5 AND INITIAL VELOCITY:

py=2.5; // In GeV/c
vx [0]=0 ;
vy [0]=py∗con /(mass∗ sq r t (1+pow(py∗con , 2) / (pow(mass , 2)∗pow(c l i gh t , 2)))) ;
vz [0]=0 ;

gamma=1/ sq r t (1−pow(sq r t (pow(vy [0] , 2)+pow(vx [0] , 2)) , 2) / pow(c l i gh t , 2)) ;

// INITIAL POSITION AND MAGNETIC FIELD :

xx [0]=0 ;
xy [0]=0 ;
xz [0]=0 . 0 ;
Bz [0]=1 .05∗Bzx(xx [0]) ∗Bzy(xy [0]) ;

// EULER METHOD AND PLOTTING:

i =0;

while (i<s t ep s){
vx [i +1]=vx [i]+h∗q/(mass∗gamma)∗vy [i]∗Bz [i] ;
vy [i +1]=vy [i]−h∗q/(mass∗gamma)∗vx [i]∗Bz [i] ;
vz [i +1]=vz [i] ;

22

APPENDIX A. EULER METHOD

xx [i +1]=xx [i]+h∗vx [i] ;
xy [i +1]=xy [i]+h∗vy [i] ;
xz [i +1]=xz [i]+h∗vz [i] ;

i=i +1;

Bz [i]=1.05∗Bzx(xx [i])∗Bzy(xy [i]) ;
gamma=1/ sq r t (1−pow(sq r t (pow(vy [i] ,2)+pow(vx [i] , 2)) , 2) / pow(c l i gh t , 2)) ;

}

TGraph∗ tg2=new TGraph(steps , xy , xx) ;
tg2−>Se tT i t l e (”py=2.5 GeV/c”) ;
tg2−>SetMarkerStyle (7) ;
tg2−>SetLineColor (kYellow) ;
tg2−>SetMarkerColor (kYellow) ;

// MOMENTUM=7.5 AND INITIAL VELOCITY:

py=7.5; // In GeV/c
vx [0]=0 ;
vy [0]=py∗con /(mass∗ sq r t (1+pow(py∗con , 2) / (pow(mass , 2)∗pow(c l i gh t , 2)))) ;
vz [0]=0 ;

gamma=1/ sq r t (1−pow(sq r t (pow(vy [0] , 2)+pow(vx [0] , 2)) , 2) / pow(c l i gh t , 2)) ;

// INITIAL POSITION AND MAGNETIC FIELD :

xx [0]=0 ;
xy [0]=0 ;
xz [0]=0 . 0 ;
Bz [0]=1 .05∗Bzx(xx [0]) ∗Bzy(xy [0]) ;

// EULER METHOD AND PLOTTING:

i =0;

while (i<s t ep s){
vx [i +1]=vx [i]+h∗q/(mass∗gamma)∗vy [i]∗Bz [i] ;
vy [i +1]=vy [i]−h∗q/(mass∗gamma)∗vx [i]∗Bz [i] ;
vz [i +1]=vz [i] ;

xx [i +1]=xx [i]+h∗vx [i] ;
xy [i +1]=xy [i]+h∗vy [i] ;
xz [i +1]=xz [i]+h∗vz [i] ;

i=i +1;

Bz [i]=1.05∗Bzx(xx [i])∗Bzy(xy [i]) ;
gamma=1/ sq r t (1−pow(sq r t (pow(vy [i] ,2)+pow(vx [i] , 2)) , 2) / pow(c l i gh t , 2)) ;

}

TGraph∗ tg3=new TGraph(steps , xy , xx) ;
tg3−>Se tT i t l e (”py=7.5 GeV/c”) ;
tg3−>SetMarkerStyle (7) ;
tg3−>SetLineColor (kGreen) ;
tg3−>SetMarkerColor (kGreen) ;

// MOMENTUM=25 AND INITIAL VELOCITY:

py=25; // In GeV/c
vx [0]=0 ;
vy [0]=py∗con /(mass∗ sq r t (1+pow(py∗con , 2) / (pow(mass , 2)∗pow(c l i gh t , 2)))) ;
vz [0]=0 ;

gamma=1/ sq r t (1−pow(sq r t (pow(vy [0] , 2)+pow(vx [0] , 2)) , 2) / pow(c l i gh t , 2)) ;

// INITIAL POSITION AND MAGNETIC FIELD :

xx [0]=0 ;
xy [0]=0 ;
xz [0]=0 . 0 ;
Bz [0]=1 .05∗Bzx(xx [0]) ∗Bzy(xy [0]) ;

// EULER METHOD AND PLOTTING:

i =0;

while (i<s t ep s){
vx [i +1]=vx [i]+h∗q/(mass∗gamma)∗vy [i]∗Bz [i] ;
vy [i +1]=vy [i]−h∗q/(mass∗gamma)∗vx [i]∗Bz [i] ;
vz [i +1]=vz [i] ;

xx [i +1]=xx [i]+h∗vx [i] ;
xy [i +1]=xy [i]+h∗vy [i] ;
xz [i +1]=xz [i]+h∗vz [i] ;

i=i +1;

Bz [i]=1.05∗Bzx(xx [i])∗Bzy(xy [i]) ;
gamma=1/ sq r t (1−pow(sq r t (pow(vy [i] ,2)+pow(vx [i] , 2)) , 2) / pow(c l i gh t , 2)) ;

}

TGraph∗ tg4=new TGraph(steps , xy , xx) ;
tg4−>Se tT i t l e (”py=25 GeV/c”) ;
tg4−>SetMarkerStyle (7) ;
tg4−>SetLineColor (kOrange) ;
tg4−>SetMarkerColor (kOrange) ;

23

APPENDIX A. EULER METHOD

// MOMENTUM=100 AND INITIAL VELOCITY:

py=100; // In GeV/c
vx [0]=0 ;
vy [0]=py∗con /(mass∗ sq r t (1+pow(py∗con , 2) / (pow(mass , 2)∗pow(c l i gh t , 2)))) ;
vz [0]=0 ;

gamma=1/ sq r t (1−pow(sq r t (pow(vy [0] , 2)+pow(vx [0] , 2)) , 2) / pow(c l i gh t , 2)) ;

// INITIAL POSITION AND MAGNETIC FIELD :

xx [0]=0 ;
xy [0]=0 ;
xz [0]=0 . 0 ;
Bz [0]=1 .05∗Bzx(xx [0]) ∗Bzy(xy [0]) ;

// EULER METHOD AND PLOTTING:

i =0;

while (i<s t ep s){
vx [i +1]=vx [i]+h∗q/(mass∗gamma)∗vy [i]∗Bz [i] ;
vy [i +1]=vy [i]−h∗q/(mass∗gamma)∗vx [i]∗Bz [i] ;
vz [i +1]=vz [i] ;

xx [i +1]=xx [i]+h∗vx [i] ;
xy [i +1]=xy [i]+h∗vy [i] ;
xz [i +1]=xz [i]+h∗vz [i] ;

i=i +1;

Bz [i]=1.05∗Bzx(xx [i])∗Bzy(xy [i]) ;
gamma=1/ sq r t (1−pow(sq r t (pow(vy [i] ,2)+pow(vx [i] , 2)) , 2) / pow(c l i gh t , 2)) ;

}

TGraph∗ tg5=new TGraph(steps , xy , xx) ;
tg5−>Se tT i t l e (”py=100 GeV/c”) ;
tg5−>SetMarkerStyle (7) ;
tg5−>SetLineColor (kRed) ;
tg5−>SetMarkerColor (kRed) ;

//FINAL PLOT

auto c1 = new TCanvas (”c” , ”c” , 600 ,500) ;
TMultiGraph∗ mg=new TMultiGraph () ;

mg−>Add(tg1) ;
mg−>Add(tg2) ;
mg−>Add(tg3) ;
mg−>Add(tg4) ;
mg−>Add(tg5) ;

mg−>Se tT i t l e (” ”) ;
mg−>GetXaxis()−>Se tT i t l e (”y [m] ”) ;
mg−>GetYaxis()−>Se tT i t l e (”x [m] ”) ;
mg−>SetMinimum(−0.6) ;
mg−>Draw(”AP”) ;
c1−>BuildLegend () ;

}

. . .

24

Appendix B

c++ implementation code

B.1 Particle Tracking for some arbitrary vx

. . .
#include <iostream>
#include <iomanip>
#include <cmath>
#include <TNtuple . h>
#include <TGraph . h>
#include <TMultiGraph . h>
#include <TAxis . h>
#include <TCanvas . h>
#include <TLegend . h>
#include <TStyle . h>

using namespace std ;

Double t Bzx(Double t x){
return exp(−pow(x , 2) / (5 . 5)) ;

}
Double t Bzy(Double t y){

return exp(−pow(y−5 , 2) / (5 . 5)) ;
}

void Poly ()
{

TCanvas ∗c1 = new TCanvas (”c1” , ”xout vs xin ” , 700 , 500) ;
c1−>SetGrid () ;

TMultiGraph ∗mg = new TMultiGraph () ;

// CONSTANTS:

Double t c l i g h t =299792458; // In m/ s
Double t mass=9.10938356∗pow(10 ,−31); // In kg
Double t con=5.344286∗pow(10 ,−19); // To go from Gev/c to kg m/ s
Double t q=−1.602∗pow(10 ,−19); // In C

// STEP SIZE :

Double t time = pow(10 , −7 .5) ; // In seconds
int s t ep s = pow (1 0 , 4 . 9 9) ;
Double t h = time/ s t ep s ;

Double t Bz [s t ep s] ; // We are gonna use 1 .05 T

// MOMENTUM=1.5 AND INITIAL VELOCITY:

Double t py=1.5; // In GeV/c

Double t vx [s t ep s] , vy [s t ep s] , vz [s t ep s] ;
vx [0]=0 ; // The maximum i s 102140 ,96
vy [0]=(py∗con∗ c l i g h t)/ sq r t (pow(py∗con ,2)+(pow(mass∗ c l i gh t , 2))) ;
vz [0]=0 ;

Double t gamma=1/ sq r t (1−(pow(vx [0] , 2)+pow(vy [0] , 2)) / pow(c l i gh t , 2)) ;

// INITIAL POSITION AND MAGNETIC FIELD :

I n t t n=1000; // NUumber o f x p o s i t i o n s wanted
Double t h2=11.0/n ;

Double t xx [s t ep s] , xy [s t ep s] , xz [s t ep s] , xin1 [n] , xout1 [n] ;
Double t xin2 [n] , xout2 [n] , xin3 [n] , xout3 [n] , xin4 [n] , xout4 [n] ;
xx [0]=−5.5;
xy [0]=0 ;

25

APPENDIX B. C++ IMPLEMENTATION CODE

xz [0]=0 ;
Bz [0]=1 .05∗Bzx(xx [0]) ∗Bzy(xy [0]) ;
xin1 [0]=xx [0] ;
xout1 [0]=0 ;
xin2 [0]=xx [0] ;
xout2 [0]=0 ;
xin3 [0]=xx [0] ;
xout3 [0]=0 ;
xin4 [0]=xx [0] ;
xout4 [0]=0 ;

int i =0;
int j =0;

// EULER METHOD AND PLOTTING:

for (int k=0; k<=3; k++) {
while (j<n) {

i f (k==1) {
vx [0]=pow (10 , 8) ;

}
else i f (k==2){

vx[0]=−pow (10 , 8) ;

}
else i f (k==3){

vx [0]=−7.5∗pow (10 , 7) ;
}
while (i<s t ep s){

vx [i +1]=vx [i]+h∗q/(mass∗gamma)∗vy [i]∗Bz [i] ;
vy [i +1]=vy [i]−h∗q/(mass∗gamma)∗vx [i]∗Bz [i] ;
vz [i +1]=vz [i] ;

xx [i +1]=xx [i]+h∗vx [i] ;
xy [i +1]=xy [i]+h∗vy [i] ;
xz [i +1]=xz [i]+h∗vz [i] ;
i=i +1;

Bz [i]=1.05∗Bzx(xx [i])∗Bzy(xy [i]) ;
}

i f (k==0) {
xin1 [j]=xx [0] ;
xout1 [j]=xx [s t ep s] ;
cout<<” k = ”<<k<<” working f o r j = ”<<j<<endl ;

}
else i f (k==1){

xin2 [j]=xx [0] ;
xout2 [j]=xx [s t ep s] ;
cout<<” k = ”<<k<<” working f o r j = ”<<j<<endl ;

}
else i f (k==2){

xin3 [j]=xx [0] ;
xout3 [j]=xx [s t ep s] ;
cout<<” k = ”<<k<<” working f o r j = ”<<j<<endl ;

}
else i f (k==3){

xin4 [j]=xx [0] ;
xout4 [j]=xx [s t ep s] ;
cout<<” k = ”<<k<<” working f o r j = ”<<j<<endl ;

}

xx[0]=−5.5+h2∗(j +1);
i =0;
j=j +1;

}

j =0;
}

// Crea t ing t h e graphs :

// gS t y l e−>Se tOptF i t (1) ;

TGraph ∗g1 = new TGraph(n , xin1 , xout1) ;
g1−>Se tT i t l e (”vx = 0 [m/ s] ”) ;
g1−>SetLineColor (kBlue) ;
g1−>SetMarkerColor (kBlue) ;
g1−>SetMarkerStyle (7) ;
mg−>Add(g1) ;

TGraph ∗g2 = new TGraph(n , xin2 , xout2) ;
g2−>Se tT i t l e (”vx = pow(10 ,8) [m/ s] ”) ;
g2−>SetLineColor (kRed) ;
g2−>SetMarkerColor (kRed) ;
g2−>SetMarkerStyle (7) ;
mg−>Add(g2) ;

TGraph ∗g3 = new TGraph(n , xin3 , xout3) ;
g3−>Se tT i t l e (”vx = −pow(10 ,8) [m/ s] ”) ;
g3−>SetLineColor (kGreen) ;
g3−>SetMarkerColor (kGreen) ;
g3−>SetMarkerStyle (7) ;
mg−>Add(g3) ;

TGraph ∗g4 = new TGraph(n , xin4 , xout4) ;
g4−>Se tT i t l e (”vx = −7.5∗pow(10 ,7) [m/ s] ”) ;
g4−>SetLineColor (kOrange) ;

26

APPENDIX B. C++ IMPLEMENTATION CODE

g4−>SetMarkerColor (kOrange) ;
g4−>SetMarkerStyle (7) ;
mg−>Add(g4) ;

mg−>Draw(”ap”) ;
mg−>GetXaxis()−>Se tT i t l e (”X i n i t i a l [m] ”) ;
mg−>GetYaxis()−>Se tT i t l e (”X f i n a l [m] ”) ;

c1−>BuildLegend () ;
//mg−>Fi t (” po l 4 ” ,”FQ” ,”” , −5 .5 ,5 .5) ;
gPad−>Update () ;
gPad−>Modif ied () ;

}

. . .

B.2 Fitting Curves

. . .
#include <iostream>
#include <iomanip>
#include <cmath>
#include <TNtuple . h>
#include <TGraph . h>
#include <TMultiGraph . h>
#include <TAxis . h>
#include <TCanvas . h>
#include <TLegend . h>
#include <TStyle . h>

using namespace std ;

void Fit (){

TCanvas ∗c1 = new TCanvas (”c1” , ”xout vs xin ” , 700 , 500) ;
c1−>SetGrid () ;

TMultiGraph ∗mg = new TMultiGraph () ;

Double t a [4]={ −0.0208 ,−0.01533 ,0.00196 ,−0.00144} ;
Double t v e l o c i t y [4]={0 ,pow(10 ,8) ,−pow(10 ,8) ,−7.5∗pow(10 , 7)} ;

gStyle−>SetOptFit (1) ;

TGraph ∗g = new TGraph(4 , v e l o c i t y , a) ;
g−>SetMarkerColor (kBlue) ;
g−>SetMarkerStyle (kFu l lC i r c l e) ;
mg−>Add(g) ;

mg−>Draw(”ap”) ;
mg−>GetXaxis()−>Se tT i t l e (”V i n i t i a l [m/ s] ”) ;
mg−>GetYaxis()−>Se tT i t l e (”a (x ’) ”) ;
mg−>Fit (” pol3 ” , ”FQ” , ””,−pow(10 ,8) , pow (1 0 , 8)) ;
gPad−>Update () ;
gPad−>Modif ied () ;

}

. . .

27

Bibliography

[1] CERN. Cern Root. 2018. url: https://root.cern.ch/.

[2] CERN. Large Hadron Collider. 2019. url: https://home.cern/science/

accelerators/large-hadron-collider.

[3] CERN. LHCb Detector Performance. 2014. url: https://arxiv.org/pdf/
1412.6352.pdf.

[4] CERN. LHCb Dipole Magnet. url: http://lhcb-magnet.web.cern.ch/lhcb-
magnet/.

[5] CERN. LHCb Magnetic Field. url: http://lhcb-magnet.web.cern.ch/
lhcb-magnet/.

[6] CERN. Processing data in LHC. 2019. url: https://home.cern/science/
computing/processing-what-record.

28

