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Abstract
This paper gives an overview of different techniques used to construct a control
chart, after which a comparison is made to compare their performance. The first
section introduces the basic techniques, namely the Exponentially Weighted Moving
Average (EWMA) and Cumulative Sum (CUSUM) control chart. These techniques
are later used as a basis for monitoring a process modelled by a linear regression. The
estimators of the regression model are obtained from ordinary least squares method
and Bayesian inference. Results show that the Bayesian approach performs better
on average under the EWMA control chart. A comparison between T 2 EWMA and
T 2 CUSUM shows that the methods are similar and their performance depends on
the values of the parameters. In general, smaller values of parameters in either
control chart increases the sensitivity of the chart towards small shifts.
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1
Introduction

Statistical process control (SPC) is a method of quality control which employs sta-
tistical methods to monitor a process. A popular SPC tool is the control chart,
which is a graph used to study how a process changes over time. It was introduced
by Walter A. Shewhart in the 1920’s [8]. Traditionally, a process is monitored by
collecting output samples and taking measurements that are associated with the
quality characteristic that needs to be monitored, e.g. the thickness of contact
lenses or concentration of certain chemicals in a drug, at specific time points. Cur-
rently, most control charts make use of statistical regression models between one
or more response variables and a set of external process variables (covariates). The
quality could then be checked by monitoring the functional relationship between the
response and explanatory variables. During the production process it is monitored
whether the model parameters stay unchanged over time, and in case of a parameter
change, an alarm is given that the production process might be out of control and
should be stopped. Hence, selecting the right control chart can reduce the number of
false or missed alarms which is important in industries where upgrading machines,
for example, is costly. Popular regression models that have been used for building
control charts range from simple univariate to multiple multivariate linear regres-
sion models. Most of these models have been implemented in the standard way
(frequentistic Statistics), but there were also models that took a Bayesian approach.
The focus of this paper is to do an analysis and performance comparison between
multiple types of control charts proposed in literature. Average run length (ARL),
which is the average number of observations it takes for the chart to signal, is used
in the measure of performance.
In this section, basic techniques (non-linear regression) used in constructing a control
chart are described.

1.1 A Basic Design of Control Charts
SPC generally consists of two phases. The initial phase is called Phase I, in which
an analysis is performed on existing (historical) data in order to determine the pa-
rameters for a stable, i.e. in-control process. When process parameters are unknown
or unspecified, Phase I analysis must be done before process monitoring can begin
in Phase II. Thus, most Phase II control charts assume that a reference sample is
available from a corresponding Phase I analysis, from which the control limits can be
estimated. Thus the success of prospective process monitoring in Phase II depends
critically on the success of the Phase I analysis [6]. The focus of this paper is on
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1. Introduction

Figure 1.1: Components of a Control Chart, obtained from ResearchGate [4]
.

Phase II, so it is assumed that the in-control parameters are already known.
In Phase II, the quality characteristic of a process could be monitored using the
sample mean x̄. At each time period t, the average of n samples taken from the
process is calculated. According to the Central Limit Theorem, the sample mean
(when the process is in-control) is normally distributed with population mean µ and
variance σ2

n
. So the lower and upper control limits (LCL and UCL respectively)

could be set such that when the sample mean lies outside of the range, the process
is likely to have gone out-of-control. The 99.73% confidence interval [16] can be
found by setting UCL and LCL to:

LCL = µ− 3 σ√
n

(1.1)

UCL = µ+ 3 σ√
n

(1.2)

The value 3 indicates the control limits 3σ away from the mean. Hence, this is
also called the X̄ or 3-sigma Shewart control chart. In practice, the value could
be adjusted depending on how sensitive the control chart is to deviation from the
target mean. However, the statistical disadvantages of the classic 3-sigma method
are well-known [10][11], namely:

1. Standard deviation represents total variation in the data when control limits
should represent only the random component.

2. It is not sensitive in detecting small shifts in the target parameter.
3. It is based on information about the process contained in the current obser-

vation only and ignores information given by the entire sequence of points.
There are several charting methods proposed for improvement. One example is
the Exponentially Weighted Moving Average (EWMA) control chart which is the
technique focused in this paper. A second method is called the Cumulative Sum
(CUSUM) which will also be used in one of the comparisons in the last section.
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1. Introduction

1.2 Exponentially Weighted Moving Average (EWMA)
Technique

The exponentially weighted moving average (EWMA) control chart was introduced
by S.W. Roberts [19] in 1959, which is a good alternative to the Shewhart control
chart when one is interested in small shifts. EWMA is a weighted average of all
previous sample means. The formulation of the technique is as follows:

Take k samples, each of size n, let xij be the ith measurement in the jth sample.
The mean of each sample is denoted

x̄j =
∑n
i=1 xij
n

The points zj to be plotted on the chart depends on xj:

zj =λx̄j + (1− λ)zj−1

=λ
j−1∑
k=0

(1− λ)kx̄j−k + (1− λ)jz0
(1.3)

where z0 = µ0 is set to the target mean and 0 < λ ≤ 1 is the smoothing constant.
The higher the value of λ, the more weight is given to the previous sample. The
variance of zi can be found, assuming that each measurement is independent:

Var(zj) =Var(λ
j−1∑
k=0

(1− λ)kx̄j−k + (1− λ)jz0)

=λ2
j−1∑
k=0

(1− λ)2k Var(x̄j−k)

=λ2
j−1∑
k=0

(1− λ)2kσ
2

n

=λ2 1− (1− λ)2j

1− (1− λ)2
σ2

n

=σ
2

n

λ

2− λ1− (1− λ)2j

Hence, the chart limits are given by:

LCLj = µ0 − L
√

Var(zj)

= µ0 − Lσ
√

λ

(2− λ)n(1− (1− λ)2j)
(1.4)

UCLj = µ0 + Lσ

√
λ

(2− λ)n(1− (1− λ)2j) (1.5)

where L is a multiplier that denotes the width of the control limits.
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1. Introduction

1.3 Cumulative Sum (CUSUM)
The CUSUM chart is proposed by Page in 1954 [18] that directly incorporates all
the information in the sequence of sample values by plotting the cumulative sum of
the deviations of the sample values from a target value [16]. If x̄j is the average of
the jth sample and µ0 is the target for the process mean, the cumulative sum of the
control chart is

Cj =
j∑

k=1
(x̄k − µ0)

= (x̄j − µ0) + Cj−1

(1.6)

Hence Cj is the cumulative sum of deviations up to and including the jth sample.
Similar to the EWMA chart, the CUSUM takes information from past observations
which makes it more sensitive to small shifts in the process.

There are two plotting statistics in the CUSUM chart. They accumulate deviations
that are above and below the target parameter respectively.

C+
j = max[0, xj − (µ0 +K) + C+

j−1] (1.7)
C−j = max[0, (µ0 −K)− xi + C+

j−1] (1.8)
where C+

0 =C−0 =0

K is measured in units of standard deviation and depends on the size of the shift
that needs to be detected. If either C+

0 or C−0 exceed the decision interval H, the
process is considered out of control. The choice of H and K may be varied to obtain
the desired in-control average run length (ARL) performance.

1.4 Average Run Length (ARL)
The Average Run Length (ARL) is defined as the average number of samples be-
fore the chart signals. ARL is generally employed as a performance indicator to
evaluate the effectiveness of various control chart schemes, provided that the time
interval between samplings remains constant [20]. When a process is in-control,
longer ARL’s indicates a lower false alarm rate. On the other hand, when a process
is out-of-control, a shorter ARL indicates a better detection in process shifts. In
this paper, the in-control ARL will be denoted ARL0 and out-of-control ARL is
denoted ARL1. The average run length in this paper is obtained from the average
of 10,000 simulations. The overall performance could also be computed from the
Extra Quadratic Loss (EQL), which is the weighted average of ARL′1s over the the
entire domain of shifts (δ). It is defined as:

EQL = 1
δmax − δmin

∫ δmax

δmin

δ2ARL(δ)dδ

The EQL’s are shown in Conclusion as a summary for the results.
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2
Overview of Techniques

In the following sections, the EWMA control chart is combined with linear regres-
sion. The earliest reference appeared in a paper by DiPaola [9]. In 1969, Mandel
[15] applied combined regression analysis and control chart theory to yield an effec-
tive technique for controlling man hours which is correlated with workload in the
Washington Post Office Department.
In section 2.1, the relationship between the response and a co-variate is given only
by a correlation value with the assumption that both the response and co-variate
are normally distributed. It is shown later (Section 3.1) that the performance of
the control chart is better when the process is monitored by its relationship with a
co-variate compared to just monitoring the response alone. In Sections 2.2, the rela-
tionship between the response and co-variate is modelled by a linear regression while
Section 2.3 applies the Bayesian approach to the linear regression. All 3 techniques
are based on the EWMA control chart.

2.1 EWMA with a Single Auxiliary Variable
This method is described in the paper by Abbas, Riaz and Does [1]. Let the
target response Y be correlated with a variable X, and the correlation between
them is denoted ρXY . The observations of X and Y are obtained in the paired
form for each sample. Assuming bi-variate normality of X and Y , i.e. (X, Y ) ∼
N2(µY , µX , σ2

Y , σ
2
X , ρXY ), the regression estimate is given by [5]

My = Ȳ + bXY (µX − X̄) (2.1)

where bXY is the change in Y due to one unit change in X and bXY = ρXY
σY

σX
.

Using this in an EWMA control chart, the plotting statistic is

Zj = λMyj
+ (1− λ)Zj−1 (2.2)

where λ is the smoothing constant and j denotes the jth sample. The initial value
Z0 is set as the target mean, i.e. µY . The control limits are

LCLj = µY − LσMY

√
λ

2− λ(1− (1− λ)2j)

UCLj = µY + LσMY

√
λ

2− λ(1− (1− λ)2j)
(2.3)

where σ2
MY

= σ2
Y −b

2
XY σ

2
X

n
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2. Overview of Techniques

It is also possible to monitor the process by just monitoring the average of each
sample of Y alone. In this case, the plotting statistic is the same as that given in
Section 1.2 where x̄j in (1.3) is Ȳj. However, it can be shown (in the next chapter)
that including the correlated variable in the control chart statistic leads to a lower
ARL1 when ARL0 is kept constant.

2.2 EWMA Regression
Assume that the target response Y can be expressed as a linear function of a vari-
able(s), i.e. Y = AX + B + process variance. Kim, Mahmoud and Woodall [13]
proposed the use of three univariate EWMA control charts to monitor the inter-
cept, slope and variance of a process respectively. The motivation for their method
was that if an assignable cause is present in a process characterised by a linear pro-
file, then at least one of the parameters, i.e. the intercept, the slope or the variance
would be affected. Hence, if at least one of the three charts gives an out-of-control
signal, it means the process has gone out of control. Their method is based on the
method by Kang and Albin [12].
Assume that when the process is in statistical control, the underlying model is

Yij = A0 + A1Xi + εij (2.4)

where j denotes the jth sample and i = 1, 2, ...n is the ith observation in each sam-
ple. εij’s are independent, identically distributed normal random variables with
mean zero and variance σ2.

Given a fixed set of values for X in each sample, X is transformed into X ′ such that
X̄ ′ = 0. Then Equation (2.4) becomes:

Yij = B0 +B1X
′
i + εij (2.5)

where B0 = A0 + A1X̄, B1 = A1, and X ′i = (Xi − X̄).
The least squares estimators of A0 and A1 before the transformation have a bivariate
normal distribution such that:

a0j = ȳj − a1jx̄ , a1j = Sxy(j)

Sxx

where Sxy(j) = ∑n
i=1(xi − x̄)yij and Sxx = ∑n

i=1(xi − x̄)2

However, the least squares estimators of the transformed parameters are independent
since the estimator of b0j no longer contains the variable b1:

b0j = ȳj , b1j = Sxy(j)

Sxx

So separate control charts for each parameters could be constructed without the
problem of correlation by using model (2.5). The three plotting statistics using the
EWMA control chart are then defined as follows:
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2. Overview of Techniques

Intercept : ZIj = λb0j + (1− λ)ZI(j−1)

Slope : ZSj = λb1j + (1− λ)ZS(j−1)

Variance : ZV j = max(λ ln (MSEj) + (1− λ)ZV (j−1), ln σ2
0)

(2.6)

where MSEj = 1
n−2

∑n
i (yij − b1jx

′
i − b0j) is the usual OLS estimator of σ2 based

on residuals. Instead of monitoring the overall mean of each sample, the estimator
of each parameter in the linear regression is monitored. The reason for using the
log form of MSE is that an exact expression for Var(ln(MSE)) has been derived
before by Lawless [14]. However, in this paper, an approximation that is derived by
Crowder and Hamiltion [7] is used. The control limits are as follows:

Intercept : LCLIj = B0 − LIσ
√

λ

(2− λ)N (1− (1− λ)2j)

UCLIj = B0 + LIσ

√
λ

(2− λ)N (1− (1− λ)2j)

Slope : LCLSj = B1 − LSσ
√

λ

(2− λ)Sxx
(1− (1− λ)2j)

UCLSj = B1 + LSσ

√
λ

(2− λ)Sxx
(1− (1− λ)2j)

Variance : UCLV j = ln σ2
0 + LV

√
λ

2− λVar(ln(MSEj)) (1− (1− λ)2j)

(2.7)

where Var(ln(MSEj))≈ 2
n−2 + 2

(n−2)2 + 4
3(n−2)3 − 16

15(n−2)5 , N is the number of samples,
LI , LS, LV are the width of the corresponding chart and could be adjusted to
obtain the desired ARL0. The variance is monitored by only the Upper Control
Limit because in most processes, we are only interested in the increase in variance.

2.3 Bayesian Approach
Abbas et. al. [2] proposed a Bayesian alternative to the technique described above
by Kim, Mahmoud and Woodall. The technique is mostly the same, except that the
estimators of B0, B1 are obtained from the posterior distribution of the parameters.
According to Bayes theorem:

P (γ|D) = L(D|γ)P (γ)
P (D) (2.8)

where D and γ denote the data and the parameter respectively, P (γ|D) is the poste-
rior distribution, L(D|γ) is the likelihood function, P (γ) is the prior distribution of
the parameter, and P (D) is the distribution function of the data. Since the observed
data D is fixed, Equation (2.8) can also be written as:

P (γ|D) ∝ L(D|γ)P (γ)

7



2. Overview of Techniques

Using the same regression model of Equation (2.5) and assuming L(Y |B0, B1, σ)∼N(B0+
B1X

′, σ2), B0∼N(b0, κ
2
0) and B1∼N(b1, κ

2
1), the joint posterior distribution of B0

and B1 is given as:

P (B0, B1|Y ) ∝ exp(− 1
2σ2

n∑
i=1

(yij −B0 −B1X
′
i)2)

× exp(− 1
2κ2

0
(B0 − b0)2)

× exp(− 1
2κ2

1
(B1 − b1)2)

(2.9)

Since B0 and B1 are independent as mentioned previously, the joint distribution
is equal to the product of the individual marginal distribution. After expanding
and simplifying the expression in (2.9) [see Appendix A.1 for derivation], we get
B0∼N(b0nj, σ

2
0nj) and B1∼N(b1nj, σ

2
1nj) where the Bayes estimators of B0 and B1

are:

b0nj = nȳjκ
2
0 + b0σ

2

nκ2
0 + σ2 , b1nj = nȳjκ

2
1 + b1σ

2

nκ2
1 + σ2 (2.10)

The Bayes estimators of the variances are:

σ2
0nj = κ2

0σ
2

nκ2
0 + σ2 , σ2

1nj = κ2
1σ

2

nκ2
1 + σ2 (2.11)

Finally, taking the prior of the variance σ2 as inverse gamma distribution, σ2∼IG(α0, β0),
the posterior distribution is:

P (σ2|Y ) ∝(σ2)−n
2 exp(− 1

2σ2

n∑
i=1

(yij −B0 −B1X
′
i)2)

× (σ2)−α0−1 exp(− 1
σ2β0)

(2.12)

Again, after expanding and simplifying, the posterior distribution is σ2∼IG(αnj, βnj)
where the Bayes estimators are:

αnj = α0 + n

2 , βnj = β0 + (n− 2)σ2
0

2 (2.13)

and σ2
0 = ∑n

i=1(yij − B0 − B1X̄ ′i)2. The expectation of σ2, E(σ2) = βnj

αnj−1 is then
used in Equations (2.10) and (2.11) in place of σ2.

From Equations (2.10) and (2.11), the plotting statistics are obtained. Hence the
three univariate Bayesian control charts for monitoring the Y-intercept (B0), slope
(B1) and variance (σ2) are defined respectively as follows:

8



2. Overview of Techniques

Intercept : ZIj = λb0nj + (1− λ)ZI(j−1)

Slope : ZSj = λb1nj + (1− λ)ZS(j−1)

Variance : ZV j = max(λ ln (E(σ2)) + (1− λ)ZV (j−1), ln σ2
0)

(2.14)

where 0 < λ ≤ 1 is the smoothing constant, ZI0 = B0, ZS0 = B1, ZV 0 = ln (1).
The corresponding control limits are then defined as follows:

Intercept : LCLIj = B0 − LIσonj
√

λ

(2− λ)(1− (1− λ)2j)

UCLIj = B0 + LIσonj

√
λ

(2− λ)(1− (1− λ)2j)

Slope : LCLSj = B1 − LSσ1nj

√
λ

(2− λ)(1− (1− λ)2j)

UCLSj = B1 + LSσ1nj

√
λ

(2− λ)(1− (1− λ)2j)

Variance : UCLV j = ln (1) + LV

√
λ

2− λ Var(ln(E(σ2)))

(2.15)

2.4 T 2 EWMA and T 2 CUSUM Regression
Finally, in this section, another version (generally known as the T 2 statistic) of the
non-Bayesian EWMA regression is described, and compared against non-Bayesian
CUSUM method.

Up to this point the parameters in a linear regression are tested individually. Instead
of constructing three control charts, the parameters of a linear regression could be
collected in a matrix and combined into one plotting statistic. In the model used
in this simulation, i.e. Yk = 13 + 2X ′ + ε described above, the kth sample of the
response Y is an n × 1 vector, X is an n × 2 design matrix, the parameters are
stored in a 2 × 1 vector β, and ε is an n × 1 vector, where n = 4 is the number of
observations in a sample. The relationship can be represented as:

Y1k
Y2k
Y3k
Y4k

 =


1 x1
1 x2
1 x3
1 x4


[
β0
β1

]
+


ε1k
ε2k
ε3k
ε4k

 (2.16)

β0 and β1 are known in this model and their values are 13 and 2 respectively. The
least squares estimate of β is denoted:

β̂k = (XTX)−1XTYk

The EWMA statistic of the kth sample is a vector, given in the paper by Noorossana
et. al. [17]:

zk = λ(β̂k − β)T + (1− λ)zk−1

9



2. Overview of Techniques

and the plotting statistic is a single value denoted:

T 2
zk

= zkΣ−1zTk

where Σ−1 is the inverse covariance matrix of β̂k. The elements of Σ are given in
Appendix A.2 while the proof is given in the paper by Noorossana et.al. Since T 2

zk

is always positive, the control limit of this chart is only a single value h. Hence, the
chart signals when T 2

zk
> h. Again, h can be set to achieve the desired ARL0, which

in this case would be approximately 300.

This paper focuses heavily on the EWMA charting technique. However, it might
also be useful to mention how it compares to the CUSUM method of the same set
up. Since the target values are now a vector, the method described in Section 1.3
has to be modified accordingly such that the maximum of a vector and the null
vector could be interpreted. A full explanation is given in Section 2, page 292 by
Crosier [3]. In summary, the CUSUM T 2 statistic is expressed as follows:

sk = [(Ck−1 + β̂k − β)TΣ−1(Ck−1 + β̂k − β)]1/2

Ck =

(Ck−1 + β̂k − β)(1− K
Cj

), if sk > K

0, otherwise
where C0 = 0 and K > 0. So the chart statistic is:

T 2
Ck

= CT
k Σ−1Ck

2.5 Derivation of Control Limits
Most literature do not give an explicit explanation on how to derive the width of
the control limits, i.e. the values of LI , LS, LV , and h. Hence, in this section, the
method used to approximate these values is given.

As mentioned previously, the width of the limits are set according to the desired
ARL0. Assume that the desired ARL0 = 200, which means the probability of ob-
taining a false alarm is 1

200 = 0.005. Hence, the control limits should be set such
that 99.5% of the in-control samples should fall within the range. Theoretically,
this could be done by generating a large number of in-control samples and finding
the corresponding percentiles. Since the control limits for monitoring the slope and
intercept are two-sided, the values between the lower and upper percentiles should
constitute 99.5% of the total samples. Hence, the lower percentile is 0.025 and the
upper percentile is 0.975 as illustrated in Figure 2.1. However, after generating
10,000 samples and obtaining the estimates of of LI , LS and LV , it is found that the
resulting ARL0 is not precise enough as the chart is rather sensitive to the values
of L up to 2 decimal places. Hence, the width of the control charts is manually
adjusted by increasing or decreasing the values until the desired ARL0 is achieved.

In the next sections, a performance comparison and analysis using simulated data
will be performed on the techniques described above.

10



2. Overview of Techniques

Figure 2.1: Upper and Lower Percentiles of the Samples that Center at 13
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3
Simulation Study and Results

3.1 EWMA with a Single Auxiliary Variable
Here the technique described in Section 2.1 is compared with the classic EWMA
control chart (without an auxiliary variable). Let Y and X both be generated from
the standard normal distribution. Fixing the smoothing constant λ, width of control
limits L, out-of-control shift δ, and in-control ARL0, the correlation between Y and
X are varied. [See Appendix A.3 for code.]

Table 3.1: ARL1 values for λ = 0.1, δ = 0.5, L = 2.824, ARL0 = 500

Correlation With Auxiliary Variable Classical EWMA
0.05 8.0915 8.1092
0.25 7.8378 8.1580
0.50 6.7668 8.1393
0.75 4.7454 8.0947
0.95 2.1312 8.2120

As shown from the table, if the target response is correlated with an auxiliary vari-
able, using the statistic that includes the variable shortens the ARL1 with increasing
correlation while the ARL1 does not change for the traditional EWMA that does
not include the variable, which is expected. This provides evidence to support that
a target quality should be monitored as a linear profile.

3.2 Bayesian vs. Non-Bayesian (EWMA)
Assuming that the underlying model is Y = 13 + 2X ′ + ε and X ′ takes the values
(−3,−1, 1, 3) such that X̄ ′ = 0, 100 in-control samples are simulated. The process
is assumed to have a natural variance of 1, so ε ∼ N(0, 1). A shift (indicating out-
of-control situation) is introduced at the 101th sample and the simulation continues
until the control chart detects the shift (i.e. when a sample crosses the control lim-
its). The out-of-control samples are divided into 3 cases, i.e. a shift in the intercept,
a shift in the slope and a shift in the process variance. Furthermore, the degree of
shifts (δ, in units of standard deviation) and the value of the smoothing constant λ
are varied to study how the ARL1 changes. Lastly, the value of the control limits
LI , LS, LV where I = Intercept, S = Slope, V = Variance are set such that the
ARL0 for all cases remain approximately the same for a fair comparison. In the
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3. Simulation Study and Results

simulation study presented in the following sections, each combined control chart
is set to have ARL0 ≈ 300. [See Appendix A.4 for code.] The results are shown
in Table 3.2, which includes the effect of varying values of smoothing constant λ.
Further illustration is given in Section 3.4 to graphically demonstrate its effect. The
results show that the smaller the value of λ, the more sensitive it is towards small
shifts.

For the Bayesian approach, the hyper-parameters b0, b1, κ2
0, κ2

1, α0, β0 need to first
be determined. In Section 2.7 of the paper by Abbas et. al. [2], the technique
used to elicitate hyper-parameters is described which involved consulting expert
opinions about the parameters under study. This paper does not study in-depth
such technique. However, the simulations are conducted under various values of
hyper-parameters to observe their effect on the performance of the control charts.
The results are shown in Table 3.3-3.5. For a shift in Y-intercept (Table 3.3), there is
a continuous decrease in ARL1 when the location hyper-parameters increase. On the
other hand, the ARL1 decreases slightly with a decrease in scale hyper-parameters
while there is not much difference in performance for the change of hyper-parameters
for variance. For a shift in slope and process variance (Table 3.4 & Table 3.5), there
is no significant trend in the performance for varying values of hyper-parameters. A
comparison with the non-Bayesian approach is shown in Table 3.6, where λ = 0.2,
b0 = 20, b1 = 2.5, κ2

0 = 35, κ2
1 = 12, α0 = 0.68, β0 = 0.3. The results show that the

Bayesian approach on average performs better than the non-Bayesian approach.

3.3 T 2 EWMA vs. T 2 CUSUM Regression
The regression model remains the same as described above, substituting sample val-
ues into the equations described in Section 2.4, the result of T 2 EWMA control chart
is shown in Table 3.7. The ARL1 values in general decreases very quickly even for
small shifts. Comparing it to monitoring the estimators separately with three con-
trol charts, the T 2 method performs better for shifts in intercept and slope. Shifts
in variance are not detected as quickly when the shift is smaller than 2 times the
in-control variance. The negative values are due to the fact that in most runs of
the simulation, the shift is detected immediately as it happens, so combined with
certain runs that give false alarms even before the shift has happened, the average
run length goes to negative. For example, the first 100 samples are in-control, so if
9 out of 10 runs detect the shift at the 101th sample and 1 run gives a false alarm
at the 90th sample, the average run length is (9 · 101 + 1 · 90)/10 − 100 = −0.1.
Since it does not make sense to have a negative ARL, the negative values should
be interpreted as immediate detection of the shifts. Table 3.8 shows the result for
T 2 CUSUM chart when the parameter K = 0.5, while Table 3.9 is the result for
K = 1. The CUSUM chart performs better when K = 0.5 and worse when K = 1
compared to the EWMA chart with λ = 0.2.
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3. Simulation Study and Results

Table 3.2: Non-bayesian ARL1 values for different shifts δ and smoothing
constants λ

δI Intercept Shifts (B0 + δIσ)
λ = 0.05 λ = 0.2 λ = 0.5

0.0 307.20 293.11 303.11
0.2 36.83 74.98 148.41
0.4 12.16 18.47 40.25
0.6 6.75 8.67 14.18
0.8 4.59 5.53 7.33
1.0 3.58 4.14 4.82
1.2 3.01 3.36 3.66
1.4 2.61 2.88 3.04
1.6 2.38 2.57 2.65
1.8 2.22 2.35 2.41
2.0 2.11 2.20 2.23
δS Slope Shifts (B1 + δSσ)

λ = 0.05 λ = 0.2 λ = 0.5
0.000 300.27 291.27 299.13
0.025 195.48 253.50 278.66
0.050 92.89 168.75 234.18
0.075 49.08 101.82 179.42
0.100 30.66 60.15 125.91
0.125 21.26 38.38 86.71
0.150 16.11 26.40 60.20
0.175 12.63 19.22 42.39
0.200 10.41 14.54 30.11
0.225 8.74 11.72 22.65
0.250 7.45 9.65 17.01
δV Variance Shifts (δV σ)

λ = 0.05 λ = 0.2 λ = 0.5
1.0 302.56 295.25 309.58
1.2 37.62 40.34 42.97
1.4 10.14 13.03 13.89
1.6 5.35 6.98 7.24
1.8 3.77 4.77 4.99
2.0 3.09 3.69 3.82
2.2 2.74 3.19 3.25
2.4 2.50 2.82 2.90
2.6 2.36 2.61 2.66
2.8 2.27 2.46 2.50
3.0 2.21 2.35 2.40

15



3. Simulation Study and Results

Table 3.3: Bayesian ARL1 values for shifts in Y-intercept at ARL0 = 300

δI Sensitivity Analysis of Hyper-parameters (Location)
b0 = 15, b1 = 1.5 b0 = 20, b1 = 2.5 b0 = 25, b1 = 3.5 b0 = 30, b1 = 4.5

0.0 303.14 303.25 296.93 298.72
0.2 65.64 48.83 40.85 38.20
0.4 16.87 14.52 13.23 13.00
0.6 8.22 7.50 7.21 7.25
0.8 5.38 5.03 4.92 4.93
1.0 4.05 3.83 3.78 3.80
1.2 3.30 3.17 3.13 3.13
1.4 2.85 2.75 2.72 2.71
1.6 2.55 2.46 2.44 2.45
1.8 2.34 2.28 2.26 2.72
2.0 2.19 2.16 2.14 2.14

Sensitivity Analysis of Hyper-parameters (Scale)
κ2

0 = 45, κ2
1 = 16 κ2

0 = 35, κ2
1 = 12 κ2

0 = 25, κ2
1 = 8 κ2

0 = 20, κ2
1 = 6

0.0 309.87 310.16 301.70 303.47
0.2 62.21 61.27 57.81 54.82
0.4 15.72 15.60 15.19 14.59
0.6 7.45 7.25 7.25 7.14
0.8 4.72 4.67 4.64 4.82
1.0 3.40 3.35 3.35 3.44
1.2 2.73 2.71 2.68 2.73
1.4 2.31 2.28 2.27 2.32
1.6 1.99 1.97 1.95 2.01
1.8 1.76 1.75 1.77 1.78
2.0 1.63 1.62 1.62 1.66

Sensitivity Analysis of Hyper-parameters (Variance)
α0 = 0.1, β0 = 0.1 α0 = 0.68, β0 = 0.3 α0 = 1.5, β0 = 0.9 α0 = 2.5, β0 = 2.0

0.0 311.27 299.89 301.53 298.15
0.2 62.28 64.92 67.03 66.34
0.4 15.72 16.13 16.43 16.26
0.6 7.44 7.63 7.49 7.62
0.8 4.73 4.74 8.77 4.72
1.0 3.41 3.43 3.40 3.42
1.2 2.72 2.69 2.72 2.70
1.4 2.30 2.29 2.29 2.28
1.6 2.00 1.98 1.98 1.98
1.8 1.74 1.75 1.72 1.71
2.0 1.62 1.62 1.57 1.58
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Table 3.4: Bayesian ARL1 values for shifts in slope at ARL0 = 300

δS Sensitivity Analysis of Hyper-parameters (Location)
b0 = 15, b1 = 1.5 b0 = 20, b1 = 2.5 b0 = 25, b1 = 3.5 b0 = 30, b1 = 4.5

0.000 306.58 298.85 302.19 301.49
0.025 269.23 252.16 263.34 277.01
0.050 180.47 178.46 202.71 227.94
0.075 107.23 109.23 133.27 165.92
0.100 63.82 66.74 82.85 106.92
0.125 40.27 41.79 52.33 67.29
0.150 27.45 28.87 34.58 43.80
0.175 19.59 20.41 24.34 29.97
0.200 14.92 15.76 18.21 21.94
0.225 12.02 12.33 14.23 16.81
0.250 9.89 10.18 11.69 13.47

Sensitivity Analysis of Hyper-parameters (Scale)
κ2

0 = 45, κ2
1 = 16 κ2

0 = 35, κ2
1 = 12 κ2

0 = 25, κ2
1 = 8 κ2

0 = 20, κ2
1 = 6

0.000 304.08 291.31 291.04 288.04
0.025 269.99 262.75 258.97 276.15
0.050 182.51 182.96 175.02 200.66
0.075 107.36 107.82 107.31 127.27
0.100 64.93 64.66 63.50 75.37
0.125 40.43 41.43 40.29 47.36
0.150 27.26 28.23 26.85 31.33
0.175 19.85 20.33 19.69 22.27
0.200 14.81 15.31 15.12 16.75
0.225 12.07 12.13 11.83 13.24
0.250 9.97 10.05 9.12 10.78

Sensitivity Analysis of Hyper-parameters (Variance)
α0 = 0.1, β0 = 0.1 α0 = 0.68, β0 = 0.3 α0 = 1.5, β0 = 0.9 α0 = 2.5, β0 = 2.0

0.000 307.37 299.96 300.68 297.49
0.025 274.79 259.68 251.64 258.74
0.050 179.01 172.66 167.66 169.51
0.075 106.93 103.49 101.37 99.10
0.100 64.04 61.43 59.70 60.60
0.125 40.68 39.02 38.39 38.00
0.150 27.46 26.27 25.65 26.05
0.175 19.65 19.44 19.00 19.01
0.200 15.02 14.75 14.55 14.59
0.225 11.97 11.65 11.67 11.65
0.250 9.84 9.68 9.57 9.59
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Table 3.5: Bayesian ARL1 values for shifts in variance at ARL0 = 300

δV Sensitivity Analysis of Hyper-parameters (Location)
b0 = 15, b1 = 1.5 b0 = 20, b1 = 2.5 b0 = 25, b1 = 3.5 b0 = 30, b1 = 4.5

1.00 313.27 302.41 302.96 297.45
1.20 28.67 28.79 33.31 53.14
1.40 11.00 11.16 12.03 17.31
1.60 6.88 7.08 7.46 9.58
1.80 5.19 5.33 5.49 6.74
2.00 4.25 4.32 4.52 5.29
2.20 3.67 3.75 3.90 4.43
2.40 3.28 3.34 3.47 3.87
2.60 3.03 3.08 3.18 3.52
2.80 2.82 2.89 2.94 3.23
3.00 2.70 2.71 2.81 3.02

Sensitivity Analysis of Hyper-parameters (Scale)
κ2

0 = 45, κ2
1 = 16 κ2

0 = 35, κ2
1 = 12 κ2

0 = 25, κ2
1 = 8 κ2

0 = 20, κ2
1 = 6

1.00 306.87 300.40 309.71 297.31
1.20 28.66 28.76 29.27 28.85
1.40 11.06 11.00 11.17 11.09
1.60 6.91 6.70 7.03 7.04
1.80 5.14 5.19 5.28 5.27
2.00 4.29 4.29 4.29 4.34
2.20 3.65 3.71 3.70 3.76
2.40 3.01 3.32 3.35 3.38
2.60 3.04 3.06 3.07 3.11
2.80 2.83 2.84 2.87 2.90
3.00 2.67 2.70 2.72 2.75

Sensitivity Analysis of Hyper-parameters (Variance)
α0 = 0.1, β0 = 0.1 α0 = 0.68, β0 = 0.3 α0 = 1.5, β0 = 0.9 α0 = 2.5, β0 = 2.0

1.00 304.85 297.20 298.92 290.02
1.20 28.78 27.39 26.91 25.99
1.40 11.14 9.93 9.32 9.19
1.60 6.93 6.03 5.55 5.59
1.80 5.19 4.51 4.18 4.12
2.00 4.24 3.72 3.46 3.40
2.20 3.66 3.26 3.03 3.00
2.40 3.30 2.94 2.75 2.73
2.60 3.04 2.72 2.56 2.57
2.80 2.83 2.56 2.45 2.43
3.00 2.68 2.45 2.35 2.35
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3. Simulation Study and Results

Table 3.6: ARL1 Comparisons of Classical and Bayesian EWMA at ARL0 = 300.
(Note that the values after ± are not standard deviations but the boundaries of the 95%

confidence interval.)

Shifts in Y-Intercept
δI Non-Bayesian EWMA Bayesian EWMA
0.0 293.11 ±5.93 307.01 ±5.92
0.2 74.98 ±2.81 43.71 ±0.75
0.4 18.47 ±0.71 13.61 ±0.18
0.6 8.67 ±0.22 7.24 ±0.07
0.8 5.53 ±0.09 4.83 ±0.04
1.0 4.14 ±0.05 3.75 ±0.03
1.2 3.36 ±0.03 3.10 ±0.02
1.4 2.88 ±0.02 2.70 ±0.01
1.6 2.57 ±0.01 2.42 ±0.01
1.8 2.35 ±0.01 2.26 ±0.01
2.0 2.20 ±0.01 2.13 ±0.01

Shifts in Slope
δS Non-Bayesian EWMA Bayesian EWMA
0.000 291.27 ±6.00 290.41 ±5.80
0.025 253.50 ±5.56 241.09 ±4.85
0.050 168.75 ±4.69 160.93 ±3.12
0.075 101.82 ±3.51 97.47 ±1.86
0.100 60.15 ±2.46 59.51 ±1.07
0.125 38.38 ±1.70 37.89 ±0.65
0.150 26.40 ±1.09 26.23 ±0.41
0.175 19.22 ±0.78 19.10 ±0.27
0.200 14.54 ±0.53 14.70 ±0.19
0.225 11.72 ±0.37 11.70 ±0.14
0.250 9.65 ±0.28 9.70 ±0.11

Shifts in Variance
δE Non-Bayesian EWMA Bayesian EWMA
1.0 295.25 ±6.00 292.63 ±6.00
1.2 40.34 ±0.80 39.02 ±0.68
1.4 13.03 ±0.24 12.46 ±0.17
1.6 6.98 ±0.11 7.12 ±0.08
1.8 4.77 ±0.06 5.07 ±0.05
2.0 3.69 ±0.04 4.12 ±0.04
2.2 3.19 ±0.03 3.55 ±0.03
2.4 2.82 ±0.02 3.16 ±0.02
2.6 2.61 ±0.02 2.90 ±0.02
2.8 2.46 ±0.02 2.72 ±0.04
3.0 2.35 ±0.01 2.58 ±0.02
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3. Simulation Study and Results

Table 3.7: ARL1 values for T 2 EWMA Regression. (Note that the values after ±
are not standard deviations but the boundaries of the 95% confidence interval.)

Shifts
δI Intercept δS Slope δV Variance
0.0 307.22± 5.90 0.000 310.14± 6.04 1.0 307.53± 5.82
0.2 53.20± 1.24 0.025 206.83± 4.92 1.2 57.35± 1.43
0.4 11.72± 0.36 0.050 128.66± 2.91 1.4 22.42± 0.63
0.6 3.99± 0.24 0.075 74.00± 1.76 1.6 11.49± 0.39
0.8 1.44± 0.22 0.100 42.35± 1.03 1.8 6.27± 0.31
1.0 0.27± 0.21 0.125 26.10± 0.66 2.0 4.05± 0.27
1.2 -0.47± 0.20 0.150 17.44± 0.48 2.2 2.31± 0.24
1.4 -0.97± 0.19 0.175 11.89± 0.36 2.4 1.23± 0.22
1.6 -1.21± 0.19 0.200 8.53± 0.31 2.6 0.72± 0.21
1.8 -1.29± 0.19 0.225 6.36± 0.27 2.8 0.20± 0.21
2.0 -1.94± 0.19 0.250 4.61± 0.25 3.0 -0.40± 0.20
15.0 -2.22± 0.19 2.000 -2.35± 0.19 15.0 -2.07± 0.19

Table 3.8: ARL1 values for T 2 CUSUM Regression, K=0.5. (Note that the values
after ± are not standard deviations but the boundaries of the 95% confidence interval.)

Shifts
δI Intercept δS Slope δV Variance
0.0 312.66± 5.95 0.000 313.23± 5.84 1.0 305.41± 5.98
0.2 39.95± 0.90 0.025 194.71± 4.45 1.2 65.22± 1.50
0.4 9.78± 0.30 0.050 105.12± 2.37 1.4 27.55± 0.71
0.6 4.17± 0.22 0.075 56.05± 1.26 1.6 15.46± 0.44
0.8 2.24± 0.22 0.100 32.45± 0.73 1.8 9.49± 0.33
1.0 0.90± 0.20 0.125 20.94± 0.48 2.0 6.57± 0.28
1.2 0.31± 0.19 0.150 13.80± 0.37 2.2 4.10± 0.24
1.4 -0.11± 0.19 0.175 10.45± 0.31 2.4 3.27± 0.23
1.6 -0.32± 0.18 0.200 8.03± 0.27 2.6 2.19± 0.22
1.8 -0.76± 0.18 0.225 6.19± 0.25 2.8 1.64± 0.20
2.0 -0.79± 0.18 0.250 5.00± 0.24 3.0 1.05± 0.20
15.0 -2.03± 0.17 2.000 -1.83± 0.17 15.0 -1.80± 0.17
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Table 3.9: ARL1 values for T 2 CUSUM Regression, K=1. (Note that the values
after ± are not standard deviations but the boundaries of the 95% confidence interval.)

Shifts
δI Intercept δS Slope δV Variance
0.0 302.99 ± 5.87 0.000 304.58 ± 5.84 1.0 306.97± 5.92
0.2 76.98± 1.85 0.025 224.47 ± 5.24 1.2 45.06 ± 1.16
0.4 15.58 ± 0.47 0.050 163.75 ± 3.79 1.4 15.09 ± 0.48
0.6 3.84 ± 0.26 0.075 101.51± 2.37 1.6 6.89 ± 0.32
0.8 1.01 ± 0.28 0.100 63.41 ± 1.54 1.8 3.17 ± 0.27
1.0 -0.33 ± 0.21 0.125 39.80 ± 1.00 2.0 1.62 ± 0.24
1.2 -1.14 ± 0.21 0.150 24.82 ± 0.68 2.2 0.34 ± 0.23
1.4 -1.48 ± 0.21 0.175 16.60± 0.50 2.4 -0.22 ± 0.22
1.6 -1.82 ± 0.20 0.200 11.17 ± 0.40 2.6 -0.69 ± 0.21
1.8 -1.67 ± 0.20 0.225 7.44 ± 0.32 2.8 -1.04 ± 0.21
2.0 -2.10 ± 0.20 0.250 5.16 ± 0.29 3.0 -1.38 ± 0.21
15.0 -2.46 ± 0.20 2.000 -2.55 ± 0.19 15.0 -2.59 ± 0.19

3.4 Effect of Varying Values of Smoothing Con-
stants Illustrated with Plots

Figure 3.1: Example of a control chart that monitors the Y-intercept estimator
which shifted at the 51st sample.

The following plots illustrate the effect of varying the smoothing constant λ on the
ability of the EWMA chart to detect different magnitudes of shifts σ. Each data
point represent the average of 10,000 data points. Hence, the plots do not show as
much variance as in Figure 3.1 which is an example of one single run. In summary,
the plots show that larger values of λ is better at detecting larger shifts and vice
versa. The number on the left in each chart is the jth sample at which the chart
signals when monitoring only the current sample while the number on the rights is
the accumulated chart statistic. All shifts begin at the 51st sample.
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3. Simulation Study and Results

Figure 3.2: λ = 0.05, Shift=1 Figure 3.3: λ = 0.5, Shift=1

Figure 3.4: λ = 0.05, Shift=0.8 Figure 3.5: λ = 0.5, Shift=0.8

Figure 3.6: λ = 0.05, Shift=0.5 Figure 3.7: λ = 0.5, Shift=0.5
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4
Conclusion and Discussion

Shifts\Type Non-Bayesian
EWMA

Bayesian
EWMA T 2 EWMA T 2 CUSUM

(K=0.5)
T 2 CUSUM
(K=1.0)

Intercept 4.59 4.09 0.66 0.74 0.76
Slope 0.50 0.49 0.33 0.28 0.44

Variance 35.85 36.60 37.09 46.83 28.40

Table 4.1: EQL values for all techniques described.

This paper provides an overview of techniques used to construct a control chart that
monitors the quality of a process modelled as a linear regression. The parameters of
the regression are derived using the ordinary least squares method, as well as using
Bayesian inference. Under the EWMA chart, the Bayesian approach performs better
for a shift in intercept and slope, but not for variance. The smoothing constant λ
of EWMA controls the sensitivity of the chart. The standard value is set to λ = 0.2
but greater values are better in detecting large shifts and vice versa. The T 2 control
chart also performs better in general compared to using 3 separate control charts
to monitor the parameters individually. However, the disadvantage of the T 2 chart
is that the cause of instability of the process when it occurs cannot be determined
since the information from all estimators is combined into a single value. The T 2

CUSUM chart for K = 0.5 performs better than the T 2 EWMA chart when the
shifts are small (as shown in the slope shifts). A greater value of K = 1 is better
at detecting variance shifts (measures in multiples of the original variance). Hence,
the parameter K in the CUSUM chart serves the same purpose as λ in the EWMA
chart, i.e. they determine the sensitivity of the charts. A summary of results is
presented in Table 4.1, lower EQL values indicate better performance. Since there
is no analytic expression for ARL in this paper, the EQL values are estimated using
the trapezoid rule with the AUC function of the MESS library in R. A shift in
slope is always the earliest to be detected while a shift in process variance is the
hardest to detect for all charts. In conclusion, there is no one chart that performs
strictly better than the others. Hence, the preferred choice of control chart should
depend on the type of process to be monitored and the required sensitivity.

The steps in deriving the Bayesian estimators of the parameters are followed in close
reference to the paper by Abbas et. al. [2]. However, there are some notations that
are not explained fully and hence require some assumptions. For example, in Section
2.5 Equation 18, it is unclear whether "σ2" refers to the true value or the posterior
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parameter. The latter is assumed to be true. The model used in the referred paper
was also not specified even though is was hinted that they used the model by Kim
et. al. [13] in the first paragraph of Section 2, so the model used in this paper is
also taken to be Y = 13 + 2X + ε. Consequently, the results of this paper and the
(relevant part of the) referred paper are not entirely similar, but the general trend
is still observed. There are two parameters in each chart that affect their sensitivity
and performance. In the EWMA chart, the parameters are denoted λ and L while
in the CUSUM chart, the parameters are K and h. When varying the values of λ
and K, the value of ARL0 is affected. Hence, the other parameters L and h need to
be adjusted accordingly to maintain a fix value of ARL0. This is the reason why in
Table 3.2-3.7, even though there is a jump in every chart at the 51st sample, some do
not exceed the limits because the width of the chart has been adjusted to maintain
an ARL0 of approximately 300.

There are some aspects for future improvement in this paper. Firstly, the derivation
of control limits given in Section 2.5 could be made more efficient and precise. The
method used in this paper is based on estimation and manual adjustment which
might not be feasible when there are many parameters. Secondly, the comparison is
based solely on computer simulations with the R software due to a lack of real data.
Before a method is chosen to be used on a real-world process, they should first be
tested on actual data sets. Next, it is assumed that the real or ideal values of the
model parameters are known, further study could be done to modify the current
techniques when the actual parameters are unknown. The scope of this paper could
be expanded by exploring a non-linear relationship between the variables of the
process such as polynomial functions, as well as extending the current techniques to
multivariate processes.
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A.1

From Equation (2.9):

P (B0, B1|Y ) ∝ exp(− 1
2σ2

n∑
i=1

(yij −B0 −B1X
′
i)2)

× exp(− 1
2κ2

0
(B0 − b0)2)

× exp(− 1
2κ2

1
(B1 − b1)2)

Expanding square terms and ignoring fixed parameters,

P (B0, B1|Y ) ∝ exp(− 1
2σ2 (nB2

0 − 2B0

n∑
i=1

yij +B2
1

n∑
i=1

X ′i
2 − 2B1

n∑
i=1

X ′iyij))

× exp(− 1
2κ2

0
(B2

0 −B0b0 + b2
0))× exp(− 1

2κ2
1
(B2

1 − 2B1b1 + b2
1))

Gathering terms,

P (B0, B1|Y ) ∝ exp((− n

2σ2 −
1

2κ2
0
)B2

0 + (
∑n
i=1 yij
σ2 + b0

κ2
0
)B0

+ (
∑n
i=1 xiyij
σ2 + b1

κ1
)B1 + (−

∑m
i=1 x

2
i

2σ2 − 1
2κ2

1
)B2

1)

B0 and B1 are independent and so can be separated out,

P (B0|Y ) ∝ exp(−1
2
nκ2

0 + σ2

σκ2
0

B2
0 + nȳjκ

2
0 + b0σ

2

σ2κ2
0

B0)

∝ exp(−1
2
nκ2

0 + σ2

σκ2
0

[B2
0 + nȳjκ

2
0 + b0σ

2

nκ2
0 + σ2 ]2)

∝ exp(−1
2

1
σ2

0nj
(B0 − b0nj)2)

The same process is repeated for the other parameters.
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A.2
Elements of Σ as mentioned in Section 2.4:

Cov(β̂0k, β̂0k) = σ2( 1
n

+ x̄2

Sxx
)

Cov(β̂1k, β̂1k) = σ

Sxx

Cov(β̂0k, β̂1k) = −σ x̄

Sxx

A.3
This is the R code that was written for generating the results reported in Section
3.1. ρ (rho) represents the correlation value which is varied according to Table 3.1.
The target value values µy (mu_y) and µx (mu_x) are set to 0 while δ (delta) = 0.5,
L = 2.824, σy (s_y) = 1, σx (s_x) = 1 and they refer to the variance of Y and
X respectively. The code is written as a function such that these values could be
changed without changing the code.
b ivar_function <−function ( rho , de l ta , L ,N,mu_y ,mu_x , s_y , s_x , lambda ){

b_YX<−rho∗ ( s_y/s_x )
sigma <− matrix (c ( s_y^2 , s_y∗s_x∗rho , s_y∗s_x∗rho , s_x^2) ,

2) # Covariance matrix
mu1 <− c (mu_y ,mu_x ) # In c o n t r o l mean
mu2 <− c (mu_y + de l t a∗s_y , mu_x )
ARL<−vector ( )
ARL1<−vector ( )

for ( j in 1 :10000){

samples<−matrix (ncol=2, nrow=30)
for ( i in 1 : 10 ){ #simu la t e IC samples

obs<−mvrnorm(N, mu = mu1, Sigma = sigma )
samples [ i , 1 ]<−mean( obs [ , 1 ] )
samples [ i , 2 ]<−mean( obs [ , 2 ] ) }

for ( i in 11 :30){ #simu la t e OC samples
obs<−mvrnorm(N, mu = mu2, Sigma = sigma )
samples [ i , 1 ]<−mean( obs [ , 1 ] )
samples [ i , 2 ]<−mean( obs [ , 2 ] ) }

M<−samples [ , 1 ] + b_YX∗ (mu_x−samples [ , 2 ] ) #r eg r e s s i o n es t imate
LCL<−vector ( )
UCL<−vector ( )
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Z<− vector ( )
Z_old<−mu_y
var_M<−( s_y^2−(b_YX^2)∗ ( s_x^2))/N
Z1<−vector ( )
LCL1<−vector ( )
UCL1<−vector ( )
Z1_old<−mu_y
a r l<−30
a r l 1<−30
for ( i in 1 : 30 ){
#with a u x i l i a r y

Z [ i ] <− lambda∗M[ i ] + (1−lambda )∗Z_old
UCL[ i ]<−mu_y+ L∗sqrt (var_M)

∗sqrt ( ( lambda/(2−lambda ) )∗(1−(1−lambda )^(2∗ i ) ) )
LCL[ i ]<−mu_y− L∗sqrt (var_M)

∗sqrt ( ( lambda/(2−lambda ) )∗(1−(1−lambda )^(2∗ i ) ) )
Z_old<−Z [ i ]
i f (Z [ i ]>UCL[ i ] | | Z [ i ]<LCL[ i ] ) {

a r l<−min( a r l , i )
}

#without a u x i l i a r y
Z1 [ i ] <− lambda∗samples [ i , 1 ] + (1−lambda )∗Z1_old
UCL1[ i ]<−mu_y+ L∗s_y

∗sqrt ( ( lambda/((2− lambda )∗N))∗(1−(1−lambda )^(2∗ i ) ) )
LCL1 [ i ]<−mu_y− L∗s_y

∗sqrt ( ( lambda/((2− lambda )∗N))\\∗(1−(1−lambda )^(2∗ i ) ) )
Z1_old<−Z1 [ i ]
i f (Z1 [ i ]>UCL1[ i ] | | Z1 [ i ]<LCL1 [ i ] ) {

a r l 1<−min( ar l1 , i )
}

}
ARL[ j ]<−a r l
ARL1[ j ]<−a r l 1 }

r e s u l t s<−cbind (mean(ARL)−10 , mean(ARL1)−10)
return ( r e s u l t s )
}

A.4
Below are two sets of codes mentioned in Section 3.2. The first one is the non-
Bayesian approach where the estimators are estimated by OLS method while the
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second is the Bayesian approach. The magnitude of shifts are presented in Table 3.2.

For the non-Bayesian approach, the code is initialized as follows, the values of LI ,
LS, LV that are shown are set such that ARL0 ≈ 300 for λ (lambda) = 0.2:

X1<− c (−3 ,−1 ,1 ,3)
k<− 10000
n<− length (X1)
L_I<− 3 .15
L_S<− 3 .15
L_V<− 1 .45
lambda<−0 .2

non_Bayesian_EWMA_function<−function (X1 , lambda , i n t e r c e p t_s h i f t ,
s l ope_s h i f t , e r r o r_s h i f t , L_I , L_S ,L_V, k , n){

ARL_I<−vector ( )
S_xx<−sum( (X1−mean(X1) )^2)

for ( j in 1 : k ){ #k i s the number o f runs
Y2<−vector ( )
Y3<−vector ( )
Y4<−vector ( )

for ( i in 1 :100){
y_j<−13+2∗X1+rnorm(n , 0 , 1 )
Y2 [ i ]<−mean( y_j )
S_xy<−sum( (X1−mean(X1) )∗y_j )
Y3 [ i ]<−S_xy/S_xx
y1_j<−y_j− (Y2 [ i ]+Y3 [ i ] ∗X1)
Y4 [ i ]<−sum( ( y1_j ^2))/ (n−2)
}

for ( i in 101 :1000){ #s h i f t happens at the 11 th sample
y_j<−(13+ i n t e r c e p t_s h i f t )+(2+ s l ope_s h i f t )

∗X1+rnorm(n , 0 , e r r o r_s h i f t )
Y2 [ i ]<−mean( y_j )
S_xy<−sum( (X1−mean(X1) )∗y_j )
Y3 [ i ]<−S_xy/S_xx
y1_j<−y_j− (Y2 [ i ]+Y3 [ i ] ∗X1)
Y4 [ i ]<−sum( ( y1_j ^2))/ (n−2)
}

z_I_old<−13
z_I<−vector ( )
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z_S_old<−2
z_S<−vector ( )
z_V_old<−0
z_V<−vector ( )
LCL_I<−vector ( )
UCL_I<−vector ( )
LCL_S<−vector ( )
UCL_S<−vector ( )
UCL_V<−vector ( )
Var<−(2/ (n−2))+(2/ ( ( n−2)^2))+(4/(3∗ (n−2)^3))−(16/(15∗ (n−2)^5))
ARL<−1000

for ( i in 1 :1000){
z_I [ i ]<−theta∗Y2 [ i ]+(1− lambda )∗z_I_old
z_I_old<−z_I [ i ]
LCL_I [ i ]<−13−L_I∗sqrt ( lambda/((2− lambda )∗4)∗(1−(1−lambda )^(2∗ i ) ) )
UCL_I [ i ]<−13+L_I∗sqrt ( lambda/((2− lambda )∗4)∗(1−(1−lambda )^(2∗ i ) ) )

z_S [ i ]<−theta∗Y3 [ i ]+(1− theta )∗z_S_old
z_S_old<−z_S [ i ]
LCL_S [ i ]<−2−L_S∗sqrt ( lambda/((2− lambda )∗S_xx )∗(1−(1−lambda )^(2∗ i ) ) )
UCL_S [ i ]<−2+L_S∗sqrt ( lambda/((2− lambda )∗S_xx )∗(1−(1−lambda )^(2∗ i ) ) )

z_V[ i ]<−max( lambda∗log (Y4 [ i ])+(1− lambda )∗z_V_old , log ( 1 ) )
z_V_old<−z_E[ i ]
UCL_V[ i ]<−L_V∗sqrt ( ( theta/(2−lambda ) )∗(1−(1−lambda )^(2∗ i ) )∗Var )
i f ( z_I [ i ]>UCL_I [ i ] | |

z_I [ i ]<LCL_I [ i ] | |
z_S [ i ]>UCL_S [ i ] | |
z_S [ i ]<LCL_S [ i ] | |
z_V[ i ]>UCL_V[ i ] ) {

ARL<−min(ARL, i )
}

}
ARL_I [ j ]<−ARL }

mean(ARL_I )−100 }
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As for the Bayesian approach, the hyper-parameters and shifts are varied according
to Table 3.3-3.5, an example of the initial values are as follows, LI , LS, LV are set
such that ARL0 ≈ 300 for λ (lambda) = 0.2:

X1<−c (−3 ,−1 ,1 ,3)
n<−length (X1)
lambda<−0 .2
K_0_squared<−45
K_1_squared<−16
b0<−20
b1<−2 .5
alpha_0<−0 .1
beta_0<−0 .1
k<−10000
L_I<− 3 .30
L_S<− 3 .23
L_V<− 2 .64

Bayesian_function <−function (X1 , lambda , i n t e r c e p t_s h i f t ,
s l ope_s h i f t , e r r o r_s h i f t , L_I , L_S ,L_V,
k , n ,K_0_squared ,K_1_squared , alpha_0 ,beta_0){

ARL_b_I<−vector ( )
S_xx<−sum(X1^2)

for ( j in 1 : k ){
Y4<−vector ( )
b0<−vector ( )
b1<−vector ( )

for ( i in 1 :100){
y_j<−13+2∗X1+rnorm(n , 0 , 1 )
Y<−mean( y_j )
sigma0_2<−sum( ( y_j−(13+2∗X1))^2)/ (n−2)
sigma_2<−(beta_0+((n−2)∗sigma0_2)/2)/ ( alpha_0+(n/2)−1)
S_xy<−sum(X1∗y_j )
b0 [ i ]<−( (4∗Y∗K_0_squared )+15∗sigma_2)

/(4∗K_0_squared + sigma_2)
b1 [ i ]<−( ( S_xy∗K_1_squared )+1.5∗sigma_2)

/ (S_xx∗K_1_squared + sigma_2)
Y4 [ i ]<− sigma_2}

for ( i in 101 :1000){ #s h i f t happens at the 101 th sample
y_j<−(13+ i n t e r c e p t_s h i f t )+(2+ s l ope_s h i f t )∗X1

+rnorm(n , 0 , e r r o r_s h i f t )
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Y<−mean( y_j )
sigma0_2<−sum( ( y_j−(13+2∗X1))^2)/ (n−2)
sigma_2<−(beta_0+((n−2)∗sigma0_2)/2)/ ( alpha_0+(n/2)−1)
S_xy<−sum(X1∗y_j )
b0 [ i ]<−( (4∗Y∗K_0_squared )+15∗sigma_2)

/(4∗K_0_squared + sigma_2)
b1 [ i ]<−( ( S_xy∗K_1_squared )+1.5∗sigma_2)

/ (S_xx∗K_1_squared + sigma_2)
Y4 [ i ]<−sigma_2

}

z_old<−13
z_S_old<−2
z_E_old<−0
z_I<−vector ( )
z_S<−vector ( )
z_V<−vector ( )
LCL_I<−vector ( )
UCL_I<−vector ( )
LCL_S<−vector ( )
UCL_S<−vector ( )
UCL_V<−vector ( ) #only upper l i m i t to d e t e c t

inc rea se in var iance

ARL<−1000
Q1<−2∗alpha_0 + (n−2)
Q2<−2∗alpha_0^2 + (n−2)^2 + 4∗alpha_0∗ (n−2)
Q3<−8∗ ( alpha_0^3) + 12∗ ( alpha_0^2)∗ (n−2)

+ 6∗alpha_0∗ (n−2)^2 + (n−2)^3
Q4<−32∗ ( alpha_0^5)

+ 80∗ ( alpha_0^4)∗ (n−2) + 80∗ ( alpha_0^3)∗ (n−2)^2
+ 40∗ ( alpha_0^2)∗ (n−2)^3 + 10∗alpha_0∗ (n−2)^4 + (n−2)^5

Var<−(2/Q1)+(2/Q2)+(4/(3∗Q3))−(16/(15∗Q4) )

for ( i in 1 :1000){
z_I [ i ]<−lambda∗b0 [ i ] + (1−lambda )∗z_old
UCL_I [ i ]<−13+L_I∗sqrt ( ( ( lambda∗K_0_squared )/((2− lambda )

∗(4∗K_0_squared +1)))∗(1−(1−lambda )^(2∗ i ) ) )
LCL_I [ i ]<−13−L_I∗sqrt ( ( ( lambda∗K_0_squared )/((2− lambda )

∗(4∗K_0_squared +1)))∗(1−(1−lambda )^(2∗ i ) ) )
z_old<−z_I [ i ]

z_S [ i ]<−lambda∗b1 [ i ] + (1−lambda )∗z_S_old
UCL_S [ i ]<−2+ L_S∗sqrt ( ( ( lambda∗K_1_squared )/((2− lambda )

∗ (S_xx∗K_1_squared +1)))∗(1−(1−lambda )^(2∗ i ) ) )
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LCL_S [ i ]<−2− L_S∗sqrt ( ( ( lambda∗K_1_squared )/((2− lambda )
∗ (S_xx∗K_1_squared +1)))∗(1−(1−lambda )^(2∗ i ) ) )

z_S_old<−z_S [ i ]

z_V[ i ]<−max( lambda∗log (Y4 [ i ])+(1− lambda )∗z_E_old , log ( 1 ) )
z_V_old<−z_E[ i ]
UCL_V[ i ]<−L_E∗sqrt ( ( lambda/(2−lambda ) )∗(1−(1−lambda )^(2∗ i ) )∗Var )
i f ( z_I [ i ]>UCL_I [ i ] | |

z_I [ i ]<LCL_I [ i ] | |
z_S [ i ]>UCL_S [ i ] | |
z_S [ i ]<LCL_S [ i ] | |
z_V[ i ]>UCL_E[ i ] ) {

ARL<−i
break

}
}
ARL_b_I [ j ]<−ARL }

mean(ARL_b_I )−100 }
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