
Towards Evaluating
Many-Dimensional Physics Problems
through Parallel Evaluation of Taylor

Functions

Bachelor’s Project Physics

July 2019

Author: M.J. van den Broek

Supervisor: Dr.ir. C.J.G. Onderwater

Second assessor: Dr. D. Roest

Abstract

Taylor series can be used in particle tracking experiments like the LHCb experiment, which inves-
tigates thousands of trajectories per second and requires an efficient evaluation algorithm. In this
research a sequential and a parallel Taylor series evaluation algorithm are created. The algorithms
can evaluate multiple multi-dimensional Taylor series at varying orders, using different input values.
The performance of the algorithms at a varying number of evaluations and at varying orders is then
investigated. The results show that an efficient parallel algorithm can be created. It can be further
improved by reducing overhead.

i

Contents

1 Introduction 1

2 Taylor series in physics 3

2.1 One-dimensional partial differential equation . 3

2.2 Multivariable Taylor series . 5

2.3 (LHCb) particle tracking . 7

3 Concepts and requirements of the programs 9

3.1 Sequential implementation . 9

3.2 Parallel implementation . 11

3.2.1 Term evaluation function . 13

3.2.2 Term addition function . 17

3.3 Precautions . 19

4 Program results on series of different complexities 20

4.1 Test conditions . 20

4.2 Results . 21

4.2.1 One-dimensional results . 21

4.2.2 Two-dimensional results . 22

4.2.3 Three-dimensional results . 23

4.3 Discussion . 23

5 Conclusion 24

Appendix 25

Multi-dimensional Cantor tuple function . 25

Code . 25

Results . 27

References 29

ii

1 Introduction

Mathematics is an indispensable tool in the arsenal of a physicist to describe phenomena and
their relation to the environment. Mathematical functions can be used to determine the probable
outcome of an experiment. If the functions hold true for every experiment testing it, then one can
assume it accurately describes reality. These functions can then be used to logically deduce further
theories. However, some of these functions can be very hard to solve. A tool to evaluate those
functions is a series expansion. Differential equations are an example of this. They come up in
physics involving harmonic oscillators or exponential decay for example and can be solved using a
series expansion.

Most functions can be described by a sum of simple functions. Well known examples are the Fourier
and Taylor series. A Fourier series describes a function as a sum of sines and cosines. A Taylor
series, which will be the main focus of this research, describes a function as a sum of polynomials.
Since functions are used in all fields of physics, Taylor expansions can be used in most of those
fields as well. To evaluate the sum of a series expansion analytically, one can determine to what
value the series converges.

In numerical evaluation only a finite number of terms of a series can be calculated. But a function
expressed as a converging series can still be approximated with arbitrary precision. In a converging
Taylor series, the higher order terms contribute less to the overall result. Depending on the accuracy
needed, one must only solve a Taylor series up to a certain order. And a computer can solve this
finite sum.

If a Taylor series is dependent on only one variable, i.e. a one-dimensional Taylor series, then a
computer program executed on a modern central processing unit (CPU) can quickly evaluate this.
If the series is dependent on several variables, i.e. multidimensional, then the number of terms
increases significantly. A lot more terms need to be evaluated to achieve the same accuracy as in
the one-dimensional case. A normal CPU based program calculates all these terms one at a time,
stores the result of every term in memory and then adds them all up at the end. If this sequential
evaluation needs to happen for thousands of terms it can take a lot of time. In experiments where
time is valuable and series need to be evaluated very fast, a parallel algorithm can be more useful
than a sequential algorithm.

A CPU core can only work sequentially, but a processor may have several cores that can work
in parallel. The number of cores usually varies between 2 and 32 in current consumer CPUs. A
graphics processing unit (GPU), however can have thousands of cores which can operate in parallel.
As one can imagine, evaluating each term of a series in parallel could save a lot of time. This research
intends to explore how a Taylor series evaluation can be sped up using parallelisation.

To determine the difference such a parallel approach has opposed to a sequential approach, two
computer programs which can evaluate Taylor series are created. One program will run on a CPU
and one on a GPU, i.e. one sequential and one parallel evaluation. The language in which the CPU
algorithm is written is C++. The GPU algorithm is coded in CUDA C++, which is an extension
on C++ created by NVIDIA that enables explicit commands for an NVIDIA GPU and its memory.

1

These algorithms will then be used to evaluate several Taylor series having different dimensions,
which arise in different physics cases. One case involves the tracking of a particle through a magnetic
field. This is an application, which is common in high-energy physics. In particular the LHCb
experiment at CERN is investigated. The LHCb experiment analyses around a million collisions
per second and can thus benefit from an efficient evaluation method.

To test the difference in efficiency between the parallel and sequential evaluation methods, the
example cases are used to investigate how long both algorithms take to complete the evaluation.
From this performance test, one can determine at what dimension and up to which order a parallel
evaluation approach becomes faster.

The first thought may be that a parallel program is always faster than a sequential program.
However, with GPU computation data is stored in both GPU and CPU memory and both memory
types need to exchange data at some point. This creates overhead which might actually make it
slower than a sequential CPU-based algorithm.

The goal of this research is to determine the relation in speed between sequential and parallel
Taylor series evaluation algorithms. This information can then be used to determine if the increased
efficiency of a parallel solution is sufficient for the intended application.

The research question is:

At what order and after how many evaluations of an n-dimensional Taylor series will a
parallel algorithm become more efficient than a sequential algorithm?

2

2 Taylor series in physics

Taylor series come up frequently in physics. This section will elaborate on several examples from
within physics that demonstrate how Taylor series are used. The examples will contain a series
of increased dimensionality, which will show how a parallel evaluation algorithm becomes more
relevant when a series is of a higher dimension. Precautions on accuracy versus computation speed
are also discussed.

The definition of a single variable Taylor series expansion of an infinitely differentiable function is
as follows [1, p. 353]:

f(x− x0) =

∞∑
n=0

1

n!
(x− x0)n

dnf(x0)

dxn
. (2.1)

This expansion takes the form of a power series:

f(x− x0) =

∞∑
n=0

an(x− x0)n, where: an =
1

n!

dnf(x0)

dxn
. (2.2)

The coefficients an define the function f(x). They may be very difficult to evaluate depending
on the function that is expanded. How the coefficients are derived will be discussed in the next
subsection. However, the rest of this research will focus on evaluating Taylor series with known
coefficients.

2.1 One-dimensional partial differential equation

A well-known case in physics is the harmonic oscillator. A simple example is solving the second
order differential equation of an undamped harmonic oscillator. The motion of mass m oscillating
on a spring with spring constant k is given by:

m
d2x(t)

dt2
+ kx(t) = 0. (2.3)

Where x is the location at time t. The method for solving differential equations using power series
is to take a solution of the form:

x(t) =

∞∑
n=0

ant
n, with its second derivative

d2x(t)

dt2
=

∞∑
n=2

n(n− 1)ant
n−2. (2.4)

The assumption that this power series exists is valid since the requirement of a Taylor series is for a
function to be infinitely differentiable and x(t) satisfies that requirement. Substitution of the power
series solution in equation 2.3 yields:

3

m

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n + k

∞∑
n=0

ant
n = 0. (2.5)

Both series contain tn and have an equal summation range, therefore they can be combined to form
the condition:

∞∑
n=0

[m(n+ 2)(n+ 1)an+2 + kan]tn = 0. (2.6)

Equation 2.6 only has a solution if the part between brackets is zero for all n ≥ 0, since t0 = 1 for
every t including t = 0. Solving for the part between brackets being equal to zero using a recursion
relation, results in a solution for the even and uneven coefficients.

a2n = (−1)n
√
k

m

2n
a0

(2n)!
, (2.7)

a2n+1 = (−1)n
√
k

m

2n
a1

(2n+ 1)!
. (2.8)

Putting these values back into equation 2.4 gives the final solution to the problem.

x(t) = a0

∞∑
n=0

(−1)n
√
k

m

2n
t2n

(2n)!
+ a1

√
m

k

∞∑
n=0

(−1)n
√
k

m

2n+1
t2n+1

(2n+ 1)!
. (2.9)

In this case the analytical solution is known and is given by:

x(t) = a0cos

(√
k

m
t

)
+ a1

√
m

k
sin

(√
k

m
t

)
. (2.10)

Indeed, the Taylor expansion matches the analytical solution as both series in equation 2.9 represent
cosine and sine respectively.

This method can be used to solve other differential equations as well. For example the second
order differential Schrödinger equation of quantum mechanics or first order differential equations
in exponential decay. The example above is a simple one and can be quickly evaluated on a
computer. But in an experiment where numerous series need to be evaluated relating to many
events happening every second, even simple one-dimensional problems might benefit from a parallel
evaluating algorithm. Before an evaluation even begins however, one should make an important
consideration.

The solution of equation 2.10 contains a cosine and a sine. To solve the cosine and sine series
numerically requires the two series to be truncated. Calculating many terms results in a better
approximation. However, this also increases the time it takes a computer to evaluate the series. To
show how the quantity of terms determines the accuracy of the evaluation, the sine series is taken

4

as an example. As implied in equation 2.10, the sine expansion around t = 0 is given by:

sin(t) =

∞∑
n=0

(−1)n
1

(2n+ 1)!
t2n+1. (2.11)

The number of terms needed for an accurate evaluation of equation 2.11 depends on the value of t.
This can be seen graphically in figure 1. If a system is only evaluated at very small values of t, then
one or a couple of terms can suffice. At larger values of t more terms are needed. When numerically
evaluating series, knowing the required domain of the variable in the series helps to determine how
many terms are needed to achieve the desired accuracy. This is an important consideration as too
few terms can result in a wrong evaluation and too many terms result in longer computation time.

Figure 1: sin(t) approximated by three and five terms of the truncated Taylor series.

The expanded function is most accurate near the point at which it is expanded. In case a full period
needs to be approximated by the sine series expansion around t = 0, the interval [−π, π] would give
the most accurate evaluation.

2.2 Multivariable Taylor series

Besides expanding a single variable function like in the example above, multi-variable functions can
also be Taylor expanded. The expression of such an expansion is given below [1, p. 358].

f(x1, ..., xk) =

∞∑
n=0

1

n!

[k∑
j=1

(xj − bj)
∂

∂xj

]n
f(b1, ..., bk), (2.12)

5

of which the coefficients bj indicate the coordinates at which the function is evaluated. Equation
2.12 shows that when more variables are introduced, the number of terms increases due to the
power over the second sum. The simplest multi-variable case has two variables, where at n = 1 the
number of terms has already doubled, compared to the one-dimensional case. However, the extra
terms which come with more variables also contain equal cross terms, which can be doubled instead
of being calculated multiple times. For example, taking b1 = b2 = 0, n = 2 and k = 2 results in the
part between square brackets in equation 2.12 being:

x21
∂2

∂x21
+ x1x2

∂

∂x1

∂

∂x2
+ x2x1

∂

∂x2

∂

∂x1
+ x22

∂2

∂x22
= x21

∂2

∂x21
+ 2x1x2

∂

∂x1

∂

∂x2
+ x22

∂2

∂x22
. (2.13)

Equation 2.12 with only two variables is given below.

f(x, y) =

∞∑
n=0

1

n!

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]n
f(x0, y0). (2.14)

An example of a two dimensional system where a Taylor series can be used is the two-dimensional
infinite square well of quantum mechanics. The method is very similar to the harmonic oscillator
example from before. The equation that is to be solved is the Schrödinger equation, which is a
partial differential equation in this case. To keep the example clear the constants in Schrödinger’s
equation have been combined in the constant k2.[

∂2

∂x2
+

∂2

∂y2

]
ψ(x, y) + k2ψ(x, y) = 0. (2.15)

The power series is used again as a general expansion of ψ(x, y) around (x, y) = (0, 0). It takes the
form:

ψ(x, y) =

∞∑
i=0

∞∑
j=0

ai,jx
iyj . (2.16)

If the power series is evaluated up to order n, then the condition is 0 ≤ i + j ≤ n. Using this
condition, one can determine which terms belong to a certain order. Substitution of equation 2.16
into equation 2.15 and following similar steps as in the one-dimensional example yields:

∞∑
i=0

∞∑
j=0

[
ai+2,j(i+ 2)(i+ 1) + ai,j+2(j + 2)(j + 1) + ai,j

]
xiyj = 0. (2.17)

Again the bracketed part needs to be equal to 0 for all combinations of i and j to solve the equation.
This has become a lot harder than in the one-dimensional case, where a simple recurrence relation
could be used. Solving the coefficients numerically by finding partial derivatives or by finding the
recurrence relations both require a sequential approach. Recurrence relations rely on previously
found equalities and evaluation of a higher order derivative requires the derivative one order lower.
If a term in the series relies on values calculated in previous terms, they cannot be evaluated in
parallel. Therefore a two dimensional numerical evaluation will focus on solving equation 2.16 where

6

the coefficients are predetermined values or independent functions. If predetermined values of the
coefficients are known, then equation 2.16 can be filled in and the wave function can be directly
evaluated. The wave function can also be derived in another analytical way explained in [2, p. 50]:

ψ(x, y) = A · sin(cxx)sin(cyy). (2.18)

A, cx and cy are independant functions, which are obtained within the derivation of equation 2.18.
k2 is missing from equation 2.18, but the constants contained in k2 were included in cx and cy
during the derivation. This function can again be evaluated using Taylor series as both sines can
be expanded to form a power series like equation 2.11.

2.3 (LHCb) particle tracking

A case where multi-dimensional Taylor series can also be used is in tracking charged particles
through a magnetic field. This kind of experiment is common in high energy physics, where the
momentum of a particle can be determined by its trajectory. From the momentum and the trajec-
tory the properties of a particle can be determined. In this section the LHCb experiment at CERN
is considered. The experiment uses a particle accelerator, which collects 35 gigabytes of data from
around one million collisions per second [3]. The algorithms currently used for particle tracking at
LHCb use numerical integration methods, which are sequential.

However, a recent research used a Taylor series approach to particle tracking through an arbitrary
magnetic field [4]. Initially this method predicted that the coefficients of the series could be deter-
mined beforehand and remain constant for successive evaluations. However, this turned out not to
be true, requiring the coefficients to be determined for each trajectory. It is up for further research
to find a method to calculate these coefficients as independent functions. Despite this, parallel
evaluation of the Taylor expansion method for particle tracking could still be more time efficient
than numerical integration. After the coefficients are known, the series can be evaluated in parallel
making the method suitable for this research.

Following the approach presented in [4] for the LHCb experiment, the z direction is perpendicular
to the detectors and the magnetic field is in the y direction as can be seen in figure 2. To determine
the trajectory two expansions are needed describing the x coordinate as a function of z and the y
coordinate as a function of z. The expansions take the following forms.

x(z) =
∑
k,l,m

aklm(z) · x
′k
i · y

′l
i · xm3 . (2.19)

y(z) =
∑
k,l,m

bklm(z) · x
′k
i · y

′l
i · xm3 . (2.20)

The prime denotes a derivative with respect to z and i says it is an initial value at z = 0. x3 is
the inverse of the circular radius of the trajectory. It has the property of containing the charge,
momentum and magnetic field parameters in one variable. x3 should not be equal to 0 as that would
mean the particle would travel in a straight line, which is not very interesting for the experiment.

7

The z-dependence lies within the coefficients. The idea being that only the initial conditions need
to be known to calculate the trajectory.

The above shortly describes the series which can be evaluated by a numerical algorithm where the
coefficients a and b are known. This research focuses just on the part of evaluating equations 2.19
and 2.20. Further details on obtaining the coefficients and the exact derivation of x3 can be found
in the research paper [4].

The method used here for particle tracking has three variables, whereas the previous examples
contain one and two variables. Evaluation of series with more variables is more intensive and the
greater efficiency of a parallel approach should become more evident. The next chapter will discuss
the considerations which are made to produce the parallel and sequential programs.

Figure 2: Collision event in the LHCb detector [5]

8

3 Concepts and requirements of the programs

The previous chapter discussed a few examples where Taylor series are used in physics. This chapter
will focus on a computer algorithm to evaluate a Taylor series with one or several variables. The
program is written in CUDA C/C++, which is an extension of C/C++, which enables utilisation
of an NVIDIA graphics card present in the system. The syntax is similar to that of C and C++,
except for commands which are related to the GPU. If further clarification about the CUDA C/C++
language is needed throughout this chapter, consider reading ’CUDA by Example’ [6].

The program starts with the host function ’main’, which prepares the input variables and delivers
the output. From this main function other functions are called upon to perform calculations. These
functions are assigned to run on the CPU or the GPU. If a function is executed by the CPU it is
called a host function and if it is run on the GPU it is called a device function. The same applies
to memory, where CPU memory is called host memory and GPU memory is called device memory.
This chapter explains the sequential CPU algorithm and the parallel GPU algorithm divided into
functions.

3.1 Sequential implementation

In the implementation of a sequential series evaluation algorithm a three-dimensional power series
is considered. The series has the following form.

f(x, y, z) =

n∑
k,l,m

aklm · xk · yl · xm, (3.1)

The program first prepares input variables x, y, z, as well as the coefficients aklm. The coefficient
values are loaded from a file into an array. An output array, which will contain the evaluated Taylor
series corresponding to each of the input variables, is initialised with all of its elements set to zero.
The series corresponding to a set of input variables is evaluated by calculating every term one at a
time and adding the result to the correct element in the output array. This is achieved using nested
for-loops. The algorithm evaluating equation 3.1 is given below:

for (s = 0; s < SERIES_AMOUNT; s++){

sums[s] = 0.0;

tid = 0;

for (h = 0; h <= ORDER; h++){

for (m = 0; m <= h; m++){

for (l = 0; l <= h - m; l++){

sums[s] += a[tid] * pow(input[s].x, (h - m - l)) * pow(input[s].y, l) *

pow(input[s].z, m);

tid++;

}

}

}

}

9

Where sums[s] is the output array for each set of inputs s. l and m are the corresponding indices
of equation 3.1. The index k is calculated as h− l−m to satisfy the condition k+ l+m = h, thus
evaluating the sums sequentially for each successive order h.

The code shows a variable range of iterations of the inner loops. The outer loop runs from 0 to
order, whereas the range of the inner loops depend on the value of the outer loops. The reason
lies in the definition of the order. An evaluation up to a certain order in three dimensions requires
0 ≤ k+ l+m ≤ order. If all l, k,m went from 0 to order, a lot of higher order terms would be added
and the total number of terms would be l · k ·m. These higher order terms are less significant and
are not needed to achieve the desired accuracy of the evaluation. When manually determining how
many terms are calculated in a power series up to a certain order, a similarity to Pascal’s triangle
[7, p. 153] was found as visualised in figure 3.

Figure 3: The number of terms that arise when evaluating a multidimensional power series up to a
certain order is given by an element in Pascal’s triangle.

The number of terms is then given by the binomial coefficient from figure 3 depending on the
dimension and order of the series:

terms =

(
order + dim

order

)
=

(order + dim)!

dim! · order!
. (3.2)

For example, evaluating a three dimensional series up to order = 4 gives (4+3)!
4!3! = 35 terms. This

value is used to determine how many coefficients need to be loaded into the array.

In testing the CPU algorithm it appeared that a self made power function was faster. This self
made function used a for loop, which multiplies an input value by itself. The probable reason this
is faster comes from the fact that the built in power function can handle fractions of powers. In this
research only positive integer powers are needed and the self made function is only able to calculate
positive integer powers. The power function in the code above is the built in power function, but

10

it serves as an illustration of what the algorithm looks like. The actual CPU algorithm will use the
self made power function.

3.2 Parallel implementation

For the parallel implementation the three-dimensional power series of equation 3.1 is considered.
The parallel equivalent of the sequential algorithm from above is less simple. The algorithm is
divided into several device functions, to evaluate each term and to sum all evaluated terms. When a
device function is called upon, a pre-specified number of the same function is started simultaneously,
which are called Threads. To differentiate these Threads, each one has a specific ID. This is
important since each thread uses a different set of values in its instruction. These IDs can be used
as an index to address a location in an array for example. Before launching the device function
one specifies how many threads with an ID in the x, y and z direction will be launched. The
total number of thread IDs in all dimensions is limited to 1024 and the ID in each dimension may
not exceed (x, y, z) = (1024, 1024, 64). But threads are launched in blocks and these rules only
apply to one block. Each thread inside a block has access to a memory cache contained within
that block, this is called shared memory. That is why there is this separation between threads and
blocks. Blocks also have an ID, but only in two-dimensions. These limits are much larger however
max(blockIDx,blockIDy) = (216, 216). A visualisation of the concept of blocks and threads with
indices in two dimensions is given in figure 4.

11

Figure 4: Grid of blocks and threads with two-dimensional indexing [8].

Multiplying block and thread IDs gives the range of indices available. A global ID in the x-
direction can be calculated by threadIdx.x+blockIdx.x*blockDim.x, where blockDim.x is the num-
ber of threads in a block. The same goes for the y-direction. Global IDs in the z-direction only
range from 0 to 63. Higher dimensions must be indexed using another way.

The index in the z direction can be obtained using the global ID of threads in the x direction. The
number of threads in the x-direction must now be (order+ 1)2, since it is used for the x indices as
well as the z indices. These indices are calculated within the device function as follows.

int globalID_x = threadIdx.x + blockIdx.x * blockDim.x;

int index_Y = threadIdx.y + blockIdx.y * blockDim.y;

int index_X = globalID_x % order;

int index_Z = globalID_x / order;

Where % is the modulus operator. Because integers are used a fraction is rounded down and the
division gives the required integer result. If the maximum order is a power of two the computation-

12

ally heavy modulus operator can be replaced by a binary AND operator, which isolates the lower
order bits from globalID x. In that case also the division can be replaced by a less computationally
intensive right shift operator, which shifts the binary digits to the right and thus isolates the higher
order bits. Now that the indices are acquired they need to be used. The indexing required to
address the correct values from the input arrays gives rise to some problems in the term evaluation
function.

3.2.1 Term evaluation function

This function evaluates each term individually and stores the solution in an output array. This can
be written as:

termSolution[termIndex] = a[termIndex] * pow(x,index_X) * pow(y,index_Y) * pow(z,index_Z);

Where index X, index Y and index Z are the global indices. In the context of equation 3.1, index X
= l, index Y = k and index Z = m. Recall that a self made power function is more efficient on the
CPU than the built in function. The opposite seems to be true in the GPU case. Therefore the
built in function is used in the parallel program.

When the function containing the code above is run it will start l · k · m threads. However only
the ones where 0 ≤ l + k + m ≤ order are needed. The x, y and z indices need to range from
0 to order. The number of threads launched is thus (order + 1)2, where the +1 comes from
counting the zeroth order. This could be overcome by using dynamic parallelism. This means that
a parent device function is called and each thread calls another device function. Figure 5 provides
a visual representation of how a thread-block launches additional functions from the GPU. For a
2-dimensional case, the parent device function has a number of threads equal to order+ 1 and has
thread IDs in only one dimension. The parent function then calls child device functions for each
of the parent’s threads. The number of threads of the child function is equal to the order minus
the thread ID in the parent function. The thread ID of the parent cannot be passed to the child
directly since this is a limitation of dynamic parallelism [9]. A global array containing values equal
to its own index may be used to pass the Thread ID of the parent function to the child. The total
number of threads can then be calculated using the binomial coefficient method from equation 3.2.
The number of terms is needed to determine the size of the output array.

13

Figure 5: Visualisation of dynamic parallelism [10].

However, there is another problem. Every term needs to be stored somewhere in the output array.
But every thread needs to have an index of the output array to store its value in a unique position.
The index to the output ’termIndex’, is also used in the coefficient array. In CUDA it is only
possible to use one-dimensional array indexing. Therefore the global thread IDs in the x, y and z
direction have to somehow be used to calculate the index, termIndex, of the one-dimensional output
array. Take a two-dimensional series up to order three as an example. The table below shows the
indices of the output array corresponding to the x and y indices.

x index
0 1 2 3

y index

0 0 1 2 3
1 4 5 6 n.a.
2 7 8 n.a. n.a.
3 9 n.a. n.a. n.a.

Table 1: Indices of the termSolution array that correspond to the x and y thread indices

Calculating termIndex can be done with the use of a separate index array. This index array can be
calculated as follows:

indexArray[0]=0;

for(i=1;i<order;i++){

indexArray[i]=indexArray[i-1]+order+2-i;

}

What is calculated is simply the left collumn of table 1. The way termIndex is determined is by

14

adding index X and indexArray[index Y]. The loop to calculate indexArray requires a previously
determined value to calculate the next value. Therefore it cannot be implemented in parallel. But
it can be calculated beforehand and loaded into an array when the program is needed, since this
array remains the same when the dimension and order of the series remain the same. In a 3D
case however, indexArray becomes a 2D array, which is also calculated using a recursion loop. It
holds the left collumn as in the 2D case, but it does so for every index Z. The indexArray has the
same form as seen in table 1. Another indexArray is thus needed to get the correct index in the
indexArray. For higher dimensions the number of indexArrays needed is equal to the dimension
minus one.

Since the above solution requires many sequential calculations and requires a lot of memory space
in higher dimensions due to the size and number of indexArrays it is not a good solution. Another
way to calculate termIndex is by using the Cantor tuple function [11]. It contains a flooring function
bxc, which rounds x to the lowest integer. It requires a different ordering than in table 1, namely:

x index
0 1 2 3

y index

0 0 1 3 6
1 2 4 7 n.a.
2 5 8 n.a. n.a.
3 9 n.a. n.a. n.a.

Table 2: Reordered indices of the termSolution array that correspond to the x and y thread indices

In this arrangement termIndex increases sequentially along each successive diagonal, which corre-
sponds to successive orders, because x+ y remains constant along each diagonal. The Cantor tuple
function π(x, y) can be used to calculate termIndex in two dimensions and states [11]:

termIndex = π(x, y) =

⌊
(x+ y + 1)(x+ y)

2
+ y

⌋
. (3.3)

Where x and y are the indices. For three dimensions a similar function was devised:

termIndex =

⌊
(x+ y + z + 2)(x+ y + z + 1)(x+ y + z)

6
+

(y + z + 1)(y + z)

2
+ z

⌋
. (3.4)

With this equation termIndex increases sequentially along the diagonal plane, where x + y + z
is constant. For higher dimensions a general function was devised, which can be found in the
appendix. However, the three-dimensional function is significantly more complex than the two-
dimensional function. Using such an elaborate function in each thread will reduce performance.
Another solution to the indexing problem can be found using a different approach.

Instead of calculating termIndex using the x, y, z indices, one could try finding the indices x, y, z

15

from termIndex. In this approach the ordering of termIndex from table 2 is used, where each order
corresponds to a diagonal. Using a nested for-loop the indices can be determined from the value of
termIndex. For the three-dimensional series the code is as follows:

int termIndex = 0;

for (h = 0; h <= ORDER; n++)

{

for (m = 0; m <= n; m++)

{

for (l = 0; l <= h - m; l++)

{

factors[termIndex].k = h - l - m;

factors[termIndex].l = l;

factors[termIndex].m = m;

termIndex++;

}

}

}

The array ’factors’ is a struct (data structure) containing the indices k, l,m from equation 3.1 and
the coefficients aklm. The coefficients are loaded in seperately. When this loop completes the factors
array contains the correct indices and coefficients belonging to termIndex. Notice that the loops are
the same as in the sequential algorithm without its outer loop. The justification of this sequential
solution to the indexing problem is that the code needs to run only once. After the values have
been loaded in, the factors array can be used for the series evaluation of all sets of input variables
x, y, z. Therefore the factors array can be stored in constant device memory.

Constant device memory has the ability to broadcast a single memory call to multiple threads.
This decreases the memory latency. However, it has a limited capacity of 64kB [12, p. 250]. A
three-dimensional series can go up to the 22nd order. If a higher order is needed, the factors array
can also be stored in global device memory. Although global device memory is much larger than
constant memory, it has a performance cost.

The dimensional variables are also stored in a struct, since the initial values are dependent on each
other. In the LHCb experiment for example, a collision produces a set of initial conditions for each
trajectory. With this struct of the input variables only one parameter needs to be passed instead
of three.

The dimensional variables, coefficients and proper indices have been prepared and can be loaded into
the term evaluation function. The function is not started from the CPU, but dynamic parallelism
is used. The program should evaluate power series expansions with multiple sets of dimensional
variables. Therefore a parent device function is started first (see appendix). The number of threads
of the parent function depend on the number of series that need to be evaluated. From the parent
function the term evaluation function is called. Each parent thread passes its global thread ID to
the term evaluation function. This is used to index the correct dimensional variables. The term
evaluation function requires thread IDs in only one dimension and is given below.

16

int tid = threadIdx.x + blockDim.x * blockIdx.x;

terms[tid + gridDim.x * blockDim.x * ptid] = factors[tid].a *

pow(input[ptid].x, factors[tid].fac_x) *

pow(input[ptid].y, factors[tid].fac_y) *

pow(input[ptid].z, factors[tid].fac_z);

Where tid is the global thread ID and has replaced termIndex. Terms is the output array containing
every term. GridDim.x is the number of blocks called by the parent thread. And ptid is the global
thread ID of the parent function.

The index of the output array terms adds an offset to tid. This is the offset to the next series
evaluation using different dimensional variables. The number of terms in a single series evaluation
can be smaller than this offset. The output array will therefore have some unused padding elements.
It is not always possible to adjust the number of threads and blocks to exactly fit the number of
terms. Therefore the size of the output array is determined by the number of threads and blocks
per term evaluation function call, and the number of parent function calls. All elements are then
set to zero to ensure the term addition function of the next subsection produces correct solutions.

The sizes of the factors and input arrays is also determined by the number of threads and blocks of
the term evaluation call. Their padding elements are set to zero to make sure the padding elements
in the output array remain zero.

3.2.2 Term addition function

The parallel term addition algorithm has already been covered by others and is mentioned in GPU
Gems 3[13, ch. 39], where it is called a parallel prefix sum algorithm. This section will explain the
implementation in this research.

The function takes an array as input. Each thread stores an element in the shared memory of its
block. Remember that this memory is specific to each block and cannot be accessed outside of that
block. The number of elements added is equal to the number of threads. The correct elements are
obtained by giving each thread a global ID as explained at the start of section 3.2. Only thread
IDs in the x-dimension are needed since the function sums a one dimensional array. After this first
addition the threads within each block are synchronised to make sure all additions are complete
before moving on to the second addition. For this second addition, each thread adds two elements
from shared memory and stores the result by overwriting the shared memory element that has the
lowest index. After addition all threads are synchronised again. These synchronisations must be
done to avoid a thread being one addition ahead and an already added element is added twice.
The process continues until all elements in the shared memory are added. Each block now has one
output value which is stored in an output array. The index of the output array is determined by
the ID of the block. Figure 6 illustrates the process.

17

Figure 6: The process of adding elements in an array [14].

In the figure an even number of terms is added. In case the number of terms is uneven, one element
must be left untouched. Figure 6 shows that the memory elements on the left are updated. However,
the blank elements in the figure are not empty and contain terms that were added in a previous
iteration. If an uneven number of terms is treated as an even number of terms, then one element
would be added twice or one element would be left out of the addition. Therefore an if-statement
is used to check for an even or uneven number of terms per addition.

If-statements result in branching which cause a parallel program to perform each branch sequen-
tially. In case of an uneven number of terms in the addition, one thread will not pass the if-
statement. That thread will do nothing and the odd element remains in shared memory without
an addition being made to it. This branching should not be a performance issue since one of
the branches is to do nothing and will therefore not require additional operations when performed
sequentially.

As can be seen in the figure a lot of memory calls are being made. Shared memory is used because
it has a latency which is around 100 times lower than that of the global GPU memory [15]. The cost
in time from input/output operations is thus greatly reduced. The maximum shared memory size
is 48kB and higher depending on the GPU [12, p. 250]. The maximum array size loaded into shared
memory in the term addition function is the number of threads times the size of a double precision
variable or double. The maximum number of threads per block is 1024 and a double consist of 8
bytes. Thus the maximum shared memory space is 8kB. This is well within the acceptable size.

If the function call needs more than one block, the term addition function must be called again.
Now with the output array of the previous term addition function call as its input. The function
needs to be called repeatedly until the number of additions is equal or lower than the maximum
number of threads inside one block. This because each block only adds the terms in its own shared
memory.

18

To sum all terms of one series, the term addition function is called from the same parent thread
that called the term evaluation function. The same number of threads and blocks as in the term
evaluation function are called. Recall that the padding elements ensured that the number of threads
times the number of blocks from one function call will hold the terms from only one series. The
padding elements are zero and will not contribute in the term addition function.

The input array of the term addition function holds the terms of all series. The term addition
function distinguishes terms from different series evaluations by introducing an offset when loading
elements into shared memory. This offset is dependant on the thread ID of the parent function and
the number of threads and blocks with which the term evaluation function was called. Storing the
output in a unique location in the output array depends on an offset based on the parent thread
ID and the number of blocks.

The code of the term addition function can be found in the appendix.

3.3 Precautions

CUDA C/C++ was created by NVIDIA and is only supported by graphics cards from that company.
Their graphics cards have a specification called compute capability. As the name suggests, if
this specification has a higher number it supports more functions. Current graphics cards have a
compute capability high enough to support everything discussed above. However, one should be
aware of this specification on older hardware. For example dynamic parallelism requires compute
capability 3.5. This feature requires the highest compute capability used in this research.

Continuing with double precision variables, they can hold a value with a maximum of 15 deci-
mal places. Terms contributing to lower decimal places contribute nothing. In case that kind
of precision is not necessary one can adjust the program to perform its calculations with single
precision variables, or floats, which occupy 4 bytes, thus reducing the required memory by two.
Floats can hold values with up to 6 decimal places. The range of the exponent in a double is
[2.22507E − 308; 1.79769E + 308] and the range in a float is [1.17549E − 38; 3.40282E + 38], which
is the same for negative values. This can be simply checked by requesting the variable properties
from the compiler.

Besides these GPU and language precautions, NVIDIA is slowly removing support for 32-bit sys-
tems. If a 32-bit system is used, a compatible version of the CUDA software as well as a compatible
graphics card must be used.

19

4 Program results on series of different complexities

The previous chapter discussed a sequential and parallel approach to evaluate a power series numer-
ically on a CPU or GPU. To answer the research question, both algorithms are tested at varying
orders and dimensions and for a different number of evaluations. The results of the tests are then
given and discussed. The examples from chapter 2 resemble the test cases.

4.1 Test conditions

The performance of the algorithms can change with different hardware. The system specifications
used in this research are the following. The CPU is an Intel CORE i5-9600k with a clock-speed of
4.7 GHz. The GPU is an NVIDIA GeForce 970 with a clock-speed of 1.22 GHz. The total device
memory is 4GB and the total host memory is 16GB.

The algorithms are investigated using 50, 500, 5,000 and 10,000 evaluations per execution. The
set of input variables in each of those evaluations is arbitrary but unique. This means that every
evaluation requires a unique set of input variables to be placed in memory, instead of one set being
used multiple times. This will ensure the same memory latency, i.e. overhead, is generated as in a
normal experimental scenario.

The input variables and the coefficients are supplied to the algorithms in the same manner. There-
fore, the latency caused by initialising these variables is the same for both programs. Differences in
run-time are dependant on calculations and memory operations beside initialising input variables
and coefficients.

Every execution of the algorithms is performed multiple times. The average run-time is used as
a result and the largest deviation from the average is taken as the error. The error arises from
secondary computer activity. During execution all possible side processes running on the system
are closed. But the system must run the operating system and other necessary programs. These
essential processes have an influence in the run-time of the tests. The error is greater in the tests
of the parallel algorithm, as the GPU is processing display output whilst executing the parallel
program. The parallel algorithm run-time is influenced by display processes and essential system
processes.

The algorithms were tested for correctness by performing a low order evaluation and comparing the
output with the correct result. This was done at low order, since then it is possible to evaluate the
correct result manually.

20

4.2 Results

4.2.1 One-dimensional results

The example from chapter two requires solving equation 2.10, which contains a sine and a cosine.
For the one-dimensional test the sine series is evaluated. The coefficients for the sine function are
calculated beforehand and can be found in equation 2.11. Only 85 coefficients could be calculated
within the precision of a double. After 85 coefficients the values become too small to be contained
in a double and thus become zero. These terms will not contribute to the outcome of the evaluation,
but they will take part in the calculations. This way the performance at orders higher than 84 can
be measured. The 84th order includes the 0th order and thus contains 85 coefficients. The series is
evaluated at orders ranging between 10 and 1000.

The test of the one-dimensional sequential algorithm is shown in figure 7, which is a logarithmic
plot.

Figure 7: Run-time against evaluation order of the one-dimensional sequential algorithm at varying
numbers of evaluations

Figure 7 shows a shallow slope up to around the 50th order of the executions with 5,000 and 10,000
evaluations. This is caused by overhead. The time required to arrange and transfer the variables
is more significant than the time required to perform the calculations. After around the 50th order

21

the slopes start to increase. Around that point the time required for computations becomes more
significant compared to the overhead. The largest error in run-time due to secondary computer
processes is 3%.

The results of the one-dimensional parallel algorithm are shown in figure 8.

Figure 8: Run-time against evaluation order of the one-dimensional parallel algorithm at varying
numbers of evaluations

As can be seen in figure 8, the run-time remains almost constant as the order increases. At a
higher order, the number of computation is also higher. Performing computations is therefore not a
significant factor in the total run-time. However, the parallel program is slower than the sequential
algorithm. It appears the significant factor in the total run-time is overhead. Since the run-time
increases significantly at a higher number of evaluations and not at a higher order, a part of the
overhead comes from memory transfers of the input variables.

4.2.2 Two-dimensional results

For a two-dimensional series the case of chapter two was a particle in a square well. Two sines are
multiplied, which can be expanded by a single two-dimensional series. The series was evaluated up
to order 80 instead of 1000, which was the order in the one-dimensional test. The reason is the
limited size of constant device memory in which the coefficients and factors are stored.

22

Besides the limit of constant memory, a hardware limit was also reached. When increasing the
number of evaluations beyond what was used in the tests, a memory error occured and the display
would turn black for a short moment. At the 80th order, the limit in the number of blocks and
threads is still in the acceptable range. One evaluation at the 80th order contains 3,321 terms, which
is calculated using equation 3.2. This requires 7 blocks with 512 threads of the term addition and
summation functions. At 10,000 evaluations, 20 blocks of 512 threads are required for the parent
function.

The performance of both algorithms in the two-dimensional case is similar to the one-dimensional
case. The results of the two-dimensional test are shown in figures 9 and 10 in the appendix.

4.2.3 Three-dimensional results

The particle tracking method described in chapter two uses a three-dimensional series. The eval-
uations of this series were performed with an arbitrary set of coefficients. The orders up to which
the series were evaluated ranged from 5 to 20. The same arguments for the smaller order as in the
two-dimensional test apply.

The results are similar to the one and two-dimensional cases. Computations of increasing order are
not a significant cause in latency in the case of the parallel program, where overhead remains the
primary cause of latency. The results of the three-dimensional test are shown in figures 11 and 12,
which are found in the appendix.

4.3 Discussion

The tests in each dimension were performed up to the maximum order and maximum number of
evaluations possible. This limit caused the maximum number of terms in the tests of different
dimensionality to be approximately the same. Therefore, similarities are found in the result plots
of different dimensions.

The errors produced during the tests of the parallel program could be further reduced by using a
GPU which is specifically used for series evaluation and does not perform any secondary activity.
In this case the hardware limitation is reduced as more memory is available in testing the program.

Since the limitation in the number of calculated terms is probably limited by the hardware, a GPU
containing more memory could reduce this limitation. The run-time of the sequential algorithm
increased at an increasing order, whereas the parallel algorithm showed no significant differences
in run-time at an increasing order. If the aforementioned limitation is reduced a test could observe
the parallel algorithm being faster than the sequential algorithm.

The results showed that the most significant cause of latency was overhead. Further improvement
of the parallel program should therefore be focused on reducing this overhead. A solution could be
to use an integrated GPU. This means that the GPU and CPU share the same host memory.

23

5 Conclusion

Particle tracking at the LHCb experiment requires fast evaluation algorithms, since thousands of
trajectories need to be evaluated every second. A Taylor series method derived in a previous research
[4], provided the possibility for a parallel algorithm. To ensure a parallel approach in solving Taylor
series can be made efficiently, this research aimed at comparing the evaluation speed of a parallel
to a sequential algorithm.

To make a parallel evaluation program, an efficient indexing procedure was required. Several in-
dexing procedures were considered. First the indices were calculated during the parallel evaluation.
This was achieved using the Cantor tuple function. This function was then extended to enable
index calculations at dimensions higher than two. However, at these higher dimensions the index
computation significantly increased in complexity. A different approach was to calculate the indices
sequentially before the parallel evaluation and pass them as parameters. This was justified, because
the index determination needs to be performed once. It can then be used for a large number of
evaluations. The time required to evaluate the indices is equal to the time of the sequential series
evaluation program to evaluate one series.

To test the efficiency of the sequential and parallel algorithm tests were performed using one, two
and three dimensional series evaluations. The sequential program required more time to complete
the tests as the order and the number of evaluations increased. The significance of overhead on
latency decreased as the series were evaluated to a higher order.

The results of the parallel program showed that the program is efficient at performing a high
number of computations. The run-time was not significantly affected by the increased number of
computations arising from evaluations of increasing order. The significant factor in latency was
overhead. Since the run-time was not significantly affected by the order, the difference in run-time
between tests using a different number of computation is caused by overhead in input variables.
A higher number of evaluations requires a higher number of input variables which need to be
transferred through memory.

A limit in the total number of term evaluations that could be performed appeared to originate
from a hardware limitation. Therefore, the maximum order decreases with tests using increasing
dimensionality.

To conclude, the research question is answered based on the obtained results. The question was:
At what order and after how many evaluations of an n-dimensional Taylor series will a parallel
algorithm become more efficient than a sequential algorithm? The parallel program was not more
efficient than the sequential program within the limit in number of computations possible during
the tests. At the highest number of evaluations and at the highest order tested, both algorithms
performed similarly. The parallel algorithm could perform an increasing number of computations
without significantly increasing latency. The reason the parallel algorithm was less efficient was due
to overhead.

24

Appendix

Multi-dimensional Cantor tuple function

A recursive function can be devised, derived from the Cantor tuple function, to determine the
termIndex at dimensions higher than two.

f (n+1)(x0, ..., xn) =

⌊∏n
j=0[(

∑n
i=0 xi) + j]

(n+ 1)!
+ f (n)(x1, ..., xn)

⌋
, (5.1)

where f corresponds to termIndex and xi are the dimensional indices. Using starting value of
f (0) = 0 (termIndex for zero-dimensional case is 0), the one-dimensional case becomes f (1)(x) = x
(sequential termIndex) and the two-dimensional case f (2)(x, y) equals the Cantor tuple function
stated in equation 3.3:

termIndex = f (2)(x, y) =

⌊
(x+ y + 1)(x+ y)

2
+ y

⌋
. (5.2)

Code

Parent function

The parent function from which the term evaluation and term addition functions are called.

__global__ void parentEvaluation(DIM_VAR *input, double *terms, int *BlockCount, int

*ptid, double *sums, double *sumStore)

{

int tid = threadIdx.x + blockDim.x * blockIdx.x;

//call term evaluation function

termEvaluation << <BlockCount[0], TpB >> > (input, terms, ptid[tid]);

//call term addition function

sumTerms << <BlockCount[0], TpB >> > (terms, sumStore, ptid[tid]);

sumTerms << <1, d_BlockCount[0] >> > (sumStore, sums, ptid[tid]);

}

DIM VAR is the struct name of the input array containing the dimensional variables. Terms is the
output array. BlockCount determines how many blocks of the term evaluation and sum addition
functions need to be called. Ptid contains the thread ID of the parent function. SumStore contains
the temporary sum of the term addition function when multiple blocks are called. Sums is the

25

output array containing the final solution to the evaluated power series. Tid is the global thread
ID of the function. TpB stands for threads per block and is defined as a global constant.

Term addition function

__global__ void sumTerms(double* inf, double* outf, int ptid)

{

//shared memory allocation

__shared__ double temp_sum[TpB * sizeof(double)];

//perform first addition of elements and load the result into shared memory

int j = blockIdx.x * blockDim.x + threadIdx.x;

//load elements from input array into shared memory

temp_sum[threadIdx.x] = inf[j + (gridDim.x * blockDim.x * ptid)];

__syncthreads();

//add elements from shared memory

int n = blockDim.x;

int n2;

while (n > 1)

{

n2 = n;

n = (n + 1) >> 1;

if (threadIdx.x < (n2 >> 1))

{

temp_sum[threadIdx.x] += temp_sum[threadIdx.x + n];

}

__syncthreads();

}

//The sum of the elements per block is written to the output array by thread 0

if (threadIdx.x == 0)

{

outf[blockIdx.x + gridDim.x * ptid] = temp_sum[0];

}

}

Inf is the input array, outf is the output array and ptid is the thread ID of the parent function.

26

Results

Figure 9: Run-time against evaluation order of the two-dimensional sequential algorithm at varying
numbers of evaluations

Figure 10: Run-time against evaluation order of the two-dimensional parallel algorithm at varying
numbers of evaluations

27

Figure 11: Run-time against evaluation order of the three-dimensional sequential algorithm at
varying numbers of evaluations

Figure 12: Run-time against evaluation order of the three-dimensional parallel algorithm at varying
numbers of evaluations

28

References

[1] George B. Arfken Hans J. Weber. Mathematical Methods for Physicists. Elsevier Academic
Press, 2005. isbn: 0120885840.

[2] Y.B. Band Y. Avishai. Quantum Mechanics with Applications to Nanotechnology and Infor-
mation Science. Elsevier Academic Press, 2013. isbn: 9780444537867.

[3] LHCb. LHCb data collection. url: https://lhcb-public.web.cern.ch/lhcb-public/en/
Data%20Collection/Triggers-en.html. (accessed: 29.05.2019).

[4] Maurice Dekker. “Using Taylor series for fast and precise charged particle tracking in the
LHCb magnet”. In: (2018). Unpublished bachelor thesis, University of Groningen.

[5] Stefania Pandolfi. CUDA Programming: thread, block, grid. url: https://phys.org/news/
2017-03-lhcb-exceptionally-large-group-particles.html. (accessed: 02.07.19).

[6] Jason Sanders Edward Kandrot. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley, 2011. isbn: 978013138768.

[7] Pure and Applied Mathematics. Fibonacci and Lucas Numbers with Applications. Vol. 1. John
Wiley Sons, Inc, 2001. isbn: 047139969.

[8] CUDA Programming: thread, block, grid. url: https://www.researchgate.net/figure/
Dynamic-Parallelism-technology-22_fig3_315830821. (accessed: 30.06.19).

[9] Andy Adinets. CUDA Dynamic Parallelism API and Principles. url: https://devblogs.
nvidia.com/cuda-dynamic-parallelism-api-principles/. (accessed: 18.06.2019).

[10] Mohammed A. Shehab. A Hybrid CPU-GPU Implementation to Accelerate Multiple Pair-
wise Protein Sequence Alignment. 2017. url: https://www.researchgate.net/figure/
Dynamic-Parallelism-technology-22_fig3_315830821.

[11] John E. Hopcroft Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, 1979. isbn: 020102988.

[12] NVIDIA. “CUDA C Programming Guide”. In: (2019).

[13] Huber Nguyen. GPU Gems 3. Addison-Wesley, 2008. isbn: 9780321515261.

[14] Calculate the sum of values in an array using renderscript. url: https://www.researchgate.
net/figure/Dynamic-Parallelism-technology-22_fig3_315830821. (accessed: 30.06.19).

[15] Mark Harris. Using Shared Memory in CUDA C/C++. 2013. url: https://devblogs.

nvidia.com/using-shared-memory-cuda-cc/. (accessed: 17.06.2019).

29

