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Part I

Introduction

1 Introduction

1.1 Outline

Supersymmetry is an elegant principle which answers a lot of questions in
particle physics. Supersymmetry proposes a symmetry between the two
main classes of elementary particles, fermions and bosons. One of the main
reasons the Large Hadron Collider at CERN was built was to test the pre-
dictions of supersymmetry. In its 10 years of operation the the LHC has not
found any evidence for supersymmetry.

This paper is focused on supersymmetry in a very different context to the
area of high-energy particle physics where it was originally proposed. The
subject we are interested in is the non-relativistic case of supersymmetry.
The non-relativistic case is relevant in the context of condensed matter
physics, where supersymmetry has been observed as an emergent symmetry
in some settings. [4–7]

In the following section we will explain why relativistic supersymmetry has
become such a huge topic, and why we are specifically interested in non-
relativistic supersymmetry.

1.2 What is Symmetry?

Symmetry is a deceivingly difficult concept to describe. However Feynman
comes to our aide, defining symmetry as “something that you can do, so that
after you are finished doing it, [the system] looks the same as it did before”.
In our case, we are not interested in the symmetry of physical objects (such
as the rotational symmetry of a sphere), but of the symmetries of the physical
laws of our universe.
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1.2.1 Kinds of Symmetries

There are many different ways to categorise symmetries. For our purposes
the two most important distinctions are if the symmetry is continuous or
discrete, and if it is a spacetime or an internal symmetry. Continuous sym-
metries will be discussed in appendix A (we are not interested in discrete
symmetries). The other important distinction is explained below:

• Spacetime Symmetries
A spacetime symmetry is a symmetry which involves a transformation
on the spacetime coordinates. For example, a spacetime translation
on the coordinates is: x′µ = xµ + aµ.

Elements of the Lorentz group (rotations and boosts) are also space-
time symmetries. The group of the combination of translations and
Lorentz transformations is called the Poincare group.

• Internal Symmetries
Internal symmetries are not related to a change in the coordinates,
but by “an equivalence between different fields at the same spacetime
point.”[1] In general they are given by: Φa(~x, t)→Ma

b Φb(~x, t).

A specific example is the phase rotation of a field, φ → eiαφ. If the
transformation parameter (in this case it was α, and in general M b

a)
is a constant, then it is a global transformation, if it is a function of
spacetime (α(~x, t)or M b

a(~x, t)), then it is a local transformation. We
will be dealing with global transformations in this paper.

1.3 What is Quantum Field Theory and the Standard Model?

Quantum field theory is, according to David Tong, “the language in which
the laws of Nature are written”[14]. More precisely, it is the quantisation of
the classical field. It treats the fields themselves as fundamental, and not
the particles. Most importantly, it is the product of the merging of quantum
mechanics with special relativity.

The Standard Model is an example of a particular QFT, and (according
to Lambert) it is also “one of the most successful and accurate scientific
theories” [11]. The Standard Model unifies three of the four fundamental
forces (not gravity) with an internal symmetry.
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1.3.1 Effective Field Theories

Despite the Standard Model being a hugely successful theory, it is also an
effective field theory, and so it does not give us the full picture. An effective
field theory is an approximation to a more fundamental theory, valid only at
certain energy ranges. Analogous to how a finite Taylor expansion is only a
good approximation under certain magnitudes around the centre point, i.e.
sinx ≈ x− x3

3! for |x| < 1. If we wander too far from this range we will start
to get nonsensical answers. This does not mean that the approximation is
useless, but that it is only valid within a certain range.

For the Standard Model, the valid range are the energies lower than the
Planck energy (∼ 1019GeV ). So somewhere around this energy range the
effects of the “new physics” become difficult to ignore.

1.4 Problems with the Standard Model

Apart from only being valid at certain energy ranges, the Standard Model
also has other deep problems:

• Quantum Gravity
The most glaring problem of the theory is that gravity at quantum
scales is excluded. This means that as we approach smaller length
scales and quantum effects start to become unignorable, our theory of
gravity starts to break down and give predictions which are no longer
physically meaningful.

• Hierarchy Problem
The hierarchy problem is a technical problem related to the relative
strengths of the fundamental forces. The hierarchy problem is closely
related to finetuning and naturalness. See [12] for a more detailed
explanation.

1.5 Beyond the Standard Model

There are a few options to generalise the Standard Model and find a more
fundamental theory:

• Experimental evidence
The LHC has confirmed the predictions of the Standard Model (the
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most notable of which was the existence of the Higgs Boson) to high
precision, but has not necessarily given the field much of a hint as to
which direction to investigate further.

• More general symmetries
Now that we are beginning to get an idea of how central the study of
symmetry is to physics, it is unsurprising that physicists rely upon it
as a guide to help us move towards a more fundamental theory. By
generalising the symmetries of the Standard Model it is hoped that we
can uncover a more fundamental theory. Supersymmetry is a result of
this way of thinking.

• Something completely different
Even if the Standard Model is extended, it is unknown how this will
solve the main problem, which is describing quantum gravity. It may
be that the only way to unify the four forces is by, at least largely,
abandoning the Standard Model and forging a new path. Due to the
wide ranging successes of the Standard Model, most physicists are
understandably hesitant to follow this path.

1.6 Supersymmetry Emerges Unexpectedly

In more recent years, it has been shown that supersymmetry is not only
relevant in high-energy particle physics. There are several settings in con-
densed matter physics where supersymmetry appears, not as a fundamental
symmetry, but as an emergent one [4–7]. This has led some to argue that
“even though the corresponding microscopic models do not exhibit it, SUSY
emerges macroscopically.” [4]

Condensed matter physics is inherently non-relativistic, and so there is now
a growing interest in non-relativistic supersymmetry.

To reach non-relativistic supersymmetry, we will first start with the rela-
tivistic theory, and then take the limit as c → ∞. So in the next part we
begin the investigation into relativistic supersymmetry, and then we will be
in a position to take the limit into the non-relativistic world.
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Part II

Relativistic Supersymmetry

2 Evading the Coleman-Mandula Theorem

The Poincare group describes the symmetries of special relativity. It is built
of two important subgroups, the Lorentz group, and the translation group.
The Standard Model contains other symmetries as well, all of which are
internal symmetries. The algebra of the Poincare group and the algebra of
the internal symmetries are split “trivially”, which means that they form a
direct product i.e. the generators of these two algebras commute,

[Pµ, Tα] = 0 = [Mµν , Tα]

Where Pµ is the generator of the translation group, Mµν is the generator
of the of Lorentz transformations, and Tα are the generators of any internal
symmetry.

This tells us that the internal symmetries’ generators do not interact or
communicate with the Poincare generators.

Since the Poincare algebra is so central to our understanding of spacetime,
it is natural to ask if our universe contains a fundamental symmetry that
pairs with the Poincare symmetries non-trivially, i.e. a symmetry which has
generators which do not all commute with the Poincare generators. This
question was answered by Coleman and Mandula in their 1967 theorem,
which states1 that, under a few reasonable conditions:

the only interacting quantum field theories have a Lie algebra which is a
direct product of the Poincare algebra with that of an internal symmetry
(meaning the two classes of generators must commute).[11]

This theorem seems to suggest that the Poincare group is the most funda-
mental symmetry of the standard model, and that there is no other symme-
try which can interact with it.

As is often the case with no-go theorems, by examining the assumptions
that it makes, we can find ways to get around it. The key assumption
of the Coleman-Mandula theorem is that the new symmetry obeys a Lie

1paraphrased
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algebra. However, there are other kinds of algebras, and so it is possible
that a symmetry that obeys a different kind of algebra might still be able
to “mix” with the Poincare algebra.

The Standard Model includes two kinds of fields, fermionic and bosonic
fields. The fermionic field obeys anticommutation relations, while the bosonic
field obeys commutation relations. Because of this difference, if there would
exist a symmetry between fermions and bosons, then the set of generators
of the resulting algebra would not be closed under the normal bracket of a
Lie algebra, but under a different bracket. This bracket does not necessarily
have to satisfy anticomutivity, i.e. [A,B] 6= −[B,A]. The resulting algebra
is called a Z2 graded algebra. The Z2 part of the name refers to the cyclic
group of order 2, and its elements are the two classes of the generators,
even and odd. The operation of this group is the new “graded” bracket.
The even generators are the generators of the Poincare algebra, and the odd
generators are those of the new symmetry which relates fermions to bosons;
supersymmtery. The even generators act as the identity of the Z2 group,
and so by simply knowing how the cyclic group of order two behaves, we
can determine how the two classes of generators mix:

[Even,Even] = Even

[Even,Odd] = Odd

{Odd,Odd} = Even

This tells us that

• two Poincare (even) generators will produce another (linear combina-
tion of) Poincare generator.

• a Poincare generator and a supersymmetric (odd) generator will give
a supersymmetric generator.

• two supersymmetric generators will form a Poincare generator.

There is an indepth look at this last (and very remarkable) fact later in
section 6.
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3 A Supersymmetric Transformation

Let us now see what supersymmetry does at the level of the fields. As we
have just learnt, supersymmetry is a relation between fermions and bosons.
This means that a supersymmetric transformation will “mirror” bosons to
fermions, and fermions to bosons. Different kinds of particles have different
kinds of fields. These fields are described by different mathematical objects.
A spin 0 particle (a boson since 0 is an integer), will be described by a
complex scalar field (as both scalars and spin 0 particles are not affected by
spin). Spin 1

2 particles (fermions) are described by a spinor field, as both spin
1
2 particles and spinors need to be rotated through 720◦to reach their initial
state, not 360◦as is the case for vectors. A spinor is a Grassmann quantity.
The most relevant fact about Grassmann quatities for our purposes is that
they anticommute.

If we have a complex scalar field φ (describing a spin 0 boson), and a spinor
field χ (describing a spin 1

2 fermion), their infinitesimal suppersymmetric
transformation rules must be vaguely of the form:

δφ ∝ εχ δχ ∝ εφ

where ε is the infintesimal parameter of the supersymmetry. By examining
the variation of φ, we see that a scalar field is proportional to a spinor field.
The only way for a spinor to be made equal to a scalar is by multiplying
the spinor by a conjugate spinor. This means that, in this case, the in-
finitesimal parameter of supersymmetry must be a spinor2. For
fields describing other kinds of fermions, the infinitesimal parameter may
not neccessarily be a spinor, but will always be a Grassmann quantity. It
is the fact that the infinitesimal parameter of supersymmetry must always
be Grassmann that leads to the Z2 graded algebra, and why the fermionic
part has anticummutation relations.

4 Noether’s Theorem

Emmy Noether was considered one of the greatest mathematicians of the
time by her peers, and her most famous theorem is essential to the theory

2In this very specific case, it must actually be a conjugate spinor, which is denoted by
a bar above the spinor, and so δφ ∝ ε̄χ

9



of supersymmetry, and QFT in general. The theorem links two of the most
fundamental parts of physics, symmetries and conservation laws.

Noether’s theorem states that for every continuous symmetry there is a cor-
responding conserved current. By integrating this current over space (and
not time), we can find the conserved charge. Not only does Noether’s theo-
rem tell us that the charges exist, but it gives us a systematic way to start
from a symmetry and calculate the currents, and thus the charges.

Before we find the conserved currents we first vary the Lagrangian to see if
the Lagrangian really is invariant under this symmetry. If the Lagrangian
is invariant, the only terms left over will be a total derivative of the fields3,
i.e. δL = ∂µF

µ.

To find the conserved currents we use the symmetries of each of the fields,
and the Fµ which we found by varying the Lagragian. The form of Noether’s
theorem for field theory is given in 1

jµ =
∂L

∂(∂µΦα)
δ(Φα)− Fµ (1)

Where we are summing over all of the fields (index α), and δ(Φα) is the
transformation of the field by the symmetry. The current jµ can shown to
be conserved (∂µj

µ = 0) by imposing the equations of motion. The equations
of motion are found using the Euler-Lagrange equation. Once this has been
shown we can find the charge:

Q =

∫
d~x3j0

Examples of corresponding symmetries and conserved quantities include:

• spatial translation ⇔ conservation of linear momentum

• time translation ⇔ conservation of energy.

• phase invariance of the field (e.g. δψ = eiθψ) ⇔ total particle number
(particles− antiparticles = 0)

Although at first glance supersymmetry might appear to be a discrete sym-
metry, it is characterised by an infinitesimal parameter, which can be con-
tinuously adjusted, and so it is a continuous symmetry. This concept is

3See appendix B for an explanation of this
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made more clear by studying supersymmetry in a certain phase space such
that a supersymmetric transformation acts as a rotation in this space. Due
to the limited scope of this paper, we will not be considering this superspace
formalism.

And so the obvious question to ask is what kind of conservation corresponds
to a supersymmetry?

5 Supersymmetry in Action: The Wess Zumino
Model

5.1 Massless Wess Zumino Model

We start with the Lagrangian density of the massless, non-interacting Wess-
Zumino model, and then integrate this over spacetime to give the action.

SWZ =

∫
d4x
(
− ∂µφ∗∂µφ− χ̄Rγµ∂µχL − χ̄Lγµ∂µχR

)
Where φ is a complex scalar field, and χ is a Marjorana spinor field split into
its two irreducible components, χL and χR. The complex field φ describes a
spin 0 particle, while χl and χR describes the two chirality states of a spin
1
2 particle.

To show that this Lagrangian is invariant under a supersymmetric transfor-
mation, we will vary the Lagrangian, and see if there any terms leftover. As
with all Lagrangian variations, we assume that the terms that are a total
derivative of the fields will go to zero as explained in the appendix.

The precise variations for the Wess-Zumino model are given as,

δφ = ε̄LχL and δχL =
1

2
γµεR∂µφ

When this supersymmetric transformation is applied to the Wess-Zumino
Lagrangian, all but four of the terms cancel out with each other. These four
leftover terms are all given as total derivatives of the fields as shown.

δL = ∂µF
µ = ∂µ

(
ε̄R

(1

2
γνγµχR∂νφ−χR∂µφ

)
+ε̄L

(1

2
γνγµχL∂νφ

∗−χL∂µφ∗
))
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Since we ignore the total derivative terms, we have shown that the system is
supersymmetric, since the Lagrangian is invariant under a supersymmetry
transformation (up to a to a total derivative).

To calculate the Noether current we follow the method given in the previous
section, and we find:

jµ = −ε̄LγνγµχL∂νφ∗ − ε̄RγνγµχR∂νφ

By integrating the Noether current4 we obtain the Noether charges resulting
from supersymmetry, i.e. the supercharge

QL =

∫
d~x3(−γνγ0χL∂νφ

∗)

QR =

∫
d~x3(−γνγ0χR∂νφ)

For a given mass, the supercharge preserves the difference between the num-
ber of bosons and fermions with that mass.

5.2 Klein, Gordon, and Dirac

The Klein-Gordon Lagrangian is a relativistic description of a (complex)
scalar field. Thus, it can describe the field of a spin 0 particle.

LKG = −∂µφ∗∂µφ− c2m2
φφ
∗φ

The Dirac Lagrangian is a relativistic description of a spinor field. Thus,
describing the field of a spin 1

2 particle

LD = −χ̄γµ∂µχ+mχc
χ̄χ

4In fact, we do not integrate the entire current, but everything except the infinitesimal
parameter ε
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5.3 The Massive Wess-Zumino Model

We will now take the massless Wess-Zumino Lagrangian from equation 5.1
and include the mass terms to make it more interesting:

LWZ = −∂µφ∗∂µφ−m2
φc

2φ∗φ− 2χ̄γµ∂µχ+ 2mχcχ̄χ

With the mass terms included it is now more obvious that the Wess-Zumino
Lagrangian is simply the addition of the Klein-Gordon and Dirac Lagrangians.

LWZ =LKG + LD

Part of the reason that it is so simple is because of the fact that there are
no interactions between the two fields, which means that there are no terms
which mix the fields together. This means that we can work on the Klein-
Gordon and Dirac Lagrangian individually for simplicity, and then add the
results back together at the end.

An important point to note is that to make this system supersymmetric
the two masses must be equal, mφ = mχ. In more sophisticated variants
of supersymmetry, this symmetry is spontaneously broken, meaning that
the masses could be different. This is considered much more useful, since if
there really were spin 0 particles with the mass of the electron, we would
have discovered it by now.

Unsurprisingly, when we use the transformation rules of the massless Wess
Zumino model on the massive model, the theory is no longer invariant. This
is because we need to change the transformation rules to accommodate the
new mass terms.

After we vary the massive Lagrangian with the suspersymmetric transfor-
mation rules for the massless theory (ignoring the total derivatives as usual)
we are left with:

δL = −mcε̄γµχ∂µφ∗ +mcχ̄γµε∂µφ−m2c2φχ̄ε−m2c2φ∗ε̄χ

We can fix this by adding extra mass terms to the massless transformation
terms. In the leftover terms of the variation of the Lagrangian we see that
the highest power of m is 2. This means that the new massive terms of the
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transformation rules should contribute, at most, a term with a factor of m2.
As the mass term of the Klein-Gordon equation (m2

φc
2φ∗φ) already has a

factor of m2, we know that the transformation rule of φ cannot have a mass
term, as this would bring us over our limit of m2.

Therefore, the additional mass term must be added to the variation of χ.
Since 2mχcχ̄χ already contains a power of m, the additional mass term must
have exactly one factor of m.

δχ =
1

2
γµε∂µφ + ?

By using dimensional analysis of the fields we can drastically reduce the
number of potential terms to add to the transformation rules. We know the
action must have a mass dimension of 0, and so the Lagrangian (density)
must have a mass dimension of +3 (do not forget that we are working in 3
dimensions, not 4).

S =

∫
dx3L

By knowing that the Lagrangian must have a mass dimension of +3, and
examining individual terms of the Lagrangian, we can ascertain the mass
dimension of the fields and infinitesimal parameter. We find the mass di-
mensions to be:

[φ] =
1

2
[χ] = 1 [ε] = −1

2

And so to add an additional term to the transformation of χ, our options
are actually very limited. We know that the total mass dimension must be
1 ([δχ] = [χ] = 1), that it must include φ (it’s a supersymmetric transfor-
mation after all), ε (the infinitesimal parameter of the variation) and m (to
cancel out the terms which have factors of m in the Lagrangian variation).
Since the dimensions of m, φ and ε add up to 1, we know that we do not
need any other dimensionful factors (e.g. derivatives). Thus, the additional
transformation rule term for χ is proportional to mφε.

δχ =
1

2
γµε∂µφ+ V φεm (2)

Where V is a constant which we can tune to make the Lagrangian invari-
ant. Obviously, the variation of χ̄ has the Dirac conjugate of ther term,
V †φ∗ε̄m.
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When we vary the Lagrangian using (2) and its conjugate for the trans-
formation rules for χ and χ̄, we find that the Lagrangian is invariant for
V = V † = 1

2c. Thus, the new transformation rules for χ and χ̄ are given
below, while the transformation rules for φ and φ∗ remain unchanged.

δχ =
1

2
γµε∂µφ+

1

2
mcφε

δχ̄ = −1

2
ε̄γµ∂µφ

∗ +
1

2
mcφ∗ε̄

6 What happens after two supersymmetric trans-
formations?

More precisely, what is the commutator of two supersymmetric transforma-
tions? Since it is only under commutation that the generators of an algebra
are closed, not composition.

On first thought, it might seem that two consecutive supersymmetric trans-
formations would leave the system invariant, as the fermions would be “mir-
rored” to bosons, before being mirrored back to fermions (and vice versa for
the bosons). It is true that the two transformations leave the fermions as
fermions and the bosons as bosons, but there is also a different change to
the system.

To show this, we will use this equality between the transformation of a field,
and a Poisson bracket with the Noether charge5:

δΦ = {Q̄ε,Φ}PB

To calculate the supersymmetric transformation of another supersymmetric
transformation, we can embed one of these Poisson brackets within another
one:

δε(δβΦ) = δε
(
{Q̄β,Φ}PB

)
=
{
Q̄ε, {Q̄β,Φ}PB

}
PB

(In this case I have given the first supersymmetric transformation the in-
finitesimal parameter β, and the second ε). Since we are interested in the
commutator of two supersymmetric transformations:

⇒ [δε, δβ]Φ =
{
Q̄ε, {Q̄β,Φ}PB

}
PB
−
{
Q̄β, {Q̄ε,Φ}PB

}
PB

5This is kind of the reverse of Noether’s theorem, since it gives the symmetry rules for
a given conserved charge.
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And we can use the Jacobi identity as a shortcut:{
Q̄ε, {Q̄β,Φ}PB

}
PB

+
{
Q̄β, {Φ, Q̄ε}PB

}
PB

+
{

Φ, {Q̄ε, Q̄β}PB
}
PB

= 0

To finally give us this equation:

[δε, δβ]Φ = −
{

Φ, {Q̄ε, Q̄β}PB
}
PB

Explicitly for the case of the Wess-Zumino model in the previous section,
the commutator of two supersymmetric transformations on a complex scalar
field6 we find:

[δε, δβ]φ =
1

2

(
β̄Lγ

µεR + β̄Rγ
µεL
)
∂µφ (3)

And as this is of the form τµ∂µφ, where τ is a Lorentz vector, the commutator
of two supersymmetric transformations is a spacetime translation. This
is an extremely important fact for supersymmetry, and so we shall put it in
a box:

The commutator of two supersymmetric transformations gives a
spacetime translation

We saw a hint of this remarkable fact in the earlier discussion of Lie groups,
when we saw that the anti-commutator of two odd (supersymmetric) gen-
erators produce a Poincare generator (spacetime translations are elements
of the Poincare group). This result gives us more intuition of the fact that
supersymmetry is a spacetime symmetry, not an internal symmetry, since
by doing two supersymmetric transformations we get a movement through
spacetime. This has led some people to say (in the loosest sense) that a
supersymmetric transformation is the “square-root of a translation”.

7 Summary of the Procedure

1. Starting with the Lagrangian and the supersymmetry transformation
rules of its fields, I varied the Lagrangian and showed that it is invari-
ant up to a total derivative of the fields.

2. Using this total derivative of the fields, I calculated the Noether current
using Noether’s theorem.

6To show the same fact for the spinor field requires the use of Fierz identities, which
is beyond the scope of this thesis.
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3. By using the equations of motion of the Lagrangian (calculated using
the Euler-Lagrange equation), I checked that the Noether current is
conserved.

4. By integrating the current over space I found the Noether charge.

5. To check that the charge is correct and everything is consistent, I used
this calculation for each of the fields: δΦ = {Q̄ε,Φ}PB

6. I then find the commutation relations between the members of the
super-Poincare algebra.

8 Super-Poincare

As discussed in the 2 section, the group that describes special relativity is
the Poincare group (consisting of Lorentz transformations and spacetime
translations).

These are the non-vanishing parts of the Poincare algebra are given below:
[10]

[
Jij , Jkr

]
= 4δ[i[kJr]j]

[
Jij , Pk

]
= −2δk[jPi][

Jij ,Kk

]
= 4δk[jKi]

[
Ki,Kj

]
= 4Jij[

Ki, Pj
]

= −2δijP0 [Ki, P0] = −2Pi

(4)

Where Jab is the generator of spatial rotations in the a-b plane, Pµ is the
generator of translations in the µ direction, and Ka is the generator of boosts
in the a direction. The subscript brackets signify commutators of the indices,
for example, δk[jKi] = 1

2(δkjKi − δkiKj)

Boosts and rotations are both Lorentz transformations, and so are usually
classified into the more general generator of Lorentz transformations, Mµν .
However, the distinction will be important for the non-relativistic limit and
so we have separated them.

As discussed earlier, supersymmetry provides a non-trivial spacetime ex-
tension to the Poincare group by having a graded Lie algebra. The super-
symmetric extension of the Poincare algebra is called the super-Poincare
algebra.
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The additional commutation and anti-commutation relations that come from
the supersymmetric generator are given below7:[

Jij , Q
]

= −1

2
γijQ

[
Pµ, Q

]
= 0[

Ki, Q
]

= −1

2
γiγ0Q

{
Qα, Q̄

β
}

= −1

2

(
γµ
)β
α
Pµ

(5)

Together, relations 4 to 5 form the super-Poincare algebra.

9 Extended Supersymmetry

It is possible to add a second supersymmetry generator to the super-Poincare
algebra, to obtain an algebra where there are two separate supersymmetry
generators. The resulting theory is called N = 2 supersymmetry. In general,
we could add any number of supersymmetry generators, Q1, Q2, ..., QN . To
obtain a non-relativistic supersymmetric theory that is still a spacetime
symmetry8, we need at least two supersymmetry generators9.[8] We shall
study the simplest case, N = 2 extended supersymmetry.

The simplest way to have an extended supersymmetry is by mixing the
supercharges trivially, i.e.

{Qi, Qj} ∝ δijPµ

where i, j = {1, 2}. This is equivalent to having multiple copies of super-
symmetry, and the different supercharges not interacting.

To make our system more interesting, we can allow the different supercharges
to interact non-trivially, by introducing a new generator:

{Qαi , Q
β
j } ∝ εijZ

αβ

It is called the central10 extension, and it commutes with all of the other
generators,

[P,Z] = [J,Z] = [K,Z] = [Q,Z] = 0

7Note how the only anticommutator of the whole algebra is from Q with itself, since it
is the only fermionic (odd) member of the algebra

8i.e. a theory which maintains the property, {Q,Q} ∝ Pµ
9We shall explain why this is so in section 11.2.1

10central in terms of group theory, i.e. it commutes with everything in the algebra
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Z must be antisymmetric to preserve the symmetry of the anticommutator,
i.e. when we exchange i with j and α with β, nothing changes.

The nonzero parts of the N = 2 SuperPoincare Algebra[
Jij , Jkr

]
= 4δ[i[kJr]j]

[
Jij , Pk

]
= −2δk[jPi][

Jij ,Kk

]
= 4δk[jKi]

[
Ki,Kj

]
= 4Jij[

Ki, Pj
]

= −2δijP0

[
Ki, P0

]
= −2Pi[

Jij , Q
k
]

= −1

2
γijQ

k
[
Ki, Q

k
]

= −1

2
γiγ0Q

k{
Qiα, Q

j
β

}
= −δij

[
γµγ0

]
αβ
Pµ − εijεαβZ
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Part III

Non-Relativistic
Supersymmetry

10 Introduction

The term non-relativistic is a very poor one, since the principle of relativity
does not refer to the finite speed of light, but states that: the laws of physics
are the same in all admissible11 reference frames.

Will we show that when we take the “non-relativistic limit” of the theory
of special relativity, we obtain Galilean mechanics. However, Galilean me-
chanics is just as relativistic a theory as special relativity, and so the term
“non-relativistic limit” is a confusing misnomer. However, as is often the
case with physics, this term is continued to be used for the sake of consis-
tency, and we shall continue to use it to mean taking c→∞.

11 From Poincare to Galileo, and Dirac to Schrödinger

There are (at least) three different approaches to the non-relativistic limit
of a field theory. These are done by manipulating:

• The co-ordinate system

• The algebra

• The fields

11.1 Manipulating the Coordinates

The starting point of making the coordinates compatible with a non-relativistic
limit is to separate time and space. Until now we have been treating them
equally, as different parts of the four vector, with time corresponding to x0,

11The kinds of reference frames which the principle of relativity refers to depends on the
theory. For special relativity and Galilean relativity, the reference frames must be inertial,
and for general relativity this condition is relaxed to include non-inertial reference frames.
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and the spatial coordinates being xi. The factor of c is usually ignored in
relativistic field theory, but now we will have to show it explicitly. To make
the dimensions of the four vector equivalent (all of dimension of length), we
use x0 ≡ ct.

Let’s see what a Lorentz transformation of the spatial coordinates looks
like,

δxi = Λiµx
µ = Λi0x

0 + Λijx
j = Λi0(ct) + Λijx

j

As we are keeping in mind the fact that soon we’ll be taking the limit as
c → ∞, we are alarmed by the positive power of c in the Lorentz boost
term. We want to make sure to get rid of the factor of c without losing
the term as a whole, since we want to have a non-relativistic sytem which
still has boost. We define Λa0 ≡ 1

cλ
a. This gives us a non-relativistic spatial

transformation which has both boosts and rotations:

δxi =
1

c
λi(ct) + Λijx

j = λit+ Λijx
j

A transformation on the time coordinate gives us:

δx0 = δ(ct) = Λ0
µx

µ = Λ0
0︸︷︷︸

=0

x0 + Λ0
i︸︷︷︸

≡ 1
c
λi

xi =
1

c
λix

i

⇒ δt =
1

c2
λix

i ⇒ δt = 0︸ ︷︷ ︸
c→∞

This shows us that in a non-relativistic theory, time is absolute, and not
relative.

11.2 Manipulating the Algebra

Working with the algebra is the most fundamental way to get to non-
relativistic supersymmetry

This is the roadmap that we will use to navigate to our final goal; the N = 2
super-Bargmann algebra.

Poincare Extended Poincare N = 2 Super-Poincare

Galilean Bargmann N = 2 SuperBargmann

Z

c→∞

2 Supercharges

c→∞ c→∞
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In the relativistic part of this paper we have found the entire top line of
this chart, the Poincare, extended Poincare, and N = 2 super-Poincare
algebra.

It is well known that by taking the non-relativistic limit of special relativity
(which obeys the Poincare algebra), we obtain classical mechanics (corre-
sponding to the Galilean algebra).

To show that the Galilean algebra is the non-relativistic limit of the Poincare
algebra is very simple. It just involves explicitly including the factors of c
in the Poincare algebra, and then taking the limit c → ∞. To make sure
we differentiate between the members of the algebra before and after the
factors of c have been included, we will redefine them as [10]:

Ki → cGi P0 →
1

2c
H

And once we take the limit we do indeed obtain the Galilean algebra:

[Jij , Jkr] = 4δ[i[kJr]j] [Jij , Pk] = −2δk[jPi]

[Jij , Gk] = 4δk[jGi] [Gi, H] = −4Pi

Note that two Lorentz boosts do not commute, while two Galilean boosts
do.

The Bargmann algebra is the Galilean algebra with an additional generator
added to it. This generator corresponds to an internal symmetry. In fact,
this new generator is the generator we introduced in section 9.

It is called the central12 extension, and it commutes with all of the other gen-
erators. Thus, if the central extension is ignored in the Bargmann algebra,
we obtain the Galilean algebra.

However, instead of extending the Galilean algebra with the central exten-
sion to obtain the Bargmann algebra, we shall extend the Poincare, and
then take the limit again.

These are the redefinitions we make to the Poincare generators to extend
the Poincare algebra with Z, [10]

Ki → cGi P0 → cZ +
1

2c
H

12central in terms of group theory, i.e. it commutes with everything in the group
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to obtain the Bargmann algebra:

[Jij , Jkr] = 4δ[i[kJr]j] [Gi, H] = −Pi

[Jij , Pk] = −2δk[iPj] [Jij , Gk] = 2δk[jGi]

[Gi, Pj ] = −2δijZ

11.2.1 The N = 2 SuperBargmann Algebra

To get to the destination on our algebra map, we will do as we have just done
with the Extended-Poincare→Bargmann procedure; redefine the generators,
and then take the limit. This time however, we will be starting from the
N = 2 Super-Poincare Algebra.

We will be using the same redefinitions as before, added to the new redefi-
nitions of the supercharges. However, before we can do that, we must make
linear combinations of the supercharges instead13. These linear combina-
tions are given as:

Q±α ≡ Q1
α ± εαβQ2

β

So now we redefine Q+ and Q− instead of Q1 and Q2. These redefinitions,
along with those of the other generators are given below:

Q− →
√
cQ− Q+ → 1√

c
Q+

Ki → cGi P0 → cZ +
1

2c
H

Z → −cZ +
1

c
H

After substituting these redefinitions into the Super-Poincare we take the
limit and are left with the Super-Bargmann.

13due to the Inonu-Wigner contraction
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The purely fermionic anti-commutation relations are the most challenging
ones. However, all three of the relations are very similar, and so I shall show
how to calculate {Q+, Q−} as an example.

{Q̂+
α , Q

−
σ } = {Q1

α + εαβ, Q
1
σ − εσρQ2

ρ}
= {Q1

α, Q
1
σ}+ εαβ{Q2

β, Q
1
σ} − εσρ{Q1

α, Q
2
ρ} − εαβεσρ{Q2

β, Q
2
ρ}

= −(γµγ0)ασPµ + εαβ(εβσε
21)Z − εσρ(εαρε12)Z − (γµγ0)ββδασPµ − (γµγ0)σαPµ

= −2(γµγ0)ασPµ − 2δασ = −2(−(γ0γ0)ασ︸ ︷︷ ︸
−δασ

P0 + (γiγ0)ασPi + δασP0)

= −2(γiγ0)ασPi

Where we have used the following identities:

εαβεσρ = δαβδβρ − δαρδβσ
(γµγ0)ββ = tr(γµγ0) = 2ηµ0

εβαεβσ = δασ

In this case, the redefinitions of the generators do not actually alter the
equation, and so we are left with this as our final answer:

{
Q+
α , Q

−
σ

}
= −2(γiγ0)ασPi

Once the other commutatation and anti-commutation rules have been found,
we are left with the N = 2 SuperBargmann Algebra:

[
Jij , Pk

]
= −2δk[iPj]

[
Jij , Gk

]
= 2δk[jGi][

Gi, Pj
]

= −δijZ
[
Gi, Q

+
]

= −1

2
(γiγ0)Q−

[
Jij , Q

±] = −1

2
γijQ

± [
Gi, H

]
= −Pi{

Q+
α , Q

+
σ

}
= 2δασH

{
Q−α , Q

−
σ

}
= 4δασZ{

Q+
α , Q

−
σ

}
= −2(γaγ0)ασPi
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Since {Q+
α , Q

+
σ

}
gives a spacetime translation (H is a time translation), it

seems as though Q− is uneccessary, and we can reduce our system to a con-
sistent N = 1 supersymmetric theory without it. This is incorrect. The
algebra has a curious asymmetry for the Galilean boosts (Gi), and the su-
percharges,

[
Gi, Q

+
]
∝ Q−, while

[
Gi, Q

−] = 0. This means that we cannot
remove Q−, since it is required by the existence of Q+. We can remove Q+

and keep Q−, but then our supersymmetry ceases to be a spacetime symme-
try, and is only an internal symmetry, since

{
Q−, Q−

}
∝ Z. Thus, an N = 2

theory of supersymmetry is required to ensure that supersymmetry remains
a spacetime symmetry14 after taking the non-relativistic limit.

The fact that we need two supercharges to obtain a non-relativistic theory
of supersymmetry is not actually that surprising. In the relativistic theory,
space and time are both considered to be on equal footing and that they
are both just components of spacetime. However in a non-relativistic the-
ory space and time are considered fundamentally different things, and are
treated as such. So it is clear that one supercharge in a non-relativistic the-
ory could not give a full spacetime translation, so we need two as they will be
spilt into the time translation, {Q+, Q+} ∝ P0, and the spatial translation,
{Q+, Q−} ∝ Pi.

11.3 Manipulating the Fields

11.3.1 Klein-Gordon to Schrödinger

Starting with the Klein-Gordon Lagragian

L =∂µφ
∗∂µφ+m2c2φ∗φ

=− 1

c2
∂tφ
∗∂tφ+ ∂iφ

∗∂iφ+m2c2φ∗φ

A mode with energy E oscillates in time proportionally to e−iEt [12]. Since
we are interested in the non-relativistic limit we ignore the kinetic energy
and approximate E ≈ mc2. Thus, we redefine φ → e−imc

2tφ. Due to
the complex conjugation φ∗ will have the opposite sign in the exponential,

14although we are requiring that supersymmetry is a spacetime symmetry, there are
other papers which don’t require this property (for an example, see [9]), and they would
be fine with N = 1 super-Bargmann algebra.
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φ∗ → e+imc2tφ∗.

L =− 1

c2
(+imc2φ∗ + ∂tφ

∗)(−imc2φ+ ∂tφ) + ∂iφ
∗∂iφ+m2c2φ∗φ

Due to this introduced phase factor the divergent terms will cancel. We now
take the limit c → ∞ which causes the double time derivative to vanish,
leaving us with:

L = imφ∂tφ
∗ − imφ∗∂tφ+ ∂iφ

∗∂iφ

By using the Euler-Lagrange equation we can find the equations of motion
of this system. Varying with φ∗ gives us this familiar equation15:

i∂tφ = − 1

2m
∂i∂

iφ

This is not a very surprising result, since the Klein-Gordon equation de-
scribes relativistic spin 0 particles, while the Schödinger equation describes
non-relativistic spin 0 particles. An important point to note is that φ
is a classical field, not a wavefunction as we are used to seeing with the
Schödinger equation.

11.3.2 Dirac to Schrödinger

To find the non-relativistic limit of the Wess-Zumino Lagrangian, we will
need to first find the non-relativistic limit of the Dirac Lagrangian

L = X̄
(1

c
γ0∂t + γi∂i −mc

)
X

In this case X̄ signifies a Dirac conjugate, X̄ ≡ iX†γ0

Using the same reasoning as with the Klein-Gordon limit, we redefine the
fields:

χ→ e−imc
2tχ χ̄→ e+imc2tχ̄ (6)

Before the two exponentials with opposite sign cancel out, the time deriva-
tive of the first term means that the product rule introduces a fourth term

15Varying with φ will give us the complex conjugate of the same equation.
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before this can happen:

L = X̄

(
1

c
γ0∂t +

1

c
γ0(−imc2) + γi∂i −mc

)
X

To immediately lose a lot of terms, we introduce these redefinitions and
equalities:

X ≡ X+ +X− X̂ ≡ X+ −X−

X± ≡
1

2

(
I ± iγ0

)
X + X̂ = 2X+ X̂ = iγ0X

By noticing a few of the properties of these X±, we can lose a lot of the terms
straight away. X̄±X∓ = 1

4X̄(I ± iγ0)(I ∓ iγ0)X = 1
4X̄(I − (iγ0)2)X = 0.

Similarly X̄±γ
i∂iX± = 0.

We had four terms, and when we expand them into X±, each term becomes
four new terms, producing sixteen in total. By using these properties, we
are left with five terms.

We now redefine X+ → 1√
c
χ+, X →

√
cχ−, and take the non-relativistic

limit, c→∞.

On taking the limit, one of these terms will go to 0, and nothing will happen
to the rest since they are independent of c.

L = iχ̄−∂tχ− + χ̄+γ
i∂iχ− + χ̄−γ

i∂iχ+ − 2mχ̄+χ+

Now our Lagrangian has four terms. We can use the Euler-Lagrange equa-
tion to find the equations of motion. Note that the Lagrangian has only one
derivative of χ+, while there are two for χ−. In this case, this means that
we will obtain nicer equations of motion by varying χ+ and its conjugate.
These equations of motion are:

χ̄+ = − 1

2m
∂iχ̄−γ

i χ+ =
1

2m
γi∂iχ−

These equations of motion can be used to express the Lagrangian purely in
terms of χ−, and when we do this, we see that two of the four terms cancel,
leaving us with:

L = iχ̄−∂tχ− +
1

2m
χ̄−∂i∂

iχ−
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When we find the equations of motion, we are finally left with the equa-
tion:

i∂0χ− = − 1

2m
∂i∂

iχ−

This shows that the non-relativistic limit of the Dirac Lagrangian is the
Schrödinger Lagrangian, which gives us the Schrödinger equation.

This result is actually more subtle than it appears, since the Schrödinger
Lagrangian (and equation) describe spin 0 particles, while the Dirac La-
grangian describes spin 1

2 particles. Did we change the particle’s spin when
we took the limit? No, of course not. What has happend is that the spinor
field χ− is a solution to the Schrödinger equation component wise. In fact,
what we have found is more accurately described as the Pauli equation, since
that is the formulation of the Schrödinger equation for spin 1

2 particles. How-
ever, in the absence of an external electromagnetic field, the Pauli equation
is equivalent to the Schrödinger equation if the Schrödinger equation of a
spinor is viewed component wise.

The non-relativistic version of the massive Wess-Zumino Lagrangian is ob-
tained simply by adding the non-relativistic Klein-Gordon Lagrangian to
the non-relativistic Dirac Lagrangian, both derived in the previous sec-
tions:

L = iφ∂tφ
∗ +

1

2m
∂iφ
∗∂iφ+ 2iχ̄∂tχ+

1

m
χ̄∂i∂

iχ

The Galilean transformation rules of the Dirac field are given in appendix
C

11.4 The non-relativistic supersymmetric transformation rules
of the fields

We split the bosonic field, fermionic field, and the infinitesimal parameter
into their real and imaginary components:

φ ≡ φ1 + iφ2

χ ≡ χ1 + iχ2

ε ≡ ε1 + iε2

The spinors (χ and ε) are both Dirac spinors, and their separated real com-
ponents (χi, εi) are Majorana spinors.
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We can now find the transformation of the real fields:

δφ = δφ1 + iδφ2

δφ = ε̄χ = (ε̄1 − iε̄2)(χ1 + iχ2) = ε̄1χ1 + ε̄2χ2 + i(ε̄1χ2 − ε̄2χ1)

By separating the result into its real and imaginary components, we can find
the transformation rules for the real scalar fields, φ1 and φ2.

δφ1 = ε̄1χ1 + ε̄2χ2 δφ2 = ε̄1χ2 − ε̄2χ1 (7)

For the Dirac field we split it into real and imaginary parts, use the redef-
initions of 6 for the Dirac field and the complex scalar field, and then take
the limit as c→∞.

δχ = δχ1 + iδχ2

=
1

2
γµε∂µφ+

1

2
mφε

=
1

2
γµ(ε1 + iε2)∂µ(φ1 + iφ2) +

1

2
m(φ1 + iφ2)(ε1 + iε2)

And then separate it into Majorana parts:

δχ1 =
1

2
γµε1∂µφ1 −

1

2
γµε2∂µφ2

δχ2 =
1

2
γµε2∂µφ1 +

1

2
γµε1∂µφ2

(8)

We now follow the process done in [13], and redefine the two fermionic and
bosonic parts as:

ε+ ≡
1√
2c

(ε1 + γ0ε2) ε− ≡
√
c

2
(ε1 − γ0ε2)

χ+ ≡
1√
2c

(χ1 + γ0χ2) χ− ≡
1

c
√

2c
(χ1 − γ0χ2)

φi → cφi

(9)

To obtain the non-relativistic supersymmetric transformation rules is simply
a matter of substituting the redefinitions (equations 9) into the relativistic
transformation rules for the bosonic fields (7), and for the fermionic fields
(8), and then taking the limit c→∞.
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δφ1 = ε̄+χ+ + ε̄−χ−

δφ2 = ε̄−γ0χ− − ε̄+γ0χ+

δχ+ =
1

2
γ0ε+∂tφ1 +

1

2
γiε−∂iφ1 +

1

2
ε+∂tφ2 +

1

2
γi0ε−∂iφ2

δχ− =
1

2
γiε+∂iφ1 +

1

2
γi0ε+∂iφ2

When we found the algebra, we had two supercharges, Q+, and Q−. The
transformation rules given here are equivalent to the result of the sum of
the operation of both supercharges, i.e. δΦ = ε̄(Q+ +Q−)Φ.

We now want to see if we can reproduce the results of the N = 2 super-
Bargmann algebra using the transformation rules we have just obtained. In
other words, we want to check if the transformations of the fields agree with
the results of the algebra. The key parts of the N = 2 super-Bargmann
algebra are the purely fermionic parts:{

Q+, Q+
}
∝ H{

Q+, Q−
}
∝ Pi{

Q−, Q−
}
∝ Z

(10)

To check these results on the level of the fields requires the commutator of
two supersymmetric transformations of a field, in the same way as we did
calculation 3.

[δε+ , δβ+ ]φ =δε+(δβ+φ)− δβ+(δε+φ)

=δε+(β̄+χ+ − iβ̄+γ0χ+)− δβ+(ε̄+χ+ − iε̄+γ0χ+)

=β̄+(I − iγ0)(δε+χ+)− ε̄+(I − iγ0)(δβ+χ+)

=
1

2

(
(β̄+γ

0ε+∂tφ1 + β̄+ε+∂tφ2 − iβ̄+ε+∂tφ1 − iβ̄+γ0ε∂tφ2)

− (ε̄+γ
0β + ∂tφ1 + ε̄+β+ + ∂tφ2 − iε̄+β+∂tφ1 − iε̄+γ0β+∂tφ2)

)
=β̄+γ

0ε+∂tφ1 + β̄+γ
0ε+∂t(iφ2)

=β̄+γ
0ε+∂tφ
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Where we have used the following identities:

ε̄β =β̄ε

ε̄γµβ =− β̄γµε
ε̄γiγ0β =− β̄γiγ0ε

This result is identical to 3, except that here it is a translation through time
only, not spacetime, due to the different nature of space and time in the
non-relativistic case (as already discussed at the end of section 11.2.1). The
other two commutators of supersymmetric transformations are calculated in
the same way as the previous one and are given below:

[δε+ , δβ− ]φ = β̄−γ
iε+∂iφ (11)

[δε− , δβ− ]φ = 0 (12)

We expected the spatial translation result of equation 11 due to the fact that
the anticommutator of the algebra (shown above in 10) gives the generator
of spatial translations.

The fact that two negative16 supersymmetric transformations gives 0 in
equation 12 should not surprise us. The algebra tells us that two Q− give
an internal symmetry, which is trivially represented for massless17 parti-
cles.

12 Conclusion

We started with the Wess-Zumino model, a description of a relativistic, non-
interacting supersymmetric system. After investigating a few of its proper-
ties in the relativistic case, we took the non-relativistic limit in two main
areas, the algebra, and the fields. The non-relativisitic limit of the algebra
brought us to the N = 2 super-Bargmann algebra. The non-relativistic limit
of the fields showed us that the Wess-Zumino model (which is built of the
Klein-Gordon and Dirac Lagrangians) is equivalent to two Schrödinger La-
grangians, one in terms of a bosonic field, the other in terms of a fermionic

16Referring to the transformation of Q−

17For massive particles on the other hand, we would expect something proportional to
the mass, since the central extension corresponds to the mass of the particles.
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field. We finished the paper by showing that the the two areas where we
took the non-relativistic limit (the algbera, and the fields) agree with each
other.
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Part IV

Appendix

A Lie Algebra

To understand the inner working of supersymmetry and why it is such an
exciting area of study, it is crucial to understand the basic ideas behind
Lie algebra. Here I shall give a tiny look into the principle of Lie alge-
bra, with our goal of understanding supersymmetry in mind. For a much
more thorough and general study, I would recommend [Group Theory in
Nutshell]

Marius Sophus Lie had a genius and simple idea in the late 1800s which
takes advantage of the nature of continuous groups. The basic point is that
any element of a continuous group can be divided into an infinite number
of infinitesimal elements, and by acting each element one after another, we
can recover the original group element. This is a hugely powerful technique
as it allows us to take advantage of the infinitesimal nature of the group
elements, in an analogous way that calculus takes advantage of the nature
of infinitesimal changes.

An infinitesimal group element can be described by the identity added to an
infinitesimal ”nudge” I + A. This nudge encodes properties of the specific
group which we are concerned with. A great example of the concept is
the rotation group, and for the sake of simplicity, specifically the group of
2-dimensional rotations.

A defining property of rotations is that the lengths of vectors are the same
before or after the rotation, i.e. ~uT~u = ~u′T~u′, where ~u′ is the rotated vector,
~u′ ≡ R~u. This condition forces the rotation matrix to be unitary, RTR = I.
We apply this condition to an infinitesimal rotation, (I+A)T (I+A) = I ⇒
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I + A + AT = I ⇒ AT = −A where we ignored the A2 term since A is an
infinitesimal and so we only care about it in the first order.

Thus, the infinitesimal nudge of the rotation group is antisymmetric. Since
we are concerned with two dimensional rotations, A is a 2 by 2 matrix, and
all 2 by 2 antisymmetric matrices are proportional to:

J =

(
0 1
−1 0

)

Where we say J is the generator of the 2 dimensional rotation group.

A rotation of θ can be divided into N parts, and then acted one after another
N times, to reproduce the rotation by θ. Once we take the limit as N goes
to infinity, we can describe the small components as infinitesimal rotations,
lim
N→∞

(I + θ
N J). This takes advantage of the infinitesimal (identity plus a

nudge) nature. Now to act this infinitesimal part N times to reproduce the
original rotation by θ:

lim
N→∞

(
I +

θ

N
J

)N
This expression can quickly be recognised as equivalent to eθJ . By using a
Taylor expansion of this, we obtain:

eθJ =
∞∑
n=o

(θJ)n

n!
=

( ∞∑
k=o

(−1)k
θ2k

(2k)!︸ ︷︷ ︸
=cos θ

)
I +

( ∞∑
k=o

(−1)k
θ2k+1

(2k + 1)!︸ ︷︷ ︸
=sin θ

)
J

= (cos θ)I + (sin θ)J

=

(
cos θ 0

0 cos θ

)
+

(
0 sin θ

− sin θ 0

)
=

(
cos θ sin θ
− sin θ cos θ

)
(13)

We have obtained the rotation matrix for any angle θ, all through in-
finitesimal rotations. No messy trigonometry or vector components nec-
essary.

In this example we had one generator, J . In general, there can be any
number of generators forming a closed set. The generators are not closed
under the same operation as the group from which they originate, i.e. J1 �
J2 /∈ J , while g1 � g2 ∈ G. Generators of Lie algebra are closed under
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commutation, i.e. [J1, J2] = J1J2− J2J1 ∈ J . This bracket must satisfy the
Jacobi identity, i.e. [J1, [J2, J3]] + [J2, [J2, J1]] + [J3, [J1, J2]] = 0, and the
other usual properties of commutators.

In the context of n dimensional rotations, the generators are the n by n an-
tisymmetric matrices, and we know that the product of two anti-symmetric
matrices is not another antisymmetric matrix, but we can show that the
commutator of two antisymmetric matrices is antisymmetric,

[J1, J2]T = (J1J2 − J2J1)T = JT2 J
T
1 − JT1 JT2 = [J2, J1] = −[J1, J2]

⇒ [J1, J2] ∈ J

Another important difference between Lie groups and Lie algebra is that
the linear combinations of algebra members produces another member of
the algebra, i.e.

N∑
i=0

aiJi ∈ J

While this is obviously not the same for groups. You cannot add different
factors of rotation matrices to produce another rotation matrix.

B Invariance of a Lagrangian

To show invariance of the Lagrangian the variation must be equal to 0 or a
total derivative of the fields.

This is due to Stokes’ theorem. Roughly speaking, Stokes’ theorem states
that the integral of the derivative of a function over a volume18 is equal to
the integral of the function over the surface of that volume, i.e.

∫
Ω dω =∫

∂Ω ω.

With regards to our case, this means that∫
4D Space

δL =

∫
4D Space

∂µF
µ =

∫
boundary surface

Fµ

18It is important to note the confusing language used when discussing volumes and
surfaces in different dimensions. We use the word ”surface” to describe the N − 1 dimen-
sional boundary of the N dimensional ”volume” which we are referring to. In our case,
the ”volume” is 4 dimensional, and so the surface is 3 dimensional.
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As always, we are integrating the Lagrangian (density) over all of 4 dimen-
sional space, the boundary of which is the 3 dimensional surface at infinity.
We make the assumption that the fields converge to 0 arbitrarily far away,
and so the integral of the fields over this infinitely far away surface van-
ishes.

C Galilean transformation rules for Dirac field

X+ →
1√
c
χ+ X− →

√
cχ−

δχ− = lim
c→∞

(δX) = λijxi∂jχ− − λit∂iχ− −
1

4
λijγiγjχ− − imλixiχ−

δχ+ = δχ+ + cδχ−︸ ︷︷ ︸
√
cδX

− c lim
c→∞

(1

c
δχ+ + δχ−

)
︸ ︷︷ ︸

cδχ−

=λijxi∂jχ+ − λit∂iχ+ −
1

4
λijγiγjχ+ −

1

2
λiγiγ0χ− − imλixiχ+
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