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Abstract

The numerical range of bounded linear operators on complex seperable Hilbert
spaces can be used to make many useful conclusions. After discussing the def-
inition and the basic properties of the numerical range, we will study several
applications in operator theory and numerical methods. We will construct and
compare two different methods that approximate the numerical range of an op-
erator in MatLab. We will also discuss the relevance of the numerical range in
discrete stability and in the convergence of the steepest descent method. We
conclude the paper with a more recent appearance in quantum computing.
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1 Introduction

In this report we set out to discuss the numerical range of linear operators on
Hilbert spaces. In order to do this we should first familiarize ourselves with the
definition of numerical range.

Definition 1. The numerical range of an operator T on a complex Hilbert space
H is the subset of the complex numbers given by

W (T ) = {〈Tx, x〉 , x ∈ H, ||x|| = 1} .

It follows directly from the definition of the inner product that

W (αI + βT ) = α+ βW (T ) for α, β ∈ C,

W (T ∗) = {λ, λ ∈W (T )},
W (U∗TU) = W (T ) for any unitary U.

In discussing the properties of the numerical range, we will follow Gustafson
and Rao [9] and consider bounded linear operators on a complex and separable
Hilbert space H. This does not mean that all of these properties do not hold for
different variations of Hilbert spaces and operators. The question that must now
be asked is: why are we interested in the numerical range of linear operators?
To formulate an answer to this question we must first discuss some of the most
important properties of the numerical range.

1.1 Properties and Applications

The most fundamental property of the numerical range is its convexity. Other
important properties are that its closure contains the spectrum of the operator
and that the numerical radius provides a norm equivalent to the operator norm
[9]. From these properties it might already become clear that the numerical
range can maybe be used in eigenvalue approximation, which plays, for exam-
ple, a big role in the construction of an initial guess for iterative methods that
estimate eigenvalues.

Let us now, as an example, estimate the eigenvalues of the following matrix
in two different ways.

A =

[
1 2
1 −1

]
The most common way to approximate the eigenvalues of this matrix would
be to use Gershgorin cirles. The theorems concerning the Gershgorin circles
are stated below and can be found accompanied by their proofs in the book on
numerical mathematics by Quarteroni, Sacco and Saleri [10].

Theorem 1. (Gershgorin circles). Let A ∈ Cn×n. Then

σ(A) ⊂ SR =

n⋃
i=1

Ri, Ri = {z ∈ C : |z − aii| ≤
n∑

j=1,j 6=i

|aij |}.
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The sets Ri are called Gershgorin row circles.

We know that the spectrum of a matrix is invariant under transposition, so
we can also take the column sum instead of the row sum in the set above to
obtain the Gershgorin column circles [10].

σ(A) ⊂ SC =

n⋃
i=1

Ci, Ci = {z ∈ C : |z − aii| ≤
n∑

i=1,i6=j

|aij |}

The following property follows directly from the inclusion of the spectrum of A
in both SR and SC .

Property 1. For a given matrix A ∈ Cn×,

∀λ ∈ σ(A), λ ∈ SR
⋂
SC .

If we now apply this to the matrix in our example, we get the following row
and column circles

R1 = {z ∈ C : |z − 1| ≤ 2}, C1 = {z ∈ C : |z − 1| ≤ 1},
R2 = {z ∈ C : |z + 1| ≤ 1}, C2 = {z ∈ C : |z + 1| ≤ 2}.

Figure 1: Gershgorin circles of matrix A in C2.

Combining the Gershgorin circles with property 1 tells us that the eigenval-
ues of A must be in the yellow area of Figure 1. If we want to use the numerical
range instead, we make use of the following lemma, which can be found in the
book by Gustafson and Rao [9].

Lemma 1. (Ellipse Lemma). Let T be an operator on a two-dimensional
space. Then W (T ) is an ellipse whose foci are the eigenvalues of T .
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To make use of this lemma, it is easier to first compute the Schur Decom-
position of our matrix A in MatLab. We do this because it makes it easier to
find the ellipse that represents the numerical range of our matrix. Normally it
would not make sense to do this, because the decomposition already gives you
the eigenvalues of the matrix on the diagonal. The upper-triangular matrix that
follows from the Schur Decomposition of A is given by

S =

[√
3 1

0 −
√

3

]
.

We can use this in combination with the approach of example 3 in Gustafson
and Rao [9]. Let u = (f, g) be a unit vector in C2, f = eiα cos θ, g = eiβ sin θ,
α, β ∈

[
0, π2

]
, θ ∈ [0, 2π). Straight-forward computations will then give us that

Su =
(√

3eiα cos θ + eiβ sin θ,−
√

3eiβ sin θ
)
,

and
〈Su, u〉 =

√
3
(
cos2 θ − sin2 θ

)
+ ei(β−α) sin θ cos θ =: x+ iy.

Separation of the real and imaginary parts of 〈Su, u〉 yields

x =
√

3 cos 2θ +
1

2
sin 2θ cos(β − α),

y =
1

2
sin(β − α) sin 2θ.

From which we obtain the following equality

(x−
√

3 cos 2θ)2 + y2 =
1

4
sin2 2θ.

This is a family of circles, we can represent these circles as

(x−
√

3 cosφ)2 + y2 =
1

4
sin2 φ, 0 ≤ φ ≤ π.

If we now differentiate this with respect to φ we get that

(x−
√

3 cosφ)
√

3 =
1

4
cosφ.

We can eliminate φ by combining these two equalities. By doing this we obtain
the formula for the ellipse in Figure 2, which is

x2

3 + 1
4

+
y2

1
4

= 1.
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Figure 2: Numerical Range of matrix A in C2.

We saw in the lemma above that the foci of this ellipse are the eigenvalues
of the matrix S and thus of the matrix A. Whilst the foci of an ellipse cannot
be extracted from a plot directly (we can of course obtain them from the ellipse
formula that we constructed from the Schur Decomposition), it is clear that one
could make a more narrowed down guess of the eigenvalues using the plot of the
numerical range instead of Gershgorin circles in this case.

The example above already shows us how the numerical range could be of in-
terest for various fields of mathematics dealing with eigenvalues. To illustrate
another application of the numerical range we introduce a notion closely related
to it, which is that of numerical radius [9].

Definition 4. The numerical radius w(T ) of an operator T on a Hilbert space
H is given by

w(T ) = sup{|λ|, λ ∈W (T )}.

Gustafson and Rao prove in their book that the numerical radius is an equiv-
alent norm to the operator norm. We should note that this is not the case in
a real Hilbert space [9]. This equivalence can be used to construct many useful
theorems about the operator norm. We have now seen an application of the
numerical range in numerical mathematics and in operator theory, but there
are many more applications of the numerical range in various fields of mathe-
matics. An interesting and more recent example is the use of numerical ranges
in quantum information processing [6].

1.2 Research Goals

In this report we set out to study the properties and applications of the numer-
ical range of linear operators on Hilbert spaces. The main focus of the article
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will be to give a comprehensive explanation of what the numerical range is. We
will do this by studying concrete examples of the numerical ranges of both finite
and infinite dimensional operators. We will also discuss several applications of
the numerical range in different fields of mathematics, of which some have been
mentioned in the previous section, to show how important the numerical range
is for both theoretical and applied mathematics.

2 Properties and Applications of the Numerical
Range

Now that we have made ourselves familiar with the definition and the possible
applications, we will use this chapter to really start our investigation into the
properties and applications of the numerical range. All the results that are
presented in this chapter are taken from Gustafson and Rao [9], unless stated
otherwise. Some of the proofs have however been slightly modified or explained
more explicitly.

2.1 Elliptic Range

We will begin this section by going back to the lemma that we used to compute
the numerical range of our example in the introduction. This time, however, it
will be accompanied by its proof.

Lemma 1. (Ellipse lemma). Let T be an operator on a two-dimensional space.
Then W (T ) is an ellipse whose foci are the eigenvalues of T.

Proof. As mentioned in the introduction we can use a unitary transformation
(Schur decomposition) to bring any operator T to the form

S =

[
λ1 a
0 λ2

]
,

where λ1 and λ2 are the eigenvalues of T . We are allowed to use this transfor-
mation, because the numerical range is invariant under unitary transformations.
To prove this lemma we consider the three possible cases.

If λ1 = λ2 = λ, we have

T − λ =

[
0 a
0 0

]
, W (T − λ) =

{
z : |z| ≤ |a|

2

}
,

where the expression for W (T − λ) requires some explanation. If we take a
unit vector x = (f, g), we get that Tx = (ag, 0) and 〈Tx, x〉 = agf . If we
now look at the magnitude of these vectors, we see that |〈Tx, x〉| = |a||g||f | ≤
|a|
2 (|f |2 + |g|2) = |a|

2 . Where the last equality follows from the fact that x is
a unit vector. This inequality explains the expression for the numerical range
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above. It now follows immediately from the fact that W (αI+βT ) = α+βW (T ),

that the W (T ) is a circle of radius |a|2 centered at λ.

If λ1 6= λ2 and a = 0, we have

T =

[
λ1 0
0 λ2

]
Let x = (f, g) again be a unit vector, then 〈Tx, x〉 = λ1|f |2 + λ2|g|2. We can
show that this is a set of convex combinations of λ1 and λ2. To do this set
t = |f |2, it then immediately follows from the fact that x is a unit vector that
|g|2 = 1− |f |2 = 1− t. We can thus write the combination above as

〈Tx, x〉 = tλ1 + (1− t)λ2

Where t + (1 − t) = 1 and t, (1 − t) ≥ 0, so W (T ) is indeed the set of convex
combinations of λ1 and λ2. The W (T ) must therefore be the segment joining
the two eigenvalues.

If λ1 6= λ2 and a 6= 0, we have

T − λ1 + λ2

2
=

[
λ1−λ2

2 a

0 λ2−λ1

2

]
.

Let us now use Euler’s formula to obtain λ1−λ2

2 =: reiθ. We can multiply our
matrix with e−iθ to obtain

e−iθ
[
λ1−λ2

2 a

0 λ2−λ1

2

]
=

[
r ae−iθ

0 −r

]
.

We saw how to find the ellipse for a matrix of this form in the example in the
introduction. It will be an ellipse with its center at (0, 0), minor axis |a| and
foci (r, 0) and (−r, 0). It follows from the properties of W (T ) that we need to
shift this ellipse with λ1+λ2

2 and rotate it with an angle θ with respect to the
real axis to obtain W (T ). This clearly does not change the fact that it is an
ellipse.

One of the nice consequences of the fact that the numerical range of an
operator on a two-dimensional space is an ellipse is that its numerical range is
thus convex. The following theorem tells us that we can generalize this convexity
to operators on higher-dimensional spaces.

Theorem 2. (Toeplitz-Hausdorff). The numerical range of an operator is con-
vex.

Proof. To prove this, we want to show that for any two elements of W (T )
the segment connecting them is contained in W (T ). If α, β ∈ W (T ), then
α = 〈Tf, f〉 and β = 〈Tg, g〉, for some unit vectors f and g in H. If we now
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consider V = span{f, g} and let E be the orthogonal projection of H on V , we
get that Ef = f and Eg = g. The elements in the W (ETE) generated by f
and g are then given by

〈ETEf, f〉 = 〈Tf, f〉 = α, 〈ETEg, g〉 = 〈Tg, g〉 = β.

Because ETE is an operator on a two-dimensional space, we know thatW (ETE)
is an ellipse. Therefore W (ETE) is clearly convex, because of this the path be-
tween α and β is contained in W (ETE). The final observation that we need to
make is that W (ETE) ⊂W (T ), which concludes the proof.

A direct consequence of the Toeplitz Hausdorff theorem is that W (T ) is the
union of two-dimensional numerical ranges, which are ellipses. Recall that we
showed in the proof of the ellipse lemma that these ellipses could also, for ex-
ample, be a line.

A good example of an operator on a higher-dimensional space is the left shift
on `2, where `2 is the Hilbert space of square summable sequences [9]. Let
f = (f1, f2, . . . ) ∈ `2, with ||f || = 1. If we call the unilateral shift T we get that

Tf = (f2, f3, . . . ) ⇒ 〈Tf, f〉 = f1f2 + f2f3 + f3f4 + · · ·

If we compute the magnitude of this element of W (T ) we get that

|〈Tf, f〉| ≤ |f1||f2|+ |f2||f3|+ |f3||f4|+ · · ·

≤ 1

2

(
|f1|2 + 2|f2|2 + 2|f3|2 + · · ·

)
≤ 1

2

(
2− |f1|2

)
.

If |f1| 6= 0, we get that |〈Tf, f〉| < 1. If it is zero and f contains a finite number
of nonzero elements, we can rearrange the terms to obtain the same inequality.
We can therefore conclude that W (T ) is a subset of the open unit disk. In fact,
as we will see, it actually is the unit disk. We can represent any point in the
unit disk using Euler’s formula as z = reiθ, where 0 ≤ r < 1 and θ ∈ [0, 2π). If
we take the following sequence

f =
(√

1− r2, r
√

1− r2e−iθ, r2
√

1− r2e−2iθ, . . .
)
,

we get that

||f ||2 = 1− r2 + r2(1− r2) + r4(1− r2) + · · · = 1.

Therefore we know that 〈Tf, f〉 ∈ W (T ). To show that it is in fact equal to z,
we compute it

〈Tf, f〉 = r(1− r2)eiθ + r3(1− r2)eiθ + · · · = reiθ = z.

This shows that the open unit disk is contained in W (T ), so the numerical range
of T must in fact be the open unit disk. This example shows us that for this
particular operator the convexity property indeed holds.
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2.1.1 Spectral Inclusion

In this section we will study how the convexity of the numerical range leads to
some interesting results. As we saw in the introduction an important property
of the numerical range is that it can be used to bound the spectrum σ(T ).

Theorem 3. (Spectral inclusion) The spectrum of an operator is contained in
the closure of its numerical range.

Proof. To prove this, we use the fact that the boundary of the spectrum is
contained in the approximate point spectrum σapp. The point spectrum of an
operator is given by

σapp := {λ ∈ C : ∃ a sequence of unit {fn} : ||(T − λI)fn|| → 0}.

Because of the convexity of W (T ), we only need to show that σapp ⊂ W (T ).
Let us take λ ∈ σapp(T ) and a sequence {fn} of unit vectors that satisfies

||(T − λI)fn|| → 0.

The Cauchy-Schwarz inequality then gives us that

|〈(T − λI)fn, fn〉| ≤ ||(T − λI)fn|| · ||fn|| = ||(T − λI)fn|| → 0.

From the inequality above we can conclude that 〈Tfn, fn〉 → λ, so λ ∈ W (T ).

This alone is already an interesting result, but the consequences of this result
might be of an even greater use. One of the consequences is that it allows us to
say something about the spectrum of the sum of two operators, whereas we are
normally not able to do this using just the spectrum of the two operators.

σ(A+B) ⊂W (A+B) ⊂W (A) +W (B).

Another useful result of the spectral inclusion in operator theory is that it gives
us a characterization of selfadjoint operators.

Theorem 4. T is selfadjoint if and only if W (T ) is real.

Proof. If T is selfadjoint, we have that

〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉,

for any x ∈ H. This can only be the case if 〈Tx, x〉 is real and thus W (T ) is
real. Let us now assume that W (T ) is real. If this is the case we have that

〈Tx, x〉 − 〈x, Tx〉 = 0 = 〈(T − T ∗)x, x〉 = 0 ∀x ∈ H with ||x|| = 1,

which implies that W (T − T ∗) = {0}. This implies that the numerical radius,
which was introduced in the introduction, is zero. We will prove in the next
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section that the numerical range is an equivalent norm to the operator norm,
this has as a consequence that

||T − T ∗|| = 0 ⇒ T = T ∗.

It should be notes that this equivalence of norms does not generalize to real
Hilbert spaces. We will show this in the next section using an example.

The numerical range does not only provide us with a useful characterization
of selfadjoint operators, it also allows us to say something about the operator
norm of these operators.

Theorem 5. Let T be selfadjoint and W (T ) be the real interval [m,M ]. Then
||T || = sup{|m|, |M |}.

Proof. If w(T ) = sup{|m|, |M |} we have that for any real non-zero λ that

4||Tx||2 = 〈T (λx+ λ−1Tx), λx+ λ−1Tx〉

−〈T (λx− λ−1Tx), λx− λ−1Tx〉,

≤ w(T )
(
||λx+ λ−1Tx||2 + ||λx− λ−1Tx||2

)
= 2w(T )

(
λ2||x||2 + λ−2||Tx||2

)
.

Because this holds for abritrary non-zero λ, we can take λ2 = ||Tx||
||x|| . Doing this

yields that

4||Tx||2 ≤ 2w(T )

(
||Tx||
||x||

||x||2 +
||x||
||Tx||

||Tx||2
)
,

= 4w(T )||Tx||||x||.

Which is equivalent to the following inequality

||Tx|| ≤ w(T )||x||.

From which we can conclude that ||T || = w(T ) = sup{|m|, |M |}.

The next theorem considers a special case in which we can not only bound
the spectrum of an operator, but also find actual eigenvalues of the operator.

Theorem 6. Let W (T ) = [m,M ]. Then m,M ∈ σ(T ).

Proof. Because m ∈W (T ), we know that there exist a sequence of unit vectors
{fn}, such that 〈Tfn, fn〉 → m. We can use this and the fact that |fn| = 1

to conclude that ||〈(T −m)fn, fn〉|| = ||(T −m)
1
2 fn||2 → 0. Moreover ||(T −

m)fn|| → 0, therefore m ∈ σapp(T ) ⊂ σ(T ).
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2.1.2 Numerical Radius

In the penultimate proof of the last section we used the supremum over the
magnitude of the elements of the numerical range. This was not totally arbitrary,
in fact, we already discussed the following definition in the introduction.

Definition 2. The numerical radius w(T ) of an operator T on H is given by

w(T ) = sup{|λ|, λ ∈W (T )}.

In the proof in the last section we used the numerical radius to find the
operator norm of a selfadjoint operator. At the time that might have been quite
surprising, but the following theorem from the book by Gustafson and Rao [9]
should explain why we used it.

Theorem 7. (Equivalent norm). w(T ) ≤ ||T || ≤ 2w(T ).

Proof. Before we prove the equivalence we should show that w(T ) is a norm.
Let us start by observing that

w(T ) ≥ 0.

This is an immediate consequence of the definition. Next we want to show that

w(T ) = 0 ⇐⇒ T = 0.

It clearly follows from the definition that |〈Tx, x〉| ≤ w(T )||x||2, for any x ∈ H.
This means that |〈Tx, x〉| = 0, when w(T ) = 0. Let us now observe that

|〈Tx, x〉| = 0 ⇒ 〈Tx, x〉 = 0 for any x ∈ H.

We now use corollary 6.18 in the lecture notes of de Snoo and Sterk [1], which
tells us that the statement above can only hold if T = 0. The next thing we
need to show is that

w(αT ) = |α| · w(T ), ∀α ∈ C.

This is due to the fact that |〈αTx, x〉| = |α| · |〈Tx, x〉|, for all x ∈ H. The final
property that w(T ) needs to satisfy is that

w(T + V ) ≤ w(T ) + w(V ),

which follows from the fact that W (T + V ) ⊂W (T ) +W (V ).

To prove the equivalence, we take an element λ ∈ W (T ), i.e. λ = 〈Tx, x〉
with ||x|| = 1. The Cauchy-Schwarz inequality then gives us that

|λ| ≤ |〈Tx, x〉| ≤ ||Tx|| · ||x|| = ||Tx|| ≤ ||T ||.
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Because λ was chosen arbitrarily, this proves the first inequality. The second
inequality is proven using the polarization identity, which can be found in section
2.4 of the lecture notes by de Snoo and Sterk [1].

4〈Tx, y〉 = 〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉

+i〈T (x+ iy), x+ iy〉 − i〈T (x− iy), x− iy〉

We now know that

4|〈Tx, y〉| ≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉|

+|i〈T (x+ iy), x+ iy〉|+ |i〈T (x− iy), x− iy〉|.

Which simplifies to

4|〈Tx, y〉| ≤ w(T )
(
||x+ y||2 + ||x− y||2 + ||x+ iy||2 + ||x− iy||2

)
,

= 4w(T )
(
||x||2 + ||y||2

)
= 8w(T ).

The second inequality has therefore been proven.

This equivalence of norms can be used to make many useful conclusions
about bounded linear operators on a complex and separable Hilbert space. We
should however be careful, for example, the implication that T = 0 if the numer-
ical radius is zero is not necessarily true in a real Hilbert space. To show this,
let us follow along with Gustafson and Rao and consider the following example
on the real Hilbert space H = R2.

T =

[
0 −1
1 0

]
If we take a unit vector x = (f, g), we get that Tx = (−g, f) and 〈Tx, x〉 = 0.
This implies that w(T ) = 0. The operator norm is on the other hand is defined
as follows [1]

||T || = sup
x 6=0

||Tx||
||x||

and for x = (1, 0) we get that ||Tx||||x|| = 1, which clearly implies that ||T || > 0.

A definition that is somewhat analogous to that of the numerical radius is that
of the spectral radius.

Definition 3. The spectral radius of an operator T is given by

r(T ) = sup{|λ|, λ ∈ σ(T )}.

We already saw in the last section that in some cases w(T ) = ||T ||, the next
theorem shows that we also obtain the spectral radius when this is the case.
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Theorem 8. If w(T ) = ||T ||, then

r(T ) = ||T ||.

Proof. Because of the basic properties of the numerical range, we are allowed
to assume that w(T ) = ||T || = 1. When this is the case there exists a sequence
of unit vectors {fn} such that 〈Tfn, fn〉 → λ ∈W (T ), where |λ| = 1. Using the
Cauchy-Schwarz inequality and the definition of the operator norm we get that

|〈Tfn, fn〉| ≤ ||Tfn|| · ||fn|| = ||Tfn|| ≤ ||T || = 1.

Combining this with the fact that 〈Tfn, fn〉 → λ, we can conclude that ||Tfn|| →
1. Now to show that λ ∈ σapp(T ) consider

||(T − λI)fn)||2 = ||Tfn||2 − 〈Tfn, λfn〉 − 〈λTfn, fn〉+ ||fn||2 → 0,

where the convergence is caused by convergence of the components and the
equality is caused by the linearity of the inner product. By definition, the
convergence above tells us that λ ∈ σapp(T ) ⊂ σ(T ), so r(T ) = 1.

Next we will look at a theorem that allows us to find certain points of the
point spectrum of T . To do this we should first define what the point spectrum
of an operator actually is.

Definition 4. The point spectrum of an operator T is given by

σp = {λ ∈ σ(T ) : Tf = λf for some f ∈ H}.

We are now ready to discus the theorem stated below.

Theorem 9. If λ ∈W (T ), |λ| = ||T ||, then λ ∈ σp(T ).

Proof. If λ ∈W (T ), we know that there exists a unit vector f ∈ H, such that

λ = 〈Tf, f〉 → ||T || = |λ| = |〈Tf, f〉| ≤ ||Tf || · ||f || = ||Tf || ≤ ||T ||.

Because of the squeeze property above, we have that

|〈Tf, f〉| = ||Tf || · ||f || → Tf = µf for some µ ∈ C.

However, we already knew that λ = 〈Tf, f〉, therefore

λ = 〈Tf, f〉 = 〈µf, f〉 = µ.

This shows that Tf = λf and thus completes our proof.

For the next theorem let us first recall that the range of an operator is defined
as follows.

Definition 5. The range of a linear operator T on H is defined as
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R(T ) = {Tf, f ∈ H}.

We can use this definition to conclude something about the operator norm in
the special case where the range of an operator is orthogonal to the range of its
adjoint.

Theorem 10. If R(T ) ⊥ R(T ∗), then w(T ) = 1
2 ||T ||.

Before we prove this theorem, notice that this equality is equivalent to the
extreme condition for the norm equivalence. This is therefore the maximal
possible difference between the two norms.

Proof. In this proof we use that in Hilbert spaces

N(T ) = R(T ∗)
⊥
.

We can now apply this to a unit vector f ∈ H. Let f = f1+f2, where f1 ∈ N(T )
and f2 ∈ R(T ∗). For the corresponding element in W (T ) we now have that

〈Tf, f〉 = 〈T (f1 + f2), f1 + f2〉 = 〈Tf2, f1〉.

To see this realize that Tf1 = 0 and 〈Tf2, f2〉 = 〈f2, T
∗f2〉 = 0, because f2 ∈

R(T ∗). We can use this to create the following string of inequalities

|〈Tf, f〉| = |〈Tf2, f1〉| ≤ ||Tf2|| · ||f1|| ≤ ||T || · ||f2|| · ||f1||

≤ ||T ||
2

(
||f1||2 + ||f2||2

)
=
||T ||

2
.

Because this holds for any element f ∈ H, it also holds that

w(T ) ≤ ||T ||
2
≤ w(T ) ⇒ w(T ) =

||T ||
2

The last inequality above is due to the norm equivalence.

2.1.3 Normal Operators

We saw in the last section that for a selfadjoint operator T we have

r(T ) = w(T ) = ||T ||

In this section we will see a property for normal operators that is somewhat
analogous to it. We will also study several interesting inferences that can be
made using the numerical range of normal operators. Let us start by recalling
the definition of a normal operator T .

Definition 6. A normal operator T on H is an operator that satisfies

T ∗T = TT ∗.
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The first theorem of this section shows us that we can sometimes directly
infer the type of operator from its numerical range.

Theorem 11. If W (T ) is a line segment, then T is normal.

Proof. We will prove this by showing that the operator e−iθ(T − αI) is selfad-
joint. It follows from the fact that T is then obtained by a rotation and a shift
that T is normal.

Let α be a point on the line segment W (T ) and let θ be the inclination of
this line segment. By rotating and shifting the line segment, we obtain that
W (e−iθ(T − αI)) is on the real line. We saw in the last section that this is a
classification of selfadjoint operators and this therefore completes our proof.

Let us study the theory above using an example. We saw in the proof of
lemma 1 that the numerical range of the following operator is given by the line
segment between (1, i) and (−1,−i) in the complex plane.

T =

[
1 + i 0

0 −1− i

]
It should then follow that the operator is normal. The adjoint of the matrix is
given by the complex conjugate of its transpose.

T ∗ =

[
1− i 0

0 −1 + i

]
We can now compute TT ∗ and T ∗T .

TT ∗ =

[
2 0
0 2

]
= T ∗T

This shows that T is indeed normal.

We will now repeat and prove the above mentioned generalization of theorem 8
in the last section to normal operators.

Theorem 12. If T is normal, then ||Tn|| = ||T ||n, n = 1, 2, ... . Moreover,
then

r(T ) = ||T ||.

Proof. We will prove the first statement using induction. For the base step take
any unit vector x ∈ H, we then have that

||Tx||2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = |〈T ∗Tx, x〉| ≤ ||T ∗Tx|| · ||x|| = ||T ∗Tx||

We now want to show that for a normal operator ||T ∗Tx|| = ||T 2x||, because it
would then follow from the above inequality that ||T ||2 ≤ ||T 2||.

||T 2x||2 = 〈T 2x, T 2x〉 = 〈T ∗T 2x, Tx〉
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For the next step we use that T is normal.

= 〈TT ∗Tx, Tx〉 = 〈T ∗Tx, T ∗Tx〉 = ||T ∗Tx||2

By taking the square root of both sides we obtain that ||T ∗Tx|| = ||T 2x||, so
we may indeed conclude that ||T ||2 ≤ ||T 2||. Moreover, it is always true for
bounded operators that ||T 2|| ≤ ||T ||2, so ||T 2|| = ||T ||2.

By a similar argument as before, it holds that

||Tnx||2 = 〈T ∗Tnx, Tn−1x〉 ≤ ||Tn+1x|| · ||Tnx||.

Combining this with the fact that ||T 2|| = ||T ||2 and applying induction gives
us that ||Tn|| = ||T ||n [9]. For the second statement we should recall that [9]

r(T ) = lim
n→∞

||Tn||1/n

Combining this with what we just proved, we obtain that

r(T ) = lim
n→∞

||Tn||1/n = ||T ||.

The result above can be very useful when trying to determine the spectral
radius of the power of a normal operator. To discus the next theorem, we first
need to remind ourselves of the definition of the resolvent set of an operator.

Definition 7. The resolvent set of an operator T is given by

ρ(T ) = {λ ∈ H : λ /∈ σ(T )}.

We will state and prove this theorem, so that we can use it to prove the
theorem that follows it. The theorem that follows it is an interesting geometrical
result considering the spectrum of a normal operator. We first need to recall
the definition of the distance between a point and a set [1].

Definition 8. Let V be any set in a normed linear space (X, || · ||). Then the
distance between x and V is given by

d(x, V ) = inf{||x− v|| : v ∈ V }.

Now that we are familiar with this definition, we can study the following
theorem.

Theorem 13. Let z be any complex number in the resolvent set of a normal
operator T . Then

||(T − zI)x|| ≥ d(z, σ(T )) for x ∈ H, ||x|| = 1.
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Proof. We know that (T − zI) is invertible, because z ∈ ρ(T ). We also know
that (T − zI)−1 is normal, because (T − zI) is normal. Since it is normal, we
have by the last theorem that

||(T − zI)−1|| = r((T − zI)−1).

The spectral mapping theorem tells us that

σ((T − zI)−1) = {(λ− z)−1 : λ ∈ σ(T )}.

It follows that

||(T − zI)−1|| = r((T − zI)−1) =
1

d(z, σ(T ))
.

We can now use this to conclude that, for any x ∈ H with ||x|| = 1,

d(z, σ(T )) = ||(T − zI)−1||−1 ≤ ||(T − zI)x||.

Theorem 14. The closure of the numerical range of a normal operator is the
convex hull of its spectrum.

Proof. We can always scale and shift the spectrum in such a way that it is
contained in a closed half-plane of C. This means that proving this theorem is
equivalent to proving that any half-plane containing σ(T ) also contains W (T ).
Let us now assume that σ(T ) is contained in the left half-plane of C and that
the imaginary axis is a supporting line of the convex hull of σ(T ), i.e. the line
that is tangent to the convex hull and that does not split it. Let us now assume
that a + bi ∈ W (T ), with a > 0. If this is possible it would contradict what
we wanted to show. Let us set Tx = (a + bi)x + y, with x and y orthogonal.
We then get that 〈Tx, x〉 = a+ bi. Notice that any positive real number c is in
the resolvent set of T . We thus have by the inclusion in the half-plane and the
theorem above that

c ≤ d(c, σ(T )) ≤ ||(T − cI)x|| = ||(a+ ib− c)x+ y||.

If we now square these terms we get that

c2 ≤ ||(a+ ib− c)x+ y||2 = (a− c)2 + b2 + ||y||2

= a2 − 2ac+ c2 + b2 + ||y||2.

This can only be the case if 2ac ≤ a2 + b2 + ||y||2, because we can take any
positive real number c this can not always be the case. Therefore the theorem
has been proven by contradiction.

In the next theorem we make an important discovery concerning the closure
of the numerical range of a normal operator and its eigenvalues. To do this we
first have to define what an extreme point is [9].
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Definition 9. A point z is an extreme point of a set S if z ∈ S and there is a
closed half-plane containing z and no other element of S.

We now use this definition in the following theorem.

Theorem 15. The extreme points of the closure of the numerical range W (T )
of a normal operator T are eigenvalues of T if and only if W (T ) is closed.

Proof. Let us first assume that W (T ) is closed. As before we can shift the
numerical range to simplify our proof. Let W (T ) ⊂ {λ : Imλ ≥ 0 and let the
extreme point z be the origin. If we now consider 〈Tx, x〉 = 0 ∈W (T ), we have
that

〈Tx, x〉 = 〈Tx, x〉 ⇒ 〈(T − T ∗)x, x〉 = 0.

We know that the operator 1
i (T − T

∗) is positive, since it is selfadjoint and for
any x ∈ H it can be shown that

〈1
i
(T − T ∗)x, x〉 ≥ 0.

These claims follow from lemma 1 in the short paper by J.G. Stampfli [7].
Therefore it must be the case that (T − T ∗)x = 0, which implies that x ∈ {f :
Tf = T ∗f} = N . Combining this with the fact that T is normal gives us that

T ∗Tx = TT ∗x = TTx.

From which we can conclude that N is invariant under T and that the restric-
tion of T on N is selfadjoint. Using the fact that the numerical range of a
selfadjoint operator is real, we get that W (T |N ) ⊂ W (T )

⋃
R = {0}. Because

of this, T |N = 0→ Tx = 0, from which we can conclude that 0 is an eigenvalue
of T .

Now we want to prove that it can only be the case if W (T ) is closed. We
know that the W (T ) is compact and convex. It is clear that it is also the con-
vex hull of its extreme points. We assume that they are eigenvalues of T in the
theorem so it must also be contained in the hull of the pointspectrum, i.e.

W (T ) ⊂ co(σp(T )) ⊂ co(W (T )) = W (T ),

which completes the proof.

If we check this theorem for the example that was introduced earlier this
section, we see that W (T ) is closed and that the extreme points of the line are
indeed the eigenvalues of the matrix.

2.1.4 Numerical Boundary

Because of the convexity of the numerical range, it could be of great interest
to know which points of the numerical range are on the boundary. To get a
bit more insight into the boundary of the numerical range we introduce two
theorems considering the extreme points of W (T ) in this section.
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Definition 10. For any complex number z, let Mz be the subset of H given by

Mz = {x ∈ H : 〈Tx, x〉 = z||x||2}.

It is clear that this set does not have to be linear. The following theorem
gives us a condition that guarantees linearity of Mz.

Theorem 16. If z ∈W (T ) is an extreme point of W (T ), then Mz is linear.

Proof. Let L be the line of support of W (T ) at z, i.e. the line that contains z
and does not split W (T ). The existence of this line tells us that there exists
some rotation e−iθ, such that by a rotation and a shift of z to the origin we get
that Re〈e−iθ(T − zI)x, x〉 ≥ 0, for any x ∈ H. Consequently,

Mz = {x ∈ H : Re〈e−iθ(T − zI)x, x〉 = 0}.

Let us now check that it is indeed linear. For x, y ∈Mz it follows from straight-
forward computation that

〈e−iθ(T − zI)(x+ y), (x+ y)〉 = −〈e−iθ(T − zI)(−x+ y), (−x+ y)〉.

We showed that Re〈e−iθ(T − zI)x, x〉 ≥ 0, for any x ∈ H, so in the equation
above the real part on the left is greater or equal to zero and on the right it is
smaller or equal to zero, due to the minus sign. This can only be the case if both
terms are purely imaginary. This shows that x + y ∈ Mz and thus concludes
the proof.

The relation in the theorem above is also true in the opposite direction, as
is illustrated in the following theorem.

Theorem 17. z ∈W (T ) is an extreme point if Mz is linear.

We will not prove this theorem in this paper, but the proof can be found in
the book by Gustafson and Rao [9]. Notice that these two theories combined
give us a characterization of the extreme points of the numerical range.

2.2 Mapping Theorems

In this section we will study if it is possible to construct mapping theorems
for the numerical range and radius. We would of course like to find something
analogous to the spectral mapping theorem, but we will see that we are limited
by the convexity of the numerical range. It is however not completely impos-
sible to relate the numerical ranges and radii of operators of the form f(T ) to
those of T . We start this section with an important example that illustrates the
nontrivial relation between W (T ) and W (f(T )).

Let H = C2 and f(T ) = T 2 for

T =

[
4 + 1 4i

4i 16 + 4i

]
.
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If we take u = (x, y) ∈ C2, we get that

Tu = ((4i+ 1)x+ 4iy, 4ix+ (16 + 4i)y)

and

〈Tu, u〉 = (4 + i)|x|2 + (16 + 4i)|y|2 = 4|x|2 + 16|y|2 + i(|x|2 + 4|y|2).

So we can conclude that the real part is always larger than the imaginary part.
However if we consider u = (1, 0), we get

T 2u = (8i− 1, 80i− 20) .

This gives us that
〈T 2u, u〉 = 8i− 1.

Obviously the conclusion that the real part is always larger than the imaginary
part no longer holds for T 2.

2.2.1 Radius Mapping

As mentioned before, it is not possible to relateW (T ) toW (f(T )) in general, but
for some special cases we can make interesting conclusions. In this subsection
we will look at the special cases where it is possible to find bounds for the
numerical radius of an operator of the form f(T ). The first theorem we look at
considers the case where f(T ) = Tn.

Theorem 18. (Power inequality) Let T be an operator and w(T ) ≤ 1. Then
w(Tn) ≤ 1, n = 1, 2, 3, · · ·

Proof. We start the proof by observing that, for any z ∈ C with |z| < 1, we
have

Re〈(I − zT )x, x〉 = ||x||2 −Re〈zTx, x〉 ≥ ||x||2(1− |z|) ≥ 0.

Where we used the linearity in the first argument of the inner product, |z| <
1 and the fact that w(T ) ≤ 1. Let us now observe that if it is true that
Re〈(I − zT )x, x〉 ≥ 0, for all z ∈ C with |z| < 1, we can take z = teiα and let
t→ 1. If we do this we obtain that

0 ≤ Re〈(I − eiαT )x, x〉 = ||x||2 −Re〈eiαTx, x〉,

this can only be the case if ||x||2 ≥ Re〈eiαTx, x〉. Because this relation holds
for all α, we can always choose a rotation α of 〈Tx, x〉, such that 〈eiαTx, x〉 =
|〈Tx, x〉|. If we then apply this equality to the elements of W (T ) we get that
w(T ) ≤ 1.

It follows that whenever I − zT is invertible, Re〈(I − zT )x, x〉 ≥ 0, for all
x ∈ H, if and only if it holds that Re〈(I − zt)−1y, y〉 ≥ 0, for all y ∈ H. The
invertibility allows us to take x = (I − zT )−1y to obtain this very inequality.
We should also notice that r(T ) ≤ 1 by the spectral inclusion quality and that
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I − zT is invertible. The invertibility follows from Theorem 4.36 in the lecture
notes by Sterk and de Snoo [1].

Now that we have shown these equivalent conditions we can prove our theo-
rem by showing that

Re〈(I − znT )−1y, y〉 ≥ 0 with z ∈ C, |z| < 1 for all y ∈ H.

To do this we need the following identity

(I − znT )−1 =
1

n

(
(I − zt)−1 + (I − ωz2T )−1 + · · ·+ (I − ωn−1znT )−1

)
,

where ω is a primative n−th root of 1. It follows that |ωn−1zn| < 1. We use
this to conclude that Re〈(I − ωn−1znT )−1y, y〉 ≥ 0 for any y ∈ H. Let us now
see that

Re〈(I − znT )−1y, y〉 = Re〈( 1

n
((I − zt)−1 + (I − ωz2T )−1 + · · ·

+(I − ωn−1znT )−1))y, y〉 ≥ 0,

which completes our proof.

A very simple example of this theorem would be the following matrix acting
on C2.

T =

[
0 2
0 0

]
We saw in the proof of lemma 1 that the numerical range of T is given by a circle
of radius 2

2 centered at (0, 0), i.e. the unit circle. We can thus conclude that
w(T ) = 1. We also know that T 2 = 0 and therefore w(Tn) = 0 for n = 2, 3, · · · ,
so the theorem does indeed hold for this operator.

A necessary condition for the theorem above is that w(T ) ≤ 1, we saw in
the proof that it can be useful to use equivalent conditions instead. This is why
Gustafson and Rao introduce the following theorem.

Theorem 19. (Power dilation) w(T ) ≤ 1 if and only if Tn = 2PUnP , for
n = 1, 2, 3, · · · , where U is a unitary operator on a Hilbert space K ⊃ H and P
is the projection of K on H.

Proof. As mentioned before by the spectral inclusion property we have that
w(T ) ≤ 1 ⇒ r(T ) ≤ 1 and (I − zT ) is invertible for |z| ≤ 1. The function
F (z) = (I − zT )−1 is holomorphic for |z| < 1, moreover F (0) = I−1 = I and
Re〈F (z)x, x〉 ≥ 0. It is explained in a paper by Sz.-Nagy and Foias [2], that it
follows from a theorem of Riesz that there exists a Hilbert space K ⊃ H and a
unitary operator U in K, such that

F (z) = P (IK + zU)(IK − zU)−1 for any z with |z| < 1,
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where P is the projection of K on H. They then tell us that, because

(IK + zU)(IK − zU)−1 = I + 2zU + · · ·+ 2znUn + · · · |z| < 1,

we get that
F (z) = P (I + 2zU + · · ·+ 2znUn + · · · )

= IH + zT + z2T 2 + · · · .

Using this equality one can obtain by computing the coefficients that

Tn = 2PUnP for n = 1, 2, 3, . . . .

We know that the series IH + zT + z2T 2 + · · · converges to (IH − zT )−1 for
|z| < 1. The fact that Tn = 2PUnP implies that the term inside the projection
also converges for |z| < 1, because the Tn are bounded. Combining these facts
we get that the term inside the projection, i.e.

IH + zT + z2T 2 + · · · ,

converges to (I − zT )−1. Let us now consider the following inner product

〈(IK + zU)(IK − zU)−1y, y〉.

If we take y = (IK − zU)−1x, we get that

Re〈(IK + zU)x, (IK − zU)x〉 = (1− |z|2)||x||2 ≥ 0.

The inequality above implies that Re〈F (z)x, x〉 ≥ 0 for |z| < 1. This was shown
to be an equivalent condition for w(T ) ≤ 1 in the last proof and thus concludes
this proof.

As mentioned before, the main point of this theorem is to give an equivalent
condition for w(T ) ≤ 1. We will now use this equivalent condition in the proof
of the next theorem.

Theorem 20. Let f be analytic inside the unit disk and continuous on the
boundary, with f(0) = 0. If |f(z)| ≤ 1 for |z| ≤ 1 and w(T ) ≤ 1, then w(f(T )) ≤
1.

Proof. Gustafson and Rao start their proof by showing that limr→1 f(rT ) exists.
Notice that f inside the unit disk is given by a convergent power series, because
it is analytic.

f(rT ) =
∑

anr
nTn = 2P (

∑
anr

nUn)P

The last equality is caused by the previous theorem. If we now take U =∫
eiλdE(λ), we get that

= 2P

(∫ ∑
anr

neinλdE(λ)

)
P.
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It follows from the power series representation of f that this is equal to

= 2P

(∫
f(reiλ)dE(λ)

)
P.

Observe that |reiλ| ≤ 1, so f is continuous. The continuity allows us to conclude
the following.

lim
r→1

f(rT ) = 2P

(∫
f(eiλ)dE(λ)

)
P = 2Pf(U)P

It now follows from the fact that P is a projection, that

f(T )n = 2Pf(U)nP.

If f(U) is a unitary operator the above equality in combination with the last
theorem show that w(f(T )) ≤ 1. It follows from U and the criteria for f in the
theorem that f(U) is a contraction. B. Nagy has shown that every contraction
in a Hilbert space has a unitary dilation [3].

The previous theorem dealt with a function f that was analytic inside the
unit disk, we will now look at some theorems that relate the numerical range
W (f(T )) to W (T ) when f is analytic in some other regions.

Theorem 21. Let f(z) be holomorphic on {z : |z| ≤ 1} = D, and map D into
{z : Rez ≥ 0} = P . If W (T ) ⊂ S1, then W (f(T )) ⊂ P −Ref(0).

Proof. To prove this theorem we use the following expression for f(z) from a
paper by Stone [12].

f(z) = iImf(0) +
1

2π

∫ 2π

0

(Ref(eit))
eit + z

eit − z
dt

If we now rewrite the fraction in the last expression as follows

eit + z

eit − z
=

2eit + z − eit

eit − z
=

2eit

eit − z
− 1

=
2

1− z
eit
− 1 = 2(1− e−itz)−1 − 1.

We can now substitute this back into our expression for f(z)

f(z) = i Im f(0) +
1

2π

∫ 2π

0

[
Re f

(
eit
)] [

2
(
1− e−itz

)−1 − 1
]
dt,

= iImf(o)− 1

2π

∫ 2π

0

Re(f(eit))dt+
1

π

∫ 2π

0

[
Re f

(
eit
)] (

1− e−itz
)−1

dt,

= −f(0) +
1

π

∫ 2π

0

[
Re f

(
eit
)] (

1− e−itz
)−1

dt.
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Let us now apply this function to our operator A and take a look at the real
part, as that is what we are most interested in for this theorem.

Ref(A) = −Re f(0) +
1

π

∫ 2π

0

[
Re f

(
eit
)]
Re
[(
I − e−itA

)−1
]
dt

It follows from the fact that eit ∈ D, that Ref(eit) ≥ 0. The fact that
W (A) ⊂ D implies that Re(1 − e−itA) ≥ 0. We can then conclude that

Re
[(
I − e−itA

)−1
]
≥ 0, by lemma 4 from the text by Kato [14]. This means

that the integral above is positive. Because of this we have that Re f(A) ≥ −Re
f(0), which completes the proof.

2.2.2 Operator Products

We have already seen that the numerical range behaves well under addition of
operators, but we have not made many claims about the product of operators.
In this section we will study a special case where we can do exactly that.

Theorem 22. If 0 /∈W (A), then

σ
(
A−1B

)
⊂ W (B)

W (A)
=

{
λ

µ
, λ ∈W (B), µ ∈W (A)

}
Proof. We start by realizing that 0 /∈ σ(A), this is due to the inclusion of
the spectrum in W (T ). The spectrum of A are the λ, such that T − λI is
not invertible. Because 0 is not in the spectrum, we can conclude that A is
invertible. Let us consider λ ∈ σ(A−1B). This has as a consequence that
0 ∈ σ(A−1B − λI). Moreover, we know that

A−1B − λI = A−1(B − λA).

We can conclude from this equality that if λ ∈ σ(A−1B) then 0 ∈ σ(B − λA).
The spectral inclusion now gives us that

0 ∈W (B)− λW (A) ⇒ 0 ∈W (B)− λW (A),

which means that there exist x ∈ W (A) and y ∈ W (B), such that λ = y
x ∈

W (B)

W (A)
.

The next special case that we will consider is commuting operators, i.e.
AB = BA.

Theorem 23. Let A be nonnegative, selfadjoint operator and AB = BA. Then
W (AB) ⊂W (A)W (B).

Proof. Because A is nonnegative we can take the nonnegative square root A1/2.
Using this square root we obtain that

〈ABx, x〉 = 〈BA1/2, A1/2x〉. (1)
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Let us now define g = A1/2

||A1/2|| , notice that this is a unit vector. We then get

that
= ||A1/2||2〈Bg, g〉 = 〈A1/2x,A1/2x〉〈Bg, g〉 = 〈Ax, x〉〈Bg, g〉,

where 〈Ax, x〉 ∈W (A) and 〈Bx, x〉 ∈W (B).

When we study the numerical radius instead of the numerical range, we can
prove the following less restricted theorem.

Theorem 24. It is always the case that

w(AB) ≤ 4w(A)w(B).

When AB=BA, it always hold that

w(AB) ≤ 2w(A)w(B).

Proof. The first claim follows almost directly from the equivalence of norms,
that was proved in an earlier section.

w(AB) ≤ ||AB|| ≤ ||A|| · ||B|| ≤ 4w(A)w(B)

Let us now look at the commuting case. We assume here that w(A) = w(B) = 1,
because we can always scale them. Let us first use a different representation of
AB, which allows us to use the triangle inequality.

w(AB) = w

(
1

4

[
(A+B)2 − (A−B)2

])
Next we use the fact that w(T ) is a norm.

≤ 1

4

[
w((A+B)2) + w((A−B)2)

]
We can now use theorem 18.

≤ 1

4

[
w((A+B))2 + w((A−B))2

]
Now we apply the subadditivity of the numerical radius.

≤ 1

4

[
(w(A) +W (B))2 + (w(A)− w(B))2

]
= 2

It follows from our assumption w(A) = w(B) = 1 that this completes the
proof.

26



2.3 Finite Dimensions

In this paper we consider several examples of operators T acting on the finite-
dimensional space Cn, it is therefore interesting to study several simplifications
and consequences when considering operators on this space. The first interesting
result is the following theorem

Theorem 25. The numerical range of any matrix A on Cn is compact and the
numerical radius in attained.

Proof. We should first of all observe that the function that maps x to its cor-
responding element in W (T ) is continuous on the compact set {x ∈ : ||x|| =
1}. We therefore have that the numerical radius is attained by an element in
W (T ).

Another result that is somewhat analogous to some of the results that we
showed before is the following theorem that considers matrices for which the
numerical range is a real interval [m,M ].

Theorem 26. The numerical range of a symmetric matrix A is the real interval
[m,M ], where m and M are the smallest and largest eigenvalue of A respectively.

Proof. We know that W (A) is convex and we saw in the last theorem that it is
also compact. A theorem in an earlier section showed us that if W (A) = [m,M ],
then m,M ∈ σ(T ). We now have that W (A) = W (A) = [m,M ], thus m and M
are indeed in the spectrum of A. Moreover, we know that the entire spectrum is
contained in W (A), thus m and M must be the smallest and largest eigenvalue
respectively.

The last theorem showed us the strong connection between the eigenvalues
of a symmetric matrix and its eigenvalues, the next theorem proves a similar
result for unitary matrices.

Theorem 27. The numerical range of a unitary matrix A is a polygon inscribed
in the unit circle.

Proof. A unitary matrix is an example of a normal matrix, it follows from
theorem 14 that the closure of its numerical range is the convex hull of its
spectrum. This means that we can prove the statement by showing that the
eigenvalues are on the unit circle. Let us now find the λ such that Ax = λx. To
find these lambda we study the norm of Ax and λx:

||Ax||2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 = 〈Ix, x〉 = ||x||2,

whilst on the other hand
||λx||2 = |λ|2||x||2.

Consequently the equality Ax = λx can only be preserved if |λ|2 = 1. This
implies that the eigenvalues of A are indeed on the unit circle.
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2.4 Operator Trigonometry

In this section we will discuss angles of operators. The definitions and results
in this section have various interesting results, of which some will be discussed
in the next section.

2.4.1 Operator Angles

We start this section by giving the original definition of the cosine of an operator.
The definition that we give here should remind us of the definition of the dot
product in a Euclidean space.

Definition 11. The real cosine of T in H is defined as

cosT = inf
x∈H

Re〈Tx, x〉
||Tx|| · ||x||

, x 6= 0, Tx 6= 0.

Clearly this is a real quantity, the imaginary part and the total cosine (per-
haps cosine magnitude would have been a better name) are defined in a similar
manner. To see this let us look at the definition of the total cosine

| cos |T = inf
x∈H

|〈Tx, x〉|
||Tx|| · ||x||

, x 6= 0, Tx 6= 0.

The angle φ(T ) is determined by the definition of the real cosine. The geomet-
rical interpretation of this angle is that it measures the maximum turning effect
of an operator T on H. Let us as an example consider the rotation matrix on
C2. The rotation matrix for a rotation of 90−degrees is given by T below.

T =

[
−1 0
0 −1

]
If we take a vector x = (f, g) we get that

Tx = (−f,−g) and 〈Tx, x〉 = −(|f |2 + |g|2).

We can now use this to compute the real cosine that was defined at the beginning
of this section.

cosT = inf
x∈H

Re{−(|f |2 + |g|2)}√
|f |2 + |g|2

√
|f |2 + |g|2

= −1,

which means that φ(T ) = 90◦. We can conclude that the operator angle agrees
with the rotation angle of the matrix.

The way in which cosT was constructed has the following direct consequences
for the angle φ(T ).

Property 2. For an operator T we have that

φ(T ) = φ(T−1) = φ(cT ) = φ(cT−1).
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The definition of the total cosine also allows us to find a lower and upper
bound using the operator norm and the numerical radii. The theorem below
illustrates how we can do this.

Theorem 28. For any operator T , its cosine is bounded by the upper and lower
numerical radii m(T ) and w(T ):

m(T )

||T ||
≤ | cos |T ≤ w(T )

||T ||
.

Proof. The proof is based on the basic property from analysis that for positive
sequences an and bn we have that

inf(an) inf(bn) ≤ inf(anbn) ≤ sup(an) inf(bn).

If we set an = |〈Tx, x〉| and bn = 1
||Tx|| the theorem follows directly from this

property above when considering unit vectors only.

Calculating the angle of an operator using the definition requires to calculate
the infimum of the real parts of the elements of the numerical range, this can
sometimes be tricky. The following theorem shows that it is sometimes not
necessary to use the definition.

Theorem 29. For T a strongly positive (m > 0) selfadjoint operator,

cosT =
2
√
mM

m+M
,

where m = m(T ) and M = w(T ).

Proof. To prove this we will use the Kantorovich inequality

max
||y||=1

{〈y, Ty〉〈y, T−1y〉} =
1

4

(√
M

m
+

√
m

M

)2

.

Next we will have to change the minimization in the definition of the cosine to
a maximization. To do this observe that(

min
x

〈Tx, x〉
||Tx|| · ||x||

)−2

=

(
max
x

||Tx||||x||
〈Tx, x〉

)2

= max
x

||Tx||2||x||2

〈Tx, x〉2
.

To simplify our expression even further we need a smart choice of x. The one
given by Gustafson and Rao is x̃ = 〈Tx, x〉−1/2x. We then obtain by substitution
that

max
x̃

||Tx||2||x||2

〈Tx, x〉2
= max

x

〈Tx, x〉−2||Tx||2||x||2

〈Tx, x〉2
= max
〈Tx,x〉=1

||Tx||2||x||2

= max
〈Tx,x〉=1

〈T 1/2x, T 3/2x〉〈T 1/2x, T−1/2x〉.
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The maximization over 〈Tx, x〉 feels a bit unfamiliar. To get rid of it we take
y = T 1/2x, such that ||y||2 = 〈Tx, x〉 = 1. Using this as our maximization turns
the one above into the Kantorovich inequality.

max
||y||=1

〈y, Ty〉〈y, T−1y〉 =
1

4

(
M

m
+
m

M
+ 2

)
=
M2 +m2 + 2mM

4mM

We started of with a power of −2, so cosT is the inverse square root of the
equated solution.

cosT =
2
√
mM

M +m

We will use this theorem in an upcoming section on the study of the con-
vergence of iterative methods. It will show that the convergence of the steepest
descent method is related to the maximum turning effect of its operator.

2.4.2 Operator deviations

In the book by Gustafson and Rao [9] the deviation of an operator is discussed,
which is equivalent to the operator angle φ(T ).

Definition 12. The deviation of an operator T is given by

dev(T ) = sup
x∈H

φ(Tx, x),

where φ(Tx, x), 0 ≤ φ ≤ π, is defined by

cos(φ(Tx, x)) =
Re〈Tx, x〉
||Tx|| · ||x||

.

Notice that this definition is indeed equivalent to that of the operator angle.
Gustafson and Rao then introduce a lemma from a text by Krein [11]. They
point out that the theorem was stated without a proof in the original text.
Because the proof has no real additional value to what we are still going to
discuss, we choose to omit it as well.

Lemma 2. Let x,y,z be three unit vectors in a Hilbert space. Define the an-
gles φxy,φyz,φxz by cosφxy = Re〈x, y〉, cosφyz = Re〈y, z〉, cosφxz = Re〈x, z〉,
respectively, with o ≤ φxy, φyz, φxz ≤ π. Then

φxz ≤ φxy + φyz.

The result of this theorem is very interesting however. The result in combi-
nation with the equivalence with the operator angle can now be used to prove
the following theorem.
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Theorem 30. Let A and B be bounded invertible operators in a Hilbert space.
Then

φ(AB) ≤ φ(A) + φ(B).

Proof. If follows from lemma 2 that

φ(ABx, x) ≤ φ(ABx,A−1x) + φ(A−1x, x)

= φ(Bx, x) + φ(Ax, x).

The inequality will be preserved if we take the suprema of the seperate terms.
Doing this will give us that

dev(AB) ≤ dev(B) + dev(A)

or equivalently
φ(AB) ≤ φ(A) + φ(B),

which completes the proof.

This result should not be very surprising considering the geometrical inter-
pretation. Geometrically this theorem tells us that the maximum turning effect
of AB is less or equal to the the maximum turning effect of B followed by A.

2.4.3 Antieigenvalue Theory

Gustafson and Rao [9] mention in the preface of their book that they think
that the theory of antieigenvalues will eventually become a standard chapter in
linear algebra [9] and that it has a large variety of applications. These claims
should spark our interest, let us therefore define what an antieigenvalue is. The
first antieigenvalue is really just a different interpretation of the real cosine of
an operator A, namely

Definition 13. The first antieigenvalue of A is given by

µ1(A) = inf
x∈D(A)
x 6=0,Ax6=0

Re〈Ax, x〉
||Ax|| · ||x||

,

The higher antieigenvalues are defined as

µn(A) = inf
x∈D(A)

x⊥{x1,··· ,xn−1}

Re〈Ax, x〉
||Ax|| · ||x||

,

where the xk are the corresponding antieigenvectors of A. It should be noted that
the higher antieigenvalues are only well defined if it is assumed that the previous
antieigenvalues are attained by their corresponding antieigenvectors [8].
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So in contrast to the normal combination of eigenvalue and eigenvector,
which are the vectors for which A does not turn at all, these antieigenvalues
denote the critical turning effects of A. A direct consequence of this definition
and theorem 29 is that for a strongly positive (i.e. m(T ) > 0), selfadjoint
operator T we have that

µ1(T ) =
2
√
λminλmax

λmin + λmax
,

where λmin = m(T ) and λmax = M(T ), the lower and upper bound of W (T )
respectively. Let us as an example consider the following matrix.

T =

[
1 0
0 2

]
Clearly this matrix is selfadjoint. We have also seen that W (T ) is given by
the line segment [1, 2]. This means that λmin = 1 and λmax=2. We can con-
clude from the fact that λmin > 0 that the matrix is also strongly positive.
Substitution in the formula above gives us that

µ1 =
2
√

1 · 2
1 + 2

=
2
√

2

3
.

This example illustrates that in some cases there are strong relations between
the eigenvalues of an operator and the antieigenvalues of an operator. In the
book by Gustafson and Rao several more examples are given of perticular cases
where the two can be related.

3 Approximations and Numerical Methods

In the preceding chapter we have seen a lot of theoretical properties of the
numerical range. We will use this chapter to dive a little deeper into the appli-
cations of the numerical range in, for example, fluid dynamics using the before
mentioned theoretical properties.

3.1 Approximating the Numerical Range

Before studying some of the applications, we do some numerical analysis of
W (T ) ourselves. For an operator on the complex numbers it is possible to
create an algorithm that approximates its numerical range. We are going to do
this for an operator T using random points with the MatLab script given below.

1 f unc t i on [ area , conv ]= generalnmr2 (T, n i t )
2 l=length (T) ;
3 f o r i =1: n i t
4 x ( : , i )=−1 + 2 .∗ rand (1 , l )+1 i .∗(−1+2.∗ rand (1 , l ) ) ;
5 x ( : , i )=x ( : , i ) /norm( x ( : , i ) ) ;

32



6 n( i )=dot (T∗x ( : , i ) , x ( : , i ) ) ;
7 i f i>2
8 C=convhul l ( r e a l (n) , imag (n) ) ;
9 area ( i )=po lyarea ( r e a l (n(C) ) , imag (n(C) ) ) ;

10 conv ( i )=area ( i ) / area ( i −1) ;
11 end
12 end
13

14 f i g u r e (1 )
15 hold on
16 s c a t t e r ( r e a l (n) , imag (n) ) ;
17 p lo t ( r e a l (n(C) ) , imag (n(C) ) ) ;
18

19 f i g u r e (2 )
20 p lo t ( area ) ;
21

22 end

This function takes as an input a operator T and a number of iterations nit. It
creates a random unit vector and computes the corresponding element of W (T )
in each iteration. It also approximates the convex hull corresponding to this
points and its area. We saw in the previous chapter that the numerical range
is convex, because the algorithm keeps adding points to a convex set we know
that the area is strictly increasing. By studying the convergence of the area, we
can try to say something about how close we are getting to the actual numerical
range. We should note that the rand command in MatLab creates pseudoran-
dom numbers using a uniform distribution. It is therefore possible for the script
to keep creating points inside of the convex hull, whilst there are still points of
W (T ) outside of the hull to be considered.

To study the effectiveness of our script we go back to the example in the intro-
duction.

T =

[
1 2
1 −1

]
We choose this operator, because we have an exact equation for the numerical
range of this operator. The code produces two plots, one of them shows a
scatter plot of the randomly generated elements in W (T ) together its convex
hull generated by the MatLab command convhull, the other plot illustrates how
the area grows with respect to the number of iterations. If we run this code for
our operator T and nit = 1000 it returns the following two plots.
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Figure 3: Scatter plot of the Numerical Range of matrix A in C2.

Figure 4: Area of convex hull of matrix A against i.

When we compare the convex hull in figure 3 to the ellipse in figure 2 in
the introduction, we see that for nit = 1000 we get a relatively good estimate
of the ellipse. The decrease in growth of the area in figure 4 suggests that we
are indeed closing in on the true numerical range. To check if this is the case
we will compare the computed area for nit = 1000 with the true one computed
using the ellipse formula that we found in the introduction. It follows from the
ellipse formula that the area is given by

Area = π ∗
√

3.25 ∗
√

0.25 = 2.8318 . . . .

On the other hand the area given by the algorithm is 2.8172 . . . , so we are indeed
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closing in on the theoretical value of the area. As mentioned before the problem
with this method is that it is possible for the script to keep creating points inside
the true numerical range or even points that it has already generated before. A
closer look at figure 3 reveals that there were indeed a lot of points generated
in the interior of the numerical range. This gives rise to the question whether
or not it is possible to generate these points more efficiently. The first thing
that comes to mind is to discretize the complex unit n-sphere. This becomes
complicated to code very fast, but for our example it should still be possible.
Let us consider the following parametrization of the complex unit-sphere, which
was also used to study this example in the introduction. Let f = eiα cos θ,
g = eiβ sin θ, α, β ∈

[
0, π2

]
, θ ∈ [0, 2π). Then we can create our unit vectors by

summing over α, β and θ. The script below does exactly that.

1 f unc t i on [ area , conv ]= generalnmr3 (T, n i t )
2 h=2∗pi / n i t ;
3 f =0.5∗ pi / n i t ;
4 f o r j =1: n i t
5 alpha=f ∗ j ;
6 f o r k=1: n i t
7 beta=f ∗k ;
8 f o r l =1: n i t
9 theta=h∗ l ;

10 x=[ cos ( theta ) ∗exp (1 i ∗ alpha ) ; s i n ( theta ) ∗exp
(1 i ∗beta ) ] ;

11 n( j , k , l )=dot (T∗x , x ) ;
12 q=nnz (n) ;
13 i f q>2
14 z=reshape (n , numel (n) ,1 ) ;
15 C=convhul l ( r e a l ( z ) , imag ( z ) ) ;
16 area ( q )=polyarea ( r e a l ( z (C) ) , imag ( z (C) ) ) ;
17 conv ( q )=area ( q ) / area (q−1) ;
18 end
19 end
20 end
21 end
22

23 z=reshape (n , q , 1 ) ;
24 f i g u r e (1 )
25 hold on
26 s c a t t e r ( r e a l ( z ) , imag ( z ) ) ;
27 p lo t ( r e a l ( z (C) ) , imag ( z (C) ) ) ;
28

29 f i g u r e (2 )
30 p lo t ( area ) ;
31

32 end
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This script produces the same plots as the previous one. The plots generated
for nit = 25 by applying this script to our operator T are given below.

Figure 5: Convex hull of matrix A.

Figure 6: Area of convex hull of matrix A against i.

When we study figure 5, we see that the approximation of the numerical
range of T generated by this algorithm is quite similar to the one generated
by the other algorithm. The points in the interior of the convex hull look a
lot more interesting though. We see that the points generated in W (T ) are
families of circles. This is not completely surprising, in fact, if we go back to
the derivation of the numerical range of our operator in the introduction, we see
that we proved that the numerical range is a family of circles that depend on

36



θ. Whilst this dependence on θ is not something that we can immediately infer
from the figure, the fact that it is a union of circles is as mentioned very clear.
When we study figure 6, we see that the area remains constant at a lot of points
in a repeating pattern. This is due to the fact that large parts of the circles
are not part of the convex hull, so when we sum over these parts of the circles
the area does not increase. An important note is that, whilst both scripts take
nit as an input, the first creates nit elements in the numerical range and the
second nit3 elements. The second method looks like a more efficient method,
but it is in fact significantly more computationally expensive to obtain a similar
accuracy. In fact for nit = 25 we create 253 = 15625 >> 1000 elements in W (T )
to obtain an area of 2.8121 . . . . This is still less accurate then the method using
1000 random points.

3.2 Convergence of Iterative Methods

Another interesting application of the numerical range in numerical analysis is
its appearance in the study of the convergence of iterative methods. In partic-
ular, the convergence of the steepest descent method for solving Ax = b has a
convergence closely related to the numerical range. This relation is given by the
following theorem in Gustafson and Rao [9].

Theorem 31. (Trigonometric convergence). In quadratic steepest descent, for
any initial point x0, there holds at every step k

EA(xk+1) ≤ (sin2A)EA(xk).

Where the sin of an operator is determined using the definition of the cosine
of an operator in the section on operator trigonometry.

sin2A = 1− cos2A

Proof. The steepest descent method is an iterative method that can be used to
minimize a function f . If we consider the quadratic case where

f(x) =
〈x,Ax〉

2
− 〈x, b〉,

for a symmetric, positive definite matrix A with eigenvalues 0 < m = λ1 ≤
λ2 ≤ · · · ≤ λn = M , where m = m(T ) and M = w(T ). Minimizing this is is
equivalent to finding the solution of Ax = b. A general form of the steepest
descent method is given by [9]

xk+1 = xk − αk∇f(xk)T .

So with the f that we chose this becomes

xk+1 = xk −
||Axk − b||2(Axk − b)
〈A(Axk − b)), Axk − b〉

.
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If we now define the error as

EA(x) =
〈(x− x∗), A(x− x∗)〉

2
= f(x) +

〈x∗, Ax∗〉
2

.

It then follows from the earlier introduced Kantorovich inequality that

EA(xk+1) ≤
(

1− 4λ1λn
(λn + λ1)2

)
EA(xk).

The proof of this inequality is given in the section on the quadratic form of the
steepest descent method in the book on linear and nonlinear programming by
Luenberger [5]. If now use that λ1 = m and λn = M , we get that

EA(xk+1) ≤ (1− 4mM

(m+M)2
)EA(xk).

We can now apply theorem 29

= (1− cos2(A))EA(xk) = (sin2A)EA(xk),

which completes the proof.

The geometric interpretation of this theorem is that the angle φ(A) deter-
mines the convergence when solving Ax = b using quadratic steepest descent.
This is due to the fact that steepest descent method cannot converge faster
than the maximum distance between x and Ax, which after normalization is
represented by sinA. In the book by Gustafson an Rao [9] it is also shown that
the convergence of the conjugate gradient method is determined by sin(A1/2),
but we will not prove this in this paper.

3.3 Discrete Stability

Another application of the numerical range is its relevance in the study of initial
value problems. An initial value problem is a system of equations of the form{

d
dtu(t) = Au t > 0,

u(0) = u0.

Gustafson and Rao state that if A is an m-dissipative operator, then the solution
u(t) is generally given by u(t) = eAtu0 for u0 in the domain of A [9]. When
solving a system like this we would like to approximate the continuous terms
by discrete ones. A good example of this is the explicit Euler method, which is
discussed in both [10] and [9]. To illustrate the relevance of the numerical range,
we follow along with the example in [9] and apply the explicit Euler method to
the heat equation {

∂u
∂t = ∂2u

∂x2 ,

u(0) = f(x).
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The discretization of the heat equation above using explicit Euler is given by [9]

∂u

∂t
∼=
u(x, t+ ∆t)− u(x, t)

∆t
,

∂2u

∂x2
∼=
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2
.

Let us consider the coordinates (xi, tj) in space-time, where xi = i∆x and
tj = j∆t. If we now call the discrete solution Ui,j = U(xi, tj), the Euler explicit
scheme is given by [9]

Ui,j+1 = Ui,j +
∆t

(∆x)2
(Ui+1,j − 2Ui,j + Ui−1,j) .

We can simplify this by representing it as a sequence of matrix iterations

U j+1 = C(∆t)U j ,

where
C(∆t) = I + (∆t)AD

and AD denotes the discretized version of ∂
2u
∂x2 given above. We saw that U(δt) =

eAδt was the semigroup that solved the original continuous problem, here C(∆t)
is the semigroup for the discrete problem. It is important to notice that C(∆t)
is equal to the first two terms of the Taylor expansion of eADδt. Gustafson and
Rao also show that it is a semigroup up to first order as follows [9]

C(∆t)C(∆t)u = (I + 2∆tAD + (∆t)2A2
D)u = C(2∆t)u+ (∆t)2A2

Du.

For the context of this paper it is not that relevant to discuss semigroup gener-
ators, so we will use the result of Gustafson and Rao without justification. The
infinitesimal generator of the semigroup for the heat equation is given by

Au =
∂2u

∂x2
= s− lim

∆t→0

(
eA∆t − I

)
∆t

u,

for all u ∈ D(A). We may now also write

ADu = s− lim
∆t→0

(C(∆t)− I)

∆t
u.

If everything has gone according to plan the following consistency condition
should hold

||(AD −A)u(t)|| → as ∆t→ 0,

for all solutions u(t). Often it is not easy to prove that a discretization satisfies
this condition. An important result concerning this problem is the Lax equiva-
lence theorem [9]: the discrete solutions converge to the continuous solution if
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and only if the scheme is stable. When studying our example stability means
that the successive iterates of the operators C(∆t) are uniformly bounded [9],

||(C(∆t)n|| ≤M,

for all small 0 < ∆t ≤ τ , on the interval 0 ≤ n∆t ≤ T , n = 1, 2, 3, . . . . If this is
not the case the discrete solution might expand uncontrollably when ∆t→ 0.

This stability condition can be studied using the numerical range by consid-
ering the fact that the numerical radius is an equivalent norm to the operator
norm. If we then consider the power-boundedness theorem we can look for M
using the numerical radius of C(δt).

3.3.1 Fluid Dynamics

Having studies the applications of the numerical range in discrete stability in
the last section, we can now look at what it has to offer in Fluid dynamics. To
do this we take a look at the Navier-Stokes equations for velocities u [9]{

du
dt = k(u)∆u− u · ∇u−∇p t > 0,

u(0) = u0.

To study the use of the numerical range in fluid dynamics we consider the one-
dimensional model from Gustafson and Rao [9]

ut + vux − kuxx = 0 0 < x < 1 t > 0,

u(x, 0) = f(x, 0) given 0 < x < 1,

u(0, t) = u(1, t) = 0 t > 0.

For the purpose of illustration, Gustafson and Rao linearize this problem by
assuming that v and k are positive constants. Just like in the last section we
give a matrix representation of the explicit Euler discretization of this problem

Ui,i+1 − Ui,j
∆t

+ v
Ui,j − Ui,j−1

∆x
− kUi−1,j − 2Ui,j + Ui+1,j

(∆x)2
= 0,

which can be rewritten as

Ui,j+1 =

(
k + v∆x

(∆x)2
∆t

)
Ui−1,j +

(
1− 2k + v∆x

(∆x)2
∆t

)
Ui, j +

(
k∆t

(∆x)2

)
Ui+1,j .

We want to show that Ui,j+1 is a convex combination of Ui−1,j , Ui,j and Ui+1,j .
First of all we should notice that(

k + v∆x

(∆x)2
∆t

)
+

(
1− 2k + v∆x

(∆x)2
∆t

)
+

(
k∆t

(∆x)2

)
= 1.

The second condition that needs to be satisfied is that all three the terms above
are non-negative. This is clearly the case when

1

2k + v∆x
≤ ∆t

(∆x)2
.
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We will accept this limitation on ∆t, so that we can use the convexity whilst
studying the stability. It follows from the convexity that Ui,j+1 is bounded
uniformly independent of ∆t and ∆x. This is caused by the fact that the
convex combination is bounded by the largest and the smallest component in
the sum. These components are then again bounded by the largest and smallest
component of the previous time step. Therefore the bound eventually only
depends on the initial data. This allows us to take a similar approach to the
last section and try to find a uniform bound to the operator C(∆t), it can then
eventually be proven that the convergence to the true solution for a sufficiently
small grid size [9].

3.4 Pseudo Eigenvalues

Pseudo eigenvalues have been introduced to deal with the fact that eigenvalues
are very sensitive to small perturbations. A lot of algorithms and results in
numerical analysis depend strongly on the eigenvalues of operators. In matrix
terms a perturbation to a matrix A could be expressed as adding a perturbation
matrix B. Gustafson and Rao point out that the fact that, whilst we can not
say much about the spectrum of the sum of two matrices, we did show that

W (A+B) ⊂W (A) +W (B).

To study the the application of numerical range in the study of perturbed op-
erators we define the following two notions.

Definition 14. The augmented numerical range is given by

Wε(A) = W (A) + ∆ε,

where ∆ε denotes the closed disk of radius ε.

Definition 15. The pseudo-spectrum of A is given by

σε(A) = {λ ∈ C : λ ∈ σ(A+ E) for some E with ||E|| ≤ ε}.

We will show later in this section that the region σε(A) is in between the
augmented numerical range and the spectrum of the operator. Gustafson and
Rao then state and prove the following theorem [9].

Theorem 32. For a given n×n matrix A and ε ≥ 0 the following are equivalent

(i) λ is an ε-pseudo-eigenvalue of A,

(ii) ||(λI −A)x|| ≤ ε for some ||x|| = 1,

(iii) ||(λI −A)−1||−1 ≤ ε,

(iv) the smallest singular value of λI −A is smaller or equal than ε.
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Proof. Let us assume that λ is an pseudo eigenvalue of A. The definition gives us
that there exist a perturbation matrix E with ||E|| ≤ ε, such that λ ∈ σ(A+E).
This means that there must exist a unit vector x, such that (A+E)x = λx. We
can now conclude that using the definition of the operator norm that

||(λI −A)x)|| = ||Ax− λx|| = ||Ex|| ≤ ε,

which proves the equivalence to the second claim. To prove the next claim we use
the result from functional analysis that ||(λI −A)−1||−1 ≤ ||(λI −A)||. Clearly
it follows from the last claim that ||(λI−A)|| ≤ ε. To see the equivalence to the
next claim, notice that the eigenvalues of (λI−A)−1 are 1

µ , for µ ∈ σ((λI−A)−1).
Combining this with the fact the operator norm computes the largest singular
value shows the equivalence (this was shown in, for example, the lecture notes
from Dahleh [13]). We now consider the singular value decomposition, to show
that this claim is again equivalent to the first.

λI −A = U
∑

V ∗ =

n∑
j=1

σjujv
∗
j

We know that σn is the smallest singular value of λI − A. Therefore we can
take E = σnunv

∗
n and it will satisfy ||E|| ≤ ε. We can now consider the matrix

λI − (A+ E) =

n−1∑
j=1

σjujv
∗
j .

This matrix is singular, because of the construction of the singular value de-
composition. Therefore λ has to be an eigenvalue of A+ E.

The next theorem shows that the pseudo-spectrum is a lot less sensitive
to perturbation then the normal spectrum. It also proves the inclusion in the
augmented numerical range.

Theorem 33. (Pseudo-spectra stability). Let D be a perturbation of norm δ.
Then

σε−δ(A+D) ⊂ σε(A) ⊂ σε+δ(A+D),

σε(A) ⊂Wε(A).

Proof. Let λ an pseudo eigenvalue of A. We then know that λ ∈ σ(A+E), with
||E|| ≤ ε. So λ is also an eigenvalue of A+D+(E−D) = A+E. We know that
||E−D|| ≤ ||E||+ ||D|| = ε+δ, which completes the proof of the first statement.

For the second statement we use that, for some unit vector x we have that

(A+ E)x = λx.

We can now use this to show that the distance from the numerical range from
λ is less or equal to epsilon.

|〈Ax, x〉 − λ| = |〈(λ− E)x, x〉| = || − Ex|| = ||Ex|| ≤ ε

This completes the proof.
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3.5 Quantum Computing

The final application that we will discus is that of quantum error correction.
In the paper by Chi-Kwong Li and Yiu-Tung Poon [4] it is explained that for
a noisy quantum channel, a quantum error correcting code exists if and only if
the joint higher rank numerical range associated with the error operators of the
channel is non-empty.

We will not discuss the content in too much depth, because it is a little too
involved for our purposes. The main idea behind the paper is that the existence
of an error correction depends on whether or not a generalization of the numer-
ical range is non-empty. This generalization is given by the following definition
[4].

Definition 16. The joint k−numerical range of an m−tuple of matrices A =
(A1, . . . , Am) is given by

∧k(A) = {(a1, . . . , am) ∈ Cm : ∃P ∈ Pk such that PAjP = ajP for j = 1, . . . ,m}.

4 Conclusion

Throughout this paper we have seen numerous applications of the numerical
range in different fields of mathematics. The application of the theory to exam-
ples showed us how the numerical range can be used when studying, for example,
the spectrum or norm of an operator. The study of the approximation of W (T )
calls for further research, in this research it could be studied whether or not it
is possible to approximate the convex hull in a more efficient manner. Some of
the assumptions in the section on discrete stability are rather restrictive, so it
would be interesting to study how much of an impact the numerical range can
have in a less restrictive context. The more recent application of the numerical
range in quantum computing shows us that there might still be a lot more to
discover using the numerical range.
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