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Abstract

In this thesis, we study whether the rigged Hilbert space formulation of Quantum Mechanics
can be extended to quasi-hermitian operators. The necessary mathematics to understand rigged
Hilbert spaces and their representations is presented. Using the mathematics, we give rigorous
meaning to Dirac’s kets and bras, using the momentum operator as an example. The mathe-
matical theory culminates with the nuclear spectral theorem(Gelfand-Maurin) which guarantees
an eigenket decomposition for the wave functions. Next, we illustrate the theory by applying it
to the quantum system defined by a potential barrier. We then introduce non-hermitian oper-
ators of interest in Quantum Mechanics, specifically PT-symmetric Hamiltonians. It is known
that PT-symmetric Hamiltonians are necessarily pseudo-hermitian. We restrict our attention to
a subclass of pseudo-hermitian operators, the quasi-hermitian operators, and present an extension
of the nuclear spectral theorem. The extension, under certain conditions on the quasi-hermitian
operator and the metric operator, guarantees an eigenket decomposition for a dense subset of
the Hilbert space on which the operator is defined. We discuss how the extension may help put
quasi-hermitian quantum mechanics on a rigorous footing and discuss its drawbacks and possible
extensions. Lastly, we present conditions under which a spectral decomposition of quasi-hermitian
operators with respect to an operator-valued measure exists. This is an extension of the spectral
decomposition of self-adjoint operators with respect to a projection-valued measure.
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1 Introduction

1.1 Introduction(Mathematics)
Functional analysis is an extremely powerful field of mathematics with countless applications to other
fields such as physics, statistics, and probability. Notably, it is an invaluable tool to study differential
equations. Functional analysis is loosely speaking the study of infinite-dimensional vector spaces
endowed with a topological structure and the linear maps between them. The term ’functional analysis’
was first used in Hadamard’s 1910 book on calculus of variations. However, the concept of a functional
is attributed to Volterra some decades before that. The most notable spaces studied in functional
analysis are Banach spaces and Hilbert spaces. The former is a complete infinite-dimensional normed
vector space while the latter is a complete infinite-dimensional inner product space. Hilbert spaces, in
particular, due to their powerful structure are applied widely in applied mathematics. For example,
the semi-parametric theory of efficient estimators in statistics is based the study of a collection of
interesting Hilbert spaces. Additionally, the mathematical foundations of quantum mechanics heavily
rely on Hilbert space theory to describe the space of wavefunctions. The notions of Banach and Hilbert
spaces can be further generalised by the general notion of a topological vector space which is just a
vector space equipped with an arbitrary general topology. Some notable examples are locally convex
spaces where the topology is induced by a family of semi-norms and Fréchet spaces.

In this thesis, the theory of rigged Hilbert spaces and its application to quantum mechanics will
be studied. We present the necessary mathematics which includes topological vector spaces, nuclear
operators and spaces, and rigged Hilbert spaces . Notably, we discuss the extension of operators on
the Hilbert space to the entire rigged Hilbert space, as well as iosmorphisms of rigged Hilbert spaces.
Afterwards, we apply the theory to a well-known quantum mechanical problem and demonstrate how
it allows the problem to be put on a mathematically rigorous foundation. Before we discuss the main
results obtained in this thesis, it is helpful to introduce the notion of a rigged Hilbert space and why
it is useful.

In quantum mechanics, one often wishes to find a complete set of eigenvectors for a particu-
lar(possibly unbounded) self-adjoint operator defined on the Hilbert space. The eigenvectors are
complete in the sense that eigenvectors form some sort of basis that diagonalizes the operator. It is
well known that self-adjoint operators do not necessarily have a complete set of eigenvectors in infinite
dimensions. Such a complete set is known to exist for compact self-adjoint operators but many op-
erators of interest in applied mathematics do not fit under this description. One result attributed to
von Neumann is that all self-adjoint operators can be diagonalized with respect to a projection-valued
measure. That is, given a self-adjoint operator A : H 7→ H defined on a Hilbert space H, one can find
a collection of projections Eλ such that

(ϕ,Aψ)H =

∫
σ(A)

λd(Eλϕ,ψ)

This result extends the diagonalization of self-adjoint operators in finite-dimensional vector spaces.
However, it does so by replacing the complete set of eigenvectors with a projection-valued measure.
The reason why arbitrary self-adjoint operators cannot be diagonalized by eigenvectors is simply
because its eigenvectors are not necessarily in the Hilbert space. N

The rigged Hilbert space is able to generalise the notion of an eigenvector so that every self-adjoint
operator has a complete set of eigenvectors, mimicking the finite-dimensional case. Notable math-
ematician Israel Gelfand, known for studying partial differential equations and harmonic functions,
proved the nuclear spectral theorem that proves the existence of a resolution of the identity and di-
agonalization for an arbitrary self-adjoint operator. These generalised eigenfunctions are actually
anti-linear functionals defined on the dual space of a topological vector space.

3



A rigged Hilbert space is a triplet of spaces Φ, H,Φ× where H is a Hilbert space, Φ is a Fréchet
topological vector space densely embedded in H with a finer topology, and Φ× is the anti-dual space
of Φ. Note that since Φ has a finer topology than H,

H× ⊂ Φ×

Furthermore, by Riesz representation theorem

H ∼= H×

As a result, one often writes the triplet of spaces as

Φ ⊂ H ⊂ Φ×

In the nuclear spectral theorem, Gelfand extends a self-adjoint operator on H to an operator on Φ×.
The generalised eigenfunctions of the operator are simply the eigenvectors of its extension in Φ×.
Thus, the rigged Hilbert space extends the notion of a Hilbert space to put self-adjoint operators on
the same footing.

In this thesis, we will study quasi-hermitian operators and extend the nuclear spectral theorem to
describe such operators. Such operators have applications in quantum mechanics and the extension
of the theorem is necessary to put such quantum mechanical problems in rigorous footing. A quasi-
hermitian operator is an operator that is self-adjoint when defined on a different Hilbert space obtained
by completing the original Hilbert space with respect to a different inner product. Equivalently, we
say that the quasi-hermitian operator is similar to its adjoint by a positive definite operator.

We show that for a dense subspace of the Hilbert space where the quasi-hermitian operator is
defined, one can decompose the elements in terms of the generalised eigenfunctions of the operator.
We also show that the operator and its adjoint can be diagonalized by these generalised eigenfunc-
tions. The construction relies on using the rigged Hilbert space induced by the Hilbert space where
the operator is self-adjoint. The generalised eigenfunctions are present in this rigged Hilbert space,
specifically in the anti-dual space of a dense subspace of the Hilbert space where the operator is self-
adjoint. Since there is not necessarily an isomorphism of the original Hilbert space into the anti-dual
space where the generalised eigenvectors are located, we were unable to find a natural rigging of the
original Hilbert space.

It should also be noted that the dense subspace where our extended nuclear spectral theorem
applies is required to be left invariant under the action of the operator and its corresponding positive
definite metric operator. The conditions we impose are the minimal conditions necessary so that that
the generalised eigenfunction(als) of the operator and its adjoint are in the rigged Hilbert space. In
practice, there is no general way of constructing such an invariant subspace. Furthermore, there is
no guarantee that the space even exists for a general quasi-hermitian operator. It is possible that the
conditions are only satisfied in the trivial case where the operator is hermitian. However, since the
conditions required are minimal, if the theorem is only satisfied in the trivial case, it is reasonable to
believe that the nuclear spectral theorem can not be extended to the quasi-hermitian case. At least
not in its general form and not by our method.

We also discuss how to extend the theory to account for a quantum system described by a collection
of quasi-hermitian and hermitian operators. In the case where the operator is non-hermitian but has
a complete set of eigenvectors, we present sufficient conditions for a rigged Hilbert space to exist such
that the such a collection of operators to have a complete set of generalised eigenvectors. Lastly, we
discuss possible extensions of the theory. Specifically, we propose an alternative method of extending
the nuclear spectral theorem by means of a spectral representation of quasi-hermitian operators with
respect to an operator-valued measure. Lastly, we propose possible extensions to this thesis such as
extending the nuclear spectral theorem to pseudo-hermitian operators.
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1.2 Historical Background and Introduction(Physics)
The rise of physical theory of Quantum Mechanics in the beginning of the 20-th century drastically
changed our understanding of the world. The theory was able to describe a wide array of phenomena
at small lengths scales with near perfect accuracy. It led to scientific revolutions countless fields
including physics, chemistry, material science, and electronics. Much of the technology we use today
from our smart phones and tablets to the medical devices such as MRI’s and X-ray are based on
quantum mechanical principles.

It began with the ground breaking papers on black-body radiation and the photoelectric effect by
Max Planck and Albert Einstein, respectively and was reignited in the mid-1920’s by the hands of
Schrödinger, Heisenberg, and Born who were key in the development of an all encompassing theoretical
framework which described the world at atomic scales. Even though quantum mechanical tools were
employed at mass to solve various physical problems, a comprehensive mathematical formalism of
the theory was not formed until around the 1920’s, beginning with two formulations: Schrödinger’s
wave mechanics and Heisenberg’s matrix mechanics. These two formalisms, while supplying the
mathematical framework for which to operate in, was not mathematically rigorous.

In the 1930’s, mathematician John von Neumann and Paul Dirac employed the recently developed
tools of functional analysis to put the theory on a firm mathematical foundation. Dirac introduced an
informal mathematical framework using so-called bra-ket notation which was able to extend the linear
algebra of finite dimensional spaces to infinite dimensional spaces. In this framework, wavefunctions
and observable eigenfunctions were represented as kets. One could convert a ket into a bra by complex
conjugation. Multiplying a bra and a ket led to a result reminiscent of the inner product. On the
other hand, multiplying a ket with a bra lead to a projection-like operator. When the bras and kets
corresponded to wavefunctions in the Hilbert space, the notation was justified by the inner product.

However, physicists applied the formalism to eigenvectors of continuous observables such as mo-
mentum and position. In this case, the eigenvectors were not in the Hilbert space so that the inner
product notation no longer applied. With the help of von Neumann, his theory was put on a math-
ematically rigorous, axiomatic foundation, the so-called Dirac-von Neumann formulation of quantum
mechanics. However, the mathematical framework ran into one pitfall. It could only rigorously ac-
count for physical phenomena with a discrete spectrum. Many axioms and theorems of the Dirac-von
Neumann framework broke down when the system had a continuous spectra. Regardless, physicists
were able to apply the theory and Dirac notation with great success by ignoring the mathematical
inconsistencies and discrepancies. However to mathematical and theoretical physicists, the inconsis-
tency of the theory was deeply troubling and even today there is active research in extending the
Dirac-von Neumann formalism to cover all classes of problems.

The rigged Hilbert space formalism of quantum mechanics is highly suggested to be natural setting
of quantum mechanics and is able to successfully account for quantum mechanical problems where
the a continuous spectrum is prevalent. Loosely, speaking the rigged Hilbert space is a triple of spaces

Φ ⊂ H ⊂ Φ×

where Φ is a dense subspace of H with a finer topology than H, H is a Hilbert space, and Φ×

is the anti-dual space of Φ. The space assigns rigorous definitions to Dirac’s bras and kets and
provides justification for its use by physicists in continuous spectra problems. A key result from the
rigged Hilbert space formalism is the nuclear spectral theorem. The theorem ensures that self-adjoint
operators have a complete set of eigenkets in the rigged Hilbert space. That is, wavefunctions can be
decomposed in terms of the eigenkets. Furthermore, it allows the observables to be diagonalized by
the eigenkets which justifies the representation of wavefunctions induced by observables.

In this thesis, we illustrate the theory by applying it to the potential barrier. Our illustration is
largely based on a more in-depth treatment by de la Madrid that can be found in [1].

Recently, non-hermitian observables, such as PT-symmetric Hamiltonians, have become of interest
in quantum mechanics. A notable example is that of the imaginary cubic harmonic oscillator given
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by

H =
−~2

2m

d

dx
+ ix3

For some time, it was believed that observables in quantum mechanics must be hermitian, as this
ensures the spectrum is real. In 1998, Physicist Carl Bender discovered a class of non-hermitian
operators that have a real spectrum, the so called PT-symmetric operators. There was no longer
any reason to believe that nature is restricted to only hermitian observables and it was soon discov-
ered that the field had far-reaching applications in optics and electronics. Specifically, PT-symmetric
Hamiltonians corresponded to balanced gain and loss in optical systems. Currently, the field primar-
ily restricted itself to special classes of PT-symmetric operators that satisfy certain nice properties.
Common assumptions on the operators are that they have a discrete spectrum and are diagonalizable
from which it follows that the operator has a complete eigenbasis in the Hilbert space. The math-
ematical properties of this restricted class of PT-symmetric operators has been thoroughly studied
by Mostafazadeh et al. One especially nice result proven by Mostafazadeh is that the class of diag-
onalizable PT-symmetric operators with a discrete spectrum are necessarily pseudo-hermitian[2]. He
further states that nearly all classes of non-hermitian operators studied by physicists in the field fall
under the class of pseudo-hermitian operators.

While diagonalizable PT symmetric operators with discrete spectrum have been rigorously stud-
ied in literature, there has been little attention given to putting the general class of PT-symmetric
operators in a rigorous framework. We attempt to rectify this by putting non-hermitian quantum
mechanics in the rigged Hilbert space framework. Specifically, we offer a possible extension of the
nuclear spectral theorem to the class of quasi-hermitian operators. An operator A : H 7→ H is called
quasi-hermitian if its similar to its adjoint by a bounded positive definite operator.

A∗ = ηAη−1

When the requirement for η to be positive definite is removed, we call the operator pseudo-hermitian.
We restrict ourselves to the class of quasi-hermitian operators which encompass a large number of
PT-symmetric operators treated in literature[3][4][2]. The more general case of pseudo-hermitian
operators where the metric operator is indefinite will not be treated and likely cannot be treated by
the methods developed in this thesis. It should be noted that even in the case where the Hamiltonian
is discrete and diagonalizable to its eigenvectors are in the Hilbert space, a rigged Hilbert space
formulation is necessary to incorporate the momentum and position observables and their wavefunction
representations.

The fundamental result of this thesis is the extension of the nuclear spectral theorem to quasi-
hermitian operators. We show that for a dense subspace of the Hilbert space where the quasi-hermitian
operator is defined, one can decompose the wave-function kets in terms of the eigenkets and eigenbras
of the operator. We also show that the observable and its adjoint can be diagonalized by these
eigekets. The construction relies on using the rigged Hilbert space induced by the Hilbert space
where the operator is hermitian. The eigenkets are present in this rigged Hilbert space, specifically in
the anti-dual space of a dense subspace of the Hilbert space where the observable is hermitian. Since
there is not necessarily an isomorphism of the original Hilbert space into the anti-dual space where the
eigenkets are located, we were unable to find a natural rigging of the original Hilbert space. It should
also be noted that the dense subspace where our extended nuclear spectral theorem applies is required
to be left invariant under the action of the observable and its corresponding metric operator. The
conditions we impose are the minimal conditions necessary so that that the eigenkets of the observable
and its adjoint are in the rigged Hilbert space. In practice, there is no general way of constructing
such an invariant subspace. Furthermore, there is no guarantee that the space even exists for a general
quasi-hermitian operator. It is possible that the conditions are only satisfied in the trivial case where
the operator is hermitian. However, since the conditions required are minimal, if the theorem is only
satisfied in the trivial case, it is reasonable to believe that the nuclear spectral theorem can not be
extended to the quasi-hermitian case. At least not in its general form and not by our method. We
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also discuss how to extend the theory to account for a quantum system described by a collection
of quasi-hermitian and hermitian observables. In the case where the Hamiltonian is non-hermitian
but has a complete set of eigenvectors, we present sufficient conditions for a rigged Hilbert space to
exist such that the Hamiltonian, momentum, and position operator have a complete set of eigenkets.
Lastly, we discuss possible extensions of the theory. Specifically, we propose an alternative method
of extending the nuclear spectral theorem by means of a spectral representation of quasi-hermitian
operators with respect to an operator-valued measure.

1.3 Dirac formulation of Quantum Mechanics
In this section, we will briefly discuss how quantum mechanical problems are solved. For simplicity,
we will consider the case of a single particle restricted to move in one dimension.

In general, a particle of mass m in one dimension is described by the Schrödinger equation

i~
∂

∂t
ψ = Ĥψ (1)

where

Ĥ = − ~2

2m

∂2

∂x2
+ V (x)

By separation of variables, one can obtain definite energy solutions of equation (1). The eigenso-
lutions are given by:

ĤψE(x) = EψE(x)

The general solution with definite energy is then

ψ(x, t) = e−
i
~EtψE(x) (2)

In general, a quantum mechanical problem is solved when the solutions of the time-independent
equation are known. Since equation (1) is linear, all solutions of (1) are linear combinations of solutions
of form (2).

The solutions ψ of (1) are called wave functions which can be interpreted as probability distribu-
tions as follows:

|ψ|2 is a probability density.

We thus require wave functions to satisfy ∫
|ψ|2dx = 1

The Dirac Formalism relies on the following key assumptions:[5]

1. To each quantum mechanical system, there is a corresponding separable Hilbert Space containing
all realisable states of the system. We call the possible states of the system wave functions and
require them to be normalised to 1 under integration.

2. To each Observable of the system, there is a corresponding self-adjoint operator defined on some
domain contained in the Hilbert Space. The possible measurements of the observable are exactly
the necessarily real spectra of the self-adjoint operator.

3. To each element λ in the spectrum Λ of the observable A, there exists a corresponding ket |λ〉
that is an eigenvector of A with eigenvalue λ.

A |λ〉 = λ |λ〉
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4. Every wave function ϕ can be expanded by these eigenkets as

ϕ =

∫
Spectrum(A)

dλ |λ〉 〈λ|ϕ〉

5. The eigenkets are normalised to satisfy

〈λ|λ′〉 = δ(λ− λ′)

where δ(λ− λ′) is the Dirac delta function.

6. All algebraic operations such as commutator relations, products of observable, expectations and
variances are well-defined.

In general, the dynamics of a quantum system are described by its (time independent) Hamiltonian.
The Hamiltonian is defined as a self-adjoint operator on a Hilbert space and whose structure is given
by Schrödinger’s equation. The eigenvectors of the Hamiltonian are possible energy eigenstates that
the particle can be in and the corresponding spectra represents the possible energy values that can
be measured. When the Hamiltonian has a discrete spectrum, as in the case of the infinite well
potential, the eigenstates are functions in the Hilbert Space and thus are realisable particle states.
Furthermore, the eigenstates of the Hamiltonian form a complete orthogonal basis of the Hilbert space.
Thus by decomposing arbitrary wave functions in this basis by use of the inner product, we obtain
the expansion given in rule (4). Further by orthogonality of the eigenstates, rule (5) is satisfied. The
other rules can like-wise be satisfied.

In this case, bras and kets can be interpreted as the left and right halves of the inner product.
Multiplying a bra by a ket is simply the inner product. Similarly, Multiplying a ket by a bra gives
a linear operator such that it acts on wave functions by projection on the kets (as functions in the
Hilbert space) using the inner product.

We see that in the discrete spectrum case, as expected, the Dirac formulation holds. One may ask
where it goes wrong in the continuous spectra case?

To this end, consider the momentum operator which can be defined on a dense subset of the Hilbert
space such that it is self-adjoint.

P̂ = i~
d

dx
It can be checked that the eigenstates are pure waves of the form

|p〉 = eikx

which are non-normalisable and not in the Hilbert space. As a result, the eigenfunctions certainly
cannot be a basis for the Hilbert space. Thus, we are unable to use the inner product structure
to obtain decomposition in rule 4 as before. However, by using the Fourier transform of the wave
function and the delta function, we can obtain rule (4) and (5). In this case, it is incorrect to interpret
bras and kets as halves of the inner product as they are not even in the Hilbert space. Instead the
eigenkets and eigenbras are anti-linear and linear functionals respectively on the Hilbert space.

Where for the case of the momentum operator, the eigenkets are the following linear maps:

|p〉 : H 7−→ C
ϕ(x) 7→ |p〉 (ϕ) =

∫∞
−∞

1
2π~e

ipx/~ ϕ dx

Since the map exists for all p, we can define a function ϕ̂(p) := |p〉 (ϕ(x)). It is easy to see that this
corresponds exactly with the Fourier transform of the wave function. We will later see that such maps
will let us define the position, momentum, and energy representations of wavefunctions in a rigorous
way.
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1.4 Introduction to the Mathematics of Rigged Hilbert Spaces
If one lacks the mathematical background, one should first consult the mathematical framework section
before attempting to read this section. This section is presented to offer a short concise overview of
the rigged Hilbert space and how it relates to quantum mechanics.

In this thesis, the rigged Hilbert space formulation of quantum mechanics is presented. The rigged
Hilbert space formulation of quantum mechanics allows for the bras and kets of the Dirac notation
to be rigorously defined. Furthermore, the space is constructed to contain a complete set of eigenkets
for all observables. This is in contrary to the Hilbert space formulation where only observables with
discrete spectrum have eigenvectors in the space. Loosely speaking, the rigged Hilbert space

A rigged Hilbert space is a triplet of spaces Φ, H,Φ× where H is the Hilbert space, Φ is the space
of realizable wavefunctions equipped with a finer topology than H, and Φ× is the space of anti-linear
continuous functions on Φ. The finer topology essentially tells us that H× ⊂ Φ×. In physics, one
often writes a wave function ϕ as a ket |ϕ〉. Similarly, one can write it as a bra 〈ϕ| := |ϕ〉. Given two
wave functions ϕ and ψ, written as kets as |ϕ〉 and |ψ〉, one takes their inner product by multiplying
the bra 〈ϕ| with the ket |ψ〉. We have

(ϕ,ψ)H = 〈ϕ|ψ〉 .

While |ϕ〉 and 〈ϕ| are often interpreted as being wave functions, this is technically incorrect. While
all wave functions can be written as kets, not all kets are wave functions. There are kets that are not
in the Hilbert space that are essential in quantum mechanics. To see this, consider the momentum
operator. One can show that the momentum operator P = −i~ d

dx has eigenfunctions written eikx

where k = p/~. One often writes these as eigenkets (incorrectly) as |p〉 = eikx. These eigenfunctions
are not normalizable and not in the Hilbert space. As a result, they are not realizable particle
states and are not wavefunctions. However, by means of the Fourier transform, one can decompose
wavefunctions in terms of momentum eigenkets. The momentum eigenkets act like an orthonormal
basis for the Hilbert space and can be used to, in a way, diagonalize the momentum operator.

A better description of a ket is as an element of the anti-dual space Φ× in the rigged Hilbert space.
One can associate with each wave function ϕ ∈ Φ an anti-linear functional |ϕ〉 ∈ H× ⊂ Φ× by use of
Riesz representation theorem. We write

|ϕ〉 := (·, ϕ)H .

By definition, the bra 〈ϕ| is written
〈ϕ| = (ϕ, ·)H

In the case of the momentum operator, one writes the eigenkets as

|p〉 ( · ) =

∫
R
( · )eipx/~dx.

Similarly to how we associated wave functions to elements of the anti-dual space. We can extend
continuous operators defined on Φ to operators on Φ×. For example, the momentum operator when
considered as a map on Φ has no eigenfunctions. However, if we extend it to a map on Φ×, we can
find a system of eigenkets which are exactly |p〉. A similar construction can be made for the position
operator and Hamiltonian operators with continuous spectrum. It is necessary to extend the operator
so that it acts on kets and bras rather than just wave functions.

Let A : Φ 7→ Φ be continuous and for simplicity self-adjoint on H then we define its extension by
A× : Φ× 7→ Φ× as follows. Let |ϕ〉 ∈ Φ× and ψ ∈ Φ

A× |ϕ〉 (ψ) := |ϕ〉 (Aψ)

When |ϕ〉 is the ket associated to a wavefunction ϕ ∈ Φ, one can check that the above can be written

A× |ϕ〉 (ψ) := |Aϕ〉 (ψ)

9



We call the eigenfunctions of the extension A× of an operator A generalised eigenfunctions of A.
The eigenkets of A are exactly these generalised eigenfunctions.

In physics, one often sandwiches an observable A in between a bra and a ket. This is generally
written as

〈ψ|A |ϕ〉

However, the above is only well defined when ϕ and ψ are in the Hilbert space so that we can rewrite
the above equation as an inner product. It is better written as 〈ψ|A× |ϕ〉. One can compute this to
be

〈ψ|A× |ϕ〉 = (ψ,Aϕ)H

where the result is what we would expect.
Given a self-adjoint observable A : H 7→ H and a rigged Hilbert space Φ ⊂ H ⊂ Φ× such that

AΦ ⊂ Φ, one can show that A has a complete set of eigenkets in Φ×. This is the essence of the nuclear
spectral theorem. The eigenkets are complete in the sense that the elements of ϕ can be written
in terms of these eigenkets, and the operator A can be diagonalized in terms of these eigenkets.
For the momentum operator, the decomposition is intimately linked with the Fourier transform.
The nuclear spectral theorem ensures that given an observable and a possible wavefunction for the
quantum mechanical system, we can find the probability of measuring some value of the observable
for the quantum system.

2 Mathematical Framework
In this thesis, the necessary mathematics needed to rigorously describe quantum mechanics in the
rigged Hilbert space formulation is presented. The basic theory of linear spaces is essential and will
be briefly treated in Appendix A. An important topic is that of topological vector spaces which is the
study of linear spaces equipped with a topology. Such spaces generalise the usual notions of Banach
and Hilbert spaces. We are especially interested in locally convex spaces which are topological vector
spaces in which the topology is generated by a family of semi-norms. We will require the family of semi-
norms to countable and the space to be complete. A locally convex space satisfying these conditions
is an example of a Fréchet space. In the case where the semi-norms in the family are simply norms
induced by a family of inner products, the space is called a countably Hilbert space. For quantum
mechanical applications, we will restrict ourselves to such spaces. We will further present various
classes of operators and notions of their spectrum. These include bounded, unbounded, compact,
Hilbert-Schmidt, and nuclear operators. Notably, closed, symmetric, essentially self-adjoint, and self-
adjoint operators will be discussed. Afterwards, we will present the concept of the rigged Hilbert
space and the nuclear spectral theorem. Also, we will study representations(isomorphisms) of rigged
Hilbert spaces. We will provide formal definitions for bras and kets and justify the manipulations
often used by physicists. The momentum operator will be used as a case study to give meaning to
the various notions.

2.1 Topological Vector Spaces
A topological vector space generalises the notion of a normed vector space by equipping the linear
space with an arbitrary topology rather than the topology induced by the norm.

Definition 2.1. Let Φ be a set and let P (Φ) denote the power set of Φ. A subset τΦ ⊂ P (Φ) is a
topology if all its elements satisfy the following conditions:

1. ∅ ∈ τΦ and Φ ∈ τΦ

2. The union of arbitrarily many elements of τΦ is in τΦ

3. The intersection of finitely many elements of τΦ is in τΦ

10



We call the pair (Φ, τΦ) a topological space. Further, the elements of τΦ are called open sets.

With this notion, we can generalise the definition of continuity of functions to arbitrary topological
spaces.

Definition 2.2. Let (X, τX) and (Y, τY ) be topological spaces and f : X 7→ Y a function between
them. We say f is continuous if

∀OτY ∈ τY , f−1(OτY ) ∈ τX

In other words, the pre-image of an open set is open.

The notions of convergence of sequences in metric spaces can be extended to topological spaces as
follows:

Definition 2.3. A sequence {ϕ}n ∈ (X, τX) converges to ϕ ∈ X if for all open sets O ∈ τX where
ϕ ∈ O, we have that there exists a N ∈ N such that ∀n ≥ N , ϕn ∈ O.

We then say that limτX ϕn = ϕ
Given two topologies τX1

, τX2
of a set X, we say that τX1

is finer than τX2
if τX2

⊂ τX1
. Similarly,

we say that τX1
is courser than τX2

if τX1
⊂ τX2

Remark. Note that continuous functions between two topological spaces X and Y will remain contin-
uous when X is given a finer topology. It is not guaranteed that the functions will remain continuous
whenX is given a courser topology. On the other hand, when Y is given a courser topology, continuous
functions will remain continuous. Once again, when Y is given a finer topology, it is not guaranteed
that the functions remain continuous.

We are now ready to state the definition of a Topological Vector Space(T.V.S).

Definition 2.4. The algebraic operations + and · on a topological vector space (Φ, τΦ) are continuous
if they are continuous as functions

+ : Φ× Φ 7→ Φ given by (ϕ,ψ) 7→ ϕ+ ψ

and

· : C× Φ 7→ Φ given by (c, ψ) 7→ c · ψ

Where the space Φ× Φ is endowed with the product topology induced by Φ

Definition 2.5. A space Φ is a topological vector space if

• Φ is a linear space.

• Φ is a topological space.

• The algebraic operations on Φ are continuous.

For our purposes, we will be interested in a special class of topological vector spaces known as
locally convex vector spaces. These spaces are similar to normed vector spaces except the topology is
induced by a family of semi-norms rather than a single norm.

2.1.1 Locally Convex Linear Spaces

We will begin by studying linear spaces on which semi-norms are defined. The following definitions
and theorems are taken from [6] and [7] We refer to these sources for a more in-depth treatment.

A semi-norm is simply a norm with the condition of non-degeneracy removed.
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Lemma 2.1. Let p : X 7→ R be a semi-norm on a linear space X. Then the following properties hold
∀x, y ∈ X

1. p(0) = 0

2. p(x) ≥ 0

3. |p(x)− p(y)| ≤ p(x− y)

Definition 2.6. Given a semi-norm p on a linear space X, we call

By,ε(p) = {x ∈ X : p(y − x) < ε}

a p-semiball of radius ε centered at y ∈ X.
Given a finite collection of semi-norms p1, . . . , pn , we call

By,ε(p1, . . . , pn) = By,ε(p1) ∩ · · · ∩By,ε(pn)

the (p1, . . . , pn)-semi-ball of radius ε > 0 centered at y ∈ X

The above notion of semi-balls will allow us to definite a topology on a linear space as follows:

Definition 2.7. Let X be a linear space and P be a family of semi-norms on X. We define a topology
on X by calling A ⊂ X open if ∀x ∈ X,∃ε > 0 and p1, . . . , pk ∈ P such that Bx,ε(p1, . . . , pk) ⊆ A.
The space (X,P) with the above topology is called a locally convex space.

The above definition can be simplified by the following claim.

Lemma 2.2. Let (X,P) be a locally convex space and p1, . . . , pk ∈ P. Let p(x) : X 7→ R be defined
as

p(x) = max{p1(x), . . . , pk(x)}

then p(x) is a seminorm.

Theorem 2.3. Let P = P
⋃
{max{p1(x), . . . , pk(x)}, p1, . . . , pk ∈ P} then τP = τP . Thus (X,P)

and (X,P) are topologically equivalent.

By the above theorem, given any locally convex space, we can always work with the so-called
closure of P. This is convenient since By,ε(p1, . . . , pn) = By,ε(p) where p = max{p1, . . . , pn}. Thus
we the locally convex topology is induced purely by p-semi-balls. We will from now on always assume
that the set of semi-norms is closed.

Using the definition of convergence in topological spaces, it can be readily checked that the following
lemma holds.

Lemma 2.4. Let (X,P) be a locally convex space. A sequence xk ∈ X converges to x ∈ X if and
only if

p(xk − x)→ 0, ∀p ∈ P

in the topology of R

By the above results, we can now prove necessary and sufficient conditions for functions on locally
convex spaces to be continuous.

Theorem 2.5. Let (X,P ) and (Y,Q) be locally convex spaces.

• f : X 7→ Y is continuous iff ∀x ∈ X, ε > 0, q ∈ Q,∃p ∈ P, δ > 0 such that

z ∈ Bx,δ(p) =⇒ q(f(x)− f(z)) < ε

12



• If f is linear, then f is continuous iff ∀q ∈ Q,∃p ∈ P, C > 0 such that

q(f(x)) ≤ Cp(x)

• an arbitrary semi-norm q : X 7→ R on X is continuous iff ∃p ∈ P, C > 0 such that

q(x) ≤ Cp(x)

Corollary 2.5.1. Let (X,P) and (Y,Q) be locally convex spaces such that X ⊂ Y . The following
statements are equivalent:

1. The embedding i : X 7→ Y is continuous.

2. ∀q ∈ Q,∃p ∈ P, C > 0 such that
q(x) ≤ Cp(x)

3. The restriction of every semi-norm of (Y,Q) to (X,P) is continuous.

For our purposes, we wish to add further properties to our locally convex space in order for it to
be nicely behaved. This will lead us to study Fréchet spaces.

2.2 Fréchet Spaces
A Fréchet space is a locally convex space such that the family of semi-norms is countable and the
space is complete with respect to its topology. Furthermore, we impose a separating condition so that
the induced topology is Hausdorff. Under these conditions, the space is metrizable, meaning it is well
enough behaved that we can define a metric on the space.

Definition 2.8. A sequence {xn} in a locally convex space is Cauchy if it satisfies

∀p ∈ P, p(xj − xk)→ 0 as j, k →∞

A locally convex space (X,P) is complete if all Cauchy sequences have a limit in X.

Definition 2.9. A family of semi-norms P on X is called separating if for any x ∈ X − {0}, there
exists a p ∈ P such that p(x) 6= 0. Under this condition, the space (X, τP) is Hausdorff.

Definition 2.10. A Fréchet space is a locally convex space where (X,P) has countable and separating
P, and is complete.

Theorem 2.6. Open Mapping Theorem for Frechét Spaces
Let A : X 7→ Y be a continuous surjective map between the Frechét spaces X,Y . Then, A is an

open mapping. It follows that if A is bijective then it has a bounded inverse A−1.

Example 2.7. A well-known example of a Fréchet space that plays a key role in quantum mechanics
is the Schwartz space. This space is handy since many expectation values and differential operators
used in quantum mechanics are well defined. Furthermore, the Fourier distribution is well-defined on
the space.

The Schwartz space[7] is defined as

S(Rn) = {f ∈ C∞(Rn) : ||f ||α,β <∞ ∀α, β ∈ Nn}

where ||f ||α,β is a family of norms given by

||f ||α,β = sup
x∈Rn

|xαDβf(x)|

where the α, β are to be read in the multi-index notation.
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2.3 Countably Hilbert Space
A countably Hilbert Space is a special case of a Fréchet space where the semi-norms are induced by
inner products. These spaces and their dual spaces will be key in defining the notions of a Rigged
Hilbert Space. To this end, we will explore these spaces in detail.

Definition 2.11. A countably Hilbert space is a linear space Φ on which a countable number of inner
products is defined. In other words, for any ϕ,ψ ∈ Φ, we have that there exists

〈ϕ,ψ〉1, 〈ϕ,ψ〉2, 〈ϕ,ψ〉3, . . .

Further, we require the induced norms to be compatible so that if a sequence is Cauchy in || · ||p
and || · ||q and it converges to zero in one of the norms, then it also converges to zero in the other.
Without loss of generality[8], it can be assumed that the inner products satisfy

〈ϕ,ϕ〉1 ≤ 〈ϕ,ϕ〉2 ≤ 〈ϕ,ϕ〉3 ≤ . . . (3)

Note that from the inner-products, the following countable family of norms can be defined as

||ϕ||p =
√
〈ϕ,ϕ〉p

We can turn the countably Hilbert space into a locally convex space by equipping it with a family
of (semi)norms P := {|| · ||p}p∈N. The theory of the previous sections can then be used to induce a
topology from these norms. We will always assume that the countably Hilbert space is equipped with
the induced locally convex topology. Since the family of semi-norms P is actually a countable family
of norms, it follows that a countably Hilbert space is a countable, separating locally convex space.

As a result, by taking the completion of a countably Hilbert space, we obtain a Fréchet space.

Theorem 2.8. The completion of a countably Hilbert space is Fréchet.

We are only interested in complete countably Hilbert spaces, therefore we will always assume that
our countably Hilbert space is Fréchet.

It is interesting to know whether a (complete) countably Hilbert space is equivalent to some Hilbert
space with respect to its topology. It turns out that there is a topologically equivalent Hilbert space
only when the countably Hilbert space topology can be induced by a finite family of semi-norms.[8]

2.3.1 Dual space of a countably Hilbert Space

Let Φn denote the completion of a countably Hilbert space Φ with respect to the topology induced
by its nth inner product. Equip the set Φn with the nth inner product so that Φn is a Hilbert space.

Now, since
||φ||1 ≤ ||φ||2 ≤ ||φ||3 . . .

a sequence that converges in Φ with respect to the || · ||n norm must also converge with respect to
|| · ||k for all k ≤ n. Thus the completed spaces Φi satisfy the following nested relation:

Φ1 ⊃ Φ2 ⊃ Φ3 ⊃ . . .

We can obtain a similar relation for their dual spaces. Recall that,

Definition 2.12. A (anti)linear functional f : Φn 7→ C is continuous iff

∃C > 0 such that f(ϕ) ≤ C||ϕ||n for all ϕ ∈ Φn
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If a linear functional f is continuous as a map from Φn then it must also be continuous as a
map from Φk, ∀k ≥ n by the compatibility of the inner products in (3). In other words, continuous
functionals on Φn are continuous functionals on Φm,∀m ≥ n.

It follows, after identifying a function with the function obtained from restricting its domain, that
the dual and anti-dual space satisfy the following relation:

Φ′1 ⊂ Φ′2 ⊂ Φ′3 ⊂ · · · ⊂ Φ′

Φ×1 ⊂ Φ×2 ⊂ Φ×3 ⊂ · · · ⊂ Φ×

To find the dual space of the countably Hilbert space Φ, we use the following result.
By Theorem 2.5, a linear functional f : Φ 7→ C is a continuous iff it is bounded with respect to one

norm in the countably Hilbert space. That is,

∃p ∈ N , C > 0 such that f(ϕ) ≤ C||ϕ||p for all ϕ ∈ Φ

Any continuous functional on Φ that is bounded with respect to the norm ||·||n, where n is arbitrary,
can be uniquely extended to a continuous functional on Φn since Φ is dense in Φn. Identifying the
functional with its extension, we find

Φ′ ⊂
∞⋃
n=1

Φ′n (4)

Similarly, by Theorem 2.5 the restriction of continuous functionals of Φn to Φ are necessary continuous
with respect to Φ. Thus identifying elements of the dual space of Φn with its restriction to Φ, we find
that

∞⋃
n=1

Φ′n ⊂ Φ′ (5)

Combining equations 4 and 5 gives

Φ′ =

∞⋃
n=1

Φ′n

Similarly, we find

Φ× =

∞⋃
n=1

Φ×n

From the above it follows that the (anti)dual space of a countably Hilbert space is larger than the
dual space of the Hilbert spaces Φn.

2.4 Linear operators on Linear Spaces and their Spectrum
In quantum mechanics, observables are represented as self-adjoint linear maps defined on a Hilbert
space. We will introduce the necessary notions of bounded, unbounded, and compact operators; as
well as the notion of the adjoint of an operator. Further, we will study the eigenvalues and eigenvectors
of special types of operators. Nuclear operators which are key in the construction of Nuclear Fréchet
spaces and Rigged Hilbert spaces will be introduced as well.

Definition 2.13. A linear operator A on a Hilbert space H is a linear map A : H 7→ H. We call the
map A bounded if ∃C > 0 : ∀x ∈ H, ||Ax|| ≤ C||x||. Otherwise, the map is unbounded.

We will denote by B(H) to be the set of all bounded operators on the space H that map to H.
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2.4.1 Bounded operators In Hilbert spaces

Definition 2.14. We say that a bounded linear operator A ∈ B(H) is invertible if A has a bounded
inverse.

Theorem 2.9. If an operator A : H 7→ H is bounded then there exists a unique operator A∗ : H 7→ H
such that

〈Ax, y〉 = 〈x,A∗y〉

∀x, y ∈ H

The operator A∗ is called the adjoint of A.

Definition 2.15. if A = A∗ then we call A self-adjoint or hermitian

Definition 2.16. We call a bounded operator A normal if satisfies

A∗A = AA∗

It is easy to see that all self-adjoint operators are normal. However, the converse is not necessarily
true.

A special case of a normal operator is the so called unitary operator.

Definition 2.17. A unitary operator U on a Hilbert space H is an operator that satisfies

||Uf || = ||f ||, ∀f ∈ H

Further, it can be shown that U satisfies

UU∗ = U∗U = I

A similar notion is that of partial isometries. It is trivial that unitary operators are a special case
of partial isometries.

Definition 2.18. An operator U on H is a partial isometry if it is unitary on the orthogonal com-
pliment of its kernel. Equivalently, we say that there is some closed subspace M ⊂ H such that the
restriction of U to M is unitary.

In other words,
U∗U = PM

where PM is the orthogonal projection onto the subspace M .

Definition 2.19. We call an operator A ∈ B(H) compact if for every bounded sequence {ϕn} ∈ H,
the sequence {Aϕn} has a convergent subsequence in H.

Definition 2.20. An operator A ∈ B(H) is positive definite if it is a self-adjoint operator such that

〈Aϕ,ϕ〉 > 0, ∀ϕ ∈ H such that ϕ 6= 0

2.4.2 The Spectrum of Bounded Operators

Definition 2.21. Let A be in B(H). The resolvent set of A is

Re(A) = {λ ∈ C : (A− λI) is invertible }

The spectrum of A is the complement of the resolvent set given by

σ(A) = C \Re(A)

It is known that the resolvent set is open and thus the spectrum is closed in C. [9]
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Definition 2.22. We call an element ϕ ∈ H an eigenvector of an operator A ∈ B(H) and λ ∈ C its
corresponding eigenvalue if

Aϕ = λϕ

Clearly, eigenvalues are in σ(A).

Theorem 2.10. The spectrum of a bounded operator A ∈ B(H) is a bounded closed set in C. Addi-
tionally,

|λ| ≤ ||A||

where ||A|| is the operator norm of A given by

||A||B(H) = sup
ϕ∈H

||Aϕ||H
||ϕ||H

In quantum mechanics, the spectrum can be divided into two groups called the discrete spectrum
and continuous spectrum. The discrete spectrum of an operator A consists of all its eigenvalues. The
remaining elements of σ(A) are in the continuous spectrum. This is departure from the spectral theory
of operators on finite dimensional spaces where the spectrum is always discrete. We see that elements
in the spectrum do not necessarily have a corresponding eigenvector.

Theorem 2.11. The spectrum of a self-adjoint operator is always real.

2.4.3 Bounded Operator decompositions and Nuclear Operators

In general, self-adjoint operators(not necessarily bounded) can be diagonalised in its so-called spectral
decomposition.

The spectral decomposition is given below for the special case of a compact self-adjoint operator.

Theorem 2.12. Let A ∈ B(H) be a compact self-adjoint operator then A can be decomposed in terms
of its eigenvectors en and eigenvalues λn as

Aϕ =

∞∑
n=1

λn〈ϕ, en〉

In general, a compact operator can be decomposed as the product of a partial isometry and a
positive definite operator.

Theorem 2.13. Let A be a compact operator in B(H). Then A can be written as

A = U |A|

where U is a partial isometry on the range of A and |A| is a positive definite operator.

The decomposition allows us to define a diagonal decomposition of compact operators.

Theorem 2.14. Any compact operator A ∈ B(H) can be written as

Aϕ =

∞∑
n=1

λi〈ϕ, en〉hn

where en are eigenvectors of |A| and hn are given by hn = Uen. The en are normalized so that {en}
and {hn} each form an orthonormal basis of H.

Stricter conditions on the above decomposition give a new class of operators.
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Definition 2.23. A compact operator A = U |A| is called Hilbert-Schmidt if
∑∞
n=1 λ

2
n <∞ where λn

are the eigenvalues of |A|. Furthermore, we call the operator decomposition given in theorem 2.14,
the Hilbert Schmidt decomposition.

An even stricter class of operators are the nuclear operators which are key in the construction of
Nuclear Hilbert spaces.

Definition 2.24. A compact operator A is called nuclear or trace class if
∑∞
i=1 λn < ∞ where λn

are the eigenvalues of |A| in the Hilbert-Schmidt decomposition.

It can be seen that all nuclear operators are necessarily Hilbert-Schmidt.
With the notion of nuclear operators, one can extend the definition of trace in finite dimensional

of spaces to infinite dimensional spaces.

Definition 2.25. The trace of an operator A that can be written in the form given in theorem 2.14
denoted by Tr(A) is defined as

∞∑
n=1

〈en, Aen〉

where en form an orthonormal basis of H. It is known that its value is independent of the choice of
basis.

Theorem 2.15. An operator admitting a Hilbert-Schmidt decomposition is nuclear if and only if it
has finite trace. Further, the trace of a nuclear operator is given by

Tr(A) =

∞∑
i=1

λn

2.4.4 Unbounded Linear Operators

In quantum mechanics, possible measurement values are given by the spectrum of a self-adjoint oper-
ator. The spectrum is necessarily real and so are our measurements. In many cases, it is known that
the possible measurement values are unbounded. For example, an electron’s energy and momentum
is unbounded from above. Since bounded operators have a bounded spectrum, these are not ideal
candidates to describe quantum systems. Thus one generally requires that the observables are un-
bounded self-adjoint operators defined on a Hilbert space. Unfortunately, there are a few caveats that
arise from this as we will see. The existence of an adjoint for unbounded operators is not guaranteed
unlike in the case of the bounded operators. Furthermore, self-adjoint unbounded operators must be
defined on a strict subspace (ideally dense) of the Hilbert space. From now on, we will always assume
the operators are densely defined in H.

Definition 2.26. Let A and B be two operators defined on a (dense) subset of H. Denote their
respective domains by D(A) and D(B). A is an extension of B if D(B) ⊂ D(A) and Aϕ = Bϕ, ∀ϕ ∈
D(B). We then say that B ⊂ A and further that B is the restriction of A to D(B)

For a special class of operators, one can define its unique extension called its closure.

Let A be an unbounded operator onH. We will denote its extension by A which will be constructed
as follows. The following argument is based on the construction given in [8]. Let {ϕn} ∈ H be a
Cauchy sequence. Suppose {Aϕn} is also Cauchy, then since both Cauchy sequences must converge
in H, we can define ϕ = limϕn and ψ = limAϕn. We then say that Aϕ = ψ. However, for this
extension to be well defined, we require that the limit of the Cauchy sequence Aϕn is independent of
the chosen Cauchy sequence that converges to ϕ. If A is continuous/bounded then it is trivial that if
any two Cauchy sequences ϕn and ϕ′n converge to ϕ then Aϕn and Aϕ′n both converge to ψ. In the
case of unbounded operators, this is not guaranteed.

The class of operators A for which the above extension A exists are called closable. The definition
of a closable operator can be put in a more rigorous form by use of its graph.
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Definition 2.27. The graph of an operator A denoted by G(A) is defined as the set

G(A) = {(ϕ,Aϕ) : ϕ ∈ D(A)} ⊂ D(A)×D(A)

Definition 2.28. An operator A is closed if its graph G(A) is closed in the product topology. If
there exists an operator A such that G(A) = G(A) then we say that A is the closure of A. Clearly, A
extends A.

Definition 2.29. An operator A is closable if its extension A exists. Further, an operator A is called
closed if

A = A

2.4.5 Spectral notions and classes of Unbounded Operators

Definition 2.30. Let A be a closed unbounded operator on H. The resolvent set Re(A) is defined as

Re(A) := {λ ∈ C : (A− λI) is a bijection from D(A) 7→ H with bounded inverse}

The definition of spectrum, discrete spectrum, and continuous spectrum are the same as in the
bounded case.

Whenever an unbounded operator is densely defined, we can define its adjoint.

Definition 2.31. Let A : D(A) ⊂ H 7→ H be an unbounded densely defined operator. We define the
domain of the adjoint of A, A∗ by

D(A∗) = {f ∈ H : ∃z ∈ H such that 〈f,Ag〉 = 〈z, g〉, ∀g ∈ H}

We define A∗ by A∗f = z. The element z is unique by the denseness of D(A) so A∗ is well defined.
Thus

〈f,Ag〉 = 〈A∗f, g〉, ∀f ∈ D(A), ∀g ∈ D(A∗)

Theorem 2.16. The adjoint A∗ of A is always closed.

The notion of a self-adjoint operator can be generalised by symmetric operators.

Definition 2.32. An operator A on H is symmetric if D(A) is dense in H and

〈Af, g〉 = 〈f,Ag〉, ∀f, g ∈ D(A)

An operator is symmetric iff A ⊂ A∗. A is called self-adjoint if D(A) is dense in H and A = A∗. We
call A essentially self-adjoint if A is self-adjoint.

Theorem 2.17. If A is a symmetric operator then it is closable.
The closure of a symmetric operator A is exactly A∗∗

Proof. See previous theorem. Uniqueness follows from construction.

Since essentially self-adjoint operators are symmetric, it follows that A = A∗∗. However by defini-
tion, A is self-adjoint so that A∗ = A∗∗.

The following summary taken from [8] illustrates the above nicely.

• A is symmetric iff A ⊂ A = A∗∗ ⊂ A∗

• A is essentially self adjoint iff A ⊂ A = A∗∗ = A∗

• A is self-adjoint iff A = A = A∗∗ = A∗
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It should be noted that essentially self-adjoint operators have a unique self-adjoint extension. The
same is not necessarily true for symmetric operators. An interesting consequence of the above results
is that higher order adjoints of operators are not interesting. For example, from Corollary 3.18.1,
A∗∗ = A∗∗ = A∗∗∗∗ and A∗ = A∗ = A∗∗∗.

The following theorem entirely classifies self-adjoint operators defined on the entire Hilbert space.
It tells us that unbounded self-adjoint operators must be defined on a strict subspace of the Hilbert
space.

Theorem 2.18 (Helllinger-Toeplitz). Let A be an everywhere defined operator on a Hilbert space
H with 〈f,Ag〉 = 〈Af, g〉, ∀f, g ∈ H. Then A is bounded. In other words, unbounded symmetric
operators cannot be defined on all of H. [9]

2.5 Nuclear Rigged Hilbert Space
We are now ready to define the notion of nuclear Rigged Hilbert spaces. We will proceed by defining
a special class of countably Hilbert spaces known as nuclear spaces. [10]

2.5.1 Nuclear Spaces

Let Φ be a countably Hilbert space with the sequence of inner products

〈ϕ,ϕ〉1 ≤ 〈ϕ,ϕ〉2 ≤ . . .

Denote Φn as the completion of Φ with respect to the norm ||ϕ||n =
√
〈ϕ,ϕ〉n. We then obtain the

sequence of spaces
Φ1 ⊃ Φ2 ⊃ · · · ⊃ Φ

Φ is dense in each Φn by construction. We define ϕ[n] and ϕ[m] to be the element ϕ ∈ Φ considered
as an element of Φn and Φm, respectively. The following identity mapping is well defined,

idnm : Φ ⊂ Φn 7→ Φ ⊂ Φm,

φ[n] 7→ φ[m]

Furthermore, for m ≤ n, the mapping is continuous in their respective topologies. Thus we can
uniquely extend idnm to be defined on all of Φn by denseness of Φ. Denote this extension by Tnm.

Definition 2.33. A countably Hilbert space Φ is called nuclear if for any n there exists an m such
that the inclusion map Tnm is nuclear i.e.

Tnmϕ =

∞∑
k=1

λk〈ek, ϕ〉nhk

∞∑
k=1

λk <∞

for all φ ∈ Φn where {ek} and {hk} are orthonormal systems of Φn and Φm, respectively.

From this it follows that Tnm is necessarily of class Hilbert-Schmidt and thus necessarily compact.
Nuclear spaces have a number of interesting properties that are similar to finite dimensional spaces.
Because of this, they are convenient to work with. In general, proving that a space is nuclear is
a difficult task. We will in general assume that the spaces we work with are nuclear. For more
information on nuclear spaces, we refer to [10].
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2.5.2 Nuclear Rigged Hilbert Spaces, bras, kets and its Application to Momentum

Let Φ be a nuclear countably Hilbert space. We introduce a primary inner product 〈·, ·〉 on Φ such
that the inclusion map of Φ into H is continuous with respect their topology. By completing Φ with
respect to the topology induced by 〈·, ·〉, we obtain a Hilbert space H. By continuity of the inner
product, the inclusion map i : Φ 7→ H is continuous so that we may identify the elements of Φ with
those of H giving

Φ ⊂i H (6)

It is known[8] that if 〈·, ·〉 is continuous with respect to the countably Hilbert space topology that
we can construct a countably Hilbert space Φ0 with the sequence of inner products

〈·, ·〉 ≤ 〈·, ·〉01 ≤ 〈·, ·〉02 . . . (7)

such that Φ0 has the same countably Hilbert space topology as Φ. We will without loss of generality
assume that Φ has a sequence of inner products of the form (7). It is now clear that the topology on
Φ is finer than that of H so that

H× ⊂i
∗

Φ× (8)

where i∗ : H× 7→ Φ×

Since H is isomorphic to H× by Riesz representation theorem, we can identify the elements of H
with those of H×. Now, by combining (6) and (8), we obtain the Gelfand Triplet.

Φ ⊂i H ⊂i
∗

Φ×

Definition 2.34. A nuclear rigged Hilbert space is a triple of spaces Φ, H, Φ× where Φ is a countably
nuclear Hilbert space, H is a Hilbert space obtained by the completion of Φ with respect to one of
its inner products, and Φ× is the anti-dual space of Φ. Equivalently, we say that the triple of spaces
is a rigging of the Hilbert space H if Φ is a dense nuclear space with a finer topology such that the
inclusion map into H is continuous.

Remark. Using this framework, we can assign a mathematical meaning to Dirac’s bras and kets. We
say that the antilinear functionals of Φ× are kets and that the linear functionals of Φ′ are bras. We
will denote kets by |f〉 and bras by 〈f |.

Further, we will define the complex conjugate of a ket |f〉 ∈ Φ× as the complex conjugate of
whatever it evaluates to. The complex conjugate of a bra is defined similarly. That is.

|f〉(ϕ) = |f〉 (ϕ)

It can be easily seen that the conjugate of a ket is a bra and the conjugate of a bra is a ket.
Thus, there is a one to one pairing between kets and bras. For this reason, we will use the following
convention,

〈f | := |f〉

|f〉 := 〈f |

In addition, we use the following notation for the action of a bra and ket on the elements of Φ.

〈ϕ|f〉 := |f〉 (ϕ) (9)

〈f |ϕ〉 := 〈f | (ϕ) (10)

The above notation should not be confused with the inner product which is given by 〈·, ·〉. One
may notice that the notation of (9) and (10) is rather ambiguous as there is no way to tell whether a
bra 〈φ| is acting on a function f or whether a ket |f〉 is acting on a function φ. In general, it should
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be clear from the context what is meant. However, in quantum mechanics, we are only interested in
kets |f〉 that are integral operators so that |f〉 =

∫
f · ( . )dx. Furthermore, the inner product we work

with is similarly given by 〈f, g〉 =
∫
f(x)g(x)dx. In this case, (9) and (10) can be evaluated both ways

and give the same answer. Technically, the integrand f of |f〉 may not actually be in Φ or H so that
〈ϕ| (f) is not well defined as an element of the dual space. However, if one ignores domain issues and
just computes 〈ϕ| (f) treating 〈ϕ| as a bra, one will obtain the correct answer.

It is no coincidence that (9) and (10) are strikingly similar to the inner product of H. In certain
cases (9) and (10) exactly correspond with the inner product. This is when f and ϕ are both elements
of the Hilbert space. Given an element ϕ ∈ Φ, we can assign it to a ket and bra by means of the inner
product using the following maps,

|ϕ〉 := 〈·, ϕ〉

〈ϕ| := 〈ϕ, ·〉

The action of the above ket and bra on an element ψ ∈ Φ is given by

〈ψ|ϕ〉 = 〈ψ,ϕ〉

〈ϕ|ψ〉 = 〈ϕ,ψ〉

We see that in this case, the ambiguity can safely be ignored as |ϕ〉 and 〈ψ| are well defined elements
in Φ× and Φ′, respectively. The above concepts will be further illuminated in the following example.

Example 2.19. Let S(R) be the Schwartz space. We can define an inner product as

〈ϕ,ψ〉 =

∫ ∞
−∞

ϕ(x)ψ(x)dx

S(R) is dense in L2(R) so that the completion of S(R) gives L2(R). S(R) can be equipped with a
locally convex topology such that it is nuclear[8]. Therefore we have the rigged Hilbert space

S(R) ⊂ L2(R) ⊂ S(R)×

We call the elements of S(R)× distributions. The momentum operator −i~ d
dx is well defined

on S(R)× and its (generalized) eigenfunctions can easily be computed to be eix/~. However, these
functions are not members of the Hilbert space L2(R) since they are not normalizable. Instead, we
can consider them as members of S(R)× by the following map,

|eipx/~〉(ϕ) = 〈ϕ|eipx/~〉 :=

∫ ∞
−∞

ϕ(x)eipx/~dx

We call such anti-linear functionals generalised eigenfunctions of the momentum operator since
they are not in on the Hilbert space.

By use of the Gelfand Triplet, we can generalise the notion of eigenvectors of (possibly unbounded)
self-adjoint operators so that each element of the continuous spectrum can be assigned a generalised
eigenfunction. To do so, we define the extension of an operator defined on Φ to an operator defined
on Φ×.

Definition 2.35. Let A : Φ 7→ Φ be a continuous operator. We define the map A× : Φ× 7→ Φ× by

|f〉(ϕ) 7→ A×|f〉(ϕ) := |f〉(Aϕ), ∀|f〉 ∈ Φ×

We call A× the conjugate of A.
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We can also define the conjugate of A as a map on the dual space Φ′ as follows.

Definition 2.36. Let A : Φ 7→ Φ be a continuous operator. We define the map A× : Φ′ 7→ Φ′ by

〈f |(ϕ) 7→ 〈f |(ϕ)A× := 〈f |(A∗ϕ), ∀〈f | ∈ Φ×

Remark. In physics, often we identify A with its conjugate and use the following notation,

〈ϕ|A |ψ〉 := A× |ψ〉 (ϕ) = 〈ϕ|A×(ψ)

This is only strictly correct when ϕ and ψ are in Φ so that the bra-ket corresponds with the inner
product. In this case, we see that by the definition of A× that we obtain the same result whether we
have A× act on the bras or kets. In general, it should be clear from the context whether A× is meant
to act from the left or from the right.

Here, we employ the bra-ket notation and use the convention that operators act on the right of
bras and the left of kets. In practice, one often identifies A with its conjugate. This is justified by the
following result.

Theorem 2.20. The space Φ can be embedded in Φ× and Φ′. As a result, we can identify elements
of Φ with those in its dual and anti-dual space.

Proof. We prove by construction. Consider the two maps,

i : Φ 7→ Φ×, i(ϕ) 7→ |ϕ〉 := 〈·, ϕ〉 (11)

i : Φ 7→ Φ′, i(ϕ) 7→ 〈ϕ| := 〈ϕ, ·〉 (12)

where 〈·, ϕ〉 and 〈ϕ, ·〉 are inner products with an empty slot. The continuity of the functionals with
respect to the countably Hilbert space topology follows from the continuity of the inner product. It
can be checked that the maps are algebraic isomorphisms of the linear structure of Φ.

The action of A× on the images of the maps (11) and (12) behave exactly like the action of A∗
and A on their respective pre-images. This can be seen by noting that

A×|ϕ〉(ψ) = 〈Aψ|ϕ〉 = 〈Aψ,ϕ〉 = 〈ψ|A∗ϕ〉
Now by identifying the domain and image of (11), we find

A×|ϕ〉 = |A∗ϕ〉 =i A∗ϕ

A similar computation shows that

〈ϕ|A× = 〈Aϕ| =i Aϕ

which also follows from
(A∗)×|ϕ〉 = |Aϕ〉 =i Aϕ

The above results warrant their own theorem.

Theorem 2.21. The map A× : Φ× 7→ Φ× is an extension of A∗ : Φ 7→ Φ to the anti-dual space.
Similarly, the map (A∗)× : Φ× 7→ Φ× is an extension of A : Φ 7→ Φ to the anti-dual space. If A is
hermitian then A× extends A to the anti-dual space.

Notice that if A is not hermitian then A× does not extend A and the notation is misleading. In
quantum mechanics, the observables are generally hermitian so that we do not need to worry about
this. We will see when we look at non-hermitian observables that this will be of importance.

In the case that A is self-adjoint so that A = A∗ then we have that A× extends A to D(Φ×). We
say that A ⊂ A×. Now that this extension is well defined and using it, we can generalize the notion
of eigenvectors.
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Definition 2.37. Let A : Φ ⊂ H 7→ Φ ⊂ H be a densely defined self-adjoint operator on H. Let
A× : Φ× 7→ Φ× be the extension of A. We say that |λ〉 ∈ Φ× is a generalised eigenvector or eigenket
of A with generalised eigenvalue λ ∈ C if

A×|λ〉 = λ|λ〉

Lemma 2.22. Let A : Φ ⊂ H 7→ Φ ⊂ H be a densely defined self-adjoint operator. Let ϕ ∈ Φ be an
eigenvector of A with eigenvalue λ. Then |ϕ〉 := i(ϕ) is a generalised eigenvector i.e.

A×|ϕ〉 = λ|ϕ〉

Proof. We prove this by considering the action of the functional on an arbitrary element ψ ∈ Φ. We
then use the fact that the action of these linear functionals is defined in terms of their inner product.
Note,

A×|ϕ〉(ψ) = 〈Aψ,ϕ〉 = 〈ψ,Aϕ〉 = 〈ψ, λϕ〉 = λ〈ψ,ϕ〉 = λ|ϕ〉(ψ)

Thus,
A×|ϕ〉 = λ|ϕ〉

It follows that |ϕ〉 is a generalised eigenvector.

The above proof shows that the notion of a generalized eigenvector is indeed a generalization
of eigenvectors. It follows that all eigenvectors are generalised eigenvectors when identified with its
functional. However, the converse is not necessarily true. The spectrum of A× can be defined in the
usual way. However, for our purposes, we are only interested in the discrete spectrum.

Definition 2.38. The generalized (discrete) spectrum of a self-adjoint operator A : Φ 7→ Φ is

σ×(A) := {λ ∈ C : ∃|λ〉 ∈ Φ× such that A×|λ〉 = λ|λ〉}

It follows that
σ(A) ⊂ σ×(A)

We will now present the Nuclear Spectral Theorem on which the foundation of rigged Hilbert space
quantum mechanics is based.

2.5.3 Nuclear Spectral Theorem and Momentum Operator as Example

The following theorem guarantees a diagonal decomposition of a self-adjoint operator in terms of its
generalised eigenvectors. Further, it states that the generalized eigenvectors form a basis for Φ and
in a sense are complete. The theorem only guarantees the existence of the decomposition and gives
no way of actually constructing it. For given operators, there are techniques to directly compute the
generalized eigenvectors and Borel measures[11].

Theorem 2.23 (Nuclear Spectral Theorem). Let Φ be a nuclear Fréchet space and Φ ⊂ H ⊂ Φ× a
Gelfand triple. Let (A,D(A)) be a self-adjoint operator on the Hilbert space H such that Φ ⊂ D(A) and
AΦ ⊂ Φ. Then for some countable set K the operator A has a complete system {|λ〉k}of generalised
eigenvectors in Φ×. Further, there exists finite Borel measures {µk}k∈K such that for ϕ ∈ Φ,

|ϕ〉 =
∑
k∈K

∫
R
〈λ|ϕ〉|λ〉dµk(λ) (13)

and
|Aϕ〉 =

∑
k∈K

∫
R
λ〈λ|ϕ〉|λ〉dµk(λ) (14)
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It should be noted that the same result holds if Φ× is replaced with Φ′. The generalised eigenvectors
of the two spaces are related by their complex conjugation.
Remark. Often in physics, we have an observable A with a discrete and continuous spectrum. In this
case, the decomposition is usually of the form

|ϕ〉 =
∑

λn∈σ(A)

〈λn, ϕ〉 |λn〉+

∫
λ∈σ(A)

〈λ|ϕ〉|λ〉dµ(λ)

where we have a sum over the discrete spectrum λn and an integral over the continuous spectrum λ.
Notice that the first term of the sum contains the inner product since |λn〉(technically its integrand)
is an eigenvector in the Hilbert space. One can clearly see that when the spectrum is purely discrete
it corresponds with the standard spectral decomposition in terms of its eigenvectors.

Definition 2.39. The Fourier transform is a unitary map

F : S(R) 7→ F(S(R))

given by

ϕ(x) 7→ ϕ̃(p) = F(ϕ) :=

√
1

2π~

∫ ∞
−∞

ϕ(x)eipx/~dx (15)

Its inverse is given by

ϕ̃(p) 7→ ϕ(x) = F−1(ϕ̃) :=

√
1

2π~

∫ ∞
−∞

ϕ̃(p)eipx/~dp (16)

Example 2.24. Consider the momentum operator P = −i~ d
dx and the Gelfand Triple as defined in

Example 2.19. It can be shown that the anti-linear functionals

|eipx/~〉(ϕ) = 〈ϕ|eipx/~〉 :=

∫ ∞
−∞

ϕ(x)eipx/~dx (17)

are generalised eigenfunctions. In fact, they are a complete set of generalised eigenfunctions.
Further, it is known that the Fourier transform F is a well-defined map on S(R) that can be

extended to all of L2(R).

Now, note that |p〉 :=
∫
R dp

√
1

2π~ eipx/~ is also a generalised eigenvector with eigenvalue p. Com-
paring (17) and (16) gives 〈φ|p〉 = ϕ̃(p). We can obtain the decompositions (13) and (14) by substi-
tuting (15) into (16) which gives

ϕ(x) =

∫ ∞
−∞
〈ϕ|p〉eipx/~dp

which implies

|ϕ(x)〉 =

∫ ∞
−∞
〈p|ϕ〉|p〉dp

Further by checking the action of the momentum operator P on ϕ(x), it can be shown that

P× |ϕ〉 = |Pϕ〉 =

∫ ∞
−∞

p〈p|ϕ〉|p〉dp

Note in the above that we identify φ with |φ〉 to obtain a diagonal expansion in Φ.
It is interesting to note that the generalized eigenfunctions are normalized in the sense of the Dirac

function, ∫ ∞
−∞

eipx/~eiqx/~dx = 2π~ · δ(p− q)
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For this reason, we define
〈p|q〉 := δ(p− q)

Because of the above example, the decomposition 14 is often called a generalised Fourier transform

2.6 Representations of Rigged Hilbert Spaces
One can define a class of isomorphic rigged Hilbert spaces by means of unitary maps between their
respective Hilbert Spaces. The unitary map of the Hilbert spaces can be extended to be a map on
the anti-dual space of Φ and restricted to be unitary on Φ with respect to the Hilbert space inner
product. In the next section, we will see how this gives rise to the momentum, position, and energy
representation in Quantum Mechanics.

Definition 2.40. A representation of a rigged Hilbert space is an element of the equivalence class
of isomorphic rigged Hilbert spaces. We say two representations are isomorphic if there exists a
unitary map between their Hilbert spaces such that its restriction to the countably Hilbert spaces are
homeomorphic under the countably Hilbert topologies.

Let
Φ ⊂ H ⊂ Φ×

be a nuclear Rigged Hilbert space. Furthermore, Suppose

U : H 7→ H

is a unitary map between two Hilbert spaces. Let Ψ = U(Φ) then we claim that Ψ is also a nuclear
countably Hilbert space.

Theorem 2.25. Let Φ ⊂ H be a nuclear countably Hilbert space compatible with the inner product of
H and U : H 7→ H a unitary map then Ψ := U(Φ) is a nuclear countably Hilbert space.

Proof. Note that U be definition is invertible so that U−1 : H 7→ H exists. One can restrict the map
to H to obtain a unitary map(under the inner product of H) U−1 : Ψ 7→ Φ. Since U and U−1 are
bounded, their restrictions are as well. Let the countable sequence of inner products on Ψ be induced
from Φ as follows. Let ϕ,ψ ∈ Ψ, define

〈ϕ,ψ〉n,Ψ := 〈U−1ϕ,U−1ψ〉n,Φ (18)

Without loss of generality, we can assume that n = 0 corresponds with

〈ϕ,ψ〉H = 〈U−1ϕ,U−1ψ〉H

So that, equation 18 is compatible with the inner product of H. Thus Ψ with the induced topology
forms a countably Hilbert space. The nuclearity will follow if we can show that the restriction of U
to Φ and Ψ is continuous and invertible. By construction, U−1 is a continuous map with respect to
the τΦ and τΨ topologies. By the open mapping theorem for Fréchet spaces(we assume our countably
Hilbert space is complete), we have that U−1 has a bounded and thus continuous inverse. Thus Φ
and Φ are topologically equivalent which implies that they are necessarily both nuclear. In total, we
have that Ψ when endowed with the induced topology is a nuclear countably Hilbert space.

We will now show that the map U as defined above can be extended to a map U× : Φ× 7→ Ψ×.

Theorem 2.26. Let Φ ⊂ H be a nuclear countably Hilbert space such that its image under a unitary
map U : H 7→ H is also a nuclear countably Hilbert space Ψ ⊂ H. Then, there exists an bijective map
U× : Φ× 7→ Ψ×.
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Proof. Let |f〉 ∈ Φ× and ψ ∈ Ψ. Define the extension of U to U× as U× |f〉 (ψ) = |f〉 (U−1ψ). Clearly,
the image is an antilinear map on Ψ. Furthermore, it is actually continuous since if ψn = Uϕn →n→∞
ψ = Uϕ then U× |f〉 (ψn) = |f〉 (ϕn)→ |f〉 (ϕ) = U× |f〉 (ψn). Where we employ the continuity of |f〉
to obtain the limit. Thus, U× |f〉 ∈ Ψ×. In fact, it is easy to show that the map is actually bijective
so that U×Φ = Ψ.

By the above theorems, we can obtain the following result.

Theorem 2.27. Let Φ ⊂ H ⊂ Φ× be a nuclear rigged Hilbert space and U : H 7→ H a unitary map
between two Hilbert spaces. Then UΦ ⊂ UH ⊂ U×Φ is a nuclear rigged Hilbert space which we denote
by Ψ ⊂ H ⊂ Ψ×.

3 Rigged Hilbert Space Formulation of Potential Barrier
We will now employ the mathematical theory laid out in section 2 to rigorously formulate and solve
the quantum mechanical system where the potential is a finite barrier. The goal of this section is
to illustrate the necessary steps in rigorously solving a quantum mechanical problem by means of
rigged Hilbert spaces. As a result, we will justify the bra and ket notation, spectral decompositions
of observables, and the representations of wavefunctions with respect to certain observables. We will
not compute the eigenfunctions directly as this require Sturm-Liouville theory. Their existence is
sufficient for our purposes. The following theory is based on [8] and we refer to them for a more
in-depth treatment.

3.1 Introduction
The time-independent Schrödinger equation describing the finite potential barrier is given by

Hϕ = Eϕ

where H is the differential operator given by

H =
~2

2m

d

dx
+ V (x)

where

V (x) =


0, if x < a

V0 > 0, if a ≤ x ≤ b
0, if x > b

Let H := L2(R, dx) be a Hilbert space where

L2(R, dx) =
{
f(x)|

∫
R
dx |f(x)|2 <∞

}
Other operators of interest are the position and momentum operators given by

Q := x

P := −i~ d

dx

We will now seek a domain dense in H such that our operator is self-adjoint and densely defined.
We do the same for the position and momentum operators.
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3.2 Self-adjoint Extension
It is clear that for H on D(H) to be well defined we require certain smoothness conditions. We denote
by D0(H) the maximal domain on which H can be defined.

D0(H) = {f(x) ∈ L2(R, dx)| f(x) ∈ AC2, Hf ∈ L2(R, dx)}

where AC2 is the set of differentiable functions whose derivative is absolutely continuous. In other
words, f(x) is second order differentiable almost everywhere.

We begin by finding a subdomain where H is symmetric. Let H∗ be the adjoint. Let f, g ∈ D0(H).
We can integrate by parts since f and g are sufficiently smooth. We find∫

R
f
d2

dx2
gdx = f(x)

dg

dx

∣∣+∞
−∞ −

∫
R

df

dx

dg

dx
dx = f(x)

dg

dx

∣∣+∞
−∞ − g(x)

df

dx

∣∣+∞
−∞ +

∫
R

d2f

dx2
gdx

Since f and g are in L2 and AC2, they tend to zero for sufficiently large |x|. This gives∫
R
f
d2

dx2
gdx =

∫
R

d2f

dx2
g

From which is follows that ∫
R
f(Hg)dx =

∫
R

(Hf)g

Define
D(H) := D0(H)

Then H = H∗ on D(H) so that H is symmetric.
The following theorem[12] guarantees the existence of a unique self-adjoint extension of H. It

turns out that D0(H) is exactly the domain on which H is self-adjoint [?].

Theorem 3.1. A Hamiltonian H for a free particle(V (x) = 0) defined on a dense domain D(X) of
L2(R, dx) such that it is symmetric has a unique self-adjoint extension.

Since our Hamiltonian differs from the Hamiltonian of a free particle by only a constant, one can
show that the set of all possible domains on which the two operators are well-defined coincide. Further,
one can easily verify that if one of the operators is self-adjoint on a domain then the other is as well.
Thus, we know that our Hamiltonian H can be defined on a dense domain so that it is self-adjoint.
We will now assume that D(H) is this domain. It is not necessary to explicitly compute the domain.
The self-adjoint domains of the position and momentum operators are[1]

D(Q) =
{
f ∈ L2

∣∣∣xf ∈ L2
}

D(P ) =
{
f ∈ AC

∣∣∣Pf ∈ L2, xf ∈ L2
}

3.2.1 Spectrum and Energy Representation

The self-adjoint operator H is of the form Sturm-Liouville which is a well studied class of differential
operators. From the theory of such operators, it is known that

σ(H) = [0,∞)[1]

Furthermore, it is known that there exists two fundamental solutions ΘE
1 and ΘE

2 [1] which satisfy

HΘE
1 = EΘE

1

HΘE
2 = EΘE

2
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These two solutions form a basis for the eigenspace of H however they are not necessarily in L2.
They can be computed explicitly using Green’s function techniques and Sturm-Liouville theory.[8]
Furthermore, by a spectral theorem of ODE’s[11], there exists for H a unitary map U given by[1]

U : L2(R, dx) 7→ L2(σ(A)), dE)

ϕ 7→ ϕ̃(E) :=
∫∞

0
dx ϕ(x)σ(x,E)

for some σ(x,E) ∈ span(ΘE
1 ,Θ

E
2 ). We refer to [13] for the exact form of these solutions.

Definition 3.1. We call ϕ̃(E) the energy representation of ϕ(x)

The spectrum of P and Q are[8]
σ(P ) = (−∞,∞)

σ(Q) = (−∞,∞)

Now with the definition of H and knowledge of its spectrum, we can construct the rigged Hilbert
space formulation.

3.3 Rigged Hilbert Space of Q,P,H
By use of Sturm-Liouville theory, one can obtain a domain on which H is self-adjoint, as well as
unitary map that diagonalizes H. However, this is not sufficient to describe the quantum mechanical
system. We, generally, wish to compute the expectation of our wavefunctions with respect to various
operators such as momentum, position, and energy. Furthermore, we wish to be able to compute
commutation relations which require products and differences between operators. The wavefunctions
in the domain of H do not satisfy all these requirements and therefore we need to find a smaller
subdomain on which all of these operations make sense. It is useful to use the domain on which
the action of Q, P and H are invariant.(This also is a necessary requirement to employ the nuclear
spectral theorem). This problem is analysed in complete detail in [13]. We will summarize the main
points in [13] and use the results to see how rigged Hilbert spaces work in practice.

3.3.1 Invariant subspace

The following requirements are necessary for the necessary operations to be well defined on a domain
Φ ⊂ L2.[8]

• The functions should be infinitely differentiable so that all powers H and P are well defined.

• The functions vanish at the boundaries of the potential so that Hf is differentiable at the
boundaries for all f ∈ Φ

• The action of all powers of Q, P , and H remain in L2

The above conditions are satisfied by

Φ =
{
ϕ ∈ L2

∣∣∣ϕ ∈ C∞(R), ϕ(n)(a) = ϕ(n)(b) = 0, n ∈ N ∪ 0, PnQmH lϕ ∈ L2, n,m, l ∈ N ∪ 0
}

It is easy to see that this is indeed a subdomain of the self-adjoint domain of the operators.
We will now install a topology on Φ such that it becomes a countably Hilbert space.
Let

〈ϕ,ψ〉n,m,l := 〈PnQmH lϕ, PnQmH lψ〉L2

Theorem 3.2. 〈ϕ,ψ〉n,m,l is an inner product
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Proof. This proof can be found in [1]. The inner product inherits the linearity and anti-linearity of
its components from the inner product of L2. It only remains to show that it is positive definite so
that it induces a norm.

It suffices to show that if the
〈ϕ,ϕ〉n,m,l = 0

then ϕ = 0. First, note that P and Q have no eigenvectors in Φ as they are non-normalizable. Also,
it can be checked that the H has no eigenvectors corresponding to the eigenvalue 0 in Φ.

Suppose that ϕ is not zero while its induced (semi)norm is. Then,∫
R
|PnQmH lϕ|2dx = 0

Using that the integrand is differentiable a.e. and continuous everywhere, we find that |PnQmH lϕ|2 =
0. This implies that specifically PnQmH lϕ = 0. However, we know that P and Q have no zero
eigenvectors in Φ so we must conclude H lϕ = 0. This is a contradiction since 0 is not an eigenvalue
of H . The same argument can be applied to H l. Thus, we conclude ϕ = 0.

We now have a countable family of inner products on Φ. Furthermore, the inner product corre-
sponding with n = m = l = 0 corresponds with that of L2. It can further be shown that the sequence
of inner products are compatible and that Φ is complete. We will assume that this is the case. Thus,
we can endow Φ with a countable Hilbert space topology τΦ such that it is continuously embedded in
L2.

3.3.2 Gelfand Triple and Generalized Eigenvectors

Now, that we have shown that Φ is a nuclear countably Hilbert space, we can construct its corre-
sponding nuclear Rigged Hilbert space.

By taking its anti-dual space, we find the triple

Φ ⊂ L2(R) ⊂ Φ×

The nuclear spectral theorem implies the existence of generalised eigenvectors of Q,P,H. However,
we can do more than that. We claim that the following anti-linear functionals form generalized
eigenvectors of Q,P,H, respectively

〈ϕ|x〉 :=

∫
R
dx′ ϕ(x′) δ(x− x′) = ϕ(x) (19)

〈ϕ|p〉 :=

∫
R
dx ϕ(x)

1√
2π~

eipx/~ (20)

〈ϕ|E〉 :=

∫
R
dx ϕ(x)σ(x,E) (21)

Theorem 3.3. |x〉 , |p〉 , |E〉 form generalized eigenvectors ∈ Φ×

Proof. The proof can be found in [13]. It follows immediately that the kets are anti-linear. To show
they are continuous in the Φ topology requires more work.

Theorem 3.4. The generalized eigenvectors |p〉 , |x〉 , |E〉 are complete in the sense of the nuclear
spectral theorem
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Proof. Note that ϕ(x′) = 〈x′|ϕ〉 so that by integrating both sides of 19 with respect to x′ gives

|ϕ〉 =

∫
R
dx′ |x′〉 〈x′|ϕ〉

where |ϕ〉 :=
∫
R dx 〈ϕ|x〉 ( · ) is the anti-linear functional of ϕ(x).

By the fact that the Fourier transform is a unitary map, we obtain

|ϕ〉 =

∫
R
dp |p〉 〈p|ϕ〉

Lastly, since the energy transformation is unitary as well,

|ϕ〉 =

∫
(0,∞)

dE |E〉 〈E|ϕ〉

3.4 Representations of a Rigged Hilbert Space
We can obtain decompositions directly for ϕ = 〈ϕ|x〉 ∈ Φ by introducing the following notation.

Definition 3.2. Let
〈x|E〉 := σ(x,E)
〈x|p〉 := 1√

2π~e
ipx/~

〈x|x′〉 := δ(x− x′)

Then
〈ϕ|x〉 =

∫
R dx

′ 〈ϕ|x′〉 〈x′|x〉

〈ϕ|x〉 =
∫
R dp 〈ϕ|p〉 〈p|x〉

〈ϕ|x〉 =
∫

(0,∞)
dE 〈ϕ|E〉 〈E|x〉

(22)

The above decompositions allows us to consider the below operators as a resolution of the identity
for wave functions. Note that the below equations are treated as identity operators in physics.∫

R dx
′ |x′〉 〈x′|∫

R dp |p〉 〈p|∫
(0,∞)

dE |E〉 〈E|

(23)

That is, given a wave function 〈ϕ|x〉, we can stick any of the above identity operators in between the
bra and the ket and obtain the same answer.

We can actually obtain an even stronger result given by

〈ϕ|ψ〉 =
∫
R dx

′ 〈ϕ|x′〉 〈x′|ψ〉

=
∫
R dp 〈ϕ|p〉 〈p|ψ〉

=
∫

(0,∞)
dE 〈ϕ|E〉 〈E|ψ〉

(24)

The above follows from the fact that the Fourier transform, and the energy diagonalization map are
unitary and thus preserve the inner product of Φ. This can be checked by a simple computation. The
operators given by equation (23) should be interpreted as sesquilinear forms defined on Φ. It happens
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to be that they coincide with the inner product on H. In general, one can construct sesquilinear forms
on Φ by taking the tensor products of a bra and a ket. Consider 〈E| ∈ Φ′ and |F 〉 ∈ Φ×. Their tensor
product is defined as

〈ϕ|F 〉 〈E|ψ〉 := 〈F | ⊗ |E〉 (ϕ,ψ) = 〈F | (ϕ) · |E〉 (ψ)

So that
|F 〉 〈E| := |F 〉 ⊗ 〈E|

It should be highlighted that the above interpretation only makes sense when we only operate on
elements of Φ. The interpretation fails if we try to use the notation of definition 3.2.

3.5 Position, Momentum Energy Representation
The unitary maps can be extended to the whole rigged Hilbert space such that its image is also a
rigged Hilbert space. We call this an isomorphism of rigged Hilbert spaces. Each element in the class
of isomorphic rigged Hilbert spaces, we call a representation.

The rigged Hilbert Space we constructed in section 4.3 is what we call the position representa-
tion. In this representation, the wavefunctions and operators, when explicitly written, depend on x.
However, this is just one representation of the Rigged Hilbert Space. In practical applications the
momentum and energy representations are also of interest.

Recall that the Fourier transform F : L2(R, dx) 7→ L2(R, dp) is a unitary map so that by section
3.8, the map induces a nuclear Rigged Hilbert space

Ψp = F(Φ) ⊂ L2(R, dp) ⊂ Ψ×p

which we call the momentum representation.
Furthermore, by the nuclear spectral theorem, and using (22) and (24), there exists a unitary map

UE : L2(R, dx) 7→ L2((0,∞), dE) which leads to the energy representation given by

ΨE = UE(Φ) ⊂ L2((0,∞), dE) ⊂ Ψ×E

Recall, how in the position representation, the eigenkets of Q given by |x〉 form dirac delta dis-
tributions. It turns out that the same holds true for |p〉 and |E〉 in the momentum and energy
representations, respectively.

Theorem 3.5.
F× |p〉 =

∫
R
dp′δ(p− p′)

U×E |E〉 =

∫
(0,∞)

dE′δ(E − E′)

Proof. By definition,
F× |p〉 (ϕ(p)) = |p〉 (F−1(ϕ)(x))

Furthermore, by definition of |p〉 we have that

|p〉 (F−1(ϕ)(x)) = F(F−1(ϕ(p)))(p) = ϕ(p)

which gives the desired result.
The result for |E〉 is obtained completely analogously.
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3.5.1 δ normalization of eigenkets

The unitary maps F and UE diagonalize the self-adjoint operators P and H, respectively. Thus, in
the momentum and energy representations, we have

Pp := FPF−1 = p

and
HE := UEHU

−1
E = E

It will follow that the eigenkets are δ− normalized. We will show this for the case of |E〉.
Consider H in the energy representation which we will denote by E. Then, the eigenket |E〉 is

given by ∫
(0,∞)

dE′ δ(E − E′)

The eigenfunctions of E which we associate with |E〉 and |E∗〉 are given by δ(E−E′) and δ(E∗−E′).
Let 〈E∗|E〉 = δ(E∗ − E′)δ(E − E′). If we define the linear functional∫

dE′ϕ(E′) 〈E∗|E〉 :=

∫
dE ϕ(E′)δ(E − E′) δ(E∗ − E′) =

∫
dE ϕ(E)δ(E − E∗)

We see that 〈E∗|E〉 is equal to δ(E − E∗). The same holds for 〈p|p∗〉. It should be noted that the
normalisation is independent of the representation chosen. The normalization can also be shown using
the position representation and definition 3.2 by directly computing∫

dx 〈E|x〉 〈x|E∗〉 = δ(E − E∗)

and ∫
dx 〈p|x〉 〈x|p∗〉 = δ(p− p∗)

Our definition of 〈E∗|E〉 and 〈p|p∗〉 allows us in the distributional sense to say that 〈E∗|E〉 =
〈E∗|x〉 〈x|E〉 and 〈p|p∗〉 = 〈p∗|x〉 〈x|p〉. So that the identity operators given in equation (23) i.e.∫
dx |x〉 〈x| also work when sandwiched between eigenkets. It should be noted that 〈p|p∗〉 looks like

the inner product of the momentum eigenfunctions, however it should be interpreted and only makes
sense as the integrand of a distribution.

3.6 Conclusion to the Potential Barrier
In this section, we put the quantum mechanical problem of a finite potential barrier in one dimension
in rigorous footing. Since the spectrum is entirely continuous and there are no eigenvectors in the
Hilbert space, we had to construct a nuclear rigged Hilbert space. By doing this, we found eigenkets of
the observables of the system as well as a unitary map that diagonalizes the observables. Throughout
the section, we rigorously justified the bra-ket manipulations commonly used in practice.

4 Non-Hermitian Operators in Quantum Mechanics
In the previous formulation of quantum mechanics, we require observables to be hermitian as this
ensures that the eigenvalues are real. However, it turns out that there are classes of non-hermitian
operators that have a real spectrum. Two classes of interest are the pseudo-hermitian and quasi-
hermitian operators. In this section, we will discuss whether the rigged Hilbert space formulation can
be extended to account for such operators.
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4.1 Pseudo-Hermitian and Quasi-Hermitian Operators
As we will see, the class of pseudo-Hermitian operators covers nearly all non-hermitian operators in
Quantum Mechanics. Specifically, PT-symmetric operators form a subset of such operators.

Definition 4.1. A linear operator A on a Hilbert space
(
H, (·, ·)

)
is called pseudo-Hermitian if it is

similar to its adjoint by a bounded self-adjoint linear operator η : H 7→ H. That is, A∗ = ηAη−1

Quasi-hermitian operators are a subset of the class of pseudo-hermitian operators. They are
particularly of interest since they share many properties that self-adjoint operators have.

Definition 4.2. A linear operator A on a Hilbert space
(
H, (·, ·)

)
is called quasi-Hermitian if there

exists an inner product 〈·, ·〉 on the linear space H such that A is hermitian on
(
H, 〈·, ·〉

)
.

Given two inner products on a Hilbert space, we can always express one inner product in terms of
the other by means of a positive definite operator. That is,

There exists a map η : H 7→ H such that 〈·, ·〉 =
(
·, η ·

)
(25)

The following definition for quasi-hermitian operators is equivalent to the former.

Definition 4.3. Equivalently, a linear operator A on a Hilbert space
(
H, (·, ·)

)
is quasi-Hermitian if

A∗ = ηAη−1

for a bounded positive definite operator η : H 7→ H.

Lemma 4.1. Let η be a positive definite operator defined on a Hilbert space H. Then there exists a
hermitian square root ρ : H 7→ H of η so that ρ∗ · ρ = ρ · ρ = η

By the existence of ρ, we can rewrite equation (25) as

〈·, ·〉 =
(
·, η ·

)
=
(
ρ·, ρ ·

)
Definition 4.4. Two sequences ϕn, ψm ∈ H form a Riesz basis for the Hilbert space H if they satisfy

〈ϕn, ψm〉H = δn,m

and for all elements x ∈ H, we have that

x =
∑
n

〈ϕn, x〉Hψn

Theorem 4.2. The left and right eigenvectors of a quasi-hermitian operator with purely discrete
spectrum form a Riesz Basis.

Proof. See next sections.

Definition 4.5. We say that a non-hermitian operator A is diagonalizable if its eigenvectors form a
Riesz Basis. It follows that all quasi-hermitian matrices are diagonalizable.

Theorem 4.3. A quasi-hermitian operator has real spectrum.
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4.2 Pseudo-Hermitian Operators in Quantum Mechanics
A class of non-hermitian Hamiltonians of interest in physics is that of Hamiltonians with PT-Symmetry.
Most PT-symmetric systems considered in practice have discrete spectrum and can be diagonal-
ized by a complete set of eigenvectors. Much of the mathematical theory developed, notably by
Mostafazadeh[2] and Bender[14], for PT-symmetric systems require this as an assumption. Mostafazadeh[15]
showed that all diagonalizable PT-symmetric Hamiltonians with discrete spectrum are necessarily
pseudo-hermitian.

Definition 4.6. Let P : H 7→ H denote the parity operator where H = L2(dx). That is, for f(x) ∈ H

Pf(x) = f(−x)

Furthermore, let T : H 7→ H denote the complex conjugate operator defined by

T f(x) = f(x)

A Hamiltonian is PT-symmetric if it commutes with the PT operator.

PT H(PT )−1 = H

Definition 4.7. We say an operator A : H 7→ H admits an anti-linear symmetry if it commutes with
an anti-linear operator X. That is,

AX = XA

where X(cϕ+ dψ) = c̄Xϕ+ d̄Xψ

Theorem 4.4. A diagonalizable Hamiltonian is pseudo-hermitian if and only if it admits an anti-
linear symmetry.

Proof. See [15]

Corollary 4.4.1. Since the PT operator is anti-linear, all diagonalizable PT-symmetric Hamiltonians
admit an anti-linear symmetry and thus are pseudo-hermitian.

Theorem 4.5. A diagonalizable Hamiltonian with real spectrum is necessarily quasi-hermitian

Proof. See [15]

In practice, given a PT-symmetric Hamiltonian(and pseudo-hermitian operators in general), it is
not easy to construct the metric operator. Methods exist and are currently being developed to tackle
this problem[2]. In the next section, we will discuss some examples of PT-symmetric systems.

Remark. Quasi-hermitian Hamiltonians are well-understood and easy to work with. They can nat-
urally be studied in the Hilbert space setting. Pseudo-symmetric Hamiltonians on the other hand
are not necessarily similar to their adjoint by a positive definite metric operator. In many cases, the
metric operator is only nondegenerate and as a result it cannot be used to construct an inner product
on the Hilbert space. A generalization of Hilbert spaces, known as Krein spaces, are linear spaces
equipped with a nondegenerate bi-linear form that satisfy all properties of the inner product except
positive-definiteness. Pseudo-hermitian operators emerge as self-adjoint operators on Krein spaces. In
the case where one assumes the operator is diagonalizable with discrete spectrum, a form of quantum
mechanics can be developed using such spaces[2]. However, general self-adjoint operators and their
spectral theory on Krein spaces is beyond the scope of this thesis. For this reason, we will not attempt
to extend the theory of rigged Hilbert spaces to general pseudo-hermitian operators. We will restrict
our attention to quasi-hermitian operators.
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4.2.1 The need for rigged Hilbert space formulation of PT-symmetric quantum me-
chanics

Currently, PT-symmetric quantum mechanics is not laid on a rigorous mathematical foundation.
The bra and ket notation, while justified for conventional quantum mechanics, is not mathematically
justified for PT-symmetric Hamiltonians. Even in the case where the PT-symmetric Hamiltonian is
discrete so that its eigenvectors are in the Hilbert space, a rigged Hilbert space formulation is needed
to be able to incorporate the position and momentum operators in the framework. For conventional
quantum mechanics, the momentum and position representation emerge as equivalent representations
of the rigged Hilbert space. Furthermore, the momentum and position eigenvectors are represented
as anti-linear functionals in the dual space Φ× of the space of wave functions Φ. The dual space of
H is not sufficient to describe the full system. In the case, where the Hamiltonian has continuous
spectrum, the eigenvectors are not in the Hilbert space so we require some sort of rigged Hilbert space
construction that accounts for the energy representation of the system.

One might think that a discrete diagonalizable PT-symmetric Hamiltonian can be easily introduced
into the Rigged Hilbert space formulation since its eigenvectors are in the Hilbert space. We will see
that this is not so simple.

One naive solution is to construct the rigged Hilbert space generated by the self-adjoint operators
P and Q. This gives

Φ ⊂ H ⊂ Φ×

where the eigenkets of P and Q are in Φ×. Let h represent the PT symmetric Hamiltonian with
discrete spectrum. By assumption, the left and right eigenvectors ϕn, ψm of H form a Riesz basis.
The eigenkets |ϕn〉 , |ψm〉 ∈ H× are well-defined elements of Φ×. It should be noted that ϕn and ψm ∈
H may not be elements of Φ and thus may not be realizable quantum states. As a result, the
eigenfunctions of h are in general best interpreted as anti-linear functionals and not wave functions.
Another issue is that Φ is not necessarily an invariant domain of h so that h : Φ 7→ Φ is ill-defined.
One will find that the due to domain issues that commutation relations of between P, Q and h are not
well-defined which undermines the point of the rigged Hilbert space formulation. One may attempt to
solve this by finding a domain contained in Φ such that it is invariant under all the observables however
there is no guarantee that h is continuous in the Φ topology. In principle, if possible, constructing
Φ such that all the observables are invariant and continuous on Φ would solve the problem. As the
eigenvectors of h are in principle already known to exist by assumption, the nuclear spectral theorem
need not be applied to h. In a later section, we will discuss this in further detail.

In the case where h is a general PT-symmetric Hamiltonian, the above construction breaks down
completely.

4.2.2 Examples of PT-symmetric systems with discrete and continuous spectra

While most PT-symmetric Hamiltonians studied in literature are discrete and diagonalizable, there
are quantum systems that are described by a PT-symmetric Hamiltonians with purely continuous
spectrum. Furthermore, many examples in literature are quasi-hermitian.

Some examples of PT-symmetric quantum systems that are quasi-hermitian can be found in [4]
and [2]. Where the former explicitly constructs the metric operator for a quasi-hermitian Hamiltonian
with discrete spectrum, along with its adjoint and eigenvectors. The latter contains various examples
of quasi-hermitian operators containing both discrete and continuous spectrum. In general, finding
the metric operator for a given Hamiltonian is very difficult and often cannot be computed exactly.
Perturbation methods are often employed as seen in [2]. One example of interest is that of the
PT-symmetric barrier potential[2].

Example 4.6. Consider the following scattering potential

ν(x) =

{
−iζ(x) for |x| < L

2

0 for |x| ≥ L
2
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where ζ, L, x ∈ R, and L > 0. The above potential plays a role in describing the propogation of
electromagnetic waves in certain diaelectric waveguides[16]. A pertubative expression when ζ is small
for the metric η can be found in [2].

Another quasi-hermitian Hamiltonian with continuous spectrum is that of the complex scattering
delta function given by

v(x) = βδ(x)

where β ∈ C.
The potential is analysed in further detail in [2].

In the article [17], the metric operator and adjoint operator for a very general class of non-hermitian
complex cubic potentials are found. A class of PT-symmetric Hamiltonians with discrete spectrum of
interest in research is given by

HN = p2 − (ix)N

One famous example is that of the imaginary cubic potential given by N = 3 in the above equation.
Unfortunately, it is known that the cubic potential is not quasi-hermitian. [3]. It is unknown whether
HN is not quasi-hermitian for all N .

4.2.3 Quasi-Hermitian Operators with Purely Discrete Spectrum

In this section, we will construct the trivial rigged Hilbert spaceH ⊂ H× for quasi-hermitian operators
that have a complete set of eigenvectors.

Let A : H 7→ H be a densely defined quasi-hermitian operator with a discrete (nondegenerate)
spectrum so that its eigenvectors are in the Hilbert space H. Let η : H 7→ H be the bounded positive
definite metric operator with bounded inverse η−1 such that A∗ = ηAη−1. Let H be the Hilbert space
obtained by completing the set H with respect to the inner product 〈·, η·〉. By construction, it follows
that H is dense in H. Since A was densely defined as a map on H, A is also densely defined as a map
on H. As a result, A : H 7→ H is a densely defined self-adjoint operator.

By assumption, A has a discrete spectrum so that there exists a complete set of eigenvectors
ϕn ∈ H with corresponding eigenvalues En. It can be seen as follows that A∗ also admits a complete
set of eigenvectors with eigenvalues En given by ηϕn. Note that

A∗ηϕn = ηAη−1ηϕn = ηAϕn = Enηϕn

Thus, the pair
{
ϕn, ηϕn

}
form a set of left and right eigenvectors of A. Now, consider A as a self-

adjoint map in H. Since H ⊂ H, we know that the the eigenvectors ϕn are in H as well. Thus, A has
a complete set of eigenvectors in H. By the self-adjointness of A, the eigenvectors are orthonormal
according to the inner product of H. Thus ϕn must satisfy

〈ϕn, ϕm〉H = 〈ϕn, ηϕm〉H = δnm

From the above equation, we see that the pair
{
ϕn, ηϕm

}
are also orthonormal according to the

inner product on H. Thus, A admits a set of bi-orthogonal left and right eigenvectors.
One can expand any element in ψ ∈ H as

ψ =
∑
n

〈ϕn, ψ〉Hϕn

Thus, for any element φ ∈ H we have that

φ =
∑
n

〈ηϕn, φ〉Hϕn (26)

Which shows that
{
ϕn, ηϕm

}
form a complete biorthogonal eigenbasis in H.

37



Using the canonical mapping of H into H×, we can find the eigenkets for A and A∗. Note that A
and A∗ are not necessarily continuous so that their extensions to H× are ill-defined. Nonetheless, we
will naively apply the extensions to the eigenkets. However, the following is only formally correct when
we assume A is a bounded, entirely defined map. The eigenkets for A and A∗ are η× |ϕn〉 = |ηϕn〉
and |ϕn〉, respectively. To check this, note

A× |ηϕn〉 (ψ) = |ηϕn〉 (Aψ) = 〈Aψ, ηϕn〉H = 〈ψ,A∗ηϕn〉H

= 〈ψ,Eηϕn〉H = E〈ψ, ηϕn〉H = E |ηϕn〉 (ψ)

A similar computation shows that
A∗× |ϕn〉 = E |ϕn〉

We can construct the trivial rigging of H into a rigged Hilbert space given by H ⊂ H ⊂ H× which
for clarity we will denote H ⊂ H×.

From equation (26), it follows that the eigenkets are complete as for any ψ ∈ H, we have that

|ψ〉 =
∑
n

〈ϕn| η× |ψ〉 |ϕn〉

In conclusion, we find that the quasi-hermitian operator A has a complete set of eigenkets in the
rigged Hilbert space H ⊂ H×.

Theorem 4.7. Let A : H 7→ H be a (nondegenerate) quasi-hermitian operator with a discrete spectrum
and complete set of eigenvectors. Then H ⊂ H× is a rigged Hilbert space for A such that A has a
complete set of eigenkets in H×.

4.3 General case of Quasi-hermitan operators
Theorem 4.7 motivates the possible existence of rigged Hilbert spaces for general quasi-hermitian
operators. In this section, we will see to what end such a rigged Hilbert space construction is possible.

Let A : H 7→ H be a quasi-hermitian operator satisfying A = η−1A∗η with η : H 7→ H a bounded
invertible positive definite operator. It follows immediately that A∗ is also a quasi-hermitian operator
satisfying A∗ = ηAη−1. One can verify that A is self-adjoint with respect to the inner product 〈·, η·〉H
and A∗ is self-adjoint with respect to the inner product 〈·, η−1·〉H .

In the discrete case established in the previous section, we found that in the discrete specturm
case, the operator has eigenkets of the form η× |ϕn〉 where |ϕn〉 are eigenkets of its adjoint. Thus, one
may expect that the eigenkets of A denoted by |E〉 are related to the eigenkets of A∗ given by |F 〉 by

|F 〉 = η−1× |E〉 (27)

Let us for the sake of investigation assume that we have a rigged Hilbert space Φ ⊂ H ⊂ Φ× such
that A has a complete set of eigenkets |E〉 ∈ Φ×. Furthermore, lets assume that η, η−1, A and A∗ are
all continuous and Φ is left invariant under the maps so that their extensions to Φ× are well defined.
I claim that the kets given by equation 27 are actually eigenkets of A∗. To see this, note that

A∗× |F 〉 (ψ) = (ηAη−1)×η−1× |E〉 (ψ) = |E〉 (η−1ηAη−1ψ) = |E〉 (Aη−1ψ)

= A× |E〉 (η−1ψ) = E |E〉 (η−1ψ) = Eη−1× |E〉

where the first equality in the above equation follows because η−1ψ ∈ Φ. Thus, the assumption that
the maps Φ is left invariant is essential. In conclusion, the rigged Hilbert space(if it exists) has a
complete system of eigenket pairs given by {|E〉 , η−1 |E〉}.

The below lemma shows that sufficient conditions that can imposed on Φ to lead to an equivalent
space.

38



Lemma 4.8. Suppose Φ ⊂ H ⊂ Φ× is a rigged Hilbert space. By definition, Φ is Fréchet. Let
η−1 : H 7→ H be invertible. Suppose Φ satisfies AΦ ⊂ Φ and η−1Φ = Φ where A and η−1 are bounded
and thus continuous maps in the Φ topology. Then, A∗ and η are continuous in Φ as well and A∗
satisfies A∗Φ ⊂ Φ

Proof. Since η−1 : H 7→ H is an invertible map, its restriction to Φ will also have an inverse denoted
by η. Since η−1 is by assumption surjective and bounded, we have by the open mapping theorem
for Fréchet spaces that η−1 has a bounded inverse. Thus, η : Φ 7→ Φ is invertible and η : Φ 7→ Φ is
continuous. Recall that A∗ = ηAη−1. Clearly, A∗ when restricted to Φ is a composition of continuous
maps whose action on Φ is invariant. Thus, A∗ is continuous and satisfies A∗Φ ⊂ Φ

In the above analysis, we assumed that such a rigged Hilbert space with a complete set of eigenkets
exists. However, this is not guaranteed. We do know that generally we can find such a space in the
trivial case where A is self-adjoint by means of the nuclear spectral theorem. Next, we will show that
using H and H∗, we can construct a rigged Hilbert space that admits a resolution of the identity and
diagonalization in terms of eigenkets of A and A∗ for a dense subspace of H.

Theorem 4.9. Let A : H 7→ H be quasi-hermitian. Assume that there exist a rigged Hilbert space
Ψ ⊂ H ⊂ Ψ× such that AΨ ⊂ Ψ, η−1Ψ ⊂ Ψ and A, η−1 are continuous maps on Ψ. Then, there exists
an inner product space Σ such that Σ ⊂ H and Σ = Ψ element-wise. Furthermore, we have series of
maps Σ 7→ Ψ×, A×, A∗×, i× and j× that give a resolution of the identity and diagonalization of A
and A∗.

A×(ϕ) := |A∗ϕ〉H =

∫
R
E 〈E| η−1× |ϕ〉 |E〉 dµ(E)

A∗×(ϕ) := |Aϕ〉H =

∫
R
E 〈E|ϕ〉 η−1× |E〉 dµ(E)

i×(ϕ) := |iϕ〉H =

∫
R
〈E| η−1× |ϕ〉 |E〉 dµ(E)

j×(ϕ) := |jϕ〉H =

∫
R
〈E|ϕ〉 η−1× |E〉 dµ(E)

where for simplicity, we assume the decomposition to be with respect to a single Borel measure dµ.
See Theorem 2.23 for the general form with respect to multiple Borel measures.

Proof. Note that by construction H ⊂ H. Since AΨ ⊂ Ψ and the domain of A is strictly contained in
H, it follows that Ψ ⊂ H as well. Thus, the canonical injection of Ψ into H× and H× is well defined.

Denote the canonical injection of H into Ψ× by

|ϕ〉H := 〈·, ϕ〉H

and the injection of H into H× by
|ϕ〉H = 〈·, ϕ〉H

Lemma 4.10. The following spectral decompositions in H hold for the elements in Ψ

|ϕ〉H =

∫
R
〈E|ϕ〉 |E〉 dµ(E) (28)

|Aϕ〉H =

∫
R
〈E|ϕ〉 |E〉 dµ(E)
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Proof. Under the above assumptions, Ψ ⊂ H ⊂ Ψ× is a rigged Hilbert space under which AΨ ⊂ Ψ
and A is self-adjoint. Thus, we can apply the nuclear spectral theorem(2.23) which gives us a complete
system of eigenkets |E〉 ∈ Ψ×.

Then by the nuclear spectral theorem, for all ϕ ∈ Ψ, we have that

|ϕ〉H =

∫
R
〈E|ϕ〉 |E〉 dµ(E) (29)

|Aϕ〉H =

∫
R
〈E|ϕ〉 |E〉 dµ(E)

The above resolution of the identity and diagonalization of A is only for the kets |ϕ〉H and therefore
will not necessarily hold for |ϕ〉H . However, note that for ϕ ∈ H

Lemma 4.11.
|ϕ〉H =

∣∣η−1ϕ
〉
H

Proof.
|ϕ〉H = 〈·, ϕ〉H = 〈·, ηϕ〉H = |ηϕ〉H

so that
|ϕ〉H =

∣∣η−1ϕ
〉
H

Lemma 4.12. The following resolution of the identity holds for the elements of Ψ

|ϕ〉H =

∫
R
〈E| η−1× |ϕ〉 |E〉 dµ(E)

|ϕ〉H =

∫
R
〈E|ϕ〉 η−1× |E〉 dµ(E)

Proof. Let ϕ ∈ Ψ then because by assumption η−1Ψ ⊂ Ψ, we have that η−1ϕ ∈ Ψ. We can now apply
the resolution of the identity given in equation 4.3 to η−1ϕ. This gives

|ϕ〉H =
∣∣η−1ϕ

〉
H =

∫
R

〈
E
∣∣η−1ϕ

〉
|E〉 dµ(E)

Is it important to note that 〈E| η−1× is a bra in the dual space Ψ′. η−1 is self adjoint on H since
〈η−1ϕ,ϕ〉H = 〈η−1ϕ, ηϕ〉H = 〈ϕ, η−1ηϕ〉H = 〈ϕ, ηη−1ϕ〉H = 〈ϕ, η−1ϕ〉H. As a result,

〈E| η−1×(ϕ) =
〈
E
∣∣η−1∗ϕ

〉
=
〈
E
∣∣η−1ϕ

〉
Which lets us write equation 4.3 as a decomposition of the kets |E〉 and η−1× |E〉. That is,

|ϕ〉H =

∫
R
〈E| η−1× |ϕ〉 |E〉 dµ(E)

One can obtain the alternate form by passing ψ ∈ Ψ as argument in the above function. This gives

|ϕ〉H (ψ) = 〈ψ,ϕ〉H = 〈ψ|H (ϕ) =

∫
R
〈E| η−1× |ϕ〉 〈ψ|E〉 dµ(E)

Now, taking the complex conjugate we get

|ψ〉H (ϕ) =

∫
R
〈ϕ| η−1× |E〉 〈E|ψ〉 dµ(E)
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Lastly, removing the argument ϕ and rearranging gives

|ψ〉H =

∫
R
〈E|ψ〉 η−1× |E〉 dµ(E)

Lemma 4.13. The following spectral decompositions of A and A∗ hold in Ψ.

|A∗ϕ〉H =

∫
R
E 〈E| η−1× |ϕ〉 |E〉 dµ(E)

|Aψ〉H =

∫
R
E 〈E|ψ〉 η−1× |E〉 dµ(E)

Proof. Let ϕ ∈ Ψ We know by the nuclear spectral theorem that

|Aϕ〉H =

∫
R
E 〈E|ϕ〉 |E〉 dµ(E)

Substituting η−1ϕ in the above equation gives∣∣Aη−1ϕ
〉
H =

∫
R

〈
E
∣∣η−1ϕ

〉
|E〉 dµ(E)

Note A = η−1A∗η where A∗ is well-defined since Ψ ⊂ H. Substitution gives∣∣η−1A∗ηη−1ϕ
〉
H =

∣∣η−1A∗ϕ
〉
H = |A∗ϕ〉H

So ∣∣Aη−1ϕ
〉
H = |A∗ϕ〉H

From the above equation, we can conclude that the ket |A∗ϕ〉H is a member of Ψ× and coincides with∣∣Aη−1ϕ
〉
H. Furthermore, it tells us that the map A∗× : H× 7→ H× is well defined for |ϕ〉H ∈ H× when

ϕ ∈ Ψ. Note that A∗ is not necessarily bounded(continuous) on H so that the map A∗× : H× 7→ H×

is not globally well defined.
Putting it all together we find

|A∗ϕ〉H =

∫
R
E 〈E| η−1× |ϕ〉 |E〉 dµ(E)

We can find the expansion for |Aϕ〉H as well. Let ψ ∈ Ψ then

|A∗ϕ〉H (ψ) = 〈ψ,A∗ϕ〉H = 〈Aψ,ϕ〉H = 〈Aψ|H (ϕ))

So
〈Aψ|H (ϕ)) =

∫
R
E 〈E| η−1× |ϕ〉 〈ψ|E〉 dµ(E)

Taking the complex conjugate of both sides gives

|Aψ〉H (ϕ)) =

∫
R
E 〈ϕ| η−1× |E〉 〈E|ψ〉 dµ(E)

by removing the argument ϕ and some rearranging, it follows that

|Aψ〉H =

∫
R
E 〈E|ψ〉 η−1× |E〉 dµ(E)
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In conclusion for all elements ϕ ∈ Ψ, we obtain the following identities.

|ϕ〉H =

∫
R
〈E| η−1× |ϕ〉 |E〉 dµ(E)

|ϕ〉H =

∫
R
〈E|ϕ〉 η−1× |E〉 dµ(E)

|A∗ϕ〉H =

∫
R
E 〈E| η−1× |ϕ〉 |E〉 dµ(E)

|Aϕ〉H =

∫
R
E 〈E|ϕ〉 η−1× |E〉 dµ(E)

Define as we usually would A× |ϕ〉H := |A∗ϕ〉H and A∗× |ϕ〉H := |Aϕ〉H then one might conclude
from the equalities that |E〉 are generalised eigenvectors of A and η−1× |E〉 are generalised eigenvectors
of A∗. This is exactly what we found in the discrete spectrum case. However, A× and A∗× are ill-
defined on the kets in H× as A and A∗ are not continuous. There action can only be well defined on
the kets induced by Ψ.

Formally speaking, the right hand side of the expression are kets in Ψ× since they are just a
linear combination of |E〉 , η−1× |E〉 ∈ Ψ× and the right hand side we interpret as elements of a dense
subspace of H×.

Lemma 4.14. There exists an inner product space Σ such that Σ ⊂ H and Σ = Ψ element-wise.
Furthermore, we have a series of maps, A× : Σ 7→ Ψ×, A∗× : Σ 7→ Ψ×, i× : Σ 7→ Ψ× and j× : Σ 7→ Ψ×

that give a resolution of the identity and diagonalization of A and A∗.

A×(ϕ) := |A∗ϕ〉H =

∫
R
E 〈E| η−1× |ϕ〉 |E〉 dµ(E)

A∗×(ϕ) := |Aϕ〉H =

∫
R
E 〈E|ϕ〉 η−1× |E〉 dµ(E)

i×(ϕ) := |iϕ〉H =

∫
R
〈E| η−1× |ϕ〉 |E〉 dµ(E)

j×(ϕ) := |jϕ〉H =

∫
R
〈E|ϕ〉 η−1× |E〉 dµ(E)

Proof. Let us equip the set Ψ with the inner product 〈·, ·〉H then Ψ is an inner product space whose
completion coincides with H. For clarity, let us denote this space as Σ. Since Σ ⊂ H and Σ has
the same topology as H, we have H× ⊂ Σ×. Since Σ is not complete and thus not a Hilbert space,
Reiz representation theorem does not apply. However, we can show that Σ× ⊂ H× is true as well.
Let f ∈ Σ× then f is a continuous anti-linear functional on a dense subset of H. By taking limits,
we can construct a unique anti-linear functional F ∈ H×. Thus, any anti-linear functional in H×

when restricted to Σ is in Σ×, and any anti-linear functional in Σ× can be uniquely extended to an
anti-linear functional in H×. Thus,

Σ× = H×

Consider A : Σ 7→ H and A∗ : Σ 7→ H. Let A× : Σ 7→ Ψ× and A∗× : Σ 7→ Ψ× be defined as
follows. For all ϕ ∈ Σ

A×(ϕ) := |A∗ϕ〉H =

∫
R
E 〈E| η−1× |ϕ〉 |E〉 dµ(E)

A∗×(ϕ) := |Aϕ〉H =

∫
R
E 〈E|ϕ〉 η−1× |E〉 dµ(E)
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We can also define i : Σ 7→ Ψ as i(ϕ) = ϕ and i× : Σ 7→ Ψ× by

i×(ϕ) := |iϕ〉H =

∫
R
〈E| η−1× |ϕ〉 |E〉 dµ(E)

Similarly, define j× : Σ 7→ Ψ×

j×(ϕ) := |jϕ〉H =

∫
R
〈E|ϕ〉 η−1× |E〉 dµ(E)

Remark. The above theorem can be applied equally well to the quasi-hermitian operator A∗. The
construction in the proof will follow similarly accept the Hilbert space H will be replaced with H∗.
Furthermore, the nuclear spectral theorem will give us the existence of eigenkets of A∗ denoted by
|F 〉. We can find the eigenket corresponding to A to be η× |F 〉. One might naively think that
|F 〉 = η−1× |E〉. However, this is not necessarily the case. The rigged Hilbert spaces constructed in
the cases of A and A∗ are not necessarily equivalent. As a result, there is no guaranttee that the
eigenkets in one of the rigged Hilbert spaces is also in the other. Furthermore, the Ψ constructed in
both may be entirely different. However, both methods give us equally valid resolutions of the identity
and diagonlizations of the maps. From a physical perspective, one may prefer the space derived from
A since Ψ necessarily satisfies AΨ ⊂ Ψ. However even so, there is an ambiguity in choosing the set
of eigenkets. Another problem is that since A∗ is not continuous in the above theorem, its extension
to Ψ× is ill-defined. As a result, η−1× |E〉 cannot be formally interpreted as an eigenket of A∗.
Another issue is that Φ is not invariant under A∗. Ideally, one would like to find a way to combine
the constructions for A and A∗ so that they are on equal footing. The next theorem imposes stronger
conditions on the rigged Hilbert space in hopes of doing this.

Corollary 4.14.1. Let A : H 7→ H be quasi-hermitian. Assume that there exist a rigged Hilbert space
Ψ ⊂ H ⊂ Ψ× such that AΨ ⊂ Ψ, η−1Ψ = Ψ and A, η−1 are continuous maps on Ψ. By lemma 4.8,
A,A∗, η−1 and η are all continuous invariant maps. In this case, the extensions A× : Ψ× 7→ Ψ× and
A∗× : Ψ× 7→ Ψ× are well-defined. As a result, |E〉 is an eigenket of A : H 7→ H and η−1× |E〉 is an
eigenket of A∗ : H 7→ H.

Proof. In this case, A,A∗, η, and η−1 are all continuous and can all be extended to Ψ×. All results
of the previous theorem follow. Furthermore, Ψ ⊂ H ⊂ Ψ× satisfies exactly the assumptions of the
fictional rigged Hilbert space scenario investigated at the beginning of the section. It was there shown
that η−1× |E〉 is an eigenket of A∗.

Remark. It would be interesting to see whether a construction according to the corollary above can
be made such that when applied to A or A∗, they give equivalent answers. Also, it is entirely possible
that the assumption AΨ ⊂ Ψ and η−1Ψ = Ψ is only satisfied when η = id. It should be asked whether
the class of bounded positive definite operators that admit a dense invariant subset is not trivial.
Furthermore, it should be checked whether the subclass of bounded positive definite operators that
have an invariant dense subset whose inverse also admits one is not trivial.

It is not difficult to see that the above theorem reverts to the original nuclear spectral theorem
when A is self-adjoint(η = idH).

4.4 Discussion of rigged Hilbert space framework for Quasi-Hermitian Ob-
servables in Quantum Mechanics

In the previous section, we obtained, under certain conditions on the observable and metric, a complete
set of generalised eigenvectors. Additionally, we found that for a dense subset Φ of the Hilbert space,
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one can obtain a resolution of the identity and diagonalizations of the observable and its adjoint with
respect to the eigenvectors. One caveat is that we required Φ to be left invariant under the action of
the observable and the metric operator. In general, we do not know whether such a set Φ can be found.
It is possible that such a Φ only exists in the trivial case where the metric operator satisfies η = idH .
However, these conditions are necessary for generalised left and right eigenvectors to be in the anti-dual
space. Thus, if no non-trivial Φ exists, it gives one reason to conclude that there is no rigged Hilbert
space formulation for quasi-hermitian operators. If this is the case, an alternate approach is likely
needed. Assuming there are non-trivial examples, the obtained result does not give a natural rigged
Hilbert space for the quasi-hermitian operator. Specfiically, we require the Hilbert space obtained for
the inner product where the observable is self-adjoint to be rigged into a nuclear rigged Hilbert space.
The eigenkets of the observable and its adjoint are in this rigged Hilbert space. One can argue that
the construction is not canonical since the original Hilbert space where the quasi-hermitian operator
is defined does not come into play.

4.4.1 Possible Alternative Approach by using Operator and Projection Valued Mea-
sures

It is possible that the approach taken in this thesis is not the most natural one. We tried to generalise
the nuclear spectral theorem to the quasi-hermitian case by applying the nuclear spectral theorem
in the Hilbert space where the operator is self-adjoint. One may have more luck if they attempt
to generalise the proof of the nuclear spectral theorem itself. Such a proof will likely require some
sort of spectral decomposition of the quasi-hermitian operator. Specifically, one likely will need to
generalise the decomposition of self-adjoint operators in terms of projection valued measures to the
quasi-hermitian case. One possible method of doing this is by considering the spectral decomposition
of the operator in the Hilbert space where it is self-adjoint.[18] The spectral theorem says that a
self-adjoint operator A : H 7→ H can be written as follows, where (·, ·)H represents the inner product.
Let A : H 7→ H be a densely defined self-adjoint map then for ϕ,ψ ∈ D(A), we have

(ϕ,ψ)H =

∫
Λ(A)

d(Eλϕ,ψ)H (30)

(ϕ,Aψ)H =

∫
Λ(A)

λd(Eλϕ,ψ)H (31)

where ϕ, ψ ∈ H ⊂ H. Note that Eλ : H 7→ H is an orthogonal projection defined on all of H and
d(Eλϕ,ψ)H is a projection valued measure.

If we let A : H 7→ H be quasi-hermitian in the Hilbert space H so that (ϕ,ψ)H = (ϕ, ηψ)H , then
A can be considered a self-adjoint map in H with a domain D(A) that remains dense. As a result, we
can apply (30) and (31). Note

(ϕ,Aψ)H = (ϕ, ηAψ)H = (ϕ,A∗ηψ)H

where we ψ,ϕ ∈ D(A) and we use that ηA = A∗η from being quasi-hermitian. Note that

|A∗ηψ〉H (ϕ) := (ϕ,A∗ηψ)H

Let Φ ⊂ D(A) be such that ηΦ = Φ and AΦ ⊂ Φ. It follows that A∗Φ ⊂ Φ. Furthermore, suppose
EλΦ ⊂ H, ∀λ ∈ Λ(A). Thus, similar as in the proof of the extension of the nuclear spectral theorem,
we require the existence of a subspace invariant under the actions of the operators.

Then for all ψ ∈ Φ, we can find a φ ∈ Φ such that η−1φ = ψ. Substitution in (31) gives,

〈ϕ|A∗φ〉H =

∫
Λ(A)

λd(Eλϕ, η
−1φ)H

but (Eλϕ, η
−1φ)H = (Eλϕ, φ)H assuming EλΦ ⊂ H.
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So
〈ϕ|A∗φ〉H =

∫
Λ(A)

λd(Eλϕ, φ)H

Remark. We see that the requirement EλΦ ⊂ H is necessary in order for the spectral measure to be
written in terms of the inner product of H.

Using the fact that 〈ϕ|A∗φ〉H = 〈Aϕ|φ〉H gives

〈Aϕ|φ〉H =

∫
Λ(A)

λd(Eλϕ, φ)H

and taking the complex conjugate, we find a similar expression for A.

〈φ|Aϕ〉H =

∫
Λ(A)

λd(φ,Eλϕ)H

where we use that λ is real.
It can similarly be shown from the self-adjoint case that

〈φ|ϕ〉H =

∫
Λ(A)

d(φ,Eλϕ)H

Note that in the above spectral decompositions if Eλ is a self-adjoint orthogonal projection then
the operator is necessarily self-adjoint. This is not a contradiction since Eλ is not self-adjoint in the
inner product of H. Thus, we have found a spectral decomposition for A and A∗. By removing the
λ, in the integral we obtain the resolution of the identity. In this case, we decompose the operator
with respect to an operator valued measure. The Eλ is no longer an orthogonal projection.(It may be
a non-orthogonal projection but this needs to be checked).

In conclusion, we present the following theorem

Theorem 4.15. Let A : H 7→ H be a quasi-hermitian operator such that it is self-adjoint in the
Hilbert space H. Then if there exists a dense subset Φ ⊂ H invariant under A,A∗, η, and η−1 and
EλΦ ⊂ H, ∀λ ∈ Λ(A), where Eλ is the spectral projection in the self-adjoint spectral decomposition of
A in H, then the following spectral decompositions hold

〈φ|ϕ〉H =

∫
Λ(A)

d(φ,Eλϕ)H

〈φ|Aϕ〉H =

∫
Λ(A)

λd(φ,Eλϕ)H

〈φ|A∗ϕ〉H =

∫
Λ(A)

λd(Eλφ, ϕ)H

where Eλ is an operator that is an orthogonal projection with respect to the inner product 〈·, η·〉H . One
can show when Eλ : H 7→ H is viewed as a map on H that it is quasi-hermitian so that E∗λ = η−1Eλη.

Proof. See previous construction.

It is easy to see when A is self-adjoint, so that η = idH , that the decompositions correspond with
the original spectral theorem for self-adjoint operators.

Interestingly, the above spectral decompositions are defined on essentially the same space as given
in theorem 4.14. The only difference is that we don’t require any continuity conditions on the operators
or finer topology on Φ. It seems that by imposing these conditions, the spectral decomposition with
respect to an operator-valued measure can be replaced with a decomposition with respect to a system
of eigenkets. A possible extension of this thesis is to see whether the nuclear spectral theorem proof
can be altered to account for the quasi-hermitian case by using the above spectral decompositions.
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4.4.2 Rigged Hilbert Space of Quantum Systems with both Quasi-Hermitian and Her-
mitian Observables

In quanum mechanics, we are generally interested in a collection of observables. In the case of a system
described by a quasi-hermitian Hamiltonian, the hermitian momentum and position observables are
also of interest. As a result, one would generally like to obtain a rigged Hilbert space formulation
so that the wavefunctions can be decomposed in terms of the Hamiltonian, position, and momentum
eigenkets. Furthermore, we wish all the powers of the operators and their commutation relations to
be well defined on the space of wave functions. The extension of the nuclear spectral theorem given
in the previous section relies on constructing a rigged Hilbert space using the Hilbert space where
the quasi-hermitian operator is self-adjoint. It should be noted that the momentum and position
operators are not self-adjoint in this space so that the nuclear spectral theorem cannot be applied to
them. In general, it is unclear how to incorporate general quasi-hermitian operators with hermitian
operators. This will require further research and is out of the scope of this thesis.

However, we propose a possible method of constructing a rigged Hilbert space that may apply to
a number of classes of PT-symmetric(not necessarily qausi-hermitian) quantum systems.

Consider the case where a quantum system is described by a PT-symmetric Hamiltonian that is
diagonalizable and has discrete spectrum. In this case the eigenvectors are in the Hilbert space and
form a complete basis. We do not need to the nuclear spectral theorem to ensure the existence of a
complete set of eigenvectors. We only wish to find a set of wavefunctions and a rigged Hilbert space so
that the eigenkets of the momentum and position observables are present. We will propose conditions
under which this can be done.

Let H be the Hilbert space where the quasi-hermitian Hamiltonian is defined. Let h : H 7→ H
be the Hamiltonian operator, P : H 7→ H the momentum operator, and Q : H 7→ H the position
operator. Suppose Φ is a dense subspace of H equipped with a finer topology such that it is a nuclear
countably Hilbert space. Furthermore, impose that hΦ ⊂ Φ, PΦ ⊂ Φ, and QΦ ⊂ Φ and that the maps
are all continuous with respect to the finer topology. In this case, P and Q as self-adjoint operators
and the rigged Hilbert space Φ ⊂ H ⊂ Φ× satisfy the conditions of the nuclear spectral theorem.
As a result, we have that |p〉 and |x〉 form a complete system of eigenkets. Furthermore, since the
eigenvectors of h are in the Hilbert space H and form a complete basis, it turns out that h also has a
complete set of eigenkets. It should first be noted that even though h has complete set of eigenvectors
in H, they are not necessarily in Φ. As a result, one should use the canonical isomorphism into Φ×

and consider the eigenvectors of h as elements of Φ×. Let the eigenvectors of h be labeled ψn and the
eigenvectors of h∗ be labeled φn. The |ψn〉 and |ϕn〉 are simply the kets obtained by the canonical
injection of these eigenvectors. One can show that for ϕ ∈ Φ, the ket |ϕ〉 ∈ Φ× can be written

|ϕ〉 =

∞∑
n=1

〈φn|ϕ〉 |ψn〉

The above equality simply follwos from the similar equality thats holds in the Hilbert space H. One
can similarly obtain a diagonalization for h and h∗.

Thus, we have constructed a rigged Hilbert space Φ ⊂ H ⊂ Φ× such that all powers of the
observables are well defined on Φ and the observables all of a complete set of eigenkets. This space is
sufficient to rigorously describe the quantum system. Thus, we see that an extension of the nuclear
spectral theorem is not necessarily needed when the quasi-hermitian operator is already diagonalizable.

5 Conclusion
In this thesis, we presented the well-studied rigged Hilbert space formulation of formulation of Quan-
tum Mechanics. We rigorously covered the mathematical theory culminating with the nuclear spectral
theorem. We applied the theory to the quantum mechanical system defined by a potential barrier.
After illustrating the rigged Hilbert space for self-adjoint operators, non-hermitian operators and their
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application to quantum mechanics is discussed. Specifically, we introduce the class of PT-symmetric
Hamiltonians that have found a wide range of applications. It is known that this class of operators
is a subset of pseudo-hermitian operators. A large number of PT-symmetric Hamiltonians of interest
happen to be quasi-hermitian. An operator A : H 7→ H is quasi if it is similar to its adjoint by a
bounded positive definite operator η. So that A∗ = η−1Aη. Currently, little attention has been given
to putting such systems in a rigorous framework such as in the rigged Hilbert space formulation. We
offer an extension of the nuclear spectral theorem to quasi-hermitian operators.

We show that for a dense subset of the Hilbert space where the quasi-hermitian operator is defined
that a resolution of the identity and diagonalization of the operator and its adjoint can be obtained
in terms of their eigenkets.

Specifically, we find the following identities for the quasi-hermitian operator A : H 7→ H where
|E〉 are eigenkets of A and η−1× |E〉 are eigenkets of A∗. They are defined for a dense subset Φ ⊂ H.
For further details, we refer to theorem 4.14.

|A∗ϕ〉H =

∫
R
E 〈E| η−1× |ϕ〉 |E〉 dµ(E)

|Aϕ〉H =

∫
R
E 〈E|ϕ〉 η−1× |E〉 dµ(E)

|ϕ〉H =

∫
R
〈E| η−1× |ϕ〉 |E〉 dµ(E)

|ϕ〉H =

∫
R
〈E|ϕ〉 η−1× |E〉 dµ(E)

The space Φ where the identities are defined must satisfy AΦ ⊂ Φ and η−1Φ ⊂ Φ. It is possible
that for certain operators A that the above space does not exist. Additionally, it is possible that the
theorem is only satisfied in the trivial case where A is self-adjoint. If this is the case, there is reason
to suspect that there is no such extension for quasi-hermitian operators.

We also obtained a generalization of the traditional spectral decomposition of self-adjoint operators
to the quasi-hermitian case. We propose that a better and more natural generalization of the nuclear
spectral theorem can be obtained by using the following spectral decompositions. Our approach
used the nuclear spectral theorem for self-adjoint operators to gain information about quasi-hermitian
operators. It is possible that using the following spectral decompositions to alter the proof itself may
lead to an interesting result.

We find that for a subset Φ ⊂ H satisfying invariance under η, η−1, A, and A∗ that the following
identities hold

〈φ|ϕ〉H =

∫
Λ(A)

d(φ,Eλϕ)H

〈φ|Aϕ〉H =

∫
Λ(A)

λd(φ,Eλϕ)H

〈φ|A∗ϕ〉H =

∫
Λ(A)

λd(Eλφ, ϕ)H

where Eλ is an operator that is an orthogonal projection in the Hilbert space obtained by completing
H with respect to the inner product 〈·, η·〉H . One can show when restricted to H and using its inner
product, Eλ is quasi-hermitian so that E∗λ = η−1Eλη. One should note that there is no guarantee
that EλΦ ⊂ H.

We also discuss how to incorporate quasi-hermitian and hermitian operators together in a single
rigged Hilbert space framework. We prove necessary conditions for a diagonalizable non-hermitian
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operator with discrete spectrum and any number of self-adjoint operators to have a complete set of
eigenkets in a rigged Hilbert space.

An interesting extension of this thesis would be to see whether a rigged Hilbert space-like frame-
work with a nuclear spectral-like theorem can be found that incorporates both quasi-hermitian and
hermitian operators.

Another possible extension of our thesis is to extend the rigged Hilbert space framework and nuclear
spectral theorem to the general class of pseudo-hermitian operators. Pseudo-hermitian operators are
self-adjoint in Krein spaces so any such theory would likely require studying the spectral theory of
self-adjoint operators on such spaces.
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