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Abstract

This thesis considers a generalisation of Mordell’s theorem for rational func-
tion fields. We prove in an elementary manner that the theorem holds for
rational function fields of the form Fqptq and we look at where and how the
proof needs to be adjusted when we want to consider other rational func-
tion fields. We briefly look into some mathematical objects occurring in the
proof and we end with the computation of the rank of an elliptic curve over
a rational function field.
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1 Introduction
An important branch of number theory is that which studies Diophantine equa-
tions. The old Greeks already studied these kind of equations; they are named
after the Greek mathematician Diophantus who lived around 200 AD. The theory
of Diophantine equations studies the solutions of polynomial equations in either
the integers or the rationals. A famous example of such an equation is Fermat’s
equation

Xn
` Yn

“ Zn.

Fermat asserted in the seventeenth century that such an equation does not have
any rational solutions, except the trivial ones, for n ě 3. It took 350 years before
for someone, Andrew Wiles, was able to find a proof of the theorem. Fermat’s last
theorem is a great example of how complex the study of Diophantine equations
can be. An important tool in the study of Diophantine equations are elliptic curves,
they were also used extensively by Wiles in his proof of Fermat’s last theorem. An
elliptic curve is a curve defined by an equation of the form

y2
“ x3

` ax2
` bx` c,

where a, b, c are elements of some field K with charpKq , 2 and where f pxq :“
x3 ` ax2 ` bx` c does not have any multiple roots.

Elliptic curves turn out to have a lot more structure than one would imagine
when just eyeballing the equation that defines them. In fact, the points on an
elliptic curve over a field form an abelian group. Most mathematics students are
probably familiar with this fact, but again, the group law on those points is not at
all that obvious and its construction is completely geometric. Probably even less
obvious is the fact that in the case where K “ Q, the rational points on an elliptic
curve are not only an abelian group, but are in fact finitely generated. This result is
due to Mordell who proved it in the beginning of the 20-th century [1]. Mordell’s
theorem turns out to hold in more generality, as was proved some years later by
Weil, Néron and Lang. In particular, the theorem holds for rational function fields
which are finitely generated over their prime fields. The main goal of this thesis is
to give a proof of this statement for a specific case in an elementary way, that is,
using a height function and assuming there is a point of order 2 on the curve. We
will also discuss where it goes wrong in the more general case.
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2 Preliminaries

2.1 Group law on elliptic curves
As mentioned, one can define a group law on the points on an elliptic curve over
some field K. It should first be mentioned that we are not considering curves in
an affine plane, like the Euclidean plane. Instead, we are considering them in the
projective plane, which has some extra points ‘at infinity’. One of these points,
denoted by O, is on our elliptic curve. This point will play the role of the identity
element in the group. Adding these points at infinity has some practical reasons,
an important one being that equality holds in Bézout’s theorem. This theorem
then tells us that the number of intersection points of two curves, which do not
have shared components, is the product of their degrees. Hence the number of
intersection points of a line with an elliptic curve is equal to 3. This is important
as the group law on an elliptic curve is defined using the intersection points of a
line and the elliptic curve.

The group law on an elliptic curve is defined as follows; given two points P
and Q on the elliptic curve, the point P` Q :“ px,´yq is the point where x and y
are such that px, yq is the third intersection point of the line through P and Q and
the curve. Hence we obtain P` Q by mirroring the third intersection point of the
line through P and Q and the cubic, in the x-axis. In the picture below one can
see what the (geometric) process is of finding the point P`Q. Note that there are
some cases that are a bit different. For example, the third intersection point may
be the point at infinity O. In that case we have that P ` Q “ O. Also, if we add
the point P to itself, we use the line that is tangent to the curve at that point P to
find the third intersection point.

Figure 1: Group law on an elliptic curve

Inverses can be written down explicitly in a simple way; given a point P “ px, yq
on the curve, its inverse´P has coordinates px,´yq as the line going through both
these points only meets the curve at O, the identity element. Using this fact it is
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also easy to see that points P “ px, yq on the curve that have order two, all satisfy
y “ 0, since P “ ´P.

Doing some quite straightforward, but not very pleasant, calculations using
the equations for lines through a point and tangent lines, one can find the explicit
formulas for the group law. The computations will not be done here as such, but
explicit calculations are given in [2]. The formulas for the group law that come
out of these computations are as follows; let P1 “ px1, y1q and P2 “ px2, y2q with
x1 , x2, be points on the curve given by the equation y2 “ x3 ` ax2 ` bx` c and
denote P1 ` P2 “ px3,´y3q. The points x3 and y3 are then as follows

x3 “

ˆ

y2 ´ y1

x2 ´ x1

˙2

´ a´ x1 ´ x2 and y3 “
y2 ´ y1

x2 ´ x1
x3 ` ν, (1)

here ν is given by

ν “ y1 ´
y2 ´ y1

x2 ´ x1
x1 “ y2 ´

y2 ´ y1

x2 ´ x1
x2.

Note that the case where x1 “ x2 but the points are distinct corresponds to the
case where P1 ` P2 “ O. We can also construct an explicit formula for the case
where we want to add a point P “ px, yq to itself. This formula, which gives the
x-coordinate of 2P “ px1, y1q is called the duplication formula

x1 “
x4 ´ 2bx2 ´ 8cx` b2 ´ 4ac

4x3 ` 4ax2 ` 4bx` 4c
. (2)

These formulas can be used when it is necessary to do explicit computations with
points on an elliptic curve.

2.2 Mordell’s theorem
Formally, Mordells theorem can be stated as follows.

Theorem 1 (Mordell’s theorem). Let E be an elliptic curve given by an equation

E : y2
“ x3

` ax2
` bx` c,

where a, b and c are integers. Then the group of rational points on the curve,
EpQq, is a finitely generated abelian group.
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The most elementary proof of this theorem uses the fact that the index of
2EpQq is finite in EpQq and that a so called height function h exists, which maps
EpQq to r0,8q and satisfies some additional properties. The fact that the given
index is finite is however no triviality and turns out to be the most difficult part
of the proof of Mordell’s theorem. In fact, if one wants to prove this finiteness
in general, using some algebraic number theory is inevitable. This is why most
books that try to steer clear from some more advanced algebra prove this theorem
while assuming that there is at least one point of order two on the curve. This is
also what will be done in this thesis. The theorem that states that these properties
of the rational points on the curve imply that the group they form is finitely gener-
ated uses a kind of descent argument. The statement of this theorem and a proof
of it will be given in the next subsection.

The fact that there is a point of order 2 on the curve, gives that the curve can
be translated in a way such that this point is the origin. The rational points on
this new curve are in one-to-one correspondence with the rational points on the
original curve, however this new curve has a simpler equation defining it. After
some arithmetic with this simpler curve, one is then able to show that the index of
2EpQq in EpQq is finite.

Another important part of the proof is the introduction of a suitable height
function on EpQq. The height function that is used on Q most often is defined as
follows

h
´m

n

¯

:“ log maxt|m|, |n|u,

where m{n P Q is written in lowest terms, i.e. gcdpm, nq “ 1. If P “ px, yq is a
point in EpQq, then we define: hpPq :“ hpxq. This function on EpQq turns out to
satisfy all properties required by the descent argument.

2.3 Descent Theorem
The theorem used for the proof that the group of rational points on an elliptic curve
is finitely generated is stated below. It is worth noting that this theorem itself does
not concern elliptic curves, but holds in more generality for abelian groups.
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Theorem 2 (Descent). Let Γ be an abelian group, and suppose that there exists a
function

h : ΓÑ r0,8q

with the following three properties:

(i) For every real number M, the set tP P Γ : hpPq ď Mu is finite.

(ii) For every P0 P Γ there is a constant κ0 such that

hpP` P0q ď 2hpPq ` κ0

for all P P Γ.

(iii) There is a constant κ such that

hp2Pq ě 4hpPq ´ κ

for all P P Γ.

Suppose further that rΓ : 2Γs ă 8.
Then Γ is finitely generated.

Proof. As the index of 2Γ is finite in Γ, there are finitely many representatives
Q1, . . . ,Qn for the cosets of 2Γ in Γ. Let P P Γ, since P must be in one of the
cosets we can write P “ Qi1 ` 2P1 for some P1 P Γ and Qi1 the representative of
some coset. The same thing can be done for P1, so we can write P1 “ Qi2 ` 2P2.
Continuing inductively we have the following

P1 “ Qi2 ` 2P2

P2 “ Qi3 ` 2P3

...

Pm´1 “ Qim ` 2Pm.

We have now constructed a sequence of elements Pi in the group Γ. Substituting
these Pi into the expression for P eventually gives

P “ Qi1 ` 2Qi2 ` 4Qi3 ` ¨ ¨ ¨ ` 2m´1Qim ` 2mPm.

Using the assumptions piiq and piiiq we will say something useful about the height
of a point Pi. First we look at piiq with P0 “ ´Qi, we then get a constant κi such
that

hpP´ Qiq ď 2hpPq ` κi for all P P Γ.
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Since there are only finitely many Qi’s, we can take the maximum of all κi’s,
denoted by κ1, to obtain the following

hpP´ Qiq ď 2hpPq ` κ1 for all P P Γ and all 1 ď i ď n.

Next we use the third assumption piiiq and the constant κ that comes from it to
obtain the following inequality

hpP jq ď
1
4

hp2P jq `
1
4
κ

“
1
4

hpP j´1q `
1
4
κ

ď
1
2

hpP j´1q `
κ1 ` κ

4
.

Suppose that hpP j´1q ě κ1 ` κ, then by the above inequality we have that

hpP jq ď 3{4 hpP j´1q.

So as long as P j´1 is greater than or equal to κ1 ` κ, we have a sequence of Pi’s
with height going to zero. This means that there should exist some index m such
that hpPmq ď κ1 ` κ. So if we take m large enough, we can write for any P P Γ

P “ α1Q1 ` α2Q2 ` ¨ ¨ ¨ ` αnQn ` 2mR,

where α1, . . . , αn are integers and R is some element in Γ with hpRq ď κ1` κ. This
means that the set

tQ1,Q2, . . . ,Qnu Y tR P Γ : hpRq ď κ1 ` κu

generates Γ. The left set is finite since there are finitely many cosets of 2Γ in Γ
and the right is finite by the first property piq, hence we conclude that Γ is finitely
generated.

�
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3 Generalisation of Mordell’s theorem
As mentioned, Mordell’s theorem holds in more generality [3]. In this thesis we
will look at the elementary proof for Mordell’s theorem, i.e. using the descent
argument from the previous theorem and the assumption that there is a point of
order 2 on the curve, and try to extend it to (some) rational function fields Kptq
with charpKq , 2. This field Kptq is the field of fractions of the principal ideal do-
main Krts, which consists of polynomials with coefficients in the field K. Hence
elements of the field Kptq can be written as quotients of polynomials with coeffi-
cients in K.

Throughout this thesis we will be considering the curve E given by the equa-
tion

E : y2
“ x3

` ax2
` bx` c,

where a, b and c are elements of Krts and ∆p f pxqq , 0, i.e. the discriminant of
f pxq is nonzero, with f pxq “ x3 ` ax2 ` bx ` c. When we write EpKptqq, we
are talking about the Kptq-rational points on the curve E, i.e. points px, yq where
x and y are in Kptq and satisfy the equation for E.

The analogue of Mordell’s theorem for rational function fields Kptq is not true
for any field K. For example, if we consider an elliptic curve over the rational
function field Cptq, the Cptq-rational points are not finitely generated in general;
consider for example a curve E over C. Then EpCq Ă EpCptqq, but EpCq is clearly
not finitely generated as it is an uncountable set and since EpCptqq is at least as
‘large’, it is not finitely generated either. We will go through the same steps as
the proof for Q does, but instead considering Kptq. This proof will of course not
work for general K so when necessary we will mention what adjustments need to
be made to K to make the proof work.

We will proceed in approximately two steps, following the same procedure
as in [2]. The first step is concerned with finding an appropriate height function
h on the Kptq-rational points on the curve and proving it satisfies the necessary
conditions. The height function that is used a lot on Q is defined using the ab-
solute value of a number in Z, hence it makes sense to do a similar thing for a
rational function field Kptq. The second and more difficult part of the proof is
concerned with proving the finiteness of the index of the group 2EpKptqq in the
group EpKptqq.

After this we will look in more detail into some parts on the proof and do an
example of a calculation of the rank using information gained from the proof.
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4 Height

4.1 Height function on EpKptqq

The height function generally used on Q is defined using the absolute value, so it
makes sense to do a similar thing for a rational function field Kptq. Hence we will
want to define an absolute value on Krts, that is, a function | ¨ | from Krts to the
non-negative reals with the following properties

(i) | f | ě 0 for all f in Krts;

(ii) | f | “ 0 if and only if f “ 0;

(iii) | f g| “ | f ||g| for all f , g in Krts;

(iv) | f ` g| ď | f | ` |g| for all f , g in Krts.

Note that a function that satisfies these properties is for example the function
| f | :“ edegp f q, if we set degp0q “ ´8. If we are working with Fqrts we may also
use | f | :“ qdegp f q. These absolute values actually satisfy a stronger version of the
triangle inequality, since degp f ` gq ď maxtdegp f q, degpgqu, for any f , g in Krts
and hence

| f ` g| “ edegp f`gq
ď maxtedegp f q, edegpgq

u “ maxt| f |, |g|u,

for all f , g in Krts. This absolute value will be used to define the height in a similar
way to the height defined on Q.

Definition 4.1. Let xptq “ f ptq{gptq P Kptq be written in lowest terms. The
function h, called the height function, is a function from Kptq to r0,8q, such that
hpxptqq “ maxtdegp f ptqq, degpgptqqu.

Using the absolute value as before, we note that this height is defined analagously
to the definition of height we gave on Q since

h
ˆ

f
g

˙

:“ maxtdegp f q, degpgqu “ maxtlogp| f |q, logp|g|qu “ log maxt| f |, |g|u.

This function h is the height function that will be used on Kptq. Next we define a
height on the points on our curve, we do this in the same way as is done for EpQq.

Definition 4.2. Let P “ px, yq be a point on the given curve. The height of a point
on the curve is defined as the height of its first coordinate: hpPq :“ hpxq. The
height of the point at infinity is defined as hpOq :“ 0.
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In the upcoming sections, we will prove that in some cases this height function
satisfies the three conditions needed for the descent argument. We will do this in
as much generality as is possible, so using a general rational function field Kptq.
However whether these conditions hold, depends a lot on the domain of the height
function h, therefore it will at some points be necessary to make a more specific
choice for the field K.

4.2 Finiteness property
As mentioned we will prove the needed properties of the height in several steps.
The first property that will be proved is the finiteness property. However, this
property does not hold for a general rational function field Kptq, we will elaborate
on this later. The version we are going to prove is stated as a lemma below.

Lemma 1. For every real number M, the set tP P EpFqptqq : hpPq ď Mu is finite.

Proof. We will first prove that there are only finitely many possibilities for the x-
coordinate of the point P on the curve when we are given that its height is bounded
by some real number M. Since, given an x-coordinate, there are at most two pos-
sibilities for the y-coordinate, we will then be able to conclude that also there are
finitely many points px, yq on the curve.

We will first show that for all real numbers M

tx P Fqptq : hpxptqq ď Mu ă 8.

Since the set consisting of the x-coordinates of Fqptq-rational points on the curve
is a subset of Fqptq, we have then proven the lemma.

We fix M P R and let x P Fqptq be such that hpxq ď M. If x is written in lowest
terms as xptq “ f ptq{gptq, that means that both degp f q ď M and degpgq ď M.
However, all the coefficients of both polynomials lie in the finite field Fq, meaning
that each of the coefficients can take one of q values, except the leading coefficient,
which can have one of the q ´ 1 nonzero values. Therefore there are precisely
pq ´ 1qqd distinct polynomials of degree d in Fqrts. This implies that the number
of polynomials in Fqrts with degree lower than or equal to d is equal to

d
ÿ

i“0

pq´ 1qqi,

hence there are that many different possibilities for both polynomials f and g.
Since x is the quotient of these polynomials, written in lowest terms, there are at
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most
˜

d
ÿ

i“0

pq´ 1qqi

¸2

distinct possibilities for x (some terms may not be coprime). This proves that for
all real numbers M the set of elements x P Fqptq with hpxq ď M is finite, proving
the lemma. �

From this proof it is obvious where it goes wrong when considering a general
rational function field Kptq. If we fix any degree d and consider polynomials with
coefficients in K of degree d, then in general there are infinitely many of those
polynomials. This changes only if K is a finite field, i.e. of the form K “ Fq.
Hence the set that is being considered is not finite in general if we consider Kptq
with K a field with infinitely many elements.

As is the case in the proof of Mordell’s theorem, this property of the height is
the easiest to prove, when considering the rational function field Fqptq. The other
properties will be proved in the upcoming two sections.

4.3 Upper bound when adding points
In this section the second property of the height function h will be proved. Before
stating the property as a lemma and proving the lemma, we first note two things
about the points on our curve in the upcoming two propositions.

Proposition 1. If P “ px, yq is a point on the curve E with x, y P Kptq, then x and
y have the form

x “
m
e2 and y “

n
e3 ,

where m, n, e P Krts and gcdpm, eq “ gcdpn, eq “ 1.

Proof. First suppose that we write

x “
m1

M
and y “

n1

N
,

in lowest terms. If we can show that N2 “ uM3, where u is a unit, we can define
e “ N{M and get

e2
“

N2

M2 “
uM3

M2 “ uM and e3
“

N3

M3 “
N3

u´1N2 “ uN.

If we then define
m :“ um1 and n :“ un1,
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we have the expression for x and y that we wanted. So if we show that N2 “ uM3

where M and N are as defined above, we have proven the proposition. We will
prove this by showing that both N2|M3 and M3|N2, for notational reasons, we will
write m and n instead of m1 and n1.

First note that substituting x and y into the equation of the curve gives the
following relation between m, n,M and N

n2

N2 “
m3

M3 ` a
m2

M2 ` b
m
M
` c

and clearing the denominators gives another equation

M3n2
“ N2m3

` aN2Mm2
` bN2M2m` cN2M3.

• Since N2 occurs in every term on the right-hand side of the equation, we
have that N2|M3n2. However, we assumed that x and y were written in
lowest terms, so gcdpn,Nq “ 1. Then also gcdpn,N2q “ 1 and we must
have that N2|M3.

• First we note that M divides M3n2 and hence it must divide the right side
of the equation. Also, since M occurs in the last three terms on the right-
hand side, it divides those. These two facts together give us that M must
divide N2m3. However, gcdpM,mq “ 1 by assumption, so we must have
that M|N2. By the same reasoning as before this immediately gives us that
M2|N2m3, so M|N. Again using the same reasoning, i.e. M3|M3n2 and
M3 divides the last three terms of the equation on the right, we obtain that
M3|N2m3 so in fact M3|N2.

By the argument made above, we have now shown that the coordinates x and y
can indeed be written as in the proposition. �

This is the first result that will be needed to prove the second property of the
height. Note that we hardly need anything else than the fact that the points are on
the curve and that there is a unique factorisation in Krts, so this statement really
holds for any Kptq-rational points. There is one more result that will be needed,
which is stated in the next proposition.

Proposition 2. Let P “ pm{e2, n{e3q be a point on the curve E, with m, n, e P Krts
and gcdpm, eq “ gcdpn, eq “ 1, then

deg n ď k ` 3{2 hpPq,

for some constant k depending on a, b and c.
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Proof. We first note that the degree has the following properties: the first is that

degp f gq “ degp f q ` degpgq, for f , g P Krts,

which holds since f and g are polynomials with coefficients in a field, so there
are no zero divisors and multiplying the leading terms will hence never yield zero.
The second is that

degp f ` gq ď maxtdegp f q, degpgqu, for f , g P Krts.

Next we note that both degpe2q ď hpPq and degpmq ď hpPq, so in particular
degpeq ď 1{2 hpPq. We will use these inequalities to give an upper bound to
degpn2q.

We know that m{e2 and n{e3 satisfy the equation for the curve, substituting
them in the equation and clearing the denominators gives

n2
“ m3

` ae2m2
` be4m` ce6,

which can be used to obtain the following (in)equalities

degpn2
q “ degpm3

` ae2m2
` be4m` ce6

q

ď maxtdegpm3
q, degpae2m2

q, degpbe4mq, degpce6
qu

“ maxt3 degpmq, degpaq ` 2 degpeq ` 2 degpmq, degpbq ` 4 degpeq ` degpmq,
degpcq ` 6 degpequ

ď maxt3hpPq, degpaq ` 3hpPq, degpbq ` 3hpPq, degpcq ` 3hpPqu
“ maxtdegpaq, degpbq, degpcqu ` 3hpPq.

We now define k :“ 1{2 maxtdegpaq, degpbq, degpcqu. Then we obtain that

degpnq “ 1{2 degpn2
q ď k ` 3{2hpPq.

This proves the proposition. �

We have now proven the two results with which we will be able to prove the
second property of the height function. Again, the previous proposition holds in
general for a rational function field Kptq. The next lemma states that the cho-
sen height function h satisfies the second condition that is needed for the descent
argument.

Lemma 2. If we fix P0 P EpKptqq, then there exists a constant κ0, depending only
on P0, a, b and c, such that

hpP` P0q ď 2hpPq ` κ0 for all P P EpKptqq.
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Proof. The proof of this lemma is quite straightforward when using the formulas
for the group law. Note that we can exclude any finite set S of points P when
proving this, since we can then just take κ0 “ maxPPS hpP` P0q. We can there-
fore consider P < tO, P0,´P0u, this way we can also avoid using the duplication
formula. We can also consider P0 , O, since the inequality is trivial for all P in
that case.

We write P “ px, yq and P ` P0 “ pξ, ηq. We need to calculate hpPq “ hpξq,
preferably in terms of hpPq “ hpxq. The formulas of the group law give us a
relation between x and ξ in the following way

ξ “ λ2
´ x´ x0 ´ a where λ “

y´ y0

x´ x0
.

Substituting the value for λ in the equation for ξ and bringing everything together
over one denominator gives

ξ “
p´2y0qy` p2a´ x0qx2 ` pb´ 2ax0 ´ x2

0qx` pc` y2
0 ` ax2

0 ` x3
0q

x2 ´ 2x0x` x2
0

.

Picking elements A, B,C,D, E, F,G in Kptq depending on x0ptq, y0ptq, aptq, bptq
and cptq in the proper way, makes that we can write ξ as a quotient of two polyno-
mials in x with coefficients in Kptq. We may in fact assume that these coefficients
lie in Krts, because we can multiply out the least common multiple of the denom-
inators of the coefficients. We then have

ξ “
Ay` Bx2 `Cx` D

Ex2 ` Dx`G
,

with A, B,C,D, E, F,G P Krts. Since we may write x “ m{e2 and y “ n{e3,
we can substitute this into our new expression for ξ and make ξ a quotient of
polynomials in Krts

ξ “
Ane` Bm2 `Cme2 ` De4

Em2 ` Fme2 `Ge4 .

Note that this expression for ξ may not be written in lowest terms, but in any case
we can bound the height of ξ like this

hpξq ď maxtdegpAne` Bm2
`Cme2

` De4
q, degpEm2

` Fme2
`Ge4

qu.

We can now make two case distinctions, the first one is when this maximum
equals degpAne ` Bm2 ` Cme2 ` De4q and the second one is when it equals
degpEm2 ` Fme2 `Ge4q. In the first case we have the following (in)equalities
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hpξq ď degpAne` Bm2
`Cme2

` De4
q

ď maxtdegpAneq, degpBm2
q, degpCme2

q, degpDe4
qu

“ maxtdegpAq ` degpneq, degpBq ` degpm2
q, degpCq ` degpme2

q, degpDq ` degpe4
qu

ď maxtdegpAq ` k ` 2hpPq, degpBq ` 2hpPq, degpCq ` 2hpPq, degpDq ` 2hpPqu
“ maxtdegpAq ` k, degpBq, degpCq, degpDqu ` 2hpPq.

In the second case, we find a similar inequality

hpξq ď degpEm2
` Fme2

`Ge4
q

ď maxtdegpEm2
q, degpFme2

q, degpGe4
qu

“ maxtdegpEq ` degpm2
q, degpFq ` degpme2

q, degpGq ` degpe4
qu

ď maxtdegpEq ` 2hpPq, degpFq ` 2hpPq, degpGq ` 2hpPqu
“ maxtdegpEq, degpFq, degpGqu ` 2hpPq.

Clearly in both cases we can find a constant so that we can bound hpξq in the way
we want. If we define

κ0 :“ maxtdegpAq ` k, degpBq, degpCq, degpDq, degpEq, degpFq, degpGqu,

we have proven the lemma. �

We conclude that this height function h also has the second property that is
needed for the descent theorem. In contrast to the finiteness property, this property
holds when h is defined on any rational function field Kptq. In the next section we
will treat the third and final property.

4.4 Lower bound when doubling a point
The proof of this property uses the result of another slightly more general lemma.
This lemma says something about how the height of an element changes when
a function is applied to it, as we will see shortly this is precisely what we are
interested in. We first state the final property as a lemma and then introduce the
other lemma that will prove the first one. The proof of the second lemma is very
similar to the proof that is given in [4].

Lemma 3. There is a constant κ depending on a, b and c, such that

hp2Pq ě 4hpPq ´ κ for all P P EpKptqq.
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Proof. We first say something about the relation between the x-coordinate of P
and the x-coordinate of 2P. We write P “ px, yq and 2P “ pξ, ηq. Note that again
we may disregard a finite set of points P, since for this set S we can just take
κ “ 4 maxPPS hpPq. Hence we are allowed to not look at the points P that have
order 1 or order 2, which is what we will do. By the duplication formula, we find
that

ξ “ λ2
´ 2x´ a and λ “

f 1pxq
2y

.

Putting this under a common denominator and substituting the equation for f pxq
we obtain

ξ “
f 1pxq2 ´ p8x` 4aq f pxq

4 f pxq

“
x4 ´ 2bx2 ´ 8cx` b2 ´ 4ac

4px3 ` ax2 ` bx` cq
.

This shows us that we may write ξ as the quotient of polynomials in x with coef-
ficients in Kptq. Since the curve is non-singular by assumption, f pxq and y are not
simultaneously zero and hence the polynomial (in x) in the denominator and the
polynomial (in x) in the numerator do not have common roots, i.e. their greatest
common divisor is equal to 1 in KptqrXs.

One might think that this relation already tells us something about the height
of ξ, and it does. However, it only gives us an upper bound for the height of ξ,
since we do not know how much ‘cancellation’ will happen. This is not good
enough for the lemma we want to prove, for that proof we will need the result
from the lemma stated below.

For notational reasons it is nice to introduce another height function H. Recall
that we defined the absolute value on an element from Krts in the following way

| f ptq| :“ edegp f ptqq for all f ptq P Krts.

In the case where K is a finite field Fq we use q instead of the exponential. We
define the absolute value on Kptq as follows

ˇ

ˇ

ˇ

ˇ

f ptq
gptq

ˇ

ˇ

ˇ

ˇ

:“
| f ptq|
|gptq|

for all
f ptq
gptq

P Kptq written in lowest terms.

We now also define a function H : Kptq Ñ r0,8q by Hpxq “ ehpxq (or q instead
of e when we are considering a finite field). Note that we can also write this as
Hp f {gq “ maxt| f |, |g|u.
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Lemma 4. Let φpXq and ψpXq be coprime in KptqrXs and let d “ maxtdegpφq, degpψqu.
Then there exists a positive constant C such that

CHpxqd ď H
ˆ

φpxq
ψpxq

˙

for all x P Kptq.

Proof. Because we are mainly interested in the quotient of the polynomials φ
and ψ, we can assume that they have coefficients in Krts. This is the case be-
cause we can multiply the numerator and denominator by the least common mul-
tiple of the denominators of all coefficients, yielding the same fraction, only now
the polynomials occuring in it have coefficients in Krts. Hence we will assume
φpXq, ψpXq P KrtsrXs. We define two values

Φpm, nq :“ ndφ
´m

n

¯

,

Ψpm, nq :“ ndψ
´m

n

¯

,

for m{n P Kptq written in lowest terms.

Without loss of generality we assume that degpφq ď degpψq. Since the poly-
nomials are coprime in KptqrXs, we can invert ψ pmod φq in the ring KptqrXs{pφq.
This means that there exist polynomials FpXq,GpXq in KptqrXs such that

FpXqφpXq `GpXqψpXq “ 1. (♣)

Next we pick A P Krts ‘large’ enough such that both AFpXq, AGpXq P Krts. We
define F2pXq :“ AFpXq and G2pXq “ AGpXq. We then have

F2pXqφpXq `G2pXqψpXq “ A. (♠)

Now we pick m{n P Kptq where m and n are coprime and evaluate (♠) in m{n and
multiply both sides by n2d´1 to obtain

”

nd´1F2

´m
n

¯ı

Φpm, nq `
”

nd´1G2

´m
n

¯ı

Ψpm, nq “ n2d´1A. (r)

First note that the part of gcdpΦ,Ψq that is coprime to n, has to divide A because
n2d´1A can be written as a Krts-linear combination of Φ and Ψ.

Next we will consider the absolute value of both sides of this expression. First
note that

|n|d´1
ď Hpm{nqd´1.
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We define C :“ maxt|F2pm{nq|, |G2pm{nq|u. Now taking the absolute value on
both sides of (3) and using the fact that this absolute value is multiplicative and
satisfies the strong triangle inequality we see that

|n|2d´1
|A| ď maxt|Φpm, nq|, |Ψpm, nq|uCH

´m
n

¯d´1
.

Rewriting this and defining S “ |A|{C gives the following inequality

maxt|Φ|, |Ψ|u ě S |n|2d´1
{ Hpm{nqd´1. (_)

We will now do almost the same thing for two other polynomials φ˚ and ψ˚

and obtain similar inequalities. With these we will be able to bound the height of
φpxq{ψpxq in the way we want. We define φ˚ and ψ˚ by

φ˚pXq :“ Xd φp1{Xq and ψ˚pXq :“ Xd ψp1{Xq.

Note that φ˚ and ψ˚ are coprime as well. It is quite easy to see, by simply writing
out the expression for the polynomials, that

mdφ˚
´m

n

¯

“ Φpm, nq and mdψ˚
´m

n

¯

“ Ψpm, nq.

By the same reasoning as before, we can find F˚pXq,G˚pXq P KptqrXs such that

F˚pXqφ˚X `G˚pXqψ˚pXq “ 1. (p)

And again we can find an element A˚ P Krts such that A˚FpXq and A˚GpXq have
coefficients in Krts. Defining F˚2 pXq :“ A˚F˚pXq and G˚2pXq :“ A˚G˚pXq we
obtain an equation with elements in KrtsrXs

F˚2 pXqφ
˚
pXq `G˚2pXqψ

˚
pXq “ A˚. (s)

Now we evaluate (s) in n{m P Kptq, where m and n are as before, and multiply
both sides of the equation by m2d´1 to obtain

”

md´1F˚2
´ n

m

¯ı

Φpm, nq `
”

md´1G˚2
´ n

m

¯ı

Ψpm, nq “ m2d´1A˚. (♥)

Note that the part of gcdpΦpm, nq,Ψpm, nqq that is coprime to m has to divide A˚. If
we see the similarity between (r) and (♥) and define C˚ :“ maxtF˚2 pn{mq,G

˚
2pn{mqu,

we can immediately see

|m|2d´1
|A˚| ď maxt|Φpm, nq|, |Ψpm, nq|uC˚H

´m
n

¯d´1
.
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If we define, analagously to S , S ˚ :“ |A˚|{C˚ we obtain

maxt|Φ|, |Ψ|u ě S ˚|m|2d´1
{ Hpm{nqd´1. (^)

We are now very close to the completion of the proof of the lemma. We mentioned
that the part of gcdpΦpm, nq,Ψpm, nqq that is coprime to n divides A and the part
that is coprime to m divides A˚. Since m and n are coprime as well, this means
that gcdpΦpm, nq,Ψpm, nqq divides AA˚. In particular this means that the degree
of gcdpΦpm, nq,Ψpm, nqq is less than or equal to the degree of AA˚, so also

| gcdpΦpm, nq,Ψpm, nqq| ď |AA˚|.

Note that Hpxq is either |m| or |n|. Using this and (_) and (^) we obtain

H
ˆ

f pxq
gpxq

˙

“ H
ˆ

Φpm, nq
Ψpm, nq

˙

“
maxt|Φ|, |Ψ|u
| gcdpΦ,Ψq|

ě
mintS , S ˚u
|AA˚|

Hpxqd,

for all x “ m{n P Kptq. This finishes the proof of the lemma.
�

As mentioned the result of this lemma is going to help us prove the original
lemma. We want

hpξq ě 4hpxq ´ κ,

where κ is some constant. Since ξ can be written as the quotient of a degree 4 and
a degree 3 polynomial, which are coprime, we can apply the previous lemma. So
we obtain

CHpxq4 ď Hpξq.

Taking the logarithm on both sides of the equation gives us precisely what we are
looking for, proving Lemma 3.

�

Like Lemma 2, this lemma also holds for general Kptq. We have now treated
all three properties the height needs to satisfy for the descent argument, in the next
section we will treat the finiteness of the index of the group 2EpKptqq in the group
EpKptqq.
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5 Finiteness of the index rEpKptqq : 2EpKptqqs

In the upcoming part we will prove the finiteness of the index rEpKptqq : 2EpKptqqs,
for certain K. Out of all four conditions needed for the descent argument, this is
by far the hardest to prove to be satisfied. It is a similar to a theorem that is known
as the weak Mordell-Weil theorem, this theorem states that rEpKq : mEpKqs is
finite for any positive integer m where K is a number field. The proof of this the-
orem requires knowledge of Galois cohomology, which we will not dive into. In
this section we will prove the case where m “ 2, under the additional assumption
that there is at least one Kptq-rational point of order 2 on the curve. We will first
outline some important parts of the proof.

1. The existence of the point of order two makes that we can transform this
specific point to the origin, giving an elliptic curve with a simpler descrip-
tion we can henceforth work with.

2. The next step concerns the introduction of another curve E and a homomor-
phism φ to it. It turns out that this homomorphism is strongly related to the
multiplication-by-two map.

3. Finally we will study a map α from EpKptqq to Kptq˚{Kptq˚
2

which will
provide a way to bound the index.

We will prove that the index of interest is finite for a specific case in the upcoming
subsections. In these subsections we will discuss the three steps given above.
From here on we will write L :“ Kptq for notational reasons.

5.1 Translating the curve
As mentioned before, we are assuming that there exists an L-rational point of
order 2 on the curve E, we will call this point px0, 0q. We move this point to the
origin by replacing x by x` x0 in f pxq. We obtain

y2
“ px` x0q

3
` apx` x0q

2
` bpx` x0q ` c

“ x3
` p3x0 ` aqx2

` p3x2
0 ` 2ax0 ` bqx` px3

0 ` ax2
0 ` bx0q ` c

“ x3
` p3x0 ` aqx2

` p3x2
0 ` 2ax0 ` bqx,

where the last equality follows from the fact that x3
0 ` ax2

0 ` bx0 ` c “ 0 since
px0, 0q is a point on the curve. If we rename a as 3x0`a and b as 3x2

0`2ax0`b we
can write the equation for this curve as y2 “ x3`ax2`bx. We note two things; the
first is that now the point T :“ p0, 0q is a point of order two on the curve. The sec-
ond is that it does not matter if we study the L-rational points on this new curve or
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on the previous one, since a rational point pξ, ηq on the original curve corresponds
to a rational point pξ ´ x0, ηq on the new curve and vice versa a rational point
pξ1, η1q on the new curve corresponds to a rational point pξ1` x0, η

1q on the original
curve. We will therefore henceforth consider the curve E : y2 “ x3 ` ax2 ` bx
instead of the one we had originally.

We can also look at this in a different way. The operation that is applied to the
curve is simply a translation, visualising the group law on both the original as well
as the translated curve (which can easily be done as its description is geometric)
it is easy to see that the L-rational points are in one-to-one correspondence. In
fact this holds in some more generality: if φ is a map with rational coefficients
between elliptic curves and it sends the point at infinity on the first curve to the
point at infinity on the second curve, φ is a homomorphism. This is clearly what
happens when translating the curve and since translating is an invertible operation
it is an isomorphism of elliptic curves.

We now introduce a new curve, E, given by a similar equation. As mentioned
before, the curve and the homomorphism φ we will introduce are strongly related
to the multiplication-by-two map; it is known that the complex points on an elliptic
curve can be considered as lying in a parallelogram with two certain periods ω1

and ω2, i.e. they are in the set

tαω1 ` βω2 : 0 ď α, β ď 1u Ă C,

for ω1, ω2 P Czt0u such that ω1{ω2 < R. The homomorphism φ which maps
to the new curve will give us the result of slicing this parallelogram in half. If
we do this again, we obtain a parallelogram that is very similar to the first and
in fact the curve that we get from this, turns out to be isomorphic to the original
curve. Moreover, the composition of these two operations will turn out to be the
multiplication-by-two map.

Now that we have given some introduction to the new curve E and the homo-
morphism φ from E to E we will give the explicit equations that define them;

E : y2
“ x3

` āx2
` b̄x,

where ā “ ´2a and b̄ “ a2 ´ 4b. The map φ is defined as

φpPq “

$

&

%

ˆ

y2

x2 ,
ypx2 ´ bq

x2

˙

, if P “ px, yq , O,T,

O, if P “ O or P “ T.

In the next subsection we will prove some properties of this map φ, amongst
which the fact that it is a homomorphism, as we already claimed.
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5.2 Properties of φ and E

The map φ as introduced above has some nice properties which will help us study
the group EpLq{2EpLq. We will prove some of these properties in this section.
Throughout the rest of this section the curves E and E will be as before. The first
property of φwill not come as a great surprise and is stated below as a proposition.

Proposition 3. The map φ maps E to E and is a homomorphism. Moreover,
kerpφq “ tO,Tu.

Proof. It is quite easy to check that indeed φ : E Ñ E. Indeed we only have to
check that the image pφppx, yqq “ px̄, ȳq satisfies the equation for E:

x̄3
` āx̄2

` b̄x̄ “ x̄px̄2
` āx̄` b̄q

“
y2

x2

ˆ

y4

x4 ´ 2a
y2

x2 ` pa
2
´ 4bq

˙

“
y2

x6

`

py2
´ ax2

q
2
´ 4bx4

˘

“
y2

x6

`

px3
` bxq2 ´ 4bx4

˘

“

ˆ

ypx2 ´ bq
x2

˙2

“ ȳ2,

so indeed φ maps E to E.

The next claim in the proposition is that φ is a homomorphism. The proof
of this claim mainly consists of considering different cases for points P and Q
on the curve and calculating, using the formulas for the group law, that indeed
φpP ` Qq “ φpPq ` φpQq for any points P and Q on the curve. This proof is the
same for elliptic curves over any field, therefore I refer to page 85-87 of [2] for the
proof, where most of the explicit computations are done and explained at length.

The final thing that needs to be proven for this proposition is that the kernel
of φ consists solely of O and T “ p0, 0q. However, it is obvious that both O and
T are in the kernel by the definition of φ and that no other elements are (since
y2{x2 “ x` a` b{x). This finalizes the proof of the proposition.

�

As mentioned we can check that φ is a homomorphism by considering some
different cases and doing some computations. The map φ is constructed such that
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it maps O to O. Note however that φ, as defined on px, yq < tO,Tu, is a rational
function between elliptic curves and if it maps O to O ‘by itself’ (i.e. we do not
define it as a piecewise function which maps O and T to O as before) then it is
a homomorphism of curves, as was mentioned in subsection 5.1. That is, if we
define φ as

φpx, yq “
ˆ

y2

x2 ,
ypx2 ´ bq

x2

˙

,

for all px, yq on the curve and we can show that it maps O to O, then φ is a homo-
morphism. The x- and y-coordinate of O are such that 1{x “ 1{y “ 0, so we want
to show that also 1{py2{x2q and 1{pypx2 ´ bq{x2q are 0. Note that

y2

x2 “
x3 ` ax2 ` bx

x2 “ x` a`
b
x
“ x` a,

since 1{x “ 0. Hence x2{y2 “ 1{px ` aq “ 0, so indeed the image of the x-
coordinate is the x-coordinate of O. For the image of the y-coordinate we have the
following

ypx2 ´ bq
x2 “ y´

by
x2 “ y´

b
x

y
x
.

Note that b{x “ 0 and also y{x “
a

y2{x2 “
?

0 “ 0, hence the image under
φ of this y-coordinate is the element y which satisfies 1{y “ 0. Hence the image
of the y-coordinate of O is the y-coordinate of O and we conclude that φpOq “ O
and that φ is a homomorphism.

There are two more properties of φ and the curve E that are interesting for this
thesis. The next one is stated below.

Proposition 4. If we define a map φ̄ on E in the same way as we defined φ on

E, we get a map from E to E. The curve E is isomorphic to E via the map
px, yq ÞÑ px{4, y{8q and there is a homomorphism ψ : E Ñ E defined by

ψpPq “

$

&

%

ˆ

ȳ2

4x̄2 ,
ȳpx̄2 ´ b̄q

8x̄2

˙

, if P “ px̄, ȳq , O,T ,

O, if P “ O or P “ T .

Proof. It is clear that φ̄ indeed maps E to E, since we define it analogously to φ.

It is also easy to see that the curve E is given by the equation

E : y2
“ x3

` 4ax2
` 16bx.
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If we define a map g : E Ñ E by px, yq ÞÑ px{4, y{8q it is not hard to see that g has
an inverse and that it respects the group structure, hence g defines an isomorphism

between E and E.

Since φ̄ is defined in the exact same way as φ, only with domain E, it is a

homomorphism from E to E. Moreover, we have an isomorphism g from E and we
can see that the map ψ is precisely the composition of these two maps: ψ “ g ˝ φ̄.
This means that ψ can be written as the composition of two homomorphisms,
hence ψ is a homomorphism itself as well (from the curve E to the curve E). �

The final property is perhaps the most interesting, because it tells us that the
composition of φ and ψ is in fact the multiplication-by-2 map, which is interesting
when studying the group 2EpLq. This is stated as a proposition below.

Proposition 5. The composition ψ ˝ φ : E Ñ E is the multiplication-by-2 map,
i.e.

ψ ˝ φpPq “ 2P

Proof. The proof of this proposition merely consists out of computations with
the explicit formulas for the group law. It is clear that the statement holds when
P “ O, so we will consider two cases; namely the case where for P “ px, yq both
x , 0 and y , 0 and the case where P has order two. Note that we have then
indeed proven the proposition for all points P on the curve, since when x “ 0 we
have P “ T and T has order two, and when y “ 0, P is also a point of order two.

We first consider the case where P is not a point of order two. Using the
formula for the doubling of a point and doing some computations with the y-
coordinate, we obtain the following

2px, yq “
ˆ

px2 ´ bq2

4y2 ,
px2 ´ bq2

4y2

„

px2 ´ bq4

16y4 ` a
px2 ´ bq2

4y2 ` b
˙

“

ˆ

px2 ´ bq2

4y2 ,
px2 ´ bqpx4 ` 2ax3 ` 6bx2 ` 2abx` b2q

8y3

˙

.

Now we will show that the same expression holds for ψ ˝ φppx, yqq. We obtain
the following by using the definition of φ and ψ and by doing some algebra
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ψ ˝ φppx, yqq “ ψ

ˆ

y2

x2 ,
ypx2 ´ bq

x2

˙

“

¨

˚

˚

˚

˚

˝

ˆ

ypx2 ´ bq
x2

˙2

4
ˆ

y2

x2

˙2 ,

ypx2 ´ bq
x2

˜

ˆ

y2

x2

˙2

´ pa2 ´ 4bq

¸

8
ˆ

y2

x2

˙2

˛

‹

‹

‹

‹

‚

“

ˆ

px2 ´ bq2

4y2 ,
px2 ´ bqpy4 ´ x4pa2 ´ 4bqq

8y3x2

˙

“

ˆ

px2 ´ bq2

4y2 ,
px2 ´ bqpx2px2 ` ax` bq2 ´ x4pa2 ´ 4bqq

8y3x2

˙

“

ˆ

px2 ´ bq2

4y2 ,
px2 ´ bqpx4 ` 2ax3 ` 6bx2 ` 2abx` b2

8y3

˙

.

This expression is precisely the same as the expression we found for 2px, yq, hence
we have shown that 2P “ ψpφpPqq for points P that do not have order 1 or 2.

Now we will consider the case where P is a point of order two, i.e. y “ 0.
This means that we want to prove ψpφpPqq “ O. If P “ T , then by definition of φ
and ψ we have

ψpφpT qq “ ψpOq “ O.

If we consider x , 0, then again by definition of φ and ψ we have that

ψpφppx, 0qqq “ ψpT q “ O.

So indeed it is true that ψ ˝ φpPq “ 2P. �

Note that the statement φ ˝ ψpPq can be proven in the same way. This propo-
sition states that we can break down the multiplication-by-2 map in two parts by
going via another curve, namely the curve E. This will be of interest in the final
part of the proof that we can bound the index rEpLq : 2EpLqs.

5.3 The image of EpLq under φ

In this section we will discuss several properties of the images of EpLq and EpLq
under φ and ψ respectively. Since φ and ψ are defined analogously, there is a very
obvious relation between the image under φ and the image under ψ, therefore we
will discuss only one of the two. The properties of the image of φ that are of
interest are stated below as a proposition.
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Proposition 6. With φ : EpLq Ñ EpLq as defined before, the following are true
about φpEpLqq:

(i) O P φpEpLqq.

(ii) T “ p0, 0q P φpEpLqq if and only if b̄ “ a2 ´ 4b is a perfect square.

(iii) If P “ px̄, ȳq P EpLq with x̄ , 0, then P P φpEpLqq if and only if x̄ is the
square of some L-rational element.

Proof. We will prove this proposition step by step.

(i) The first claim is quite obvious; since O is defined to be an L-rational point,
it is an element of EpLq and since φpOq “ O we immediately have that
O P φpEpLqq.

(ii) From the definition of φ we can see that T is in the image φpEpLqq if and
only if there is some element px, yq P EpLq such that y2{x2 “ 0, which is
equivalent to having an element px, yq P EpLq such that x , 0 and y “ 0. If
we put y “ 0 in the equation for the curve, we obtain

0 “ xpx2
` ax` bq.

Since we have that x , 0, we need that the quadratic polynomial x2 ` ax`
b has an L-rational root. Since the abc-formula holds for a general field
(with characteristic , 2), this occurs precisely when the discriminant of this
equation is a perfect square. The discriminant is equal to a2 ´ 4b, which is
how b is defined.

(iii) Out of the three statements, this statement is hardest to prove. We first note
that one side of the implication is obvious: if px̄, ȳq P φpEpLqq and x̄ , 0,
we can write that x̄ “ y2{x2, by definition of φ, and hence x̄ is the square of
the element y{x P L.
The other side of the implication is more difficult to prove. We first assume
that we can write a point x̄ as the square of some L-rational number w, i.e.
x̄ “ w2. We now want to show that px̄, ȳq P φpEpLqq, to do this we will find
a rational point on the curve E that maps to px̄, ȳq. Note that since the kernel
of φ consists of two elements and φ is a homomorphism, there will be two
elements that map to px̄, ȳq if it really lies in φpEpLqq. We claim that the
points px1, y1q and px2, y2q as given below are mapped to our point px̄, ȳq.

x1 “
1
2

ˆ

w2
´ a`

ȳ
w

˙

, y1 “ x1w,

x2 “
1
2

ˆ

w2
´ a´

ȳ
w

˙

, y2 “ ´x2w.
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We need to do two things; the first is to show that these points Pi :“ pxi, yiq

are really on the curve E and the second is to show that φpPiq “ px̄, ȳq. We
start with showing that the points are on the curve. For this we note that we
can simplify the product x1x2 in the following way

x1x2 “
1
4

ˆ

pw2
´ aq2 ´

ȳ2

w

˙

“
1
4

ˆ

px̄´ aq2 ´
ȳ2

w

˙

“
1
4

ˆ

x̄3 ´ 2ax̄2 ` a2 x̄´ ȳ2

x̄

˙

“
1
4

ˆ

4bx̄
x̄

˙

“ b.

We want to show that the points pxi, yiq satisfy y2
i “ x3

i ` ax2
i ` bxi, which

is equivalent to showing that they satisfy

y2
i

x2
i

“ xi ` a`
b
xi
,

and since b “ x1x2 and pyi{xiq
2 “ w2, this is in turn equivalent to showing

w2
“ x1 ` a` x2.

If we look at the sum x1`x2`a, we see immediately that indeed the outcome
is w2, hence the points Pi are on the curve E. Next we have to check that Pi

is actually mapped to px̄, ȳq under φ. It is clear from the definition of yi that

y2
i

x2
i

“
p˘xiwq2

x2
i

“ w2
“ x̄.

Finally we need to show that

yipx2
i ´ bq
x2

i

“ ȳ,

this actually follows from some simple computations

y1px2
1 ´ bq

x2
1

“
x1wpx2

1 ´ x1x2q

x2
1

“ wpx1 ´ x2q “ w
ȳ
w
“ ȳ,

y2px2
2 ´ bq

x2
2

“
x2wpx2

2 ´ x1x2q

x2
2

“ wpx1 ´ x2q “ w
ȳ
w
“ ȳ.
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We have now proven that both Pi are indeed mapped to px̄, ȳq and hence we
are done with the proof of the proposition.

�

We have seen several properties of the image of the L-rational points on the
curve E under the homomorphism φ. In subsection 5.5 we will see why this is
interesting. We will now introduce a new map α which will also come in handy.
The map α, which maps EpLq to L˚{L˚

2
is defined as

αpOq “ 1 mod L˚
2
,

αpT q “ b mod L˚
2
,

αppx, yqq “ x mod L˚
2
, if x , 0.

In Proposition 6 we saw some relations between elements being a square in EpLq
and elements that are in the image of φ. Since we will be considering L˚{L˚

2
, one

can imagine that these relations will tell us something about the kernel of α. In
the next subsection we will discuss some properties of this map α. At the end of
that section, we will have gathered all the information that is needed to prove the
final condition for the descent argument.

5.4 Properties of α
We have almost finished discussing all results that we will need, in fact, the only
thing we need to establish is that both indices

rĒpLq : φpEpLqqs ă 8 and rEpLq : ψpĒpLqqs ă 8.

We will discuss why this is sufficient in the section after this one, but for now
it is nice to know that this is true since it means that we “only” have to prove
the finiteness of these two indices. Because we have already established quite
some facts about the images of φ and ψ, one can imagine that we are not very
far away from proving this. In fact, we will find out that the map α gives us the
finiteness of one of these indices (for certain L). Since we can of course also de-
fine ᾱ : EpLq Ñ L˚{L˚

2
analogously, we then also obtain that the other index

rEpLq : φpEpLqqs is finite. We now state some propositions which concern the
map α and which will help prove the finiteness of the indices above.
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Proposition 7. The map α : EpLq Ñ L˚{L˚
2

as given before is a homomorphism.

Proof. The proof of this statement is quite elementary, the main things we will be
needing are the explicit formulas for the group law. We first make an observation
which makes what we want to prove slightly easier, this observation is that α sends
inverses to inverses. This is true because

αp´Pq “ px,´yq “ x “
1
x

x2
”

1
x
“

1
αpPq

“ αpPq´1 mod L˚
2

for x , 0. However by the definition of α and Proposition 6 from the previous
section this also holds for O and T . The fact that α maps inverses to inverses
gives us the following: if we can prove that whenever P1 ` P2 ` P3 “ O then
αpP1qαpP2qαpP3q ” 1 mod L˚

2
, we have in fact proven that α is a homomorphism

for all points P1, P2 and P3. This is true since in that case

αpP1 ` P2q “ αp´P3q “ αpP3q
´1
“ αpP1qαpP2q.

We will start with the proof of the case where none of the points equals O or
T , so they are collinear i.e. lie on a line. We denote the line by: y “ λx ` ν.
This line then intersects the curve in three points, namely P1, P2 and P3, we let the
x-coordinates of their intersection be x1, x2 and x3. If we combine y2 “ λ2x2 `

2λνx ` ν2 with the equation for the curve, we find an equation for which x1, x2

and x3 are the roots

x3
` pa´ λ2

qx2
` pb´ 2λνqx´ ν2

“ 0.

This gives us that ´x1x2x3 “ ´ν
2, hence

αpP1qαpP2qαpP3q “ x1x2x3 “ ν2
” 1 mod L˚

2
,

which proves the first case.

We now have to prove the case where P1, P2, P3 are not all distinct from O and
T . If we assume that one of the points, let it be P1, equals O, then P2 ` P3 “ O

and hence P2 “ ´P3. This gives αpP1qαpP2qαpP3q “ αp´P3qαpP3q “ 1. If we
assume that two points equal O, the third one must also equal O, and it is easy to
see that αpP1qαpP2qαpP3q “ 1. In the same way: if two points equal T , the third
point must equal O and again we are done.

Finally we need to show that αpP1qαpP2qαpP3q “ 1 also holds if only one of
the points equals T , this is of course a specific case of what we showed before. If
T ` P2 ` P3 “ O then that means that P2 ` P3 “ T . Geometrically we can see
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that this means that P2 and P3 are on the same line which goes through p0, 0q “ T .
This means that this line will be given by an equation of the form y “ λx. If we
denote the x-coordinates of the points again by x1 “ 0, x2 and x3, they are the
roots of the equation

x3
` pa´ λ2

qx2
` bx “ 0.

We can see that x2 and x3 must be the roots of

x2
` pa´ λ2

qx` b,

so that x2x3 “ b. Then we obtain

αpP1qαpP2qαpP3q “ b2
” 1 mod L˚

2
.

This finishes the proof of this proposition. �

As already mentioned, we know some relations between being in the image of
φ or ψ and e.g. b being a square in L˚ by Proposition 6. The next proposition can
easily be proven using results from that previous proposition.

Proposition 8. The kernel of α is the image ψpEpLqq. Hence α induces a one-to-
one homomorphism

α1 : EpLq{ψpEpLqq ãÑ L˚{L˚
2
.

Proof. By Proposition 6 we know some things about the image of ψ, namely that:
O is in the image, that T is in the image if and only is b is a perfect square and
that px, yq for x , 0, is in the image if and only if x is the square of some element.
This tells us precisely which elements are in the image of ψ. We know that O is
always in there, but O is mapped to 1 by α, hence it is in the kernel of α. If T is in
the image of ψ, b is a perfect square (and vice versa), so it is congruent to 1 mod
L˚

2
and since T gets mapped to b, also T is in the kernel of α. In the same way a

point px, yq is in the image of ψ if and only if x is a square. Moreover, then px, yq
gets mapped to x mod L˚

2
” 1 mod L˚

2
and also px, yq is in the kernel of α. This

shows that indeed kerpαq “ ψpEpLqq. �

The next proposition will give us the result with which it will be very easy to
prove the finiteness of the indices we are interested in.

Proposition 9. Let p1, . . . , ps be the monic irreducible elements that divide b.
Then the image of α is contained in the subgroup of L˚{L˚

2
consisting of the

elements
tupε1

1 ¨ ¨ ¨ pεs
s : each εi equals 0 or 1 and u P K˚{K˚

2
u.
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Proof. It is clear that the image of O is in this subgroup, as O is mapped to the
unit element in L˚{L˚

2
by α, which is in every subgroup. Also if T P EpLq,

αpT q “ b mod L˚
2
. Since b “ u ¨ pe1

1 ¨ ¨ ¨ pes
s for certain ei ą 0 and u P K˚, also

αpT q is in the subgroup mentioned above.

Now we take an element P “ px, yq P EpLq for which x , 0 and P , O. We
want to show that αpPq “ x can be written as a product of irreducibles dividing b
and a unit when we consider it modulo squares. To this end we recall that the L-
rational points P “ px, yq on EpLq have coordinates that can be written in the form
x “ m{e2 and y “ n{e3, where gcdpm, eq “ gcdpn, eq “ 1 from subsection 4.3.
Substituting these expressions into the equation for the curve and clearing the
denominators we obtain

n2
“ m3

` am2e2
` bme4

“ mpm2
` ame2

` be4
q.

Since we are considering a principal ideal domain Krts, the notion of greatest
common divisors is well defined and we will look at

d :“ gcdpm,m2
` ame2

` be4
q “ gcdpm, be4

q “ gcdpm, bq.

Obviously, d divides both m and be4, but by assumption m and e have no common
divisors, hence d must divide b. Now we want to look at the factorisation of m
into irreducibles. If we have an irreducible element p dividing m but not dividing
b, then it cannot divide be4 and hence it cannot divide m2`ame2`be4. Moreover,
if p|m, then also p|n2, but since the irreducible elements in the factorisation of
n2 occur with even power, we must have that p occurs in some even power in n2.
Since p - m2 ` ame2 ` be4, we must then have that p occurs in the factorisation
of m to precisely that even power.

This gives us that all irreducibles occuring in the factorisation of m but not
in the factorisation of b, occur in m to some even power, so we can write them
together as the square of some element f P Krts. We can write

m “ u f 2 pδ1
1 ¨ ¨ ¨ pδs

s ,

where the δi are the powers of the irreducibles that occur in b and u is a unit
element. We observe that

αpPq “ x “
m
e2 ” m “ u f 2 pδ1

1 ¨ ¨ ¨ pδs
s ” upε1

1 ¨ ¨ ¨ pεs
s mod L˚

2
,

where the εi are either 0 or 1 and we can conclude that αpPq is indeed in the
aforementioned subgroup.

�
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Next we will see that indeed the finiteness of the field K makes it easy to con-
clude that the index we are interested in is indeed finite. For this we namely need
the subgroup mentioned in the proposition above to have finitely many elements.

Proposition 10. Suppose E : y2 “ x3`ax2`bx over Fqptq with a, b P Fqrts and E
as before. Let s be the number of monic irreducible polynomials dividing b. Then
the index

rEpFqptqq : ψpEpFqptqqs ď 2s`1

Proof. The subgroup mentioned in Proposition 9 has precisely 2s`1 elements,
since the εi are either 0 or 1 and the number of unit elements in Fqrts modulo
squares are

#F˚q{#F
˚2

q “
q´ 1

1
2pq´ 1q

“ 2

as well. By Proposition 8, there exists an injective map from EpFqptqq{ψpEpFqptqqq
into that subgroup. Therefore the index of ψpEpFqptqqq in EpFqptqq is at most 2s`1,
which proves this proposition. �

Of course the fact that there are only finitely many units in Fqrts shows that
the subgroup mentioned above is finite. However, we do not per se require there
to be finitely many units, we just need finitely many units modulo squares, which
happens in many more fields than just the finite fields. Note that there are finitely
many units modulo squares in any algebraically closed field, since x2 always has
its zeroes in the field, so that every unit is a square. Therefore

rEpKptqq : 2EpKptqqs

is also finite whenever K is an algebraically closed field. We can also see that it
holds for e.g. K “ R as well, since there are only two units modulo squares in R.
However K “ Q for example does not work, since there are infinitely many units
modulo squares.

5.5 Bounding the index
We have now established all results that we will need. As mentioned, we were
already almost done when we established that both indices rEpLq : ψpEpLqs and
rEpLq : φpEpLqqs are finite for for example L “ Fqptq. The next lemma will tell
us why it is enough to have the finiteness of these indices.
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Lemma 5. Let A and B be abelian groups and suppose that φ : A Ñ B and
ψ : B Ñ A are homomorphisms which satisfy

ψ ˝ φpaq “ 2a for all a P A and φ ˝ ψpbq “ 2b for all b P B.

Suppose further that φpAq has finite index in B and that ψpBq has finite index in A.
Then

rA : 2As ď rA : ψpBqsrB : φpAqs,

in particular we can conclude that 2A has finite index in A.

Proof. The fact that ψpBq has finite index in A, gives that there exist only finitely
many representatives, let’s say n, of the cosets of ψpBq in A. We denote those
representatives by a1, . . . , an. In the same way there exist finitely many represen-
tatives of the cosets of φpAq in B, we denote those by b1, . . . , bm. We claim the
following: the cosets of 2A in A can all be represented by an element from the
following set:

X :“ tai ` ψpb jq : 1 ď i ď n, 1 ď j ď mu.

If this holds, then, since rA : 2As equals the number of distinct cosets of 2A in
A, it follows that rA : 2As ď mn, since mn is an upper bound for the number of
elements in the set X . Since m “ rB : φpAqs and n “ rA : ψpBqs, this would
prove the lemma.

By the above argument, it suffices to prove that the set X contains a complete
set of representatives of the cosets of 2A in A. This is equivalent to showing that
if we take an arbitrary element a from A, this a can be written as an element in
some coset α ` 2A, where α P X , i.e. a “ α ` 2a1, for some a1 P A. Since a
must be in one of the cosets of ψpBq which are represented by a1, . . . , an, we can
write a “ ai ` ψpbq for some representative ai and some b P B. In the same way,
since b must be in one of the cosets of φpAq, we can write b “ b j`φpa1q for some
representative b j and some a1 P A. We now have the following

a “ ai ` ψpbq
“ ai ` ψpb j ` φpa1qq
“ ai ` ψpb jq ` ψpφpa1qq
“ ai ` ψpb jq ` 2a1.

Since ai ` ψpb jq P X we have proven the lemma. �

We conclude that if we have a field Kptq that satisfies the properties from the
proposition above, we can show in this way that the index rEpKptqq : 2EpKptqqs
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is finite. As mentioned before, the finiteness of the indices of the images of φ
and ψ in EpKptqqq and EpKptqq respectively does not come for free. If we are
considering a rational function field Kptq and we want to prove the finiteness of
these indices in the way we did in the previous section, we really require there to
be only finitely many unit elements in Krts˚ modulo the squares in Krts˚. This is
easily satisfied when K “ Fq, but other cases are more difficult or even untrue.
Therefore we cannot conclude from our argument that 2EpKptqq has finite index
in EpKptqq for any rational function field K. We may however conclude that it
does hold for the case where K “ Fq or K is an algebraically closed field. So we
have proven that

rEpKptqq : 2EpKptqqs ă 8,

if K “ Fq or K is algebraically closed.
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6 The curve E and the homomorphism φ

In subsection 5.1 we introduced a new curve E and a homomorphism φ to it.
Recall that φ : EpKptqq Ñ EpKptqqq was defined as

φpPq “

$

&

%

ˆ

y2

x2 ,
ypx2 ´ bq

x2

˙

, if P “ px, yq , O,T,

O, if P “ O or P “ T.

This map turned out to help when studying the multiplication-by-two map after
doing some arithmetic, but it is at first sight not obvious why one would choose
this map. It is slightly more obvious why this map is chosen when studying some
field different than L :“ Kptq, namely the function field of E over L, denoted by
LpEq. This consists of the rational functions over L on E and is formed by taking
the field of fractions of Lrx, ys{py2 ´ px3 ` ax2 ` bxqq, it is not hard to show that
this is the field Lpxqrys where y satisfies y2 “ x3` ax2` bx. Again it might not be
obvious why we would study this function field, but if one is familiar with some
category theory we can remark that the category of function fields over a field is
categorically equivalent to the category of irreducible curves over that same field.
In essence this means that studying the function field gives us information about
the elliptic curve as well.

Next we consider the translation map τ that adds the point T “ p0, 0q to a point
P “ px, yq on the curve. Using the duplication formulas it is easy to calculate that
τpPq “ pb{x,´by{x2q. Now we consider what this map does on the function field
of E over L, of course τ is not defined on LpEq, but since x and y are in the function
field we can define τ˚ : LpEq Ñ LpEq in almost the same way. We let τ˚ be such
that

τ˚pxq “
b
x

and τ˚pyq “
´by
x2 .

It is not hard to see that τ˚ is an automorphism of order 2 (this also follows from
the fact that τ is a translation over a point of order 2). Consider the elements in
LpEq that are invariant under this map τ˚, i.e. the elements in LpEqxτ

˚y. In fact
those are the rational functions that do the same at the point P as at the point
P ` p0, 0q, i.e. the rational functions on E{xp0, 0qy. This E{xp0, 0qy will turn out
to ‘be’ E, by showing that their function fields are the same (note that we don’t
know yet if E{xp0, 0qy is an elliptic curve).

Let ξ :“ y2{x2 “ x` b{x` a, which is an element from LpEqxτ
˚y. This means

that the field Lpξq is a subset of all elements that are invariant under τ˚ since both
L and ξ are. We have the following inclusion of fields
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Lpξq Ă Lpxq Ă Lpxqrys “ LpEq,

where y is such that it satisfies y2 “ x3 ` ax2 ` bx. We know that the second field
extension has degree 2 since y is the zero of some quadratic polynomial, but is not
contained in Lpxq. We know that x is not invariant under τ˚, hence the degree of
the first extension is at least 2. Also we know that x is a zero of the polynomial
X2 ` pa ´ ξqX ` b, by definition of ξ, so that the degree of the first extension is
maximally two. This gives that also Lpξq Ă Lpxq has degree two and hence LpEq
has degree 4 as a vector space over Lpξq.

As mentioned we are interested in the subfield of Lpxqrys that is invariant under
the map τ˚, by Galois theory and the fact that τ˚ has order 2, we know that the
second extension of

Lpξq Ă LpEqxτ
˚y
Ă LpEq,

has degree 2. The first inclusion follows from the fact that both L and ξ are
invariant under τ˚, this extension must have degree 2, since the total extension
has degree 4. We took ξ to be an element that is invariant under the map τ˚, but
there is another quite obvious element that is also invariant under τ˚, since it has
degree 2, namely the element

η :“ y` τ˚pyq “ y´ by{x2.

Hence we have
Lpξ, ηq Ă LpEqxτ

˚y
Ă LpEq.

We can say something more about Lpξ, ηq if we determine a relation between ξ
and η, by looking at η2.

η2
“

ˆ

y´
by
x2

˙2

“ y2
´

2by
x2 `

b2y2

x4

“
y2

x2

ˆ

x2
´ 2b`

b2

x2

˙

“ ξ

˜

ˆ

x`
b
x

˙2

´ 4b

¸

“ ξppξ ´ aq2 ´ 4bq

“ ξpξ2
´ 2aξ ` a2

´ 4bq.
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Hence we see that Lpξ, ηq is precisely the function field of the elliptic curve E that
is given by the equation

E : y2
“ x3

´ 2ax2
` pa2

´ 4bqx.

It is clear from the expression above that η < Lpξq, so that the degree of the
extension

Lpξq Ă Lpξ, ηq,

is at least two. We also have the following field extensions

Lpξq Ă Lpξ, ηq Ă LpEqxτ
˚y
,

and we know that the degree of Lpξq Ă LpEqxτ
˚y is 2. This means that the degree

of Lpξ, ηq Ă LpEqxτ
˚y equals 1 and hence

LpEqxτ
˚y
“ Lpξ, ηq “ LpEq.

This is one way we can ‘find’ the curve E and the homormorphism φ, which
is just an element from LpEqxτ

˚y.
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7 Computation of the rank of EpKptqq

In this section we consider EpKptqq where L :“ Kptq is such that EpLq is finitely
generated (e.g. K “ Fq). We will show how we can (sometimes) calculate the
rank of the group EpLq. The following proposition is useful for the calculation of
the rank.

Proposition 11. The rank r of the group EpLq can be calculated as

2r
“

#αpΓq ¨ #αpΓq
4

,

where α and α are as defined before and Γ :“ EpLq and Γ :“ EpLq.

Proof. We first observe a relation between the rank and the index rΓ : 2Γs. Since
Γ is a finitely generated group, it can be written as

Γ � Zr
ˆ Z{pν1

1 Zˆ ¨ ¨ ¨ ˆ Z{p
νs
s Z,

where r ě 0 is the rank of Γ, the pi’s are primes and the νi’s are positive integers.
Using this expression for Γ, we see that we can write

Γ{2Γ � Z{2Zˆ ¨ ¨ ¨ ˆ Z{2Zˆ Zpν11
{2Zpν11

ˆ ¨ ¨ ¨ ˆ Zpνs
s
{2Zpνs

s
. (3)

We know the following about 2pZ{pνi
i Zq. If pi , 2, then 2pZ{pνi

i Zq “ Z{p
νi
i Z,

hence their quotient is the trivial group. If pi “ 2, then

#2pZ{pνi
i Zq “ p1{2q#Z{p

νi
i Z,

so their quotient has two elements, meaning it must be isomorphic to the cyclic
group of order 2. If we look at (3) we see that

rΓ : 2Γs “ 2r2#t j such that p j“2u.

Defining Γr2s to be the subgroup of Γ consisting of all elements Q such that 2Q “
O, we claim that #Γr2s “ #t j such that p j “ 2u. For Q P Γ, we can write

Q “ n1P1 ` ¨ ¨ ¨ ` nrPr ` m1Q1 ` ¨ ¨ ¨ ` m2Qs,

for Pi P Z and Qi P Z{p
νi
i Z. So if we require 2Q “ O, that means that all ni must

be zero and all mi satisfy 2mi ” 0 mod pνi
i . If pi is odd that means that mi must be

zero modulo pνi
i . This is not the case for pi “ 2, since then mi ” 0 mod 2νi´1, so

we get two possibilities for mi, namely mi ” 0 or mi ” 2νi´1 mod νi. So whenever
p j “ 2 this gives two elements m j that satisfy m j ” 0 mod 2ν j´1, i.e. indeed the
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number of elements in Γr2s is the same as 2 to the power of the number of pi’s
that equal 2. We now have

rΓ : 2Γs “ 2r
¨ #Γr2s. (4)

Note that this a result concerning abelian groups in general. In our specific
case we know something about #Γr2s, the elements in this group namely corre-
spond to the element O and elements with y-coordinate equal to zero. From the
equation of our curve we see that there are at most three points with y-coordinate
equal to zero. There is one point, namely T “ p0, 0q, if x2 ` ax` b does not have
any solutions i.e. when a2 ´ 4b is not a square. And there are three points when
x2 ` ax` b does have solutions i.e. when a2 ´ 4b is a square (recall that a2 ´ 4b
was nonzero because the curve is non-singular). Hence

#Γr2s “

#

2, if a2 ´ 4b is not a square,
4, if a2 ´ 4b is a square.

We can also say something about rΓ : 2Γs in our case. Note that the following
holds, using the fact that 2Γ Ă ψpΓq Ă Γ:

rΓ : 2Γs “ rΓ : ψ ˝ φpΓqs “ rΓ : ψpΓqs ¨ rψpΓq : ψ ˝ φpΓqs.

Now we consider an abelian group A and a subgroup B of A, where B has finite
index in A. If we consider the following maps

A ψ
ÝÑ ψpAq π

ÝÑ ψpAq{ψpBq,

where π is the canonical map, we see that π ˝ ψ is a surjective map with kernel
equal to B` kerpψq, so we have

ψpAq{ψpBq � A{pB` kerpψqq.

Moreover, since B is a normal subgroup of both A and B ` kerpψq, we have, by
the third isomorphism theorem, that

A
B` kerpψq

�
A{B

pB` kerpψqq{B
.

Finally, since B and kerpψq are both normal subgroups of A, we have by the second
isomorphism theorem

ψpAq
ψpBq

�
A{B

pB` kerpψqq{B
�

A{B
kerpψq{pkerpψq X Bq

.
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Applying this to rψpΓq : ψ ˝ φpΓqs gives

rΓ : 2Γs “
rΓ : ψpΓqs ¨ rΓ : φpΓqs
rkerpψq : kerpψq X φpΓqs

.

We can make this more precise by looking at the elements in the kernel of ψ
and in the image of φ. We know that kerpψq “ tO,Tu and that O is always in the
image of φ, but T only is when a2 ´ 4b “ b is a square. Hence

rkerpψq : kerpψq X φpΓqs “

#

2, if b is not a square,
1, if b is a square.

Also by the first isomorphism theorem and the fact that kerpαq “ ψpΓq, we
have that

αpΓq � Γ{ kerpαq “ Γ{ψpΓq.

Combining the above and substituting it into (4) we obtain the result we wanted.
�

This gives a way to compute the rank r, given that we have enough information
about the images of α and α. There are some things that can be said about the
images of these maps. If a point px, yq , p0, 0q is on the curve, it can be written as

x “
m
e2 and y “

n
e3 ,

where gcdpm, eq “ gcdpn, eq “ 1. We pick b1 such that it equals the greatest com-
mon divisor of m and b multiplied by the unit that occurs as the leading coefficient
of m. This gives that when we write

m “ m1b1 and b “ b1b2,

where gcdpm1, b2q “ 1, then m1 has a factorisation with only the unit element
occuring in it as a unit. Since m{e2 and n{e3 satisfy the equation of the curve we
have

n2
“ m3

` am2e2
` bme4

“ mpm2
` ame2

` be4
q.

Substituting the expressions we have for m and b we obtain

n2
“ b2

1m1pb1m2
1 ` am1e2

` b2e4
q.

This implies that b1 divides n so we can write n “ b1n1. Using this information
gives us the following about n2

1

n2
1 “ m1pb1m2

1 ` am1e2
` b2e4

q.
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Note that gcdpm1, b2q “ gcdpm1, eq “ 1 so that m1 and b1m2
1 ` am1e2 ` b2e4 are

relatively prime. Since their product is a square and the leading coefficient of m1

is a square, this means that both of these must be a square. We write

M2
“ m1 and N2

“ b1m2
1 ` am1e2

` b2e4.

Substituting m1 into the second part of the expression above we obtain the useful
equation

N2
“ b1M4

` aM2e2
` b2e4. (5)

In particular we can also see that the x-coordinate can be written as b1 times a
square

x “
b1M2

e2 , (6)

meaning that its image under α will be b1 (modulo squares).

Example 7.1. Consider the elliptic curve E over Kptq, where we choose K so that
EpKptqq is finitely generated, given by the equation

E : y2
“ x3

´ tx.

The rank of this curve can be computed using Proposition 11 and (5) and (6). First
note that O gets mapped to the unit element by α, T gets mapped to´t mod Kptq˚

2

and px, yq with x , 0 gets mapped to b1 mod Kptq˚
2
.

We look at the possible factorisations of b “ ´t. Note that b can only be factored
as b “ ut ¨ ´u´1, where u is a unit. We need to consider both b1 “ ut, b2 “ ´u´1

and b1 “ ´u´1, b2 “ ut.

• Consider the first factorisation. From (5) we have that N2 “ utM4 ´ u´1e4,
for some N,M, e P Krts, where M and N are coprime. Considering the
degrees of both sides of the equation we see something interesting, namely
the degree of N2 is even, whereas the degree of utM4 is odd. This means
that ´u´1e4 must have the larger degree, so its leading coefficient has to be
a square. In particular this means that ´u´1 must be a square. This means
that

b1 “ ut ” ´p´u´1
qt ” ´t mod Kptq˚

2
.

Hence a point on the curve which has x-coordinate ut times some square
gives the same image under α as T , namely ´t.

• Now consider the second factorisation. We make an argument that is almost
the same as the previous since we now have N2 “ ´u´1M4 ` ute4, hence
by a similar reasoning ´u´1 must be a square again. So we have

b1 “ ´u´1
” 1 mod Kptq˚

2
.
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So again the image of such a point is already in the image of α since O is
also mapped to it by α.

Since both factorisations give elements that are already in the image of αwe obtain
that

Impαq “ t1,´tu.

Next we want to know what the image of α is. The curve E is given by the
equation

E : y2
“ x3

` 4tx.

Note that the image of α at least consists of the elements 1 and t. The possible
factorisations of b “ b1b2 are b1 “ ut, b2 “ 4u´1 and b1 “ 4u´1, b2 “ ut. Note
that b1 “ 2ut, b2 “ 2u´1 is not a different factorisation as it only actually changes
the unit in it. If we reason in exactly the same way as before using the degrees of
the expression, in the first case we obtain that u´1 is a square, so

b1 “ ut ” t mod Kptq˚
2
.

In the second case we get that 4u´1 is a square so again u´1 is a square. This gives

b1 “ 4u´1
” 1 mod Kptq˚

2
.

So we obtain
Impαq “ t1, tu.

Now we know what the rank of this curve must be using the result of Propo-
sition 11, since we know how many elements are in the images of α and α. We
have

2r
“

#Impαq ¨ #Impαq
4

“
2 ¨ 2

4
“ 1,

therefore the rank of this curve is 0.

This example illustrates how a rank computation might go, however in this
case we have been quite lucky and in general it is a lot more difficult to compute
the rank. There are also some ways to compute the torsion subgroup of the curve,
using for example Nagell-Lutz theorem. For this I would like to refer to e.g.
chapter 8 of [5].
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8 Discussion
We have considered a proof of Mordell’s theorem and tried to generalise this proof
to rational function fields Kptq. As was known, the theorem does not hold for
general rational function fields, so we expected problems during the proof when
wanting to consider an arbitrary rational function field, which is what happened.
We also looked in some more detail at some of the mathematical objects occurring
in the proof and explicitly computed the rank of a specific elliptic curve.

The first property the height needs to satisfy for the descent argument is not
satisfied for general K. Using this height we need K to be a finite field. The other
two properties of the height are satisfied for this height function for any Kptq, al-
though the proof has some minor differences with the proof for Q.

Most of the proof of the finiteness of the group 2EpKptqq in EpKptqq goes in the
same way as for Q because it mainly uses the group law on the curve, which has
the same description for any curve. However the image of the map α as introduced
in subsection 5.3 does not map into a finite set for every Kptq, but it does do so
for example for Fqptq and rational function fields Kptqwith K algebraically closed.

Lang-Néron’s theorem tells us that Mordell’s theorem holds for any fields that
are finitely generated over their prime field, hence it might be interesting to study
height functions on this type of rational function fields that do satisfy the finiteness
property. It is also interesting to study the image of the map α for different rational
function fields. The finiteness of its image is easy to see for a finite field K “ Fq or
algebraically closed field K, but since the theorem holds in more generality than
for Fqptq, we might be able to see the finiteness of the image for other Kptq as well
by doing some more work.
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