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Abstract

Building upon the concept of a retina algorithm, a modified retina algorithm was
developed for efficient particle tracking. A modified retina algorithm was imple-
mented and the performance was tested by conducting simulations. Simulations
were first conducted for a single true track and then increased to ten tracks. Be-
ginning from the most simple simulation of a single track with no hit errors and
noise, the simulation parameters were altered to test the algorithm. The number
of tracks tested in these simulations imply that a modified retina algorithm could
be more efficient.
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Chapter 1

Introduction

Particle tracking plays a crucial role in analysing results from high energy particle
physics’ experiments. For example, the LHCb (Large Hadron Collider beauty)
experiment collides protons and the resulting secondary particles are studied in
order to measure CP violations in the interactions of B mesons [3]. The LHCb
experiments could potentially reveal new physics and challenge the Standard
Model.

In such large scale experiments, a great number of particles are produced. If the
particle has enough momentum, it will travel through the detector and form a
trajectory. The detector will not be able to follow the whole trajectory, instead it
will record a spatial coordinate at a certain time on a detector layer. Therefore,
it is required to connect a recorded signal for one detector layer to a signal
in another layer which belongs to the same particle to reconstruct a particle
track. Reconstruction for hundreds of particles is a computationally expensive
task. The retina algorithm was developed in order to make particle tracking
more efficient. However, a retina algorithm may still have room for improvement
as it relies upon a brute force method. An optimised retina algorithm could
be developed in order to improve computational speeds. The optimised retina
algorithm will be implemented using C++ and the validity of the algorithm
will be tested by simulations. Thus, the research question will be can a retina
algorithm be modified to increase the efficiency of particle tracking?

The paper will start with a general explanation of particle tracking and important
definitions. As the goal is to improve the retina algorithm, the original concept
of the algorithm will be explained first and then the theory of the modified retina
algorithm will follow. Next, an explanation of the implementation of the retina
algorithm and implementation results will be provided and discussed.



Chapter 2

Particle tracking

In this section, the LHCb detector will be used as an example of a particle track-
ing detector to explain the working principle of a particle tracking detector. Also,
important definitions and assumptions taken in this report will be explained.

The LHCDb experiment aims to identify particles resulting from proton collisions,
more specifically b meson particles which contain b and anti-b quarks and the
decay products. At the production vertex, the protons collide and the result-
ing particles propagate in line with the beam pipe of the detector which is 20
meters long. There are a series of sub-detectors within the LHCb detector with
different roles. The sub-detectors collects information such as the trajectory,
momentum and energy to identify the produced particles [2]. Figure 2.1 shows
particle tracks of an event seen from above. The detector includes a powerful
magnet which causes the charged particles trajectories to deflect so the charge
can be distinguished. The momentum can also be determined by the curvature
of the trajectory which is also required for particle identification.

The curvature of the particle trajectory must be taken into account when re-
constructing the particle tracks. However, in this report the simulation model
will be based on the VELO (VErtex LOcator) detector which is sufficiently far
from the magnetic field so that straight tracks can be assumed. Figure 2.2 shows
a close up view around the collision vertex where the tracks are not yet fully
deflected by the magnetic field so the use of a simpler model for straight particle
tracks is possible.

Figure 2.1: Particle tracks of an event Figure 2.2: A close up view around the
collision vertex

Particle tracking detectors consists of layers of detectors which records a spatial
coordinate when a particle passes through it. This spatial coordinate is defined



as a hit. Figure 2.3 shows the hits on the detector layers. A sequence of hits that
belongs to the same particle is called a track as shown in Figure 2.4. Generally, a
minimum of five consecutive hits is considered a valid track worth investigating.
If there are less than five, the particle probably did not have enough momentum
which is an uninteresting case. The detector layer also includes noise which can
complicate the reconstruction process.

Detector layer

Y

Hit >

Figure 2.3: Particle tracking detector

Detector layer

yi .

.
e . _»
Noise . +—
Se— BN , < EEERR ., BN B
A O
i = __ B
J AN e = B
Ht | F . - - - 3
Tracks | //’)’(J
,/" e
-~
P
P
//

Figure 2.4: Particle tracking detector with reconstructed tracks

Only a collection of hits per layer is available as data, which is insufficient to de-
termine the trajectories of the particles. Further analysis is required to connect
the hits in each layer that belong to the same particle. This could be a simple
task for a few particles but when there are more particles, the reconstruction
complexity increases. For example, the LHCb VELO detector records hundreds
of particles per layer from the proton collision. The reconstruction process is a
computationally heavy task and due to limitations in data storage, an efficient
algorithm is needed.



Chapter 3

Retina Algorithm

A retina algorithm was inspired by the mechanism of a mammals retina. Neurons
react to stimuli of certain shapes on the retina and the response is proportional
to how close the stimulus is to that shape [I]. Therefore, the retina exhibits
properties of pattern matching as the neurons which is associated with a pattern
is matched with the stimulus shape.

A retina algorithm can be easily explained with a simple 2D case, where there is
no magnetic field so we can assume straight tracks. Since the tracks are straight
they can be described by a linear function with two parameters,

r=az+p.

From this, a parameter space of a and [ can be defined where each point in
the parameter space corresponds to a possible track in detector space. This
parameter space can then be discretized to allow for a pattern matching method
since a finite number of possible tracks are created. These possible tracks will be
called test tracks for the rest of this report. Figure 3.1 illustrates the parameter
space and the two tracks in the detector space is represented in the parameter
space as two red dots. The algorithm will go through each of the points and
then compute a response function. The discretized points in parameter space of
« and f is indexed by i and j respectively. Then the response function is defined
to be,

R = e ( — (ot = a2/20%), (3.)
d,n

where n denotes the n-th hit in detector layer d and <xfjj> = a;zq + 3. The
standard deviation ¢ comes from the errors in the hits and detector parameters

[1].
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Figure 3.1: Discretized parameter space

By computing the response function for all the discretized points in the parame-
ter space, the algorithm will be able to pick out the track parameters which are
the closest to the true track parameters. Then a fit can be performed with the
hits to give a better estimation of the track parameters.

However, the number of points in this parameter space must be large in order
to give an accurate prediction of the track parameters. This leads to increased
computations which decreases the efficiency of the algorithm. There is no need
to compute the response function for all the discretized points in parameter space
if the area where the hits are concentrated is known. This is especially relevant
for the LHCb experiment as the particles produced from the proton collisions
come from a production vertex which means that the hits are not spread out in
the entire parameter space but concentrated in one area.



Chapter 4

Modified Retina Algorithm

In a retina algorithm, you are required to check through all the discretized points
in parameter space and compute the response function. This algorithm quickly
becomes inefficient in high energy particle physics experiments where the hit den-
sity is very high. When the hit density is high, a higher number of discretized
points in parameter space are required. This will rapidly increase the number of
response calculations which leads to more calculations in areas where there are
no hits.

A modified retina algorithm is an attempt to increase the efficiency by not check-
ing the entire parameter space and only focusing on hit dense regions thus de-
creasing the number of unnecessary computations.

A ‘search cone’ is defined to investigate hit dense regions. The search cone is
defined around a certain test track by giving the parameters a distribution which
would be the width of the prediction. This implies that x(z) will also exhibit a
normal distribution defining the search cone. A 2D representation of a search
cone is defined as:

p(z) = f(a) z2+9(B).

with f(a) and g(/) uncorrelated normal distributions:
fa) =exp(— (a—a0)?/202),

9(8) = exp (= (B Bo)?/203),
thus p(z) is also normally distributed:

p(x) = exp ( —(x— x0)2/2a§,) (4.1)
where:
750(2) =g 2+ fo, UI(Z) = (UaZ)Q‘{'U%

In order to quantify how hit dense it is within a search cone, a weight function
is computed as:

S(2gn.24)>
W(z,z) :Zexp <—(2’02d>>
d,n x

S(xqn,2d) = Tan — 20(24)
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where n denotes the n-th hit on detector layer d.

When an n-th hit is exactly on the test track the n-th term in of the weight func-
tion will compute a 1 as the exponent will be zero. The search cone is defined
to be large at first from a certain position so that it looks at large chunks of the
detector space. This is illustrated in the parameter space shown in Figure 4.1.
The position of the first test track is adjustable, however, it seems reasonable to
start in the middle of the parameter space which is set to be (a,5) = (0,0) in
the following implementation.

Parameter space Detector space

Figure 4.1: Search cones in parameter space

For each search cone a weight will be calculated to determine if the area is hit
dense. Then by recursively halving the standard deviation o, which is referred
to as sigma for the rest of this report, only the hit dense areas are further inves-
tigated. The weight function will be computed with a new sigma and new test
tracks which comes from shifting the original test track. In theory as a search
cone is shifted closer to a true track, the weight will become closer to the value
of the number of detector layers as the weight will be 1 for when a hit is exactly
on the true track which is summed over the detector layers.

The test tracks are shifted by a step size A which will scale the new sigma o
which is half the previous sigma.

g
773
A=k2 (4.2)

where k is an adjustable constant. The new test track parameters will be
Bo=PotA,

az):aoiA.



Figure 4.2 shows a 1D representation of how a search cone is shifted by a step
size, depending on k. The optimal k£ parameter for the simulations in this report
will be determined by comparing the results for different k parameters, shown
later in the report.
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Figure 4.2: 1D representation of a shifted search cone



Chapter 5

Implementation

In this section, an explanation of the implementation of a modified retina algo-
rithm is provided. First, the toy event generation is explained along with some
assumptions taken for the simulations. In the next pattern recognition section,
the pseudo-code of the algorithm is provided to explain how a modified retina al-
gorithm is implemented. Finally, an explanation is given on how the performance
of the algorithm was evaluated in this paper.

5.1 Toy event generation

The simulation model will be based on a simplified version of LHCb VELO de-
tector. In reality, the particle tracking is conducted in 3D which means there
would be five parameters to define a track. However, in this implementation 2D
tracks are generated for simplicity where only two parameters are required. If
the algorithm is successful in 2D it may be extended to a 3D version.

First, a toy event is generated to simulate secondary particle trajectories result-
ing from proton collisions. Parameters a and [ are randomly selected between a
certain range of values to create a set of tracks from a production vertex. These
tracks will be called the true tracks. Then the hits can be generated for each
layer based on these true tracks. In the simulations, the hits are produced ex-
actly on the true track although in reality, the hits may not be detected along
an exact straight line due to the fact that the pixel size limits the accuracy. In
high energy particle physics experiments, an event consist of hundreds of tracks.
The signals from these tracks can include noise and some particles may not have
enough momentum to travel through all the detector layers. Even if the particles
goes through the detector layer it may not record a signal. Many situations that
deviate the hits from the true track are possible and may influence the tracking
quality significantly. At first, a simple case was simulated with one track with
no noise. Then, a simulation with ten true tracks was conducted to check if the
program can reconstruct multiple particle tracks. Then, more complications will
be added to analyse the limitations of the algorithm.

10



5.2 Pattern recognition

The pattern recognition step is implemented first by searching for the candidate
tracks. Pseudo-code for the search is presented in algorithm 1 and the code for
the algorithm is in the appendix.

Algorithm 1: A Modified Retina Algorithm

1 Function Search test tracks(F):

2 while sigma > sigma threshold do

3 foreach Number of test tracks qualified do
4

foreach stepsize direction do
move test track position to stepsize direction

Perform weight calculation
end

if weight > weight threshold then
‘ Update qualified test tracks

7 end

8 end

sigma = sigma * 0.5

stepsize = k*2sigma
9 end
10 End Function

The minimum sigma of the search cone is set to be the pixel size for the one
track simulation with no hit errors. This sigma is an important parameter since
it can affect the reconstruction quality. A sigma that is too high imposes a risk
of merging two nearby tracks and if it is too low several tracks may end up re-
constructing one true track.

There will be a number of qualified test tracks per sigma meaning that they
meet the weight threshold. For each of those test tracks, another set of test
tracks will be generated by going through the step size direction loop with half
of the previous sigma and a smaller step size as defined in the algorithm. Which
is to mean a step is taken in four directions from a qualified test track and plus
the same test track with a smaller sigma than before.

In the real program, this is implemented by using a queue container to store the
qualified test tracks temporarily. The container will include the qualified test
tracks and it will pop out a track to calculate the weight function and add new
tracks to the container.

5.3 Performance evaluation

After the algorithm has selected the candidate tracks, they will be filtered out
further according to weight and sigma restrictions. Then the difference between

11



the final test track parameters and the true track parameters will be taken and
if the difference is smaller than the reconstruction criteria it will be considered
reconstructed. For simulations which involves a set of many true tracks, the
reconstruction rate will be defined as

TT’ econ

€recon =
T
rue

Where T} econ is the number of reconstructed tracks and T}, is the total amount
of true tracks. The reconstruction rate differ for different simulations as the
tracks are generated randomly so an average of ten simulations will be taken in
order to obtain the reconstruction rate.

By looking at the number of total test tracks the algorithm checked, the efficiency
of the algorithm in a simulation can be compared with another simulation. For
every test track, a weight calculation is conducted and since the weight calcu-
lations are the most computationally heavy part of the algorithm, it will be an
indicator of the efficiency of the algorithm. The number of entries will be com-
pared between simulations with different k parameters and weight thresholds. A
low number of entries will be considered more efficient compared to the other,
only if the reconstruction rate is approximately the same.

The robustness of the algorithm will also be tested by adding noise hits and

errors in the hits along the true track. If the reconstruction rate does not change
under these circumstances, it will be considered robust against the added noise.

12



Chapter 6

Implementation result

6.1 Single track reconstruction

Before introducing many true tracks to the simulation, the algorithm is tested
for only one true track and with no hit errors so the hits are exactly on the true
track. The true track is generated according to the pixel size. Also no noise
were introduced. The maximum weight for one track is 10 since the maximum
weight per layer is 1 and there are ten layers. Since a track is defined as at least
five consecutive hits, the minimum weight threshold is 5. The initial sigma value
was set to be 1. The detector length is 0.8 m and the pixel size is 10~4 which is
common throughout the simulations.

The track was reconstructed in all the simulations where the £ parameter and
the weight threshold was varied. The track was reconstructed with an accuracy
of 1073, Figure 6.1 and Figure 6.2 shows the true tracks and the test tracks
plotted with the true track for different k parameters and weight thresholds.

Initially, all the test tracks that were higher than the weight threshold were ad-
mitted to the queue for the next test tracks to be investigated. However, there
were many duplicates of the test tracks with the same sigma value. This could
be due to the fact that different search cones are competing too close in to the
true tracks. For example, a test track could be in the middle of two search cones
and they will both take the same size steps towards the tracks. So it is possible
that one search cone goes past the true track and end up in the same position
as the other search cone. Also, the weight function has a circular symmetry so
if you take the same size steps towards the true track and past it will compute
the same weight.

This will happen more if the weight threshold is lower as there will be more
accepted test tracks around the true track. Also, there seems to be a negative
correlation between the amount of duplicates and the k parameter. A lower k
parameter means that the search cones will overlap more, hence a higher possi-
bility that the true tracks is sitting in the overlapping region. Needless to say,
these duplicates will only end in redundant weight computations so the algo-
rithm was revised to check for duplicates and omit them. This was done by
first putting the alpha and beta parameters in a pair container which associates
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the track parameters to each other as both of the values must match another
set of track parameters. The pairs of track parameters were then added to a set
container which only allows for unique entries to check if there are any duplicates.

The initial position of the test track, set in the simulation to be a =0 and g =0,
also had an influence on the results at this point. The true tracks that were
generated close to the initial position of the test track were reconstructed very
accurately. However, if you move the true track away from the initial position
enough, the reconstruction was not achieved. As you move further away from the
initial position of the track, the initial weight will be very low since there is only
one track. If this happens the weight threshold must be low enough such that
the search cone that contains the true track is selected for further investigation.

A low weight threshold may be beneficial in the beginning of the search for the
above reasons. Yet, as the sigma of the search cone becomes smaller and if the
weight is low, that is an indication that the test track is not an ideal candidate
for a true track. As an attempt to remedy this situation, the weight threshold
was set low in the beginning and after each sigma round the weight threshold was
increased. However, this was not successful. Another attempt was to increase
the initial sigma such that the initial weights are high enough to pass the weight
threshold. In this way, the weight threshold can be consistent throughout the
process. In reality there is no telling where the production vertex will be so it
would be important to estimate the possible range of the tracks well and set the
sigma such that not only does it cover the whole parameter space but cover the
space at a sigma where it will give a weight above the threshold even at the
edge of the parameter space where the possible tracks could be. After the initial
sigma was changed from 1 to 1.5 then the track was reconstructed again.

k = 0.3, weight threshold =9 k=0.5, weight threshold = 7
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Figure 6.1 Figure 6.2

After all the adjustments were made the simulation was conducted and Figure 6.3
shows the histogram of the test tracks. The yellow area indicates where the
algorithm is searching the most intensely which is indeed where the true track
is in the histogram. This histogram indicates that the algorithm is searching
only in the region of the true track according to theory. In a retina algorithm,
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regardless of whether one track or one hundred tracks needs to be reconstructed,
the number of test tracks produced would not change. However, in a modified
retina algorithm, the efficiency of the algorithm will depend on other factors
such as the number of true tracks. In a retina algorithm, the detector size is
0.8 meters so the dimensions of the parameter space would be 0.8 meters by 0.8
meters and that would result in 640,000 tracks to test if the distance between
the tracks are 0.001 m apart. Figure 6.3 shows that the entries are 1243 so there
is a huge reduction in the number of tracks being tested.
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Figure 6.3: Histogram of test tracks

6.2 Multiple track reconstruction

Multiple tracks must also be tested as in reality there are hundreds of tracks to be
reconstructed. For multiple tracks the weight value is high at first, for example if
you generate 10 tracks the highest possible weight will be 100. In theory, as the
sigmas becomes smaller and as more test tracks are generated near a true track,
the weight values will become close to 10 since the maximum weight for one
track is 10. Therefore, instead of taking the test track with the highest weight
to be the candidate track in the case of a single track reconstruction, the test
tracks with a weight between 9.9 and 10.1 will be selected. The sigma was also
restricted since test tracks that have a high sigma with weights in this range will
not be suitable candidates. In all the simulations, the test tracks with a sigma
lower than 0.002 was selected.These tracks will be called the candidate tracks
where the reconstructed tracks will be selected from.

The weight threshold was set to be 5 which is the minimum weight for one track
throughout the process. Since, for this weight threshold, the computations took
too long for tracks more than 10, a more hit dense case was simulated by gener-
ating the true tracks in a smaller interval.

At first 10 true tracks were uniformly generated with an interval of 0.2 for both «
and 3 where the reconstruction criteria was 1073, Figure 6.4 shows the optimal
k value for this situation. The duplicate count is increased when a track is recon-
structed more than once. For k parameters between 0.1 to 0.2, all the true tracks
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are reconstructed, however, when increased further than 0.2 the reconstruction
number drops. Also, the number of candidates and duplicates decreases sharply
as the k parameter increases from 0.1 to 0.2. So for this simulation, the optimal
k parameter is 0.2.
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Figure 6.4: k parameter comparison: From the Left, number of reconstructed tracks,
number of candidate tracks, and number of duplicate tracks

A histogram was also generated from all the test tracks found in the £ = 0.2
simulation shown in Figure 6.5. The figure shows that the test tracks are con-
centrated around the true tracks meaning that the algorithm is not testing further
around the less hit dense areas according to the theory. The reconstruction rate
was 100 percent and around 48,000 test tracks were produced. As mentioned in
the previous single track section, 640,000 tracks would be generated for a retina
algorithm which is significantly higher so a higher efficiency for reconstruction
may be possible. Figure 6.6 shows the results for a simulation for £ = 0.4. The
number of entries are less than half of the simulation for £ = 0.2 and computa-
tion time is short but the reconstruction rate is 85 percent so the reliability of

reconstruction is lower. The rest of the simulations below are conducted with &
= 0.2.
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Figure 6.5: Histogram of test tracks for Figure 6.6: Histogram of test tracks for
interval 0.2 interval 0.4

Next, simulations were conducted for an interval of 0.02. The reconstruction
criteria was decreased to 10~* for this interval. The reconstruction rate was
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20 percent so a significant decrease was observed for a smaller interval and the
number of test tracks in the histogram increased significantly. The algorithm is
ignoring large areas of the parameter space, however, there is a pattern appearing
where the test tracks are concentrated as can be seen in Figure 6.7. This may
be due to the fact that all the true tracks are within one search cone from the
beginning of the refining loop in the algorithm such that all the test tracks are
qualified and further investigated until a later stage in the loop. The reconstruc-
tion criteria was lowered to 10™3 which then the reconstruction rate increased to
88 percent. Although the reconstruction rate was lower than the simulation for
an interval of 0.2, further analysis such as parameter estimation may be applied
to reconstruct the true tracks to a better accuracy.
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Figure 6.7: Histogram of test tracks for Figure 6.8: Histogram of test tracks for
interval 0.02 interval 0.2 including noise

In the next simulation, noise and errors in the hits were introduced to the sim-
ulations where £ = 0.2 and the true tracks were produced in an interval of 0.2.
First, 10 percent noise was introduced by adding a randomly generated hit in
each layer. The reconstruction rate was 97 percent which is a small decrease so
the algorithm seems to be robust against noise and hit errors. Figure 6.8 shows
that there is a slight increase in the number of entries so the algorithm is testing
for more tracks. This is expected as the noise contributes to the weight values
and increases the number of qualified test tracks to go through the refining loop.
However, when errors in the hits were introduced on top of the noise, the recon-
struction rate dropped to 76 percent. Again, this percentage may increase if a
fit is performed to better approximate the true track.

A weight threshold of 5 throughout the reconstruction process is guaranteed to
include all the test tracks so that they are further investigated. Therefore, if
the weight threshold is higher the reconstruction rate would decrease since the
search cones containing a true track may be omitted from the refining loop.
Figure 6.9 shows a simulation result of when the weight threshold was initially
set to 50 and recursively decreased by 5 until it reached a minimum of threshold
5. As expected, the reconstruction rate dropped to 84 percent and number of
test tracks were decreased. Thus to ensure that the tracks are reconstructed, the
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weight threshold must be set to the minimum.
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Figure 6.9: Histogram of test tracks for interval 0.2 with modified weight threshold
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Chapter 7

Conclusion and Discussion

7.1 Conclusion

The implementation results have shown that the algorithm has narrowed down
the number of test tracks, searching only in areas where the tracks were gener-
ated. The simulations of a single true track and ten true tracks revealed insights
on how to use this algorithm. As long as an optimal k parameter is chosen the
number of candidate and duplicate tracks are minimized. For a ten track simu-
lation where the true track parameters were produced within an interval of 0.2,
the optimal £ parameter was 0.2 and the reconstruction rate was 100 percent.
The number of test tracks for a simulation was 48,000 which is far less than
the number of test tracks required for a retina algorithm. This implies that a
modified retina algorithm could increase the efficiency of a retina algorithm for
a 10 track simulation. There were limitations such as a lower reconstruction rate
and increased amount of test tracks for when the true tracks were generated in a
smaller interval of 0.02 compared to 0.2. The algorithm was robust against noise
as the simulations including 10 percent noise resulted in a reconstruction rate of
97 percent. However, error in the hits decreased the reconstruction rate to 76
percent.

7.2 Discussion

This report was limited to simulations of ten true tracks. As the number of true
tracks increased, the computation time increased as well. The algorithm slows
down when it reaches low sigmas, this is most likely due to there being an in-
creased amount of qualified test tracks which are being added to the queue. One
reason for this is that the algorithm calculates the weight and checks if the weight
is higher than the threshold and adds the qualified test tracks in a container in
one loop. This process could be made more efficient if the tasks are broken down
and the weight calculation and the check could be done in parallel. For further
research, this could be implemented by applying multi-threading where more
than one CPU core can be used to execute tasks. Then, the algorithm could be
sped up and more than ten true tracks could be generated and a more realistic
LHCb simulation may be possible.

19



Bibliography

[1] A. Abba and etc, “Simulation and performance of an artificial retina for 40
mhz track reconstruction,” JINST, vol. 10, no. 03, Sep. 2014. DOI: 10.1088/
1748-0221/10/03/C03008.

[2] CERN. (Jun. 2019). The lhcb detector, [Online]. Available: https://1hcb-
public.web.cern.ch/lhcb-public/en/Detector/Detector-en.html.

[3] R. M. van der Eijk, “Track reconstruction in the lhcb experiment,” PhD
thesis, University of Amsterdam, Sep. 2002.

20


https://doi.org/10.1088/1748-0221/10/03/C03008
https://doi.org/10.1088/1748-0221/10/03/C03008
https://lhcb-public.web.cern.ch/lhcb-public/en/Detector/Detector-en.html
https://lhcb-public.web.cern.ch/lhcb-public/en/Detector/Detector-en.html

10

11

12

13

14

15

16

17

18

Appendix

#include
#include
#include
#include
#include
#include

#include

"TRandom3.h"
<queue>
<memory>
<algorithm>
<iterator>
<cmath>

<functional>

using namespace std;

typedef pair<double, double> paird;

class myPaird: public paird

{

using paird::paird;

public:

bool operator<(const myPaird &comp)

{

if (this->first < comp.first) return true;
else if ( (this->first == comp.first) && (this->second <

— comp.second) ) return true;

20
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24

25

26

27

28

29

30

else return false;

/A KA A A KA A A KA A A KA H A KA F A KA A A KA A KA A KA KA A A KA KA KKK KKK KKK )

TRandom3 rnd;

//Detector parameters etc.

int nlayers = 10;

// Number of layers



double detLength = 0.8; // Detector length [m]

int nTracks = 10; // Number of tracks
double stdp = 2; // Pizel size [m]
double pixel = 100e-6; //Standard deviation-gaussian error

~ 4n pizels [pizels]

double sep = detlLength/nlayers;
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41
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//function prototypes

void run();

double cacheight(TNtupleD *hits, double meana, double meanb,
—» double siga, double sigb);
void search(TNtupleD *hits, TNtupleD *testTracks,TNtupleD *dups);
void genHits(TNtupleD *tracks, TNtupleD *hits);
void genTracks(TNtupleD *tracks);
void calcParam(TNtupleD *hits, double& meana, double& meanb);
void add(myPaird &x, set<myPaird> &s,queue<myPaird> &que, TNtupleD
< *dups, double dw);
void recon(TNtupleD *testTracks, TNtupleD* tracks, TNtupleD*
— hits);

48

49

50

51

52

53

54

/A KA A KA A KA A KA A A A KA A KA A KA A KA A KA A A KA A A KKK KKK KKK )

void run()

rnd.SetSeed(0);

TNtupleD *tracks = new TNtupleD("tracks","tracks","a0:b0");
TNtupleD *hits = new TNtupleD("hits","hits","x:z");
TNtupleD *testTracks = new
< TNtupleD("testTracks","testTracks","testa:testb:testsiga:testsigb:w");
TNtupleD *dups = new TNtupleD("dups","dups","da:db:dw");

genTracks (tracks) ;
genHits (tracks,hits);
search(hits,testTracks,dups);

recon(testTracks, tracks,hits);

TFilex file = new TFile('"nodupretinaoneout.root","recreate");
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66 tracks->SetDirectory(file);

67 hits->SetDirectory(file);

68 testTracks->SetDirectory(file);
69 dups->SetDirectory(file);

70 file->Write();

7 file->Close();

=}

73

74 SRR A AAAAA A A A A A A A e A A A A He e A A A A A He A A A A A A A A A A A A A A A A KA A A A KKK KKKk )
75

w //reconstruction

77 void recon(TNtupleD *testTracks, TNtupleD* tracks,TNtupleD* hits)

78 {

79

80 int entries = testTracks->GetEntries();

81 int trueentries = tracks->GetEntries();

82 double adiff, bdiff, testa, testb, testsiga, w, a0, bO;
83 testTracks->SetBranchAddress("testa",&testa);

84 testTracks->SetBranchAddress("testb",&testb);

85 testTracks->SetBranchAddress("testsiga",&testsiga) ;
86 testTracks->SetBranchAddress("w",&w) ;

87 tracks->SetBranchAddress("a0",&a0) ;

88 tracks->SetBranchAddress ("b0",&b0) ;

89

90 int recon = 0;

91 int cand = O;

92 int dupl = 0;

93 int count = 0;

94

95 for (int idx2 = 0; idx2 < trueentries; ++idx2)

96 {

o7 tracks->GetEntry(idx2);

08 for (int idx = 0; idx < entries; ++idx)

99 {

100 testTracks->GetEntry (idx) ;

101 if (w < 10.1 && w > 9.9 && testsiga < 0.002)
102 {

103 ++cand;

104 adiff = abs(a0-testa);

105 bdiff = abs(bO-testb);
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106
107 if (adiff <= 0.001 && bdiff <= 0.001)
108 {

109 ++count;

110 }

11 }

12 }

113

114 if (count > 0)

115 {

116 dupl += count - 1;

117 ++recon;

118 }

119 count = 0;

120 }

121}

122

193 [RKKAIAA KKK IAK A AT A KA A AT IA KA KK IH KA KKK KA K AK KA KA KKK KKKKK
124

125 //refinement loop

126 void search(TNtupleD *hits, TNtupleD *testTracks, TNtupleD *dups)

127 {

128 //initial parameters

129 double testsiga = 1.5; //initial search cone sigma
130 double testsigb = 1.5;

131 myPaird testab(0,0); //initial test track position
132 double k = 0.2; //k parameter

133 double wThreshold = 5; //Weight threshold

134 double sigThreshold = pixel; //Sigma threshold

135

136 double stepa = k*2xtestsiga;

137 double stepb = k*2xtestsigb;

138 double nTestTrack = 5;

139 int entries = 1;

140 double w,testa,testb;

141

142 queue<myPaird> que;

143 que.push(testab);

144 set<myPaird> s;

145 myPaird currentab;
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146 myPaird nextab;

147

148 while (true)
149 {
150 for (int idx = 0; idx < entries; ++idx)
151 {
152 for (int idx2 = 0; idx2 < nTestTrack; ++idx2)
153 {
154 currentab = que.front();
155 testa = currentab.first;
156 testb = currentab.second;
157
158 switch (idx2)
159 {
160 case 1:
161 testa += stepa;
162 break;
163
164 case 2:
165 testa —-= stepa;
166 break;
167
168 case 3:
169 testb -= stepb;
170 break;
171
172 case 4:
173 testb += stepb;
174 break;
175
176 default:
177 break;
178 }
179
180 w =
- calcWeight(hits,testa,testb,testsiga,testsigb);
181
182 if ( w >= wThreshold )
183 {
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184

185

186

187

188

189

190

191

192

193

194

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

b

< testTracks->Fill(testa,testb,testsiga,testsigb,w);

nextab = {testa,testb};
add (nextab, s, que, dups, w);

}

que.pop();
}
//tf (wThreshold > 5) wThreshold -= 5 ;
entries = que.size();
testsiga *= 0.5; //Halve the sigma
testsigb *= 0.5;

stepa = k¥2xtestsiga; //Change the step size

stepb = k*2xtestsiga;
if (testsigb < sigThreshold) break;

/*********************>I<******>l<************>I<*************************/

//function to filter out duplicate test tracks

void add(myPaird &x, set<myPaird> &s,queue<myPaird> &que, TNtupleD

{

—

*xdups, double dw)

double da, db;

if (s.find(x) == s.end())
{
que.push(x);

s.insert(que.back());

}
else
{
da = x.first;
db = x.second;
dups->Fill(da,db,dw);
}
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223
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229

230
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255
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257

/A A A KA KA A A KA A KA A A A KA A A KA A KA A A KA A KA A A KA A KKK KKK KKK )

//Weight calculation
double calcWeight (TNtupleD *hits, double meana, double meanb,

{

double siga, double sigb)

double xm,x,z,sigx;

double w = O;
hits->SetBranchAddress("x",&x);
hits->SetBranchAddress("z",&z) ;

for (int nhit = 0; nhit < hits->GetEntries(); ++nhit)
{

hits->GetEntry(nhit);

sigx = sqrt(pow(siga*z,2) + pow(sigb,2));

Xm meanaxz + meanb;
w += exp(-0.5*pow((x-xm)/(sigx),2));
}

return w;

/A KA KA KA A A KA A KA A A KA A KA A A A KA A A KA A A KA A A KKK KKK KKK )

//Hit generation
void genHits(TNtupleD *tracks, TNtupleD *hits)

{

double a0,b0,xm,x;
tracks->SetBranchAddress("a0",&a0) ;
tracks->SetBranchAddress ("b0",&b0) ;

int nTracks = tracks->GetEntries();

for (int track = 0; track < nTracks; ++track)

{
tracks->GetEntry(track);

for (double z = -detLength/2; z <= detLength/2; z += sep)

{

xm = al*xz + bO;
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260 x = (round(rnd.Gaus(xm/pixel,stdp)))*pixel; // Hit

<~ error

261 x = a0*z + bO; //
— Without hit error

262 hits->Fill(x,z);

263 }

264 }

265

266 Noise generation

267

268 int nNoise = 1; // adjustment of amount of mnoise

269 for (int idx = 0; idx < nNoise; ++idx)

270 {

271 for (double z = 0; z < detLength-sep; z += sep)

272 {

273 x = rnd.Uniform(0.05,0.2);

274 hits->Fill(x,z);

275 }

276 }

a7}

278

270 [RKFKKAKAKFAAAK A AK A AR A AR KA RAH AR AH AT AK K I AR K I AR KKK AR KA K
280

201 // True track generation

252 void genTracks(TNtupleD *tracks)

283 {

284 for (int idx = 0; idx < nTracks; ++idx)
285 {

286 double a0 = rnd.Uniform(-0.1,0.1);
287 double b0 = rnd.Uniform(0.1,0.3);
288 tracks->Fill(a0,b0);

289 }

200 }

28



	Introduction
	Particle tracking
	Retina Algorithm
	Modified Retina Algorithm
	Implementation
	Toy event generation
	Pattern recognition
	Performance evaluation

	Implementation result
	Single track reconstruction
	Multiple track reconstruction

	Conclusion and Discussion
	Conclusion
	Discussion

	Bibliography
	Appendix

