

faculty of science
and engineering

 mathematics and applied
mathematics

Conjunctions of
equivalences: logic meets
linear algebra

Bachelor’s Project Mathematics

July 2019

Student: M.J.R. Meijering

First supervisor: Prof. dr. G.R. Renardel de Lavalette

Second assessor: Prof. dr. J. Top

Abstract

We consider fragments of classical propositional logic obtained by tak-
ing conjunctions of formulae built up using only atoms and the bicondi-
tional ↔. In characterizing these fragments, we find a direct connection
with linear subspaces of a vector space over the two-element field. When
the logical contradiction is added to the set of propositional atoms, a con-
nection is obtained with a more specific set of linear subspaces. It turns
out that the size of the fragments that include logical contradiction can be
calculated based on the size of the fragments in which it is not included.

i

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Equivalences in classical propositional logic 2
2.2 Conjunctions of equivalences . 4
2.3 The 2-element field . 5
2.4 A vector space equipped with symmetric difference 6

3 Characterizing
∧

[PR,↔]/ ≡ 8
3.1 Equivalences and propositional models 8
3.2 An isomorphism with CL(PR) and determining the size 14

4 Introducing logical contradiction as an atom 17
4.1 Determining the size of

∧
[{f, p1, . . . , pn},↔]/ ≡ 20

5 Conclusion 22

ii

1 Introduction

This bachelor’s project is based on notes by Prof.dr. G.R. Renardel de Lavalette
of the University of Groningen [5].

In this report we will discuss fragments of classical propositional logic. This
logic deals with propositions, which are statements for which we can determine
a truth value; either true (T) or false (F). For example, the sentences “I am
wearing a hat” and “The sun is shining” are propositions, because they can
be verified by taking a look. The sentence “I am wearing a hat and the sun
is shining” is called a compound proposition, as it is an assembly of the two
previous statements. Its truth value depends entirely on the truth values of the
simpler statements of which it consists.

When studying logic, we are not so much interested in the specific statements.
Instead, we like to obtain results that hold for all propositions. This is why
we use propositional variables, representing arbitrary propositions of the sim-
plest form (atoms) to which we can assign a truth value. Additionally, we have
two special logical formulae, namely the tautology >, which is always true, and
the contradiction ⊥, which is always false. In classical propositional logic, we
apply logical connectives to the propositional variables to construct more com-
plex propositions, but there are no predicates, non-logical objects or quantifiers
involved. In this paper we make equivalences out of propositional variables
by applying the biconditional operator and we then take conjunctions of these
equivalences. Our main goal will be to characterize the logical fragments that
are then established. In doing so, we resort to linear algebra.

In section 2 we will provide relevant definitions and notation for our specific
logical fragments and the vector space in which we are interested. These are
then used in section 3 to obtain results on equivalences and conjunctions of
equivalences. Finally, in section 4 we will add the logical contradiction as a
propositional atom and study the impact this has on our logical fragments.

1

2 Preliminaries

In this section, some definitions and concepts are discussed that can help us
explore the fragments of conjunctions of equivalences and prove a duality. We
will start with another look at propositional logic itself and fragments of equiv-
alences. After this we can continue with conjunctions of equivalences. Then,
the 2-element field will be introduced and finally we will define the vector space
over this field.

2.1 Equivalences in classical propositional logic

The simplest formulae in classical propositional logic are called propositional
atoms. We combine them with logical connectives to construct more complex
propositions. We denote the atoms by regular lower case letters and arbitrary
propositions (which may or may not be more complex) by lower case Greek
letters. The logical content of propositions can be illustrated in truth tables.
Since we are interested in conjunctions and biconditionals, we will show the
corresponding logical formulae. For arbitrary ϕ and ψ, the truth values for the
statements ϕ ∧ ψ and ϕ↔ ψ can be found in the following truth table.

ϕ ψ ϕ ∧ ψ ϕ↔ ψ
T T T T
T F F F
F T F F
F F F T

We consider the set PR = {p1, ..., pn} of propositional variables. We define the
power set of PR by ℘(PR) = {P | P ⊆ PR}. We denote its elements by the
upper case letters P,Q and R and call them sets. In turn, the second power set
of PR is defined by ℘(℘(PR)) = {X | X ⊆ ℘(PR)}. We denote its elements by
the upper case letters B,C,D,X and Y and call them collections.

The fragment [PR,↔] consists of all propositional formulae generated by el-
ements of PR and the operator ↔. We call these formulae equivalences. Recall
that > is a formula that is always true. For arbitrary formulae ϕ,ψ, χ the
biconditional shows several properties:

ϕ↔ > ≡ ϕ
ϕ↔ ϕ ≡ >
ϕ↔ ψ ≡ ψ ↔ ϕ
(ϕ↔ ψ)↔ χ ≡ ϕ↔ (ψ ↔ χ)

where ≡ denotes logical equivalence, i.e. the term on the left-hand side always
has the same truth value as the term on the right-hand side. The logical tau-
tology functions as an identity element and multiple occurrences of the same
proposition cancel out in pairs. We can also conclude that the order in an equiva-
lence and the positioning of the brackets are irrelevant modulo ≡. For simplicity,

2

we shall therefore denote an equivalence involving the variables {p1, . . . , pk} by
p1 ↔ . . . ↔ pk and restrict ourselves to the fragment [PR,↔]/ ≡, where logi-
cally equivalent statements are considered to be the same element.

We take samples of propositional variables and put them into an equivalence by
defining the function eq : ℘(PR)→ [PR,↔]/ ≡ as follows

eq(∅) = >
eq({p}) = p
eq({p1, . . . , pk}) = p1 ↔ . . .↔ pk.

Note that the name eq is an abbreviation for “equivalence”. Every equivalence
in the fragment can be expressed as eq(P) for some P in ℘(PR) and every
set maps to a different equivalence, so we have a bijection between ℘(PR) and
[PR,↔]/ ≡. Since PR is a set with n elements, its power set contains 2n ele-
ments. Namely, when choosing a subset of PR there are n binary choices to be
made; the ith is either in the subset or it is not. This means that in the case of
n propositional variables we have 2n different equivalences.

We observe that an equivalence is true if and only if it contains an even number
of false variables. To explain this intuitively, note that in an equivalence every
pair of false formulae generates one true formula and the same holds for a pair
of true formulae. On the other hand, if one formula is true and another false,
the result is a false equivalence. As an example, we consider the equivalence of
the variables p1, . . . , p4 and let them be represented by their truth values. On
the left we have two true variables and two false variables, while on the right
three variables are false and one is true.

p1 ↔ p2 ↔ p3 ↔ p4
T ↔ F ↔ T ↔ F
F ↔ F ↔ T ↔ T

T ↔ T
T

p1 ↔ p2 ↔ p3 ↔ p4
F ↔ F ↔ T ↔ F
F ↔ F ↔ F ↔ T
F ↔ F ↔ F
F ↔ T

F

We have rearranged the equivalence such that all the Fs are on the left and then
we evaluate the truth values pairwise. In the case of an even amount of Fs, they
cancel each other out and make the whole equivalence true. When the amount
of false variables is odd, one F remains until the end, making the equivalence
as a whole false. This property will be proven formally in a different context in
Lemma 1. Before this can be done, we need to introduce our interpretation of
subsets of PR as propositional models.

Subsets of PR can be considered as models of the propositional language over
PR. Usually, if the set P represents a model, it makes all elements in P true,
and the elements of PR− P false. In the present context, it turns out that the
opposite interpretation is more convenient. Therefore, we say that the model P

3

makes its own elements false and those of PR−P true. For an arbitrary variable
p and formulae ϕ and ψ we say

P |= p iff p 6∈ P
P |= ϕ ∧ ψ iff P |= ϕ and P |= ψ
P |= ϕ↔ ψ iff (P |= ϕ iff P |= ψ).

Furthermore, we say that the formula ψ is a logical consequence of ϕ (notation
ϕ |= ψ) if every model that makes ϕ true also makes ψ true, i.e.

ϕ |= ψ iff ∀P (P |= ϕ⇒ P |= ψ).

Now that the concept of propositional models is defined, we can verify if the
function eq is an isomorphism based on order preservation. We consider two
sets P,Q ∈ ℘(PR) and check whether the following condition holds

if Q ⊆ P then eq(P) |= eq(Q).

Based on the concept that an equivalence is true if and only if an even number
of its variables is false, we can find a counterexample.

Counterexample For P = {p1, p2} andQ = {p1} we find a model R = {p1, p2}
such that R |= eq(P), but R ��|= eq(Q).

Hence, the order preservation condition does not hold. In this form, the
function is not an isomorphism. As a final remark for this subsection, we intro-
duce a way of characterizing a logical formula. Every equivalence in [PR,↔]/ ≡
can be uniquely represented by the set of models that make it true:

[[ϕ]] = {P | P |= ϕ}.

If two formulae of the fragment have the exact same representation by models,
they are logically equivalent and therefore they must be the same.

2.2 Conjunctions of equivalences

We move on the fragment
∧

[PR,↔] of conjunctions of equivalences. We take
any sample of equivalences from [PR,↔] and put the conjunction operator in
between. So∧

[PR,↔] = {ϕ1 ∧ · · · ∧ ϕk | ϕ1, . . . , ϕk ∈ [PR,↔]}

The main operator is in this case the conjunction, for which several properties
can be observed. For arbitrary formulae ϕ,ψ, χ we have

ϕ ∧ > ≡ ϕ
ϕ ∧ ϕ ≡ ϕ
ϕ ∧ ψ ≡ ψ ∧ ϕ
(ϕ ∧ ψ) ∧ χ ≡ ϕ ∧ (ψ ∧ χ).

4

Once again we see that > acts as an identity element, but the second statement
shows that it is not unique in doing so. Similar to the biconditional, we see that
the order of the formulae and the placement of the brackets do not impact the
logical content. Taking this into account, we restrict ourselves to the fragment∧

[PR,↔]/ ≡.
Elements of this fragment can be constructed by taking collections (contain-

ing sets that in turn contain variables) and applying a function. We define the
function Ceq : ℘(℘(PR))→

∧
[PR,↔]/ ≡ by

Ceq(X) =
∧

P∈X
eq(P).

The name Ceq is again an abbreviation, it shows that we are dealing with a
conjunction of equivalences. The function maps elements from ℘(℘(PR)) to∧

[PR,↔]/ ≡, but it is (unlike eq) not a bijection. Specifically, injectivity does
not hold, since Ceq(X) ≡ Ceq(Y) does not imply X = Y . This is illustrated by
the following counterexample.

Counterexample

Ceq({{p1}, {p2}}) = p1 ∧ p2 ≡ p1 ∧ (p1 ↔ p2) = Ceq({{p1}, {p1, p2}})

One of the goals in this report will be to find a subset of ℘(℘(PR)) for which
Ceq is an isomorphism. This would allow us to get a better picture of the
fragment

∧
[PR,↔]/ ≡ and for example count its elements.

2.3 The 2-element field

In linear algebra, it is often the case that vector spaces are defined over the field
R of real numbers or C of complex numbers. However, there are many other sets
that, equipped with addition and multiplication operations, can serve as field
for a vector space. In particular, the two-element field Z2 is an option. This is
a set consisting of only two numbers, commonly called 0 and 1, with addition
and multiplication given by the tables below.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

This field has certain properties that do not apply to the real numbers. For
example, we have x + x = 0 for all x ∈ Z2, implying that the characteristic of
this field is 2. We also observe x · x = x for every element x in Z2.

Scalar multiplication in a vector space over Z2 is defined by 1v = v and
0v = 0, where 0 is the identity element of addition in the vector space. We
observe the property 1v + 1v = (1 + 1)v = 0, so every element of the vector
space is its own inverse.

5

In our case, we will define a vector space over Z2 where the vectors are sets of
propositional variables. The next subsection introduces the addition operator
for this vector space and provides extra definitions that will assist in obtaining
a connection with our fragments of logic.

2.4 A vector space equipped with symmetric difference

We will consider a vector space over the two-element field using subsets of PR
as vectors, with the symmetric difference ∆ acting as the addition operator[1].

Definition 1 The symmetric difference of the sets P and Q is the union of the
two set differences, i.e. P∆Q = (P − Q) ∪ (Q − P), where P − Q = {p ∈ P |
p /∈ Q}.

Intuitively, it might be easier to interpret it in the following way: The sym-
metric difference of P and Q is the set of elements that are either in P or in Q,
but not in both, i.e. P∆Q = (P ∪Q)− (P ∩Q).
Some properties are given by

P∆∅ = P
P∆P = ∅
P∆Q = Q∆P
(P∆Q)∆R = P∆(Q∆R)
P∆Q = P ∪Q ⇔ P ∩Q = ∅

The empty set ∅ is the identity element of the vector space, since P∆∅ is equal
to P for all P in ℘(PR). Linear subspaces of the vector space are collections
X ⊆ ℘(PR) that are closed under ∆, i.e. for all P and Q in X we have P∆Q
in X. Any collection can be extended in such a way that the result is closed
under symmetric difference. To illustrate this, we first define the function dif :
℘(℘(PR))→ ℘(PR) as follows

dif(∅) = ∅
dif({P}) = P
dif({P1, . . . , Pk}) = P1∆ . . .∆Pk.

Note that the dif in fact represents a linear combination of the involved vectors.
We can also express a set P by putting all its elements into singletons and then
taking the dif of these sets, since they are all disjoint. That is,

P = dif
({
{p} | p ∈ P

})
.

This function can now be used to describe the ∆-closure of an arbitrary collec-
tion X.

Definition 2 For any collection X ∈ ℘(℘(PR)), its ∆-closure is given by

∆cl(X) = {dif(Y) | Y ⊆ X}

6

We observe the following properties regarding the ∆-closure:

X ⊆ ∆cl(X)
∆cl(∅) = {∅}

∆cl({P,Q}) = {∅, P,Q, P∆Q}
∆cl(X) = X ⇔ ∀P,Q ∈ X P∆Q ∈ X.

Now that we have found a structured way to check whether a collection is closed
under ∆, we can gather all those collections into

CL(PR) = {X ∈ ℘(℘(PR)) | ∆cl(X) = X}.

Opposed to the collections that are ∆-closed, we would also like to study col-
lections that do not contain symmetric differences of any of its sets.

Definition 3 A collection X is called ∆-independent if

∀Y ⊆ X(dif(Y) = ∅ ⇒ Y = ∅)

This means that a ∆-independent X does not contain an element that is the
dif of a nontrivial subset Y ⊆ X, i.e. if dif(Y) ∈ X then Y = {dif(Y)}. Since
the dif represents a linear combination, this property can be used to define the
basis of a subspace.

Definition 4 The collection B is called a basis of a subspace X if it is a ∆-
independent subset of X satisfying ∆cl(B) = X.

In order to obtain important results in section 3, we need to equip the vec-
tor space with an additional structure, namely the operator · : ℘(PR)2 → Z2

defined by P ·Q = #(P ∩Q) mod 2. This operator is symmetric, since P ∩Q is
equal to Q ∩ P . It also has the property

P · (Q∆R) = #(P ∩ (Q∆R)) mod 2
= (#(P ∩Q) + #(P ∩R)− 2#(P ∩Q ∩R)) mod 2
= (#P ∩Q) mod 2 + (#P ∩R) mod 2
= P ·Q+ P ·R

which can be verified by looking at the following picture:

P

Q R

P ∩ (Q∆R)

7

This property tells us that · is a linear map. Since it was also symmetric, it
is linear in both arguments. Therefore we call · a bilinear form. When we
have PR = {p1} we can also call it an inner product, but when the number of
propositional variables is larger than one this is no longer the case. For these
larger vector spaces the operator lacks positive definiteness (P ·P > 0 for all non-
empty P). As a counterexample we can take P = {p1, p2} and find P · P = 0.
This is due to the fact that the field Z2, like all finite fields, has an odd notion of
positivity. The only positive element is 1, and the sum of two positive elements
equals 0. Therefore we stick to the weaker term “bilinear form”. We can use
this bilinear form to define orthogonality.

Definition 5 The sets P and Q are orthogonal when P ·Q = 0, i.e. #(P ∩Q)
is even. We denote this by P⊥Q.

We can characterize a collection X by listing the sets Q such that Q is
orthogonal to every set in X. We call this the orthogonal complement X⊥ of X
and define it formally by

X⊥ = {Q | ∀P ∈ X Q⊥P}.

Note that since a set can be orthogonal to itself, a collection may overlap with
its orthogonal complement.

3 Characterizing
∧
[PR,↔]/ ≡

Now that we have provided the necessary definitions and notation, we can obtain
relevant results concerning the fragments of equivalences and conjunctions of
equivalences.

3.1 Equivalences and propositional models

We consider the function eq once more. We concluded in section 2.1 that it was
not an isomorphism based on order preservation. However, since then we have
introduced the symmetric difference operator ∆ acting on the power set of PR.
Just like the biconditional, it makes propositional variables cancel out in pairs.
We find

eq(P∆Q) = eq(P ∪Q−P ∩Q) ≡ eq(P ∪Q)↔ eq(P ∩Q) ≡ eq(P)↔ eq(Q)

where the first logical equivalence holds since P ∩ Q is a subset of P ∪ Q and
in this way we preserve the fact that the elements of P ∩ Q can be canceled
out. The last logical equivalence is just a matter of changing the order of the
variables.

Keeping in mind that the function was already bijective, we conclude that
by adding the symmetric difference operator we have turned the function eq
into an isomorphism.

8

Now, we take another look at propositional models and how they relate to the
vector space with symmetric difference. Subsets P and Q of PR are considered
orthogonal when their intersection contains an even number of elements. We
find a similar result when P and Q are considered as propositional models.

Lemma 1 Let P and Q be subsets of PR. Then

P |= eq(Q) iff #(P ∩Q) is even.

Proof. To prove the statement, we apply induction over the number of elements
of Q. When #Q = 0, we have Q = ∅. In this case, #(P ∩ Q) is always even,
as it is equal to zero. We have eq(Q) = eq(∅) = >, so P |= eq(Q) always holds
and we can conclude that the statement is true for #Q = 0.

Now, suppose that the statement holds for sets Q containing k elements.
For any Q with k + 1 elements we can take some q ∈ Q since it is nonempty.
We define Q′ = (Q − {q}) and observe #Q′ = k. Hence, we know that the
statement is true for Q′. We then have

P |= eq(Q) ⇔ P |= (q ↔ eq(Q′))
⇔ P |= q iff P |= eq(Q′)
⇔ P |= q iff #(P ∩Q′) is even
⇔ q /∈ P iff #(P ∩Q′) is even
⇔ #(P ∩Q) is even

The last step holds because there are two possible cases. On the one hand we
have the case where #(P ∩ Q′) is even. Then P does not contain q, which
results in the fact that (P ∩ Q) = (P ∩ Q′). On the other hand, there is the
case where #(P ∩Q′) is odd. We then have that q is an element of P and thus
(P ∩Q) = (P ∩Q′) ∪ {q}. The intersection of P and Q has an even amount of
elements in both cases.

We conclude that by induction, the statement is true for every subset Q.

As the structure · on the vector space ℘(PR) is symmetric, it is trivial that
we have P⊥Q if and only if Q⊥P . The translation of this property into logic is
also implied by Lemma 1, since taking P ∩Q = Q ∩ P yields the next result.

Corollary 1 Let P and Q be subsets of PR. Then

P |= eq(Q) iff Q |= eq(P)

Lemma 1 also allows us to obtain a result on the model representation of a
conjunction of equivalences. Recall that

Lemma 2 Let X be an element of ℘(℘(PR)). Then

[[Ceq(X)]] = X⊥

9

Proof. The result follows from Lemma 1 and the definitions of orthogonality
and propositional models:

[[Ceq(X)]] = {P | P |= Ceq(X)}
= {P | P |= eq(Q) ∀Q ∈ X}
= {P | #(P ∩Q) is even ∀Q ∈ X}
= {P | P⊥Q ∀Q ∈ X}
= X⊥

Now that we arrive at conjunctions of equivalences again, we will take an-
other look at the function Ceq. In section 2.2 we found that it is not an injection
from ℘(℘(PR)) to the fragment of conjunctions of equivalences modulo ≡. The

counterexample shows that Ceq
({
{p1}, {p2}

})
≡ Ceq

({
{p1}, {p1, p2}

})
. We

note that the collections
{
{p1}, {p2}

}
and

{
{p1}, {p1, p2}

}
have the same ∆-

closure, namely
{
∅, {p1}, {p2}, {p1, p2}

}
. If we would only consider sets that are

itself ∆-closed, this problem would not occur. Therefore, we decide to change
the domain to CL(PR). In order to show that the function is injective when
CL(PR) is the domain, we want to prove that (X⊥)⊥ = X for ∆-closed X. We
will use the concept of bases to obtain this in Lemma 4. First, we have to pave
the way with an intermediate result.

Lemma 3

1. Every ∆-closed collection has a basis.

2. If X is ∆-closed, then #X = 2k for some k

Proof.

1. Let X be ∆-closed. A basis B of X is obtained by the non-deterministic
algorithm

B ← ∅
while ∆cl(B) 6= X do

P ← some element of X −∆cl(B)
B ← B ∪ {P}

2. Let B be a basis of X; it suffices to show #X = 2#B . We have

X = ∆cl(B) = {dif(Y) | Y ⊆ B}
= {dif(Y) | Y ∈ ℘(B)}

Similarly to what we discussed in section 2.1, the power set of B contains
2#B different elements Y . Since B is ∆-independent, this results in 2#B

different outputs for dif(Y). We conclude #X = 2#B .

10

If a basis of X consists of k sets, there must also be at least k variables
involved. We would like each set in the basis to contain an exclusive element,
so we introduce the concept of a good basis.

Definition 6 We call a basis B of X good if every P ∈ B has an exclusive
element, i.e. an element that distinguishes it from all other elements of B. Let

BP =
⋃
P∈B

(B − {P}), then

∀P ∈ B P −BP 6= ∅

This concept will be useful when we interpret the proof of (X⊥)⊥ = X in
our specific vector space. However, this result can be proven in a much more
general fashion. We will do so in the next Lemma, after which an example will
be given for this general case. Subsequently, the result will be applied to the
vector space equipped with symmetric difference.

Lemma 4 Let V be an n-dimensional vector space such that vectors can be
represented by n-tuples. Let V be equipped with the dot product acting as a
bilinear form. Then, for any linear subspace X of V we have (X⊥)⊥ = X.

Proof. We express the elements of V as row vectors of length n with scalar
entries. Every k-dimensional subspace X of V has a basis consisting of k ele-
ments, represented by a k-by-n matrix. Gaussian elimination can be performed
to create a basis B, which is in reduced row echelon form. We assume here that
the first k columns form an identity matrix. If this is not the case, one can
swap some columns to obtain such a matrix, then apply the following process
and swap the columns back afterwards to get the same result.

We have

B =

b1

...
bk

 =
[
Ik B1

]
=

1 0 · · · 0 b1,k+1 · · · b1,n
0 1 · · · 0 b2,k+1 · · · b2,n
...

...
. . .

...
...

. . .
...

0 0 · · · 1 bk,k+1 · · · bk,n

We find a set of vectors that are orthogonal to the row vectors of B by defining
the (n− k)-by-n matrix

C =

 c1
...

cn−k

 =
[
−BT

1 In−k
]

=

−b1,k+1 · · · −bk,k+1 1 0 · · · 0
−b1,k+2 · · · −bk,k+2 0 1 · · · 0

...
. . .

...
...

...
. . .

...
−b1,n · · · −bk,n 0 0 · · · 1

since for arbitrary vectors bi and cj we have

bi · cj = −bi,k+j + bi,k+j = 0.

11

The dot product is a bilinear form, so we have

X = span(B) ⊆ (span(C))⊥ (1)

span(C) ⊆ (span(B))⊥ = X⊥. (2)

Consider an arbitrary vector d =
[
d1 d2 . . . dn

]
∈ X⊥. Because we have

d · bi = 0 for i = 1, . . . , k and the left part of B is an identity matrix, we can
express the first k elements of d as follows

di = −(bi,k+1dk+1 + · · ·+ bi,ndn) = −
n−k∑
j=1

bi,k+jdk+j for i = 1, . . . , k

We will now check if d can be expressed as a linear combination of the row
vectors of C. Note that the right hand side of C consists of an n − k identity
matrix. In order to match the last n− k elements with d we must take

dk+1c1 + . . . + dncn−k

=

n−k∑
i=1

dk+i

[
−b1,k+i · · · −bk,k+i ei

]
=

[
−

n−k∑
j=1

b1,k+jdk+j · · · −
n−k∑
j=1

bk,k+jdk+j dk+1 · · · dn

]
=

[
d1 · · · dk dk+1 · · · dn

]
= d

where ei is the ith row vector of In−k. Since d was chosen arbitrarily, we
conclude that every element of X⊥ is also an element of span(C), so

X⊥ ⊆ span(C). (3)

In a similar way, it can be shown that an arbitrary element a from (span(C))⊥

is in X by taking a1b1 + · · ·+ akbk = a. Consequently, we have

(span(C))⊥ ⊆ X. (4)

Combining equations (1) through (4), we find X = (span(C))⊥ = (X⊥)⊥.

In order to clear up the process, we will discuss an example which is set in
a 4-dimensional vector space over the field of real numbers R.

Example The vectors [2 4 6 4] and [3 6 9 1] form a basis for a sub-
space X. If we put them in a matrix and apply Gaussian elimination, we obtain

B =

[
1 2 3 0
0 0 0 1

]
.

12

We now swap the second and last column, so that we have a matrix of the desired
form. We call it B′ and let C ′ be the matrix with orthogonal row vectors:

B′ =

[
1 0 3 2
0 1 0 0

]
and C ′ =

[
−3 0 1 0
−2 0 0 1

]
.

By swapping the columns back we define

C =

[
−3 0 1 0
−2 1 0 0

]
.

By computing the dot products, one can check that the vectors of C are or-
thogonal to the vectors of B. This means that equation (1) and (2) are sat-
isfied. Also, for any vector d in the orthogonal complement of X, we have
d ·b1 = d1 + 2d2 + 3d3 = 0 and d ·b2 = d4 = 0. Therefore, d1 can be expressed
as −2d2 − 3d3. We observe that d is a linear combination of the vectors of C
by taking

d3c1 + d2c2 =
[
−2d2 − 3d3 d2 d3 0

]
=
[
d1 d2 d3 d4

]
= d.

In turn, any vector a in the orthogonal complement of span(C) has the properties
a3 = 3a1 and a2 = 2a1. We take

a1b1 + a4b2 =
[
a1 2a1 3a1 a4

]
=
[
a1 a2 a3 a4

]
= a.

Now that we have provided clear reasoning for this result, a correct inter-
pretation can be given for the vector space with symmetric difference such that
it fits the necessary conditions.

Corollary 2 Let the vector space ℘(PR) over Z2 be equipped with the symmet-
ric difference operator ∆ and the bilinear form · given by P ·Q = #(P∩Q) mod 2.
Then, for any linear subspace X it holds that (X⊥)⊥ = X

Proof. The elements of the vector space can be denoted by n-tuples with bi-
nary entries. Here, a zero at the ith entry represents the absence of pi in the
set, whereas a one represents the presence of pi. For example, for n = 3, we
have the sets {p1, p3} and {p2, p3} which translate to the vectors

[
1 0 1

]
and[

0 1 1
]
, respectively.

Consider the arbitrary vectors a,b ∈ ℘(PR) represented by the n-tuples[
a1 . . . an

]
and

[
b1 . . . bn

]
. Recall the addition and multiplication tables

from section 2.3. The vector a + b =
[
a1 + b1 . . . an + bn

]
has the following

property:

(a + b)i = ai + bi =

{
0 if ai = bi

1 if ai 6= bi.

This means that pi is an element of a∆b exactly when it is either in a or b, but
not in both. This is in accordance with the symmetric difference operator.

13

The dot product of the vectors is given by a · b =
∑n

i=1 aibi.We know that
the scalar product aibi only equals 1 if both ai and bi are 1, i.e. if pi is an
element of both sets. Hence, the dot product sums #(a ∩ b) ones and the
remaining terms are zero. Since the dot product maps to the field Z2, we are
using addition modulo 2, so the dot product is equivalent to the bilinear form
we introduced:

∑n
i=1 aibi = #(a∩b) mod 2. This shows that our interpretation

works.

If we follow the proof of Lemma 4 with the new interpretation in mind, we
observe how to obtain a basis of X⊥ in our specific vector space. We will clarify
the process with an example.

For n = 6, we consider the collection
{
{p1, p3, p5, p6}, {p3, p5}, {p4, p6}

}
,

which form a basis for a subspace X. It is not a good basis, since the set
{p3, p5} does not contain an exclusive element. We transform it into a good ba-
sis by replacing the first set with the symmetric difference of the first two sets.

So, we have the good basis B =
{
P1, P2, P3

}
=
{
{p1, p6}, {p3, p5}, {p4, p6}

}
.

We say that p1, p3 and p4 are the exclusive elements, and we call p2, p5 and p6
the other elements (note that p5 could also have been picked as an exclusive
element, but we restrict ourselves to one exclusive element per set). A ba-
sis C for the orthogonal complement of X can now be constructed by setting

C =
{
Qp2

, Qp5
, Qp6

}
, where Qpi

consists of the element pi and the exclu-

sive elements of the sets in B that contain pi. So in our example we have

C =
{
Qp2

, Qp5
, Qp6

}
=
{
{p2}, {p3, p5}, {p1, p4, p6}

}
.

The lemmas that we have obtained so far contain a lot of information about
the vector space ℘(PR) equipped with ∆ and its connection with the logical
fragments. They also provide us with the necessary properties to prove that the
function Ceq is an isomorphism, which contributes greatly in characterizing the
fragments of conjunctions of equivalences.

3.2 An isomorphism with CL(PR) and determining the size

Theorem 1 CL(PR) is isomorphic to
∧

[PR,↔]/ ≡

Proof. This requires that we show three properties of the restriction of Ceq to
CL(PR):

1. injectivity: if X,Y ∈ CL(PR) and Ceq(X) ≡ Ceq(Y) then X = Y ;

2. surjectivity: for every X ⊆ ℘(PR) there is a Y ∈ CL(PR) with Ceq(X) ≡
Ceq(Y);

3. order preservation: if X,Y ∈ CL(PR) and X ⊆ Y then Ceq(Y) |= Ceq(X).

The reasoning for (1) is as follows: if Ceq(X) ≡ Ceq(Y) then

X = (X⊥)⊥ = [[Ceq(X)]]⊥ = [[Ceq(Y)]]⊥ = (Y ⊥)⊥ = Y

14

where the first equation holds due to Corollary 2 and the second equation due
to Lemma 2.

For (2), we take Y = ∆cl(X) and use

[[Ceq(X)]] = X⊥ = (∆cl(X))⊥ = Y ⊥ = [[Ceq(Y)]]

where the second equation holds due to the linearity of ·. Since Ceq(X) and
Ceq(Y) are true for the exact same collection of models, we conclude that they
are logically equivalent.

Finally, for (3) we reason that if X is a subset of Y , then for all P we have

P |= Ceq(Y) ⇔ P |= eq(Q) ∀Q ∈ Y
⇒ P |= eq(Q) ∀Q ∈ X
⇔ P |= Ceq(X)

Now that we have established the fact there is a duality, we can consider
the amount of different conjunctions of equivalences by looking at #CL(PR).
Recall from Lemma 3 that a ∆-closed X has 2k elements, where k is the num-
ber of elements of the bases of X. If we can find an expression for the number
of subspaces X with #X = 2k for arbitrary k, we can take the sum over all
values of k to find #CL(PR) and therefore the number of different conjunctions
of equivalences.

We define

D(n) = CL({p1, . . . , pn})
D(n, k) = {X ∈ D(n) | #X = 2k}

The Gaussian binomial coefficients are given by(
n

k

)
q

=
k−1∏
i=0

qn−i − 1

qi+1 − 1

for 0 < k ≤ n and
(
n
0

)
q

= 1 (by [4][3]). In the following paragraph we will show

that #D(n, k) is equal to the Gaussian binomial coefficient with q = 2. This
proof is based on [2].

Since every X in D(n, k) has a basis (Lemma 3), we can count the elements
of D(n, k) by considering bases. We will count how many different bases with
k elements exist in the vector space wp(PR) and then divide by the number
of different bases for a given collection X with 2k elements. For the special
case k = 0, there is exactly one element, which is its own basis. We have
#D(n, 0) = #{{∅}} = 1. For k > 0, a basis can be constructed using the algo-
rithm from the proof of Lemma 3. In the vector space ℘(PR), we obtain a basis

15

B = {P1, . . . , Pk}, where Pi is the ith element that is added. The number of
choices

- for P1 is 2n − 1 (any element except ∅),
- for P2 is 2n − 2 (any element except those of ∆cl({P1})),

...
- for Pk is 2n − 2k−1 (any element except those of ∆cl({P1, . . . , Pk−1})).

Consequently, the number of different bases with k elements in the n-dimensional
vector space is

(2n − 1)(2n − 2) · · · (2n − 2k−1)

In order to find the amount of different bases for a given subspace X, we apply
the same process, with k instead of n. This means that the number of elements
of D(n, k) is given by

#D(n, k) =
(2n − 1)(2n − 2) · · · (2n − 2k−1)

(2k − 1)(2k − 2) · · · (2k − 2k−1)

We divide both the numerator and the denominator by (21)(22) · · · (2k−1) and
find that for 0 < k ≤ n

#D(n, k) =
(2n − 1)(2n−1 − 1) · · · (2n−k+1 − 1)

(2k − 1)(2k−1 − 1) · · · (21 − 1)

=

k−1∏
i=0

2n−i − 1

2i+1 − 1

We can conclude that for all k, we have

#D(n, k) =

(
n

k

)
2

and thus the total number of subspaces is given by

#D(n) =

n∑
k=0

(
n

k

)
2

which also represents the number of different conjunctions of equivalences for a
given number of propositional variables n. Some values of #D(n, k) and #D(n)

16

are given by

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

1 1 1 1 1 1 1 1 k = 0
1 3 7 15 31 63 127 k = 1

1 7 35 155 651 2667 k = 2
1 15 155 1395 11811 k = 3

1 31 651 11811 k = 4
1 63 2667 k = 5

1 127 k = 6
1 k = 7

1 2 5 16 67 374 2825 29212
∑

k

The bottom sequence is listed in the Online Encyclopedia of Integer Sequences
as entry A006116.

4 Introducing logical contradiction as an atom

The concept of negation appears very often in logic. But since we are interested
in conjunctions of equivalences, we cannot simply add the logical connective
¬ to our fragment. However, the same effect can be created by considering
the logical contradiction (falsum) as a propositional atom. In the introduction
we denoted it by its usual symbol ⊥, but we have already used this notation
extensively in the last section, where it represented orthogonality. Instead, we
will now denote falsum by the lower case f , as it is a propositional atom which
always has truth value F.

An equivalence containing falsum has the following property:

ϕ↔ f ≡ ¬ϕ.

where ¬ϕ is the negation of ϕ. Its truth value can be derived from the truth
table

ϕ ¬ϕ
T F
F T

Note that we do not introduce the negation operator to our fragments, but we
create the possibility to obtain the same logical content by adding f . For a given
set P , we know that eq(P) is true if and only if an even amount of elements of
P is false. The set P ∪ {f} translates to the negation of eq(P), as

eq(P ∪ {f}) = eq(P)↔ f ≡ ¬eq(P).

This equivalence is true if and only if an odd amount of elements of P is false.

17

We will study the fragment [PR ∪ {f},↔] of equivalences. We start by check-
ing if the function eq is still bijective. Surjectivity holds from the definition of
the fragment, but injectivity needs some verification. It is easy to check that
eq(P ∪{f}) is not logically equivalent to any element of [PR,↔]. Namely, if we
assign the truth value T to all propositional variables in PR, the number of false
elements in P is zero and therefore even. This means that eq(P ∪ {f}) is false,
while eq(Q) is true for all Q in ℘(PR) due to the absence of false propositional
variables.

Now suppose that eq(P ∪ {f}) is logically equivalent to some eq(Q ∪ {f}).
Then, we have

eq(P ∪ {f}) ≡ eq(Q ∪ {f}) ⇒ ¬eq(P) ≡ ¬eq(Q)
⇒ eq(P) ≡ eq(Q)
⇒ P = Q

From this we can conclude that the function is indeed injective.

Moving on to the fragment
∧

[PR ∪ {f},↔]/ ≡, we observe that a conjunc-
tion of equivalences that contains the single element f as an equivalence will
always get truth value F. We would like to discover a similar duality to what
we found before, but this seems to be an obstacle. It is illustrated by the sub-
spaces X = {∅, {p1}, {f}, {p1, f}} and Y = {∅, {p2}, {f}, {p2, f}}, for which the
counterparts are logically equivalent:

Ceq(X) = > ∧ p1 ∧ f ∧ (p1 ↔ f) ≡ f ≡ > ∧ p2 ∧ f ∧ (p2 ↔ f) = Ceq(Y)

We avoid this problem by leaving every collection X such that {f} ∈ X out
of consideration, except for ℘(PR ∪ {f}}. We keep the latter collection so that
there is exactly one subspace X that maps to falsum. Note that by removing
the other subspaces that contain the singleton {f}, we automatically remove
self-contradicting collections. Namely, if X contains an arbitrary P (translating
to eq(P)) and the set P ∪{f} (translating to ¬eq(P)), then by ∆-closedness we
must have P∆(P ∪ {f}) = {f} in X.

We define the set DN(n) as

DN(n) =

{
X ∈ CL({f, p1, . . . , pn}) | {f} /∈ X

}
∪
{
℘({f, p1, . . . , pn})

}
Now that falsum is added as a propositional atom, there is a condition for
propositional models. Recall that a model P makes all its elements false and
the remaining elements true. Since f is by definition false, it must be contained
in every model. Because of this, we do not have X⊥ = [[Ceq(X)]] anymore.
Since this was a vital part of the injectivity proof for Theorem 1, we have to
make an adjustment in order to derive an isomorphism. Note that the collection
[[Ceq(X)]] is now given by all sets in X⊥ that contain f .

18

As a step in fixing the injectivity proof for the isomorphism, we make another
statement about a general n-dimensional vector space and its subspaces. After
this, we can apply the result to the vector space based on symmetric difference.

Lemma 5 Let V be an n-dimensional vector space such that vectors can
be represented by n-tuples. Let V be equipped with the dot product act-
ing as a bilinear form. Furthermore, let the collection M ⊆ V be given by
M =

{ [
a1 · · · an

]
| a1 6= 0

}
. If X is a linear subspace of V such that[

a1 0 · · · 0
]
/∈ X for nonzero a1, then we can find a basis D of X⊥ such

that D ⊆M .

Proof. Take a basis B of X in reduced row echelon form. Without loss of
generality, we can assume that B is of the form

[
Ik B1

]
. The first row vector

of B is given by

b1 =
[
1 0 · · · 0 b1,k+1 · · · b1,n

]
.

Because of our condition on X, we know that there is a j such that b1,k+j 6= 0.
Now, if we create a basis C of X⊥ according to the proof of Lemma 4, the jth

row vector of C is given by

cj =
[
−b1,k+j · · · −bk,k+j ej

]
where ej is the jth row vector of In−k. We know that the first element of cj is
nonzero, so cj is an element of M .

We define the matrix D by

D =

 d1

...
dn−k

 with di =

{
ci if ci ∈M
ci + cj if ci /∈M.

This definition provides certain properties. Firstly, every vector of D has a
nonzero first element, so D is a subset of M . Also, we notice that the vectors
of D are linear combinations of the vectors of C in such a way that they are
linearly independent. Namely, we have n vectors such that every vector of C is
a linear combination. From this we can conclude that span(D) = span(C), so
D is also a basis of X⊥.

We can use Lemma 5 in our specific case by letting the first entry of the
vector be an indicator function for the presence of falsum.

Corollary 3 Let the vector space ℘({f, p1, . . . , pn}) over Z2 be equipped with
the symmetric difference operator ∆ and the bilinear form · given by P · Q =
#(P ∩ Q) mod 2. Furthermore, let the collection M ⊆ ℘({f, p1, . . . , pn}) be
given by M = {P ∈ ℘({f, p1, . . . , pn}) | f ∈ P}. If X is a linear subspace such
that {f} /∈ X, then

1. We can find a basis D of X⊥ such that D ⊆M .

19

2. (X⊥ ∩M)⊥ = X.

Proof. 1. We again interpret the vectors as n-tuples. In this case, the first
entry indicates the presence of f in the set and the (i+1)th entry indicates
the presence of pi in the set. By Lemma 5 we can find a basis D of X⊥

such that every set in D contains falsum, so D ⊆M .

2. We have D ⊆ (X⊥ ∩M) ⊆ X⊥ = ∆cl(D). Since X⊥ is itself closed under
∆, we know that ∆cl(X⊥ ∩M) = X⊥. Then, by linearity of ·, we can
conclude that (X⊥ ∩M)⊥ = (X⊥)⊥ = X.

The second statement of the corollary turns out to be the missing link to
prove our final isomorphism.

Theorem 2 DN(n) is isomorphic to
∧

[{f, p1, . . . , pn},↔]/ ≡

Proof. We again need the properties injectivity, surjectivity and order preser-
vation. The latter can be proven in the exact same way as for Theorem 1. The
proof for injectivity is similar to that of the previous theorem, but with a small
adjustment. If X,Y ∈ DN(n) and Ceq(X) ≡ Ceq(Y), then we have

X = (X⊥ ∩M)⊥ = [[Ceq(X)]]⊥ = [[Ceq(Y)]]⊥ = (Y ⊥ ∩M)⊥ = Y.

Finally, the proof for surjectivity is given as follows. There are two cases. For
every X ⊆ ℘({f, p1, . . . , pn}) such that {f} /∈ ∆cl(X) we have Y = ∆cl(X) ∈
DN(n) such that

[[Ceq(X)]] = X⊥ ∩M = (∆cl(X))⊥ ∩M = Y ⊥ ∩M = [[Ceq(Y)]]

and for every X ⊆ ℘({f, p1, . . . , pn}) such that {f} ∈ ∆cl(X) we have Y =
℘({f, p1, . . . , pn}) ∈ DN(n) such that

[[Ceq(X)]] = ∅ = [[Ceq(Y)]].

In both cases we find [[Ceq(X)]] = [[Ceq(Y)]] and thus Ceq(X) ≡ Ceq(Y).

4.1 Determining the size of
∧
[{f, p1, . . . , pn},↔]/ ≡

Finally, we can count #
∧

[{f, p1, . . . , pn},↔]/ ≡ by counting the number of
subspaces in DN(n). Recall the definition of DN(n):

DN(n) =

{
X ∈ CL({f, p1, . . . , pn}) | {f} /∈ X

}
∪
{
℘({f, p1, . . . , pn})

}
.

We can calculate #DN(n) by taking #CL({f, p1, . . . , pn}), subtracting #{X ∈
CL({f, p1, . . . , pn}) | {f} ∈ X} and adding 1 (since we let ℘({f, p1, . . . , pn})
be contained in DN(n)). We note that in the vector space ℘({f, p1, . . . , pn}),
falsum does not have any special properties and can therefore be regarded as
the n+1th atomic element. Therefore we can say #CL({f, p1, . . . , pn}) = #D(n).

20

For every subspace X ∈ CL({f, p1, . . . , pn}) that contains the singleton {f}
we can obtain a basis B =

{
{f}, P1, . . . , Pn

}
with f /∈ Pi for all i = 1, . . . , n by

the algorithm

B ← {{f}}
while ∆cl(B) 6= X do

P ← some element of X −∆cl(B) that does not contain f
B ← B ∪ {P}

From this basis we can remove the singleton {f}. The collection B − {{f}} is
a basis for a subspace Y ∈ D(n) (where falsum is not a propositional atom). In
turn, we can also take any subspace Y ∈ D(n), add the singleton {f} and then
take the ∆-closure, resulting in a subspace X ∈ CL({f, p1, . . . , pn}). That is,
∆cl(Y ∪ {{f}}) = X ∈ CL({f, p1, . . . , pn}). We note that for every Y ∈ D(n)
this results in a different subspace X, so the number of subspaces X that contain
the singleton {f} is given by #D(n).

This means that the calculation for #DN(n) boils down to

#DN(n) = #D(n+ 1)−#D(n) + 1.

Some values for #DN(n) and therefore for #
∧

[{f, p1, . . . , pn},↔]/ ≡ are given
by

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
#DN(n) = 2 4 12 52 308 2452 26388.

This is not a known sequence according to the Online Encyclopedia of Integer
Sequences, so it could perhaps be added as a result of this report.

21

5 Conclusion

We have studied the fragments of equivalences and conjunctions of equivalences
in classical propositional logic. We have discussed some of the properties of
the propositional formulae themselves, but the most remarkable results were
obtained by finding dualities by means of linear algebra. There is a one-to-one
connection between the fragment of equivalences and a vector space over the
2-element field equipped with the symmetric difference operator. Also, there is
an isomorphism between the fragment of conjunctions of equivalences and the
set of subspaces of such a vector space. As a result of this, the number of dif-
ferent conjunctions of equivalences could be calculated. It is given by the sum
of the Gaussian binomial coefficients with q = 2 and can be found as the entry
A006116 of the Online Encyclopedia of Integer Sequences.

Finally, when the logical contradiction falsum is added as a propositional atom,
we find another isomorphism. The fragment of conjunctions of equivalences
then has a direct connection with a particular set of subspaces. We have deter-
mined the size of this fragment, namely in the case of n = 0, 1, 2, 3, 4, 5, 6, . . .
propositional variables it is given by the sequence 2, 4, 12, 52, 308, 2452, 26388,
. . . .

22

References

[1] J. Alama. “The Vector Space of Subsets of a Set Based on Symmetric
Difference.” In: Formalized Mathematics 16.1 (2008), pp. 1–5. doi: https:
//doi.org/10.2478/v10037-008-0001-7.

[2] P.J. Cameron. MT5821 Advanced Combinatorics course module, chapter
6. University of St. Andrews. 2014. url: http://www-groups.mcs.st-
andrews.ac.uk/~pjc/Teaching/MT5821/1/l6.pdf.

[3] G. Critzer. “Combinatorics of Vector Spaces over Finite Fields”. MA thesis.
Emporia State university, 2018.

[4] K.E. Morrison. “Integer Sequences and Matrices over Finite Fields”. In:
Journal of Integer Sequences 9.2 (2006), pp. 1–28. url: https://cs.

uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.pdf.

[5] G.R. Renardel de Lavalette. Conjunctions of equivalences: logic meets linear
algebra. University of Groningen. 2018.

23

