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The Minimal Obstruction Problem

Abstract
The problems of symplectic embeddings have found applications in as far-reaching areas as combinatorics. One aspect
of this paper will be to describe the tools used to solve symplectic embedding problems. Those tools are Embedded
Contact Homology (ECH) and ECH capacities. The ECH is defined via counts of J-holomorphic curves inside of
a symplectization of a contact 3-manifold. The capacities are then derived from this homology. The main result is
to reverify a minimal obstruction problem. Namely, finding those µ such that E(1, µ2) symplectically embeds into
B4(µ). The solution to which appear as µ = gn+1/gn, n ∈ Z≥0 where the gn’s are odd-indexed Fibonacci numbers.
Through combinatorial methods a Diophantine equation will be derived, with solution set directly associated with
solving the minimal obstruction problem. The Diophantine equation is solved via graph theory. The graph theory
approach is very likely applicable to other minimal obstruction problems.
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The Minimal Obstruction Problem 1. INTRODUCTION

1 Introduction
The origin of the word symplectic is from Weyl who replaced the Greek root of complex, in describing a group of
matrices, with the Latin, symplectic. Symplectic in this connotation thus makes sense as a pairing. What is being
paired are coordinates on even-dimensional euclidean space R2n, like so (x1, y1, ..., xn, yn) = ((x, y)). With R2n a
canonical area/(symplectic) form can be associated

∑
i dxi ∧ dyi, this is the local picture for a symplectic manifold.

Under consideration are maps that preserve this form, thus preserving area but as it happens to preserve volume
as well. The idea for this thesis is to discuss the existence of maps that give more than just volume preservation,
but need only a volume condition to be satisfied. The “more” is a so-called symplectic embedding. The tools used
to study this phenomenon are invariants on symplectic manifolds. The relation between invariants imply relations
between manifolds. Manifold for this introduction will simply be a subset of Euclidean space, see appendix A.1.

The idea, of a symplectic embedding, is to take one symplectic manifold and “push it” into a second while
preserving the symplectic structure. This preservation needs to happen with respect to the structure of the second
manifold. For more precise definitions see Section 2.

Why are symplectic embeddings so difficult? On the whole, conditions that concern backward operations in
mathematics are easier to verify, whereas forward operations are much more difficult. For example, the image of
an arbitrary intersection of sets is not necessarily the arbitrary intersection of images of those sets. Although, the
pre-image always preserves intersections. A more technical example, the pullback of a vector field is always globally
defined, whereas the pushforward vector field does not always exist globally. The difficulty is high enough that
knowledge is concentrated on dimension 4 and in higher dimensions very little, about symplectic embeddings, is
known.

The 4 dimensional (where R4 is identified with C2) and simple higher-dimensional examples are tied to the
following sets, endowed with the canonical symplectic form.

Ball

B2n(r) = {(x1, y1, ..., xn, yn) ∈ R2n | π|x|2 + π|y|2 ≤ r}
Cylinder

Z2n(R) = {(x1, y1, ..., xn, yn) ∈ R2n | πx2
1 + πy2

1 ≤ R}
Ellipsoid

E(a, b) =

{
(z1, z2) ∈ C2

∣∣∣∣ π|z1|2

a
+
π|z2|2

b
≤ 1

}
Polydisk

P (a, b) = {(z1, z2) ∈ C2 | π|z1|2 ≤ a, π|z2|2 ≤ b}

By the complexified cube we mean C(a) = P (a, a) = D2(a) × D2(a), D2(a) the disk of radius a. The most
important volumes, coming from the canonical symplectic form, are given for the ellipsoid E(a, b) by ab and the
4-ball B4(r) as r2. When discussing embeddings we will encounter the interior of the ellipsoid Int E(a, b) is the same
as defined as above but with the non-strict inequality replaced by a strict inequality.

Problems of symplectic embeddings appear in ball packing problems, for example, Biran [1]. The question of
symplectic embedding k disjoint balls B4(r) into C4(1) gave conditions further than volume constraints, which was
unusual for the time, 1991. In the 1985 paper [2] Gromov proved a condition for a symplectic embedding of a
ball B2n(r) into a cylinder Z2n(R), which exists if and only if r ≤ R. A result distinct from a volume constraint.
Later, in 2009, McDuff and Schlenk [3] found a function describing all the obstructions to embedding an ellipsoid
E(1, a) into a ball B4(λ). The function turned out to have a property of independent interest, the graph contained
an infinite staircase. Furthermore, in 2012 Frenkel and Muller [4] discovered by similar methods another infinite
staircase. This appeared by describing the function that obstructs ellipsoid E(1, a) from (symplectically) embedding
into C(λ). Finally, by combinatorial methods Cristofaro-Gardiner and Kleinman, in 2013 [5], re-verified the two
previous staircases and added a third. The third dealt with the embedding problem of E(1, a) into E(2λ, 3λ).

On each graph of these functions there are points where the obstruction is minimal and these will be the main
objects of study. The main result of this paper is to (re-)reverify these minimal obstructions for McDuff and Schlenk’s
staircase. This will be achievable via an ad hoc graph theory method on an equivalent formulation of the problem
by Cristofaro-Gardiner and Kleinman.

The structure of the paper will begin with background material in Section 2 and a review of the problem in the
next few paragraphs. Section 3 is devoted to attempting to explain the main tool to solve the problem, embedded
contact homology. There is a further appendix devoted to more background on this subject matter, appendix A
for review and appendix B supporting Section 2 and 3. Finally, in Section 4 we will follow the methodology of
Cristofaro-Gardiner and Kleinman to do the re-verification.
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The Minimal Obstruction Problem 1. INTRODUCTION

We will now explain the problem of determining the conditions when a symplectic embedding can occur. More
precisely, we will define the function associated to symplectically embedding one ellipsoid into another ellipsoid.

The minimal obstruction problem for ellipsoids is answering: when does the following occur?

Int E(a, b)
s
↪−→ E(c, d) & ab = cd.

In words, when does a symplectic embedding occur between the interior Int E(a, b) and E(c, d) such that ab = cd.
We say minimal because it turns out that the volume must always be preserved for symplectically embeddings so
that volume equality is the minimum possible requirement. Note that the volume of the interior manifold is equal
to the volume of the manifold.

Answers to this problem and less restrictive questions come from certain tool(s) of study. Firstly, for 3 dimensional
contact manifolds the tool is the “ECH spectrum”. The second, for (certain) 4 dimensional symplectic manifolds
they are “ECH capacities”.

The ECH spectrum associated to (Y, λ) a contact 3 dimensional manifold is a sequence ck(Y, λ):

0 = c0(Y, λ) < c1(Y, λ) ≤ c2(Y, λ) ≤ · · · ≤ ∞.

The ECH capacities of a 4 dimensional symplectic manifold (M,ω), often with boundary, is a sequence ck(M,ω):

0 = c0(M,ω) < c1(M,ω) ≤ c2(M,ω) ≤ · · · ≤ ∞.

Where ECH stands for Embedded Contact Homology, a homology on contact 3 dimensional manifolds. This homology
is derived from the Embedded Contact Complex (ECC).

The axiomatic definition for symplectic capacities in Section 2.1 of Hofer-Zehnder [6] is given as follows. Let
(M,ω) be a manifold of fixed dimension 2n. A symplectic capacity is (M,ω) 7→ c(M,ω) a map of a symplectic
manifold (M,ω) to a non-negative number or ∞, which satisfies the following properties:

(A1) Monotonicity: c(M,ω) ≤ c(N, τ)⇐⇒ (M,ω)
s
↪−→ (N, τ)

(A2) Conformality: c(M,αω) = |α|c(M,ω), for all α ∈ R, α 6= 0.

(A3) Weak Nontriviality: c(B4(1), ω0) > 0, ∞ > c(Z4(1), ω0).

With ω0 the canonical symplectic form. Note that each element of the sequence of ECH capacities are individually
examples of symplectic capacities.

The relationship between ECH capacities on (M,ω) and spectrum on (Y, λ) is this: if Y = ∂M and ω|Y = dλ
and M is a Liouville domain then ck(M,ω) = ck(Y, λ) for all k.

Examples of computed ECH capacities:

ECH capacities for the ellipsoid, (Prop. 1.2, [7]).
The k-th term, Nk(a, b) is the (k + 1)-th smallest element in the set {ma + nb | m,n ∈ Z≥0}. (Note
that we count with repetitions.)

ECH capacities of the polydisk (Theorem 1.4, [7]).

ck(P (a, b)) = min{ma+ nb | (m,n) ∈ Z2
≥0 (m+ 1)(n+ 1) ≥ k + 1}.

Both the ellipsoid and polydisk are endowed with the canonical symplectic form.
From the monotonicity of symplectic capacities it is possible to determine when a symplectic embedding will

not occur for a pair of two manifolds. But this is rather a large collection of examples and we are after the reverse
implication.

As it so happens, McDuff proved (in [8]) that for ellipsoids ECH capacities are sharp. By sharpness we mean
that both the monotonicity axiom holds and the axioms reverse implication. More formally,

Int E(a, b)
s
↪−→ E(c, d)⇔ ck(E(a, b)) ≤ ck(E(c, d)), for each k ∈ Z≥0.

From the arguments on the Hofer conjecture along with the work of Muller, (Corr. 11, [9]) plus (Prop. 1.4, [4]), ECH
also gives sharp obstructions to ellipsoids embedding into polydisks. Monotonicity of ECH capacities was proved in
general by Hutchings, (Theorem 1.1, [7]).

We would like to study the ellipsoid embedding into ellipsoids with some more detail. By rescaling, the following
occurs precisely when we already have Int E(a, b)

s
↪−→ E(c, d)

Int E(1, b/a)
s
↪−→ (1/a)E(c, d).
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The Minimal Obstruction Problem 1. INTRODUCTION

Equivalently, by replacing E(1, b/a) with E(a/b, 1) we would have a similar statement. So we only focus on the
former and consider the problem for numbers a, b, c and d such that |b/a| ≥ 1, and

Int E(1, b/a)
s
↪−→ (1/a)E(c, d)

holds true.
In the work of Frenkel and Muller (Lem. 2.4, [4]) an elementary number theory problem is to prove the identity

ck(C(1)) = ck(E(2, 1)) for each k ∈ Z≥0. The proof allows for the unification of results in the ellipsoid case.
We define the following function on the numbers a, b, c and d with |b/a| ≥ 1,

ca,b,c,d := inf{λ | Int E(1, b/a)
s
↪−→ (1/a)E(λc, λd)}.

The way to intuitively understand the above function is to repeat to oneself that we are searching for the scaling for
a symplectic embedding to still occur, given real numbers a, b, c and d.

We can simplify this expression by saying that (1/a) is enveloped by the scale factor λ. Moreover, there is no
need for dependence on b and a so we choose one-parameter, say a. We will now restrict to c = 1 and d = k/l for
integers k, l,

ca,k,l = inf{λ | Int E(1, a)
s
↪−→ E(λ, λk/l)}

There are three (k, l) that we will consider (k, l) = (1, 1) from the primary paper McDuff and Schlenk [3],
(k, l) = (2, 1) in the joint work of Frenkel and Muller [4]. Also, by an alternative approach investigated in section 5,
(k, l) = (3, 2) from Cristofaro-Gardiner and Kleinman [5].

All these three have some special features in common, namely:

(i) The function ca,k,l is bounded below by a curve called the volume curve.

(ii) The graph of the function ca,k,l, G(ca,k,l), has a sub-graph F (ca,k,l) consisting of an infinite number of alternating
horizontal and sloped lines. Fig 1

(i) We certainly have E(1, a)
s
↪−→ E(ca,k,l, ca,k,l · (k/l)) as Int E(1, a)

s
↪−→ E(λ, λk/l), for all λ ≥ ca,k,l. Thus,

because of volume preservation,

vol(E(1, a)) ≤ vol(E(ca,k,l, ca,k,l · (k/l))) ⇒ a ≤ c2a,k,l(k/l) ⇒ ca,k,l ≥
√

a

vol(E(1, k/l))
=

√
la

k
.

The volume curve is then λ(a) =
√
la/k.

(ii) The heights of the horizontal and the slopes of the lines carry with them an associated sequence.
For example the case (k, l) = (1, 1) gives E(k, l) = E(1, 1) = B(1) and the sequence associated to the staircase

sub-graph F (ca,k,l) are the odd-index Fibonacci numbers. The Fibonacci numbers are the integers recursively defined
by f0 = f1 = 1 and fn+1 = fn + fn−1 and by odd-index we mean gn = f2n−1, n ≥ 1. We care about defining this
derived sequence independently and write g0 = g1 = 1 and require the rule gn+1 = 3gn − gn−1.

The final section will go some way to explaining why the gn’s appear. The staircase looks somewhat like the
following figure.

Figure 1: Fibonacci Stairs, λ vertical, a horizontal
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The Minimal Obstruction Problem 2. SYMPLECTIC, CONTACT AND HOLOMORPHIC STRUCTURES

The above graph was reverse engineered by knowing the associated sequence and taking sloped lines through
origin. The lines then stop at the heights determined by the gn+1/gn, n ∈ Z≥0. Notice the points that are concave
meetings of the horizontal and sloped lines on the sub-graph F (ca,1,1). Morally these points should be called “interior
corners”, because they are interior when considering the shapes between the sub-graph and the volume curve. In
this case the interior corners are (g2

n+1/g
2
n, gn+1/gn), because λ = gn+1/gn the heights of the stairs and the volume

curve λ =
√
a. The interior corners give a discrete set of solutions to the minimal obstruction problem with a = 1,

b = µ2 and c = d = µ. Thus, instead, to emphasize this property we will say the minimal obstruction points. The
minimal obstruction points now coincide with the verification that will occur in this thesis.

As a reminder we search for those µ ≥ 1 such that

E(1, µ2)
s
↪−→ B(µ).

Proving that µ = µn = gn+1/gn for each n ∈ Zn≥0 verifies the discrete set of solutions to the minimal obstruction
problem.

The reason why we chose to mention that ECH capacities of E(2, 1) and C(1) = P (1, 1) are equal is because we
would like to have a similar function for embedding an ellipsoid into the complexified cube. The resulting staircase
was studied by Frenkel and Muller in [4]. The next figure is part of that staircase.

Figure 2: Pell Stairs, λ vertical, a horizontal

Again we can see the volume curve and the minimal obstructions points lying on it. This time the heights are
defined via the Pell numbers, another recursively defined integer sequence.

The method applied to computing these staircases explicitly, developed by McDuff, will not be discussed in this
thesis. What we will do instead is layout the foundation to compute the minimal obstruction points of the first
of two staircases above. As we have mentioned already we will follow the combinatorial methods worked out by
Cristofaro-Gardiner and Kleinman, wherein those authors also add a third staircase.

2 Symplectic, Contact and Holomorphic Structures
The purpose of the first half of this section is to summarize and give the basics of symplectic and contact geometry.
The second half is dedicated to understanding J-holomorphic curves with relevant references publicized when we
arrive there. The latter half of the story of ECH will be told in Section 3. Primary references for these first two
subsections will be from Wendl’s notes [10] and the book of Hofer and Zehnder [6]. Throughout, appendix A will be
an invaluable resource.

2.1 Symplectic Geometry
To begin with symplectic geometry we must first define a symplectic vector space.

A real vector space V of dimension m can be equipped with a skew-symmetric bilinear form which we denote
by Ξ. From skew-symmetry we may infer Ξ(v, u) = −Ξ(u, v), ∀u, v ∈ V . As Ξ is bilinear Ξ : V × V → R and
define Ξ̂ such that Ξ̂(v)(u) = Ξ(v, u). Then, with Ξ̂ : V → V ∗, we interest ourselves in Ker Ξ̂. In analogy to the
Gram-Schmidt procedure for symmetric bilinear forms we have a “canonical” basis on V via Ξ (Theorem 1.1, [11]).
Namely, (u1, ..., uk, e1, ..., en, f1, ..., fn) is a basis for V such that

Ξ(v, ui) = 0 for all v ∈ V, and i ∈ {1, ..., k},
Ξ(ei, fj) = δji ,

Ξ(ei, ej) = Ξ(fi, fj) = 0 for all i, j ∈ {1, ..., n}.
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The Minimal Obstruction Problem 2. SYMPLECTIC, CONTACT AND HOLOMORPHIC STRUCTURES

The skew-symmetric form Ξ is customarily written in matrix form by

[
—–u—–

] 0 0 0
0 0 1

0 −1 0

v
 .

The horizontal and vertical vectors are represented on the above basis. From this basis it follows that u1, ...uk spans
Ker Ξ̂ and thus when k = 0 (Ker Ξ̂ = {0}) we have m = 2n. The map Ξ̂ being injective is an algebraic condition that
we impose on Ξ to make (V,Ξ) into a symplectic vector space (Def. 1.3, [11]). Injectivity is equivalent to bijectivity
in this case by letting a functional Φ act on the basis {ei, fi} and then choosing a suitable v such that Ξ̂(v) = Φ.

By following a procedure like above it is possible to identify (V,Ξ) any symplectic vector space with the standard
symplectic vector space (R2n,Ξ0). Where on (R2n,Ξ0), ei = (0, ..., 1, ..., 0)︸ ︷︷ ︸

i-th slot

, fi = (0, ..., 1, ..., 0)︸ ︷︷ ︸
(n+i)-th slot

so that Ξ0 acts as

uT
[

0 1

−1 0

]
v.

The question of determining which matrices preserve this basis is similar to asking which matrices preserve an
orthogonal basis, precisely those orthogonal matrices. We call a matrix A symplectic if

AT
[

0 1

−1 0

]
A =

[
0 1

−1 0

]
.

Using this discussion around symplectic vector spaces we can take a 2-form ω on an even dimensional manifold and
use it is to define a symplectic manifold. Starting with a smooth manifold M on each tangent space TpM we attach
a skew-symmetric bilinear form ωp, a 2-form at the point p. Requiring that ω̂p be injective for each p ∈ M implies
dim M = dim TpM = 2n. The further condition we will impose on ω is for it to be closed (dω = 0), which in contrast
to non-degeneracy is a differentiable (or analytical) condition. The non-degeneracy condition, ω̂p = ι•ωp must be
injective ∀p ∈M (ι interior multiplication), can be written more compactly as Ker ι•ω ≡ {0}.

We collect these conditions into a definition.

Definition 1. A symplectic manifold is a pair (M,ω) with M a 2n-dimensional smooth manifold, and ω a 2-form
satisfying the following properties:

1. Closure (dω = 0), and

2. Non-degeneracy, Ker ι•ω ≡ {0}.

The non-degeneracy condition can be rephrased to give a stronger feeling for its importance. A volume form on
a manifold M is a top-form (degree equal to dim(M)) and is non-vanishing. We have that, ω is non-degenerate if
and only if (1/n!)ωn = (1/n!)ω ∧ · · · ∧ ω (n-times) defines a volume form. With this volume form we are obviously
able to define volume, although a more subtle implication is that every symplectic manifold is orientable.

To see why we obtain a volume form we return to symplectic vector spaces. In general, if we have (V,Ξ), (V ,
2n-dimensional) with Ξ non-degenerate then from the basis Ξ =

∑
i e
∗
i ∧ f∗i , e∗i , f∗i ∈ V ∗. The wedge product (∧) is

just the pointwise wedge product of the appendix. We care about computing Ξn = Ξ ∧ · · · ∧ Ξ (n-times).

Ξn =

(∑
i

e∗i ∧ f∗i

)n
=

∑
ij distinct

e∗i1 ∧ f
∗
i1 ∧ · · · ∧ e

∗
in ∧ f

∗
in

=
∑
σ∈Sn

e∗σ(1) ∧ f
∗
σ(1) ∧ · · · ∧ e

∗
σ(n) ∧ f

∗
σ(n)

as e∗σ(i) ∧ f
∗
σ(i) ∧ e

∗
σ(j) ∧ f

∗
σ(j) = e∗σ(j) ∧ f

∗
σ(j) ∧ e

∗
σ(i) ∧ f

∗
σ(i) then

=
∑
σ∈Sn

e∗1 ∧ f∗1 ∧ · · · ∧ e∗n ∧ f∗n = (n!)e∗1 ∧ f∗1 ∧ · · · ∧ e∗n ∧ f∗n.

Implying, (1/n!)Ξn = e∗1 ∧ f∗1 ∧ · · · ∧ e∗n ∧ f∗n which is non-vanishing because {ei, fi} is a basis for V . By taking
Ξ = ωp, ω a symplectic form, and V = TpM we can smoothly vary the basis to create a frame {ei, fi} and dual
frame {evei , evfi}. With ev coming from the appendix. Due to the arbitrarily chosen basis this result requires some
scrutiny.

Given two symplectic manifolds we call ϕ a symplectic map between (M1, ω1) and (M2, ω2) if ϕ∗ω2 = ω1. We
call ϕ a symplectomorphism if it is a symplectic map and a diffeomorphism. The following fundamental theorem by
Darboux says that locally symplectic structures are symplectomorphic to a canonical structure.
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The Minimal Obstruction Problem 2. SYMPLECTIC, CONTACT AND HOLOMORPHIC STRUCTURES

Theorem 1 (Darboux, Theorem 1, [6]). Suppose ω is a non-degenerate 2-form on a 2n-dimensional manifold M .
Then ω is closed if and only if at each p ∈M there is a chart (U,ϕ) = (U, x1, ..., xn, y1, ..., yn), where ϕ has co-domain
U ⊂M , ϕ(0) = p and

ϕ∗ω = ω0 =
∑
i

dyi ∧ dxi.

One way to think about the significance of this theorem is that a symplectic manifolds can be characterized
by being locally symplectomorphic to (R2n, ω0). We call, from now on, ω0 the canonical symplectic form. From
the equivalence between ev and d the exterior derivative we can follow the same argument as above to state that
ωn0 = (

∑
i dyi ∧ dxi)n = n!(dy1 ∧ dx1 ∧ · · · ∧ dyn ∧ dxn). As the pullback is linear (ϕ∗ω)n = ϕ∗(ωn) = n!(dy1 ∧ dx1 ∧

· · · ∧ dyn ∧ dxn). A chart on a symplectic manifold then has volume given by

1

n!

∫
U

ϕ∗(ωn) =
1

n!

∫
ϕ(U)

(ϕ−1)∗(ϕ∗(ωn)) =
1

n!

∫
ϕ(U)

ωn.

In this specific case, ϕ being a symplectic map, there is volume preservation between domain and co-domain of
ϕ. Volume preservation implies that the volume of the domain cannot exceed the volume of the codomain for a
symplectic map. The importance of this was already seen in the minimal obstruction problem of the introduction.

Definition 2 (Definition 1.7, [10]). A symplectic map ϕ is a symplectic embedding between (M1, ω1) and (M2, ω2) if
ϕ(M1) is a symplectic submanifold of (M2, ω2) (a submanifold where restricting ω2 to ϕ(M1) stays non-degenerate).

Equivalently, ϕ is a symplectic embedding when it is a symplectic map and an embedding. From the appendix
we know this means ϕ has differential is everywhere injective and ϕ is a homeomorphism onto its image, as well as
being symplectic. The second of these is vital to defining a topology on the image ϕ(M1) from the topology of M2.
The notation used to say that there exists a symplectic embedding between (M1, ω1) and (M2, ω2) is

M1
s
↪−→M2.

The existence of a symplectic embedding is a difficult problem in the general case and as was discussed in the
introduction only simple cases in 4 dimensions have been understood fully. As a reminder, the goal of this thesis is
to search for the discrete set of µ that solve the problem

E(1, µ2)
s
↪−→ B4(µ).

The above problem is a minimal obstruction problem because the volume of the domain is equal to the volume of
the codomain.

2.2 Contact Geometry
The twin brother to symplectic geometry is contact geometry. We will require a basic understanding of contact
geometry to define the complex for embedded contact homology. Although it should be remarked that contact
geometry is a tool to be able to define invariants for the symplectic case, the one we really care about for applications.

To begin we introduce a star-shaped domain. These are compact subsets U ⊂ R2n with boundary, such that
there exists p ∈ U where the boundary is transverse to the vector field V = (xi−xi(p))(∂/∂xi) + (yi− yi(p))(∂/∂yi).

By way of example, the disk in the plane R2 is a star-shaped domain. The radial vector field centered at the
disk’s origin meets perpendicularly the tangent to the disk’s boundary. Intuitively, this is what transverse means, at
least in R2. At a point on the boundary the space of tangent vectors on R2 can be spanned by the tangent vector to
the disk’s boundary and the radial vector field at that point.

Let (M,ω) be any symplectic manifold. We say V is a Liouville vector field on (M,ω) if LV ω = ω, the Lie-
derivative with respect to V preserves ω. By Cartan’s formula, LV ω = d(ιV ω) + ιV dω = d(ιV ω) as ω is closed. Thus
to show V is a Liouville vector field it amounts to show d(ιV ω) = ω.

A hypersurface, co-dimension 1 submanifold, Y of a symplectic manifold (M,ω) is of contact type if it is transverse
to a Liouville vector field. In particular, the standard Liouville vector field is V = xi∂/∂xi + yi∂/∂yi and so the
boundary of a starshaped domain (with p the origin) is a hypersurface of contact type.

Definition 3 (Definition 2.2, [12]). A Liouville domain is a compact symplectic manifold with boundary (M,ω),
along with a Liouville vector field V that points transversally out of the boundary.

Therefore, if (M,ω) is a Liouville domain, ∂M is of contact type.

Definition 4 (Definition 1.35, [10]). Let Y be a manifold of odd dimension (2n− 1) and let λ be a 1-form. Denote,
what will be called, the contact structure on Y by ξ = Ker λ. If λ is such that λ ∧ (dλ)n−1 is a volume form on ξ
then the pair (Y, λ), or more commonly (Y, ξ), is a contact manifold.
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For our purposes we will only need to consider contact manifolds as the boundary of symplectic manifolds.
Therefore, in the following let (M,ω) be a Liouville domain and (Y = ∂M, λ) a contact manifold where ω = dλ|Y .
We are now prompted to consider the flow of the Liouville vector field. Consider generally the general flow of some
vector field X.

Definition 5 (Definition 14.9, [13]). The (local) flow ϕt(x) of a vector field X is defined by the solution to the
following initial value problem

dϕt

dt
= Xϕt,

ϕ0 = 1.

The flow is valid in a local neighbourhood of the origin (−ε, ε), for some small ε > 0.

The flow of a vector field in a sufficiently small neighbourhood of zero exists from the Picard-Lindelöf theorem.
Now let ϕtV (x) be the flow of a Liouville vector field V and pick ε > 0 small such that the map

Φ : (−ε, ε)× Y →M, (t, x) 7→ ϕtV (x)

is an embedding. We can now readily give a symplectization of Y by R× Y . By symplectization we mean to take a
contact manifold and add additional structure to create a symplectic manifold. There are other symplectization but
we follow Hutchings and Taubes in [14].

Proposition 1. One symplectization of a contact manifold Y is given by R × Y where the symplectic form is
ω = d(etω). This will be proved in the following two steps

1. (ϕtV )∗ω = etω,

2. Φ∗ω = d(etλ̂), (where λ̂ = π∗2λ has been pulled back to (−ε, ε)× Y by canonical projection, π2).

Proof.

1. We use the derivative formula for the pullback of the flow,

d

dt
[(ϕtV )∗ω] = (ϕtV )∗(LV ω) = (ϕtV )∗ω.

Assuming (ϕtV )∗ω = f(t)ω then ϕ0
V = 1 ⇒ f(0) = 1. By the above relation f ′(t) = f(t) ⇒ f(t) = et. So we

arrive at (ϕtV )∗ω = etω.

2. Note that because ω|Y = dλ and the relationship for ω, then ιV ω|Y = λ. We will first prove that Φ∗(ιV ω|Y ) =

etλ̂. As Φ = ϕtV ◦ π2 then

Φ∗(ιV ω|Y ) = π∗2(ϕtV )∗(ιV ω|Y ) = π∗2(ϕtV )∗(ω(V, ·)|Y )

= π∗2(etω(V, ·)|Y ) = etπ∗2(ιV ω|Y ) = etπ∗2λ = etλ̂.

Therefore, as dΦ∗(ιV ω|Y ) = Φ∗d(ιV ω|Y ) = Φ∗ω we must have Φ∗ω = d(etλ̂). From now on though we write λ
instead of λ̂ on (−ε, ε)× Y . We have a symplectic form d(etλ) on (−ε, ε)× Y which we can (smoothly) extend
to the whole of R× Y .

Later, when we will explain the ECC (embedded contact complex) this symplectization will be needed. Finally,
for this section we need the definition of a Reeb vector field on a contact manifold.

Definition 6 (Definition 1.40, [10]). Let Y be a contact manifold and λ the contact 1-form. A Reeb vector field R
has uniquely determined direction by two properties

dλ(R, ·) = 0 and λ(R) = 1.

It will turn out that the flows of the Reeb vector field will be very important in defining ECC. Actually, we will
be interested in those closed loops γ satisfying γ̇ = Rγ. Within the context of mechanics these are analogous to the
classical solutions to the action functional. The analogous action function is the symplectic action, namely

A(γ) =

∫
γ

λ.

Via this idea we could interpret ECH as an analogue of a physical theory, which turns out to be almost true through
its relationship to monopole Floer homology. The last homology being a physically realizable theory to do with
counting magnetic monopoles, found as solutions to the Seiberg-Witten equations, see Kronheimer and Mrowka [15].
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2.3 Holomorphic Structures
This subsection will explain J-holomorphic curves and their relation to symplectic topology. Primarily the reference
list consists of lecture notes of Hutchings and Taubes [16], separately, Wendl [10], and the book of McDuff and
Salamon [17], along with other texts being referenced as all the details cannot be included. We are also heavily
supported by appendix B.

The complexification of a vector bundle is the general case of a more specific notion we will encounter again and
again in the forthcoming subsection. It is defined by EC = E⊗C = {v⊗1 +w⊗ i | v, w ∈ E} (page 14, [18]). This is
the first instance of a complex structure on a vector bundle. A complex structure i is an endomorphism of a bundle
E, mapping the “real” part to “imaginary” part, and vice versa, for which i2 = −1. Globally i (or Jstd) is a block

diagonal matrix with all blocks as
[

0 1
−1 0

]
.

Complex structures naturally arise from complex manifolds. Complex manifolds generalize smooth manifolds M
of even dimension 2n. The extra stipulation on M , being locally biholomorphic (holomorphic diffeomorphsim with
holomorphic inverse) to Cn along with transition maps also being biholomorphic. Let M and N be two complex
manifolds each with induced complex structures on their tangent bundles J, J ′. We say u : M → N is holomorphic
if it satisfies the following

du ◦ J ′ = J ◦ du. (2.1)

Where du is an overuse of notation as here what is meant is the differential or pushforward of the map u. If
ever du is meant as a 1-form such a situation will be indicated. The other symbol to explain is ◦ which is just the
composition of maps.

Locally this situation can be modelled by M = U ⊂ Cm open and N = Cn which cause (2.1) to turn into the
multidimensional analogue of the Cauchy-Riemann equations.

An almost complex structure J is map from the tangent bundle TM to TM , of a manifold M , which has the
property J2 = −1 and is locally a complex structure. If an almost complex structure is induced by a collection of
holomorphic coordinates then it is called integrable and is equivalent to a complex structure. When J , an almost
complex structure, is attached to TM then (M,J) is called an almost complex manifold. It is a difficult question
to answer whether an almost complex structure is integrable. A special case is for complex dimension 1 manifolds
where all almost complex structures are integrable.

Definition 7. A Riemann surface Σ is a complex manifold of complex dimension 1.

It is then possible to use the induced complex structure j and write the pair (Σ, j). Presently we give the definition
of a J-holomorphic curve in the particular case of the domain being a Riemann surface (Σ, j).

Definition 8. A map u from Riemann surface Σ to an almost complex manifold M with almost complex structure
J must satisfy the non-linear partial differential equation

du ◦ j = J ◦ du,

to be called a J-holomorphic curve.

One object on bundles we make use of is called a bundle metric 〈, 〉 on E. That being a smooth fiberwise inner
product on a vector bundle E over a manifold M . A bundle metric on a complex vector bundle is called Hermitian
if the inner product on each fiber is complex linear in the first entry and anti-complex linear in the second.

Let (M,ω) be a symplectic 4 dimensional manifold with an almost complex structure J on its tangent bundle.
We say J is ω-tame if ω(v, Jv) > 0 for all v 6= 0. We also say J is ω-compatible if ω(·, J ·) = g(·, ·) defines a (not
necessarily symmetric) Riemannian metric on TM . All compatible almost complex structures are tame but the
opposite is not true, unless J is also ω invariant i.e. ω(J ·, J ·) = ω(·, ·). Note that a Riemannian metric is an example
of a bundle metric on the tangent bundle. A (smooth) manifold with a Riemannian metric is called a Riemannian
manifold, distinct from a Riemann surface.

A Riemannian metric g induces a vector bundle isomorphism between TM and T ∗M . In Calculus we have
encountered the gradient vector field and we define a similar object by being the unique vector field to satisfy
g(gradf, ·) = df .

With the pull-back already defined for forms it is also possible to define pullbacks on any vector bundle and
construct the pull-back bundle. If f : N →M is a smooth map of manifolds and we have E π−→M , with trivializations
{φ} with trivial covering {U}, then f∗E is the pull-back bundle with trivializations {f∗φ} and trivial covering
{f−1(U)}. Specifically, we will need the pullback bundle u∗TM of the tangent bundle TM overM by a J-holomorphic
curve, u : (Σ, j)→ (M,J). Note that u∗TM is a bundle over Σ.

We define what it means to be a connection on the tangent bundle, the more general definition appears in the
appendix B.1.
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Definition 9. A (Koszul) connection (∇ on TM) is a bilinear map from X (M)×X (M) to X (M) that satisfies the
following two properties:

∇X(hY ) = h(∇XY ) + Y (dh(X)), Leibnitz rule
∇hXY = h(∇XY ). C∞-linear

Where h ∈ C∞(M) and X,Y ∈ X (M).

A connection ∇ is called symmetric if M has Riemannian metric g and if ∇XY − ∇YX = [X,Y ] ([_,_] the
commutator bracket for vector fields). On a Riemannian manifold, M , there exists the fundamental Levi-Cita
connection. This connection is symmetric and defined on a orthogonal frame {e1, ..., en} of TM (guaranteed by g)
as such

∇eiej = Γkijek.

The symbols Γkij are called the Christoffel symbols and symmetry implies Γkij = Γkji for all 1 ≤ i, j, k ≤ n.
We want to be able to know more about the properties of J-holomorphic curves through analysis techniques of

non-linear PDEs. We intend to work in a subspace of smooth maps between a Riemann surface (Σ, j) and some
yet to be determined symplectic manifold (M,J). This subspace contains those smooth maps that will satisfy a
non-linear PDE for which the homogeneous solutions will be J-holomorphic curves.

For now though we focus on a general complex vector bundle (E, J) of complex rank n. This vector bundle admits
a holomorphic structure if Σ has an open covering {Uα} with complex-linear trivializations EUα → Uα × Cn whose
transition maps are holomorphic. These transition maps are defined on open sets of Σ and map into GL(n,C). (2.4,
[10])

For a smooth function f ∈ C∞(Σ,C) = C∞(Σ) we have

∂ : f 7→ df + idf ◦ j, (2.2)
∂ : f 7→ df − idf ◦ j.

We call f holomorphic if ∂f = 0 (and anti-holomorphic if ∂f = 0). To make sense of this formula it would be prudent
to take s+ it complex coordinates on Σ. We have j acting by

j
∂

∂s
=

∂

∂t
, j

∂

∂t
= − ∂

∂s
.

Then evaluate ∂f by the argument ∂/∂s to obtain,

∂f

∂s
− i∂f

∂t
.

With ∂/∂t as argument the result is similar. Then stipulating that ∂f = 0 results again in the Cauchy-Riemann
equations. There is an implicit complex anti-linearity happening in evaluating so defining the following map makes
sense

∂ : C∞(Σ)→ Γ(Hom(TΣ,C)).

The codomain is Γ(Hom(TΣ,C)), smooth sections of complex anti-linear maps from TΣ to C.
If (E, J) has a holomorphic-structure, then define

∂ : Γ(E)→ Γ(Hom(TΣ, E)),

s 7→ ds+ J ◦ ds ◦ j.

This is in analogy to extending real valued differential k-forms to E-valued k-forms. Define s ∈ Γ(E) to be holo-
morphic if ∂s = 0, where an overuse of notation happens again as ds is the pushforward of s. The eventual application
is for E = u∗TM the pullback of the tangent bundle over M , a bundle over Σ.

The following will be a sharp spike in difficultly, it is then advisable to step back and explain where we are going.
The purpose of introducing J-holomorphic curves is due to them being one half of the story of ECH. The other
half coming from contact geometry. The essence of the following is to take a top-down approach to understand the
space in which J-holomorphic curves reside. Although inherently infinite dimensional our goal will be is to realize
this space as a finite dimensional smooth manifold. The dimension of which will follow, in part, from Riemann-Roch
which we will encounter soon. This finite number will then be restricted further until the point at which the space
becomes discrete.
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Define the non-linear operator acting on a smooth function u from (Σ, j) to (M,J) by ∂Ju := du+J ◦ du ◦ j. We
care about J-holomorphic maps u so that we ask for these maps to satisfy ∂Ju = 0, homogeneous solutions. These
homogeneous solutions will be a subspace with extra conditions

MJ = {u ∈ C∞(Σ,M) | ∂Ju = 0 & . . . } ⊂ ∂−1

J ({0}).

Where . . . are a replacement for extra conditions to be investigated soon. This will be the basis for the moduli-space
of J-holomorphic curves.

Theorem 2. The map ∂J is a smooth section of the bundle E π̂−→ B. Where B := C∞(Σ,M) and E has fibers
π̂−1(u) = Eu := Γ(Hom(TΣ, u∗TM)). Furthermore, the linearization, at a particular u, of this section is a map
which acts on η ∈ Γ(u∗TM) by

D∂J(u)η = Duη = ∇η + J(u) ◦ ∇η ◦ j + (∇ηJ)du ◦ j.

The linearization contains some important terms, 1. ∇ is a connection chosen on the manifold M , and the
linearization is independent of this connection. 2. The symbol J(u) is the pullback of the almost complex structure
to u∗TM . 3. We are able to talk about (∇ηJ) as connections have a defined action on (1, 1)-tensors, of which J is
an example. For information about linearization and the section ∂J itself see appendix B.3. Now to explain what
this theorem is stating.

We start with a smooth curve u : Σ → M so that u ∈ B. Then we pre-image by π̂ and obtain the fiber
π̂−1(u) = Eu. This fiber is now the smooth sections of another bundle namely the bundle Hom(TΣ, u∗TM) over
Σ. Sections of E over B are maps taking smooth functions from Σ to M to complex anti-linear maps, from TΣ to
u∗TM . It is the case that ∂J is a well-defined section of our bundle, where smoothness is implied by smoothness of
J , as a map from TM to TM .

The technicalities of this theorem appear in the space B and the bundle E . Both should be complete but as of now
are not. Actually they need to be, the for now mysterious, Banach manifold and Banach space bundle, respectively.
The reason why is, in part, the want to apply the infinite dimensional analogue of the inverse function theorem. This
problem is solved via Sobolev completions. In the following, W k,p(Ω) is the Sobolev completion of Ω. Where k is
the class of differentiability and p references the space of Lp-integrable functions, see appendix B.4.

The following are the truer elements of this theorem

Bk,p = W k,p(Σ,M) (base-space)

Ek−1,p (total-space)

Ek−1,p
u := W k−1,p(HomC(TΣ, u∗TM)) (fibers)

The smooth section
∂J : Bk,p → Ek−1,p : u 7→ du+ J ◦ du ◦ j,

(page 102, [10]). Where smoothness persists due to J being smooth. A map Bk,p → Ek−1,p, decreases the class of
differentiability by 1, which makes sense because of the way ∂J acts.

Fact: ∂
−1

J ({0}) is independent of k and p. This follows from the space of solutions having a C∞ topology that
is equivalent to a W k,p topology under conditions of elliptic regularity (page 99 and Section 2.5, [10]). It is possible
through the inverse function theorem on Banach manifolds to carry out the linearization from the appendix. Thus,
for u ∈ ∂−1

J ({0})

Du : W k,p(u∗TM)→W k−1,p(HomC(TΣ, u∗TM)),

η 7→ ∇η + J(u) ◦ ∇η ◦ j + (∇ηJ)du ◦ j.

Where again an arbitrary connection ∇ on M has been chosen.
This map is identical to D∂J(u) (the linearized map) under C∞ being dense in W k,p. If Du has a bounded right

inverse and is surjective then Ker (Du) is finite dimensional. Surjectivity is necessary for transverse intersections
with the zero section, and also implies that the Coker (Du) := Y/Im(Du) has dimension 0. Via the linearization we
may obtain a local understanding of the set ∂

−1

J ({0}) (and restrictions upon it) from Ker (Du). Thus studying the
kernel of these operators imply local properties on the moduli space of J-holomorphic curves.

An operator D : X → Y of Banach spaces X,Y is said to be a Fredholm operator if Ker (D) and Coker (D) :=
Y/Im(D) are finite dimensional. In general, the index of a Fredholm operator (called the Fredholm index) is defined
by (page 103, [10])

ind (D) := dim Ker(D)− dim Coker(D).
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We will need the Chern number associated to a 2-cycle in the following theorem. If M is a symplectic manifold
and A ∈ H2(M) and c1(E) the first Chern class on a vector bundle E over M , appendix B.1. Then,

c1(A) = 〈c1(E), A〉 =

∫
M

c1(E) ∧ PD(A)

where PD stands for the (homological) Poincaré dual of appendix B.2.
We now state the promised theorem, Riemann-Roch. The importance of this theorem, along with Fredholm

theory, is in allowing the step from infinite dimensional to finite dimensional moduli spaces. Thus, everything that
follows about reducing the dimension of the moduli space is only possible because of consequences of Riemann-Roch.

Theorem 3 (Riemann-Roch, Theorem 3.2.2, [10]). Let (Σ, j) be a Riemann surface and (M,J) an almost complex
manifold of dimension 2n. For any u ∈ ∂−1

J ({0}), Du is a Fredholm operator with index

ind (Du) = nχ(Σ) + 2〈c1(TM), [u]〉.

Where [u] := u∗[Σ] ∈ H2(M), c1(TM) ∈ H2(M) is the first Chern class of the complex vector bundle (TM, J) and
χ(Σ) is the Euler characteristic of Σ.

From surjectivity ind(Du) = dim Ker(Du), appropriate as this index will come to be the local dimension of the
moduli space of J-holomorphic curves.

2.4 Further Properties of J-holomorphic Curves
This leads us on to defining further properties of J-holomorphic curves with the direction of portraying the relevance
of the embedded quantifier in “embedded contact homology” (ECH).

We will first need more properties of J-holomorphic curves. We will now put extra conditions on our Riemann
surface (Σ, j), those being closed, oriented and connected whereas keeping (M,J), an almost complex manifold, the
same.

We say that a J-holomorphic curve u is multiply covered if it factors through a branched covering map with
degree strictly greater than 1. Such a (continuous) map is ϕ : Σ → Σ′ with (Σ′, j′) a distinct closed, oriented and
connected Riemann surface. By factors through we mean that there exists a J-holomorphic curve u′ : Σ′ →M such
that

u = u′ ◦ ϕ.

The degree of a branched covering is an integer deg(ϕ) ∈ Z with ϕ∗[Σ] = deg(ϕ)[Σ′]. Here [Σ] denotes the fundamental
class of the surface Σ.

Branch covers of Riemann surfaces may be characterized as follows. It is a fact that deg(ϕ) ≥ 0, so begin with
deg(ϕ) = 0 which occurs if and only if ϕ is constant. The case deg(ϕ) = 1 happens if and only if ϕ is a biholomorphism.
Finally the situation deg(ϕ) ≥ 2 arises if and only if ϕ is locally a covering map of degree k ∈ {2, ...,deg(ϕ)}, (2.14,
[10]).

There is a more general theory to do with ramification points that we are unable to achieve in this thesis and so
instead leave a reference for further reading [19].

We repeat a result from the appendix here for convenience as it will be used in a moment.

Corollary 1 (Corollary 2.59, [10]). If u : Σ→M is smooth and J-holomorphic and not constant then

Crit(u) := {z ∈ Σ | du(z) = 0}

contains at most a countable number of points.

If u is not multiply covered then it is called simple. If u is a simple curve then u is somewhere injective, meaning
there exists z ∈ Σ such that

u−1({u(z)}) = {z} and du(z) 6= 0.

This follows from Proposition 2.5.1 of McDuff and Salamon [17]. A non-trivial fact is that the implication holds the
other way, (Theorem 2.117, [10]). Furthermore, it closely follows from Corollary 1 that if u is somewhere injective
then it is almost everywhere injective. By almost everywhere it is meant that the complement to the set of somewhere
injective points is of negligible measure, which is in this case says the set is at most countable.

Let u and u′ be two J-holomorphic curves from closed connected Riemann surfaces (Σ, j), (Σ′, j′) respectively.
We call u and u′ equivalent if there exists an associated biholomorphism φ : Σ′ → Σ such that

u ◦ φ = u′.
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These should naturally be called the same curve due to images in (M,J) having the same structure which in essence
is what we care about for applications. Let A ∈ H2(M) determined by u ([u] := u∗[Σ] = A) and g be a chosen
integer genus. Then define (Def. 4.1, [10]) the moduli space of J-holomorphic curves to be

Mg(A, J) = {(Σ, j, u)}/ ∼,

with (Σ, j) any closed connected Riemann surface of genus g. The equivalence relation u ∼ u′ holds precisely when
there exists a biholomorphism as above between u and u′.

The moduli space Mg(A, J) is not a manifold but a more general object called an orbifold, not defined here.
Orbifolds have a type of “expected” dimension or virtual dimension which can be interpreted as a Fredholm index.
Indeed the Fredholm index of our earlier linearized operator, sufficiently adjusted for the situation at hand, which
accounts for a correction term. In our case (Def. 4.2, [10])

ind(u) := vir-dim Mg(A, J) = (n− 3)(2− 2g) + 2c1(A) = (n− 3)χ(Σ) + 2c1(A)

having substituted χ(Σ) for 2−2g. This formula is remarkably similar to the Fredholm index through Riemann-Roch.
Under further assumptions on u, Fredholm regularity, we can say that the moduli space near u is a smooth manifold
of dimension equal to ind(u) (Theorem 4.43, [10]), proved using Riemann-Roch.

We also require the notion of intersection of distinct J-holomorphic curves and self-intersections of a curve u
with itself. Given are (Σ0,Σ1,Σ2) three oriented Riemann surfaces with J-holomorphic curves ui (let u := u0),
ui : Σi →M . We denote the intersection number of u1 and u2 as

δ(u1, u2) := #{(z1, z2) ∈ Σ0 × Σ1 | u1(z1) = u2(z2)}

and the self-intersection number of u as

δ(u) :=
1

2
#{(z1, z2) ∈ Σ× Σ | u(z1) = u(z2), z1 6= z2}.

These numbers are finite in the cases where the disjoint union u1 t u2 is a simple curve, in the first, and when u
is a simple curve, in the second. The following results are exclusively for 4-dimensions and so we set dim M = 4,
(page 605, appendix E.1, [17]). Distinct points (z1, z2), (z1 6= z2) give rise to x if u(z1) = u(z2) = x, we call these x
non-injective points of u.

Positivity of intersections (Theorem 2.6.3, [17]) is a result first noticed by Gromov and then later proved by
Gromov and McDuff. It gives a lower bound (δ(u1, u2)) on the intersections of homology classes A1 and A2 ∈ H2(M)
represented by u1 and u2, respectively. The following theorem formalizes a second result that will be of great use to
us, the adjunction inequality.

Theorem 4 (Theorem 2.6.4, [17]). Let (M,J) be an almost complex 4 dimensional manifold and (Σ, j) a closed
Riemann surface (connected or not) and u : Σ → M a simple J-holomorphic curve. Denote by A ∈ H2(M ;Z)∗ the
homology class represented by u. Under these circumstances

2δ(u) ≤ A ·A− c1(A) + χ(Σ),

where equality holds precisely when the intersections are transverse. To wit, for any x, a non-injective point of u for
z1 6= z2, the pushforward of tangent spaces u∗Tz1Σ and u∗Tz2Σ have direct sum TxM .

The term A ·A is the homological intersection number of A with itself, see appendix B.2. The inequality becomes
a formula in the case when the intersections are transverse. A corollary of McDuff follows swiftly,

Corollary 2 (Corollary E.1.7, [17]). Let M , Σ, u and A, be as in the previous theorem, thereupon

0 ≥ A ·A− c1(A) + χ(Σ)

with equality precisely when u is an embedded J-holomorphic curve.

To make sweeping analogues later it will be best to define the index

I(A) := c1(A) +A ·A,

for A ∈ H2(M). When discussing A represented by a J-holomorphic curve, A will be replaced by [u] and I(u) :=
I([u]). For now the significance of the index is the following. Applying n = 3 to the definition of ind(u) we obtain

ind(u) = −χ(Σ) + 2c1([u]).

∗The homology of 2-cycles under integer coefficients, the universal coefficient theorem (Section 2 Theorem 8, [20]) that makes this
equivalent to the homology of 2-cycles with real coefficients.
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Along with the adjunction formula (assuming transverse intersections) we have

ind(u) = I(u)− 2δ(u).

We would like to investigate the implications of this formula, when imposing conditions on u. Necessarily u must
be a simple J-holomorphic so that δ(u) <∞. If now we impose a further condition that I(u) = 0 then δ(u) must be
negative or zero. The situation of negative self-intersections is rich in connections with algebraic geometry that we
do not investigate here, see [21] for more information. Alternatively, when δ(u) = 0 then two things happen, 1. the
dimension of the moduli space is locally 0 and 2. u is embedded. This is of special interest as it allows for counts to
be computed. Before discussing these counts we need to understand compactness results.

A measurement on J-holomorphic curves is called the energy defined by,

E(u) :=

∫
Σ

u∗ω.

We would like to restrict to those curves with uniformly bounded energy. This bound leads to compactness results
in moduli spaces and to well-defined counts. What is being counted are curves with index I(u) = 0, which after
considering the multiply covered case implies that the space of interest is 0-dimensional. The result in question,
stated imprecisely, is the following

Theorem 5 (Gromov, [2]). The moduli space of curves of energy bounded by some constant E (modulo reparamet-
rization) can be compactified by adding in stable curves of total energy bounded by E.

The stable curves mentioned are part of an effect called bubbling. By identifying C with modulus 1 complex
numbers we can form the Riemann sphere CP 1. By addition of enough bubbles (CP 1) to the domain of a sequence
of J-holomorphic curves, unwanted behaviour from reparametrization can be controlled. The consequence of adding
bubbles produces stable curves.

Taubes, in defining his Gromov-Witten invariant [22], also counted index 0. However, no longer counting J-
holomorphic curves, but instead J-holomorphic currents. A J-holomorphic current is U = {(uk, dk)} a collection of
J-holomorphic curves uk each with their own multiplicity dk. The corresponding compactness result is for spaces of
J-holomorphic currents.

Note: the energy of a current E(U) =
∫
U∗ω :=

∑
k dkE(uk).

Theorem 6 (Section 2.4, [16]). Let (M,ω) be a compact symplectic 4 dimensional manifold, possibly with boundary,
and let J be an ω-compatible almost complex structure. Let {Un}n≥1 be a sequence of J-holomorphic currents
(possibly with boundary in ∂M) such that

∫
U∗nω has an n-independent upper bound. Then there is a subsequence

which converges as a current and as a point set to a J-holomorphic current U ⊂M (possibly with boundary).

There are two types of convergence in the theorem, firstly by converging as a current it is meant that for any
2-form η, limn→∞

∫
U∗nη =

∫
U∗η. To converge as a point set means to converge in the following metric defined on

compact subsets of C1, C2 ⊂M ,

d(C1, C2) = sup
x∈C1

inf
y∈C2

d(x, y)− sup
y∈C2

inf
x∈C1

d(x, y),

(pages 22-23, [16]).
The purpose of giving this theorem is that later we will work with the classification of low (ECH) index curves.

The low index will imply independence from multiply covered curves and the theorem has the consequence of finite
moduli space.

3 Morse and (Embedded) Contact Homologies
This section will outline Morse and Contact homologies, along with explaining the inner workings of ECH to a
reasonable degree of detail. Finally, the ECH spectrum and capacities will be defined as well as finding the ECH
capacities associated to ellipsoids.

3.1 Morse Theory
To give motivation for defining a homology via counts we divert our attention to the elegant subject of Morse Theory.
The sequel is based on the notes of Rubermann [23].

Definition 10 (Definition 1.1, [23]). AMorse function on a smooth Riemannian manifold (M, g) is a map f : M → R
such that the only critical points of f are non-degenerate.
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By critical points we mean those p such that dfp ≡ 0, where p is non-degenerate if Hessp(f) is invertible. The
Hessian is defined for the Levi-Cita connection ∇ by Hess(f)(X,Y ) = g(∇Xgrad(f), Y ). The Hessian is self-adjoint
and thus has real spectrum. With this spectrum we can define the dimension of the negative eigenspaces, denoted
indp(f) for index of f at p, which will correspond to local maxima. We will assume that f is self-indexing, meaning
for p, q ∈ Crit(f), it is the case that indp(f) > indq(f) implies f(p) > f(q). We write p � q when indp(f) > indq(f)
and p, q ∈ Crit(f). We need to study the downward flow, those γ : R→M such that

γ̇(t) = −gradγ(t)f. (3.1)

The reason why we choose the downward flow is because these γ decreases the index and we care about positive
difference of index “ind”.

Define the moduli spaceM(p, q) for p, q ∈ Crit(f) to be solutions to (3.1) such that

lim
t→−∞

γ(t) = p & lim
t→∞

γ(t) = q.

As f decreases along flow lines this space is empty save for f(p) > f(q).
By generic choice of metric g it is possible to guarantee the Morse-Smale transversality property: M(p, q) is a

smooth manifold of dimension indp(f)− indq(f), for p � q ∈ Crit(f). A way to think about this is the intersection
of the descending space at p with the ascending space at q.

By reparametrizing by elements of R, an R-action is induced onM(p, q), thus we would like to consider curves
to be the same under this reparametrization, so form M̂(p, q) =M(p, q)/R.

Choosing an arbitrary orientation on the negative eigenspaces of the Hessian at p orients M(p, q) and M̂(p, q).
Specifically, we can count M̂(p, q) when the moduli space is (compact) oriented and of dimension 0, which necessarily
requires indp(f) = indq(f) + 1. The count is with signs, giving #M̂(p, q) ∈ Z (those signs given by the way the
ascending and descending spaces intersect).

Critical points will be generators for the chain complex. Let 〈p〉 denote the generator p ∈ Crit(f). The group
Ck(M,f) is a freely generated Z-module on the generators with indp(f) = k. The differential ∂ associated to the
chain complex takes as coefficients, (∂〈p〉, 〈q〉) = #M̂(p, q), for q such that indq(f) = k − 1.

A slightly different, but equivalent construction, is given by Milnor in his paper on the h-cobordism theorem [24].
In which the Morse complex is proved to be isomorphic to a cellular complex from the CW decomposition of M with
Morse function f . This cellular complex has ∂2 = 0, thus it makes sense to discuss Morse Homology. A direct proof
is non-trivial and was given by Schwarz in [25].

The purpose of this discussion is to form a basic feeling for how a Morse type homology or more generally a Floer
type homology can be constructed and the philosophy behind such a construction.

This idea is to define a Morse theory or more generally a Floer theory through counting the number of points in
a 0-dimensional smooth compact manifold. Our goal will be to verify that we are indeed counting over the “correct
space” and then form a differential around that count, so that the embedded contact complex can be defined.

3.2 Contact Homology
Firstly, we need to investigative an aspect of contact type homology, in which we rely on notation and definitions in
a brief sketch [26] and a more in depth introduction [27].

Let Y be a closed oriented 3-manifold, with contact 1-form λ such that λ ∧ dλ > 0 (λ is non-degenerate). A
contact structure is the oriented 2-plane field ξ = Ker(λ) a sub-bundle of TY .

As defined in Section 2, a Reeb vector field is the vector field R that has uniquely determined direction by
dλ(R, ·) = 0 and λ(R) = 1. The flow of the Reeb vector field can have additional requirements making the flow into
a Reeb orbit. These orbits exist in dimension 3 due to the proof of the Weinstein conjecture by Taubes [28]. A Reeb
orbit is a closed orbit of the Reeb vector field i.e. (modulo reparametrization)

γ : R/TZ→ Y, T > 0 satisfying γ̇(t) = R(γ(t)).

With homology class [γ] := γ∗[R/TZ] ∈ H1(Y ).
We can define a symplectic map (preserving dλ) on γ∗ξ through the linearized return map, namely

Ψγ := d(ϕT )y|ξy : ξy → ξy.

Where ϕ denotes the flow of the Reeb vector field and y ∈ Im(γ). It is necessary to state that the eigenvalues of Ψγ

are independent of point y. If Ψγ has all real eigenvalues then γ is called hyperbolic. Otherwise, γ is called elliptic.
The action functional is defined by

A : C∞(S1, Y )→ R : γ 7→
∫
γ

λ.
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From Lemma 1 of [27] we have that all the critical points of the action functional precisely correspond to Reeb
orbits. The general idea is to define a Morse theory, more commonly Floer theory, for this “morse function”. As in
Morse theory we need to study the Hessian of A at critical points which correspond to the linearized Reeb flow Ψγ

near a periodic orbit. A closed Reeb orbit is called non-degenerate if Ψγ has no eigenvalue equal to 1. This means
that γ is non-degenerate precisely when γ is a non-degenerate critical point of A, modulo reparametrization. We will
need that all our critical points are non-degenerate so we give the following lemma.

Lemma 1 (Lemma 2, [27]). For any contact structure ξ on M there exists a contact form λ for ξ such that all the
closed orbits of R are non-degenerate.

The significant implication is that we may now choose a generic λ, for which all Reeb orbits are non-degenerate, to
define our contact homology. Let γ be a non-degenerate closed Reeb orbit of period T . Fix a symplectic trivilization
τ for ξ along γ†. A path ϕ. t : ξp → ξϕt(p) (t ∈ [0, T ]), is represented by a path of symplectic matrices Ψγ , with
Ψγ(0) = 1 and det(Ψγ(T )−1) 6= 0. A number t ∈ [0, T ] is called a crossing if det(Ψγ(t)−1) = 0. Denote the kernel
by Et = Ker(Ψγ(t) − 1) and the set of crossings by Crossγ . A crossing form Γ(Ψγ , t) is a quadractic form on Et
defined by

Γ(Ψγ , t)v = dλ(v, Ψ̇γv), for v ∈ Et.

A quadratic form can be orthogonally diagonalized (originally due to Jacobi) giving a diagonal matrix of 1s, -1s
and 0s. A quadratic form is non-degenerate when there are no 0s on the diagonal, and a crossing t is called regular
when this occurs. The signature is an invariant for quadratic forms (by Sylvester’s law of inertia) and is defined by
(n0, n−, n+) the number of 0s, -1s, and 1s respectively. The signature sign of a non-degenerate quadractic forms will
correspond to the number n+. Now if the path ψγ has regular crossings it is possible to define:

CZτ (γ) := CZτ (Ψγ) =
1

2
sign Γ(Ψγ , 0) +

∑
t∈Cross\{0}

sign Γ(Ψγ , t).

The above definition turns out to be invariant under homotopy, proved by Robbin and Salamon (Lem. 3, [27]). So
under a small perturbation Ψ̃ that has only regular crossings, Ψ and Ψ̃ have the same index. This can always be
arranged and we call CZτ (Ψ̃) the Conley-Zehnder index, (Def. 4, [27]) .

Example 3.1[Section 2.3, [26]]
Consider the boundary of the ellipsoid ∂E(a, b) with a, b > 0 , real numbers, a/b irrational. Naturally, as Y =
∂E(a, b) ⊂ C2 there exists coordinates zj = xj + iyj , j = 1, 2 and contact form

λ =
1

2

2∑
j=1

(xjdyj − yjdxj).

The Reeb vector field is
R =

2π

a

∂

∂θ1
+

2π

b

∂

∂θ2
,

where ∂/∂θj = xj∂/∂yj − yj∂/∂xj , for j = 1, 2.
We need to check that λ(R) = 1 and dλ(R, ·) = 0. Start with the normalization,

λ(R) =
2π

2a
(x2

1 + y2
1) +

2π

2b
(x2

2 + y2
2) =

π|z1|2

a
+
π|z2|2

b
= 1.

With the last equality following from the condition on Y = ∂(E(a, b)). For the second condition of Reeb vector
fields,

dλ(R, ·) =
2π

2a
(x1dx1 + y1dy1) +

2π

2b
(x2dx2 + y2dy2) =

π

2a
d(|z1|2) +

π

2b
d(|z2|2) =

1

2
d

(
π|z1|2

a
+
π|z2|2

b

)
= 0.

Which uses the same condition again and follows from d applied to a constant being zero.
As a/b is irrational there are precisely two closed Reeb orbits, both are circles. Begin by parametrizing one closed

Reeb orbit by
γ(t) = (

√
a/π exp(2πit/a), 0), t ∈ [0, a].

The contact structure along γ, γ∗ξ, is spanned by the vectors fields associated to the other angle, ∂/∂x2 and ∂/∂y2,
for all t ∈ [0, a]. This is one example of a symplectic trivialization τ of ξ along γ mentioned earlier. Although not
†This trivilization is an isomorphism between γ∗ξ and [0, 1] × R2, τ : (t, v) → τt(v) where (γ ◦ τ)∗dλ = ω0 the canonical symplectic

form on R2. For a more general and insightful definition, see page 83 of [29]
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obligatory to the context we calculate the action of γ. By the parametrization,

A(γ) =

∫
γ

λ =

∫ a

0

γ∗λ =
1

2

∫ a

0

γ∗(x1dy1 − y1dx1)

=
a

2π

∫ a

0

(cos(2πt/a)d(sin(2πt/a))− sin(2πt/a)d(cos(2πt/a))) =
a

2π

∫ a

0

2π

a
dt = a.

Continuing with the example at hand, the linearized Reeb flow dϕt : ξγ(0) → ξγ(t) is given by a rotation of 2πt/b.
This rotation which has eigenvalue t whenever t is an integer multiple of b. Thus,

Crossγ = {lb | l ∈ Z, lb ∈ [0, a]}

and #Crossγ = ba/bc + 1. Again as a/b is irrational, a is not a crossing. Furthermore, γ is a non-degenerate
closed Reeb orbit, as are all of its covers e.g. the k-th cover of γ is γk = γ + · · · + γ (k-times). We calculate the
Conley-Zehnder index of γ through the quadratic form Γ(Ψγ , t), with t ∈ Crossγ . Given t ∈ Crossγ with Ψγ(0) = 1,
we have

Ψ̇γ(t) =
2π

b

[
− sin(2πt/b) − cos(2πt/b)
cos(2πt/b) − sin(2πt/b)

]
(reminder t = lb, for some l)

=
2π

b

[
0 −1
1 0

]
=

2π

b
Jstd,

Jstd the standard almost complex structure in 2-dimensions. Then we have the standard euclidean bundle metric
(up to scale factor) for our quadractic form. As dλ|ξγ(t) = dx2 ∧ dy2

dλ(v, Ψ̇γv) =
2π

b
dx2 ∧ dy2(v, Jstdv) =

2π

b
〈v, v〉std, for every v ∈ Et.

Therefore the signature must be 2 (counting the necessarily two 1s on the diagonal) for all crossings t ∈ Crossγ . The
Conley-Zehnder index with respect to the trivialization τ is now

CZτ (Ψγ) = 1 +
∑

t ∈Cross\{0}

2 = 2
⌊a
b

⌋
+ 1.

This example is not only important to our needs but is the usual situation for computing the Conley-Zehnder
index. Indeed, there commonly exists a rotation angle θ of the linearized Reeb orbit around γ with respect to a
trivialization τ . This θ appears inside the floor function, upon replacing a/b. A final remark, the Conley-Zehnder
index acting over a k-fold cover γk is multiplicative with the multiplicity appearing inside the floor argument. What
will come to be so important is that formulas we will explain will not depend on the trivialization. This will mean
that invariants can be defined. The explanation to introduce this “primary” contact homology is not a substitute for
Hutching’s embedded contact homology which we will get to very soon.

3.3 Embedded Chain Complex
In the continuation, we will assume everything as we have for the previous subsection, Y a closed oriented contact 3
dimensional manifold with λ a non-degenerate contact 1-form. The Floer theory in ECH is dependent on generators
of the embedded chain complex, which are initially called orbit sets α = {(αi,mi)}. Orbit sets are finite sets of pairs
αi a Reeb orbit with a natural number multiplicity mi, where the orbits are distinct. The orbits sets are generators
if mi = 1 whenever αi is hyperbolic. The action functional now becomes

A(α) =
∑
i

mi

∫
αi

λ.

From the linearity of the sum, we observe that the critical points correspond to the orbits sets. Furthermore, we fix
a homology class in Y , Γ ∈ H1(Y ) for which the generators must satisfy the identity

∑
imi[αi] = Γ. The [αi] terms

signify the class of all those maps that homotopically equivalent to αi, otherwise known as the homology class of αi.
As in Morse theory we need to construct “flow-lines” between critical points. These will be, sufficiently restricted,
J-holomorphic curves.

However, this is merely the set up we need to discuss how to create the chain complex ECC(Y, λ,Γ), how the
differential ∂ is defined and how to attack defining the ECH capacities.

To begin with we will need more background. Firstly, this is not the right environment for defining J-holomorphic
curves thus we must take a symplectization of Y . As was done in Section 2 we take Rs × Y (s is the R-coordinate)
as our 4 dimensional manifold with symplectic form ω = d(esλ). As a reminder on Y we have the Reeb vector field
R, with direction uniquely determined by λ(R) = 1 and dλ(R, ·) = 0, and the contact structure ξ = Ker(λ).
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Definition 11. We call, the almost complex structure, J symplectization-admissible if

> J(∂/∂s) = R,

> J(ξ) = ξ and J rotates ξ positively i.e. dλ(v, Jv) ≥ 0, v ∈ ξ,

> J is R-invariant.

The space of symplectization-admissible almost complex structures is contractible and depends on the contact
structure ξ. We fix such a symplectization-admissible J that is ω-compatible, with ω as above.

If, γ is an embedded Reeb orbit, then, R × γ is an embedded J-holomorphic curve in R × Y . These curves will
be called trivial cylinders and come to play and important role when decomposing J-holomorphic curves.

Consider J-holomorphic curves u : (Σ, j) → (R × Y, J), (Σ, j) a compact Riemann surface with finitely many
points removed, called punctures. We make sure to identify u with u′ that are parametrized by a biholomorphism
φ, u = u′ ◦ φ, as before.

Let γ be a, possibly multiply covered, Reeb orbit then u has a positive end at γ when: there exists a neighbourhood
of a puncture with coordinates (σ, τ) ∈ (R/TZ)× [0,∞), j(∂/∂σ) = ∂/∂τ , such that

lim
σ→∞

πR(u(σ, τ)) =∞, & lim
σ→∞

π2(u(σ, ·)) = γ.

A negative end is defined similarly but with limσ→−∞. We assume that all punctures correspond to positive or
negative ends. This is the similarity to Morse theory where the flow lines between critical points of a function
have become J-holomorphic curves between sets of Reeb orbits. The Reeb orbits are critical points of the action
functional, in analogy to a morse function, and instead of the downward gradient flow we require u to satisfy the
J-holomorphic PDE, du ◦ j = J ◦ du. This is the culmination of one factor this thesis has attempted to achieve. The
following will now be analogy to previous work.

With parallel in the discussion of dimension of moduli spaces of J-holomorphic curves, Section 2, we also define
an index that turns out to be a dimension. Let J be generic and u a somewhere-injective J-holomorphic curve in
R×Y with positive ends at Reeb orbits γ1, ..., γm and negative ends at Reeb orbits δ1, ..., δn. Then the moduli space
of J-holomorphic curves near u is a manifold of dimension:

ind(u) = −χ(Σ) + 2c1(u∗ξ, τ) +

m∑
i=1

CZτ (γi)−
n∑
j=1

CZτ (δj).

There are some terms to explain here. As before χ(Σ) is the Euler characteristic of the domain of u. The second term
on the right hand side is analogous to the first Chern class, called the relative first Chern class. Relative because it
is with respect to the symplectic trivialization τ on the complex dimension 1 bundle u∗ξ. It is defined by counting
the zeroes (with sign) of a generic section ψ, of u∗ξ, which is non-vanishing at the ends and constant with respect to
the chosen trivialization. The relative first Chern class is elaborated on page 9 of [30]. The Conley-Zehnder term,
the third term, will denoted by CZind

τ (γ, δ), with γ = (γ1, ...., γm) and δ = (δ1, ..., δn) ordered lists of Reeb orbits.
It turns out that even though each term in the formula for “ind” is dependent on the trivialization τ , “ ind” itself

is independent.
Given are orbit sets α = {(αi,mi)} and β = {(βj , nj)}. We can defineM(α, β) as the set of somewhere-injective

J-holomorphic curves in R×Y with positive ends α and negative ends β. As a quick aside, only important for later,
as J has been chosen to be R-invariant the setM(α, β) will have an R action, translation by some real number s.

Upon assuming u was a somewhere-injective curve we had

c1(A) = χ(Σ) +A ·A− 2δ(u).

To analogize, we pick u ∈M(α, β). Now we will have a relative adjunction formula (which picks up a new term)

c1(u∗ξ, τ) = χ(Σ) +Qτ (u) + wτ (u)− 2δ(u).

Appearing again are the trivialization τ of ξ over Reeb orbits αi and βj . There again is the relative first Chern
class. By the work of Seifring [31] the self intersection number δ(u) is still defined and finite in the symplectization
case.

The analogue term to A · A is Qτ (u), but instead of representing classes in singular homology we will need to
determine representatives of a relative singular homology. That homology which we desribe now.

Given ECH generators α = {(αi,mi)} and β = {(βj , nj)} the following identity must hold∑
i

mi[αi] =
∑
j

nj [βj ] ∈ H1(Y )

Page 17 of 50



The Minimal Obstruction Problem 3. MORSE AND (EMBEDDED) CONTACT HOMOLOGIES

for there to exist J-holomorphic curves between α and β. As before we denote this class by Γ.
Denote by H2(Y, α, β) the set of two-chains Z in Y such that ∂Z =

∑
i ni[αi]−

∑
jmj [βj ] where we modulo by

the equivalence relation Z ∼ Z ′, [Z − Z ′] = 0 ∈ H2(Y ). Relative thus refers to the dependence on the generators
α and β. Under translating an element Z in H2(Y, α, β) by an element W in H2(Y ) to produce W + Z, we find
that there is no change in the differential. Indeed, ∂(W + Z) = ∂W + ∂Z = 0 + ∂Z = ∂Z. This is what it means
for H2(Y, α, β) to be an affine space over H2(Y ). By construction every J-holomorphic curve u ∈M(α, β) defines a
class [u] ∈ H2(Y, α, β).

Given is Z ∈ H2(Y, α, β) for which we would like to compute the relative intersection pairing Qτ (Z) ∈ Z. We
represent classes by embedded oriented surfaces and count (with sign) the number of intersection points between the
representing surfaces. In the symplectization case we choose two embedded, save at the boundary, oriented surfaces
S, S′ ⊂ [−1, 1]× Y , representing Z. We require that

∂S = ∂S′ =
∑
i

mi · {1} × αi −
∑
j

nj · {−1} × βj

and S, S′ intersect transversally, save at the boundary. The relative intersection pairing of Z will be the count of
the intersection of Int S with Int S′ (by counting we mean, again, in an algebraic sense with signs). The problem
with this definition is that it is not well-defined under choosing slightly different surfaces with different boundary
intersections.

We will need to count the intersection by first establishing the boundary behaviour, this behaviour will depend
on the trivilization τ . We wish for the projections π2(S) and π2(S′) to be both embeddings near the boundary.
Furthermore, both images must be a transverse slice to any αi or βj as rays. These slices must not intersect nor
rotate (by which we mean dλ(J ·, ·) = 0 on the slices), with respect to τ . Under this condition, defined in full detail
over pages 11-12 in [30], the count of Int S ∩ Int S′ will be the integer we call Qτ (Z). That integer is dependent on
α, β, Z and τ . In the case of a J-holomorphic curve u, Qτ ([u]) = Qτ (u).

The other term in the relative adjunction formula wτ (u) is called the asymptotic writhe which, in very simplistic
terms, is another count. This count is of slices of somewhere-injective J-holomorphic curves. These slices produce
braids that can first be identified with S1 ×D2 and then identified with the 3-Torus T3. Anymore details on braids
and writhes takes us too far from our goal and so we rely on pages 10-11 of [30], and Section 5 of [16].

We are almost ready to put together the formulas we have gathered, before that we must tackle the ECH index.
For a particular Z ∈ H2(Y, α, β) we define the ECH index to be

I(α, β, Z) = c1(u∗ξ, τ) +Qτ (Z) + CZIτ (α, β).

Again, Qτ (Z) is the relative intersection pairing and the Conley-Zehnder term is

CZIτ (α, β) =
∑
i

mi∑
k=1

CZτ (αki )−
∑
j

nj∑
l=1

CZτ (βlj).

If γ is a Reeb orbit and k a positive integer then the k-fold cover of γ is γk, the remark earlier about CZ
being multiplicative applies now. It should be remarked upon that the two Conley-Zehnder terms CZind

τ (α, β) and
CZIτ (α, β) are quite different. Namely, the former is a sum over the Conley-Zehnder indicies of Reeb orbits themselves
and the latter sums over the Reeb orbits and all their iterates, up to multiplicity.

When u ∈ M(α, β) then write I(u) = I(α, β, [u]). The relative ECH index is additive over pairs of orbit sets
(α, β) and (β, γ) with Z ∈ H2(Y, α, β) and W ∈ H2(Y, β, γ), explicitly

I(α, β, Z) + I(β, γ,W ) = I(α, γ, Z +W ).

When we choose Z and W to be represented by J-holomorphic curves this is called gluing and thus we call the ECH
index, additive under gluing. We will also need the fact that the Fredholm index is additive under gluing.

We analogize, for the final time, to the symplectic situation where we found that combining the index, Fredholm
index and adjunction formula together gave an (in)equality. We have in the symplectization case

Theorem 7 (Theorem 4.15, [30]). Let α, β be orbit sets, u ∈M(α, β) J-holomorphic, then

ind(u) ≤ I(u)− 2δ(u).

Specifically, ind(u) ≤ I(u) with equality if and only if u is embedded.

This theorem follows from the previous formulas

ind(u) = −χ(Σ) + 2c1(u∗ξ, τ) + CZind
τ (α, β)

c1(u∗ξ, τ) = χ(Σ) +Qτ (u) + wτ (u)− 2δ(u)

I(u) = c1(u∗ξ, τ) +Qτ (u) + CZIτ (α, β)
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and Lemma 4.20 of [30] which implies an upper bound on the asymptotic writhe

wτ (u) ≤ CZIτ (α, β)− CZind
τ (α, β).

The following propositions about the classification of low ECH index curves is dependent on combinatorial con-
ditions not stated here but can be found over 7.1 and 7.2 (Definition 7.11) of [14]. These conditions are related to
the irrational sloped line y = θx approximated by integer lattice paths from above and below. Where θ is the angle
appearing in the Conley-Zehnder index.

Notation: For u ∈ M(α, β) a J-holomorphic curve there is a decomposition into u0 and u1 written u = u0 ∪ u1.
The u0 curve contains components that map only to R-invariant cylinders and the curve u1 contains no component
with this property.

Let u ∈ M(α, β) have the decomposition u = u0 ∪ u1, we call u admissible if, (1) u1 is embedded and its image
does not intersect u0 and, (2) the combinatorial conditions hold. A remark on (1), this is where the embedded part
of embedded contact homology comes from. A general remark, the admissible term is used to describe curves that
are not of concern in the proof of that the differential for the embedded contact complex squares to zero.

Proposition 2 (Proposition 7.14, [14]). Given that u ∈M(α, β) has decomposition u = u0 ∪ u1. Then:

(1) ind(u1) ≤ I(u1)− 2δ(u1).

(2) I(u1) ≤ I(u)− 2[u0] · [u1]

These propositions above and below are changed from the original to fit the thesis and not lead to an unnecessary
amount of explaination. In essence the purpose of Proposition 1 is as a utility to prove Proposition 2 as we will see
now.

Proposition 3 (Proposition 7.15, [14]). Suppose that J is generic and u ∈M(α, β) has decomposition u = u0 ∪ u1.
Then:

(1) I(u) ≥ 0 with equality implying u = u0

(2) If I(u) = 1, then u is admissible and ind(u1) = 1.

The proof of the proposition includes an incisive use of R-action. Decompose u1 into v1, ..., vk each with covering
multiplicity di. Note that ind(vi) ≥ 1, i = 1, ..., k, from J being generic. Take u′1 to be the union over i and over di
R-translates of each vi. Note u′1 is still inM(α, β). The Fredholm index is additive and so ind(u′1) =

∑k
i=1 diind(vi).

The ECH index is the same for both u1 and u′1 as the translation does not change the relative homology class. By
applying Proposition 1 (1) to u′1 and Proposition 1 (2) to u0 ∪ u′1 we obtain the following relation

k∑
i=1

diind(vi) ≤ I(u)− 2δ(u1)− 2[u0] · [u′1].

This formula then implies (1) and (2) of Proposition 2.
What this implies is that by identifying a curve u with the collection {(vi, di)} we can work with currents instead

of curves. Moreover, when I(u) = 1 we will have that the current is somewhere-injective meaning that our differential
need not make reference to multiply covered curves.

Finally, we can actually define ECH, with Z/2Z coefficients. It is also possible to define ECH with integer (Z)
coefficients but we are not concerned with this case. As before let Y be a closed oriented 3 dimensional manifold
with non-degenerate contact form λ, and homology class Γ ∈ H1(Y ). Subsequently, the chain complex ECC(Y, λ,Γ)
is defined. Create the freely generated Z/2Z-module on generators α under the condition

∑
imi[αi] = Γ.

To define the differential ∂ on the chain complex ECC(Y, λ,Γ) first define the subspace of index 1 J-holomorphic
curves,

M1(α, β) = {u ∈M(α, β) | I(u) = 1}.

If α, β are generators, we define 〈∂α, β〉, meaning the coefficient of β in the sum ∂α, as

#2M1(α, β)/R.

The #2 denotes the count is to happen modulo 2. The equivalence relation u+ s ∼ u, s ∈ R is being used to identify
curves. Furthermore, by representing a J-holomorphic curve as its equivalent current {(ui, di)} of covering cylinders
we call two curves the same if they have the same multiplicities di.

Page 19 of 50



The Minimal Obstruction Problem 3. MORSE AND (EMBEDDED) CONTACT HOMOLOGIES

Remark. The space of curves M1(α, β)/R is discrete and by identifying the curves with their respective currents
the previous compactness results of Taubes can be used to argue that the space, as a set, is finite, this means that
∂ is well-defined. This is not a trivial proof, but we will go one step further. In showing that ∂2 = 0 took the
collaboration of both Hutchings and Taubes over the course of two papers [14], [32]. This was very difficult to prove
in part because of the possibility of multiply-covered J-holomorphic curves. Given both of these it is possible to
define the homology of the chain complex, ECH(Y, λ,Γ). The proof that this homology is independent of the almost
complex structure J is at present only possible by the isomorphism given by Taubes, over 5 papers the first of which
is [33]. This isomorphism is between embedded contact homology and Seiberg-Witten theory.

We are principally avoiding the details over the past remark due to being way beyond the scope of this thesis.
However, it would be remiss to not at least show the objects of study. The following are canonically isomorphic as
relatively graded Z/2Z or Z-modules

ECH∗(Y, λ,Γ) = ĤM
−∗

(Y, sξ + Γ)

The homology modules are direct summands of the graded modules where the grading comes from the ECH index
which is the reason for the use of the term relative. Where sξ is a so-called spinC-structure is determined completely
by the contact structure ξ on Y . The right hand side, ĤM

∗
, is the Monopole (Seiberg-Witten) Floer cohomology

which is dual of Monopole Floer homology, a Floer theory on the Seiberg-Witten Functional. This has no dependence
on J and thus ECH is independent of J . Indeed all that the ECH “sees” about Y is the contact structure ξ.

For the beginings of Seiberg-Witten theory including the definition of spinC-structure see Taubes and Hutchings
notes [34], or the notes of Moore [35]. For more details on Seiberg-Witten Floer homology and the Seiberg-Witten
Functional see Kronhemier and Mrowka [15].

Example 3.2
Returning again to the case of the ellipsoid E(a, b), b/a irrational. The contact manifold is Y = ∂E(a, b) with
contact 1-form λ = (1/2)

∑2
j=1 xjdyj − yjdxj |Y . Due to contractibility of the sphere S3, and Y being homotopic to

S3, H1(Y ) = H1(S3) = 0. Therefore, for any Γ ∈ H1(Y ) we have Γ = 0. In the case Y = S3 along with ξ = Kerλ it
is possible compute the Seiberg-Witten Floer Cohomology [15]. With Taubes isomorphism we obtain

ECH•(Y, λ, 0) =

{
Z • = 0, 2, 4, ...

0 otherwise
.

So that the differential ∂, which decreases the degree by 1, must be identically 0.

We are of course interested in the ellipsoid because of the sharpness of ECH capacities. We will now give the
outline to computing those capacities.

3.4 Filtered Embedded Contact Homology
We will follow the paper [7] by Hutchings et al. describing the construction of ECH capacities. Let α = {(αi,mi)}
be a generator for ECC. Consider the symplectic action of α

A(α) =
∑
i

mi

∫
αi

λ.

The ECH differential, for any generic (symplectization) admissible J , strictly decreases the action. That is to say if
〈∂α, β〉 6= 0 then A(α) > A(β). Hence, for real positive L, we can define a version of ECH called filtered ECH

ECHL(Y, λ,Γ).

This is defined as the homology of the sub-complex ECCL(Y, λ,Γ, J). The sub-complex is finitely generated as a
Z/2Z or Z-module on generators α with the restriction A(α) < L.

Filtered ECH is proved to be independent of generic (symplectization) admissible J in [36], however, it still
dependent on a change of contact 1-form λ.

When L < L′ the derived sub-complexes are such that the first is included in the latter, after choice of J , this
causes an induced map in homology

ι∗ : ECHL(Y, λ,Γ)→ ECHL′(Y, λ,Γ)

which is turns out to be independent of J . It is possible to retrieve the original homology by direct limit

ECH(Y, λ,Γ) = lim
−→

ECHL(Y, λ,Γ).
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Understanding the direct limit is not stictly necessary for this paper, although for the curious reader it is recommended
to follow (there is nothing to prove) Exercise 14 of [37].

Upon scaling filtered ECH by a positive real number an isomorphism exists

s : ECHL(Y, λ,Γ)
∼−→ ECHcL(Y, cλ,Γ).

Under the scaling there exists a realizable (symplectization) admissible almost complex structure for cλ, which the
isomorphism is independent of.

Before arriving at ECH capacities we must first discuss the ECH spectrum of a contact manifold. Let Y be a
closed oriented three dimensional manifold with non-degenerate contact form λ. The restriction Γ = 0 appears in
the following because otherwise the capacities would not be well-defined.

Definition 12 (Definition 3.1, [7]). For each positive integer k define

c̃k(Y, λ) = inf{L | dim ιL(ECHL(Y, λ, 0)) ≥ k},

where ιL denotes the canonical inclusion ECHL(Y, λ, 0) ↪→ ECH(Y, λ, 0). The collection {c̃k(Y, λ)}k=1,2,... is the full
ECH spectrum of (Y, λ).

The notion of dimension here is the number of distinct generators of the image of filtered ECH in the full homology.
Then in words, the k-th element of the spectrum is given by the least (positive) L such that the filtered ECH for
this L still has k generators.

There are two things to be remarked upon, firstly by definition

0 ≤ c̃1(Y, λ) ≤ c̃2(Y, λ) ≤ · · · ≤ ∞.

Secondly, the scaling isomorphism implies that if c is a positve real number then

c̃k(Y, cλ) = c · c̃k(Y, λ).

Now for the full ECH capacities.

Definition 13 (Definition 3.7, [7]). Let (M,ω) be a four dimensional Liouville domain with boundary Y . If k is a
positive integer, define

c̃k(M,ω) := c̃k(Y, λ)

where λ is the contact form on Y with dλ = ω|Y . The collection {c̃k(M,ω)}k=1,2,... are the full ECH capacities of
(M,ω).

Lemma 3.8 of [7] asserts that the full ECH capacites of (M,ω) are independent of the contact form λ. Now which
we can move to the full ECH capacities for the ellipsoid.

Proposition 4 (Proposition 3.12, [7]). The full ECH capacities of an ellipsoid E(a, b) are given by

c̃k(E(a, b)) = Nk(a, b)

Where Nk(a, b) is the (k + 1)-th smallest element in the set {ma+ nb | m,n ∈ Z≥0}.
As was the case in contact homology the Reeb vector field corresponding the contact form λ = (1/2)

∑2
j=1 xjdy

j−
yjdxj |Y is

R =
2π

a

∂

∂θ1
+

2π

b

∂

∂θ2
,

with ∂/∂θj = xj∂/∂yj − yj∂/∂xj , for j = 1, 2.
Suppose that a/b is irrational, then there are only two embedded Reeb orbits γ1 = {z2 = 0} and γ2 = {z1 = 0},

which are two circles on the boundary. These orbits are both elliptic and non-degenerate, furthermore, the action
is
∫
γ1
λ = a as computed previously. Similarly, the action of γ2,

∫
γ2
λ = b. The contact form λ|∂E(a,b) is non-

degenerate and all ECH generators have the form {(γ1,m), (γ2, n)} for m,n ∈ Z≥0. It was already discussed that as
H1(∂E(a, b)) = 0 then any choice of homology class will result in Γ = 0. By parametrizing differently, for example the
γ1 orbit with multiplicity m, meaning parametrizing γm1 = γ1 + · · ·+γ1 (the m-fold cover of γ1). One parametrization
is

γm1 (t) = (
√
ma/π exp(2πit/ma), 0), t ∈ [0,ma].

Then γ1 has action

A(γm1 ) =
1

2
· ma
π

∫ ma

0

2π

ma
dt = ma.
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We can similarly obtain A(γn2 ) = nb under a comparable parametrization.
The action is linear and so for a particular generator

A({(γ1,m), (γ2, n)}) = am+ nb.

As remarked upon before, by Taubes isomorphism only the even homology groups are non-zero and so the chain
complex differential vanishes for any J . The dimension, by that we mean the number of generators, for the image
of ECHL(∂E(a, b), λ, 0) in ECH(∂E(a, b), λ, 0) is now computed. The finite set of generators for filtered ECH is the
following

genL := {(m,n) ∈ Z2
≥0 | ma+ nb < L}.

From L being positive #genL ≥ 1. Thus, the least (positive) L such that #genL ≥ k is the (k + 1)-th smallest
element in {ma+ nb | m,n ∈ Z≥0}.

It is possible to compute the full ECH capacities in the case for a/b rational by approximating above and below
by real numbers.

This ends our discussion of ECH and ECH capacities. Through counting J-holomorphic curves in the symplectization
of a contact manifold Y we were able to define invariants on Y . One might wonder about the applications of ECH.
So far the most role ECH has played outside of symplectic embeddings is in its isomorphism to other homologies,
Heegaard-[38] and Monopole Floer Homology. Although both of these homologies are defined in every dimension,
whereas ECH is a strictly 3-dimensional theory making them very attractive. The capacities ECH define are invaluable
to this thesis and so makes ECH very appealing for its implications in symplectic embeddings.

4 Counting Lattice Points
The purpose of this section is to give a flavour for how one method is applied to computing the discrete set of solutions
to the minimal obstruction problem, see the introduction, for a = 1, b = µ2 and c = d = µ. A combinatorial approach
is taken that unifies the two previous staircase examples and adds a third.

4.1 Enumerative Combinatorics
Enumerative combinatorics deals with the cardinality of finite sets with special properties. One interesting example
of such a set is integer dilations of polytopes intersected with lattice points. Lattice points in dimension d are
Zd. A polytope is precisely the convex hull of a finite set of vertices (smallest convex set containing said vertices)
considered as vectors. A polytope P has dimension d when the dimension of the affine span (all those points reached
by x+ λ(y− x), x, y ∈ P, λ ∈ R) of the polytope, is d. A dilation of a polytope is the dilation of the underlying set.

A point in the intersection is either a lattice point of the original polytope or a rational point where the least
common denominator of the coordinates, in lowest terms, divides the dilation. To encapsulate this information, a
counting function is introduced. Let P be a polytope of dimension d then

LP(t) = #(tP ∩ Zd), ∀t ∈ Z>0,

is its counting function.
We only consider positive integer dilations but there is way of assigning a value to LP(t) for t = 0 when the

interior of the polytope contains the origin. We require this in the following anyway so that it can be argued that
the assigned value is the true value.

Example 4.1
Take P = [0, γ], (γ ≥ 1) then LP(t) = #{tP ∩ Z} = btγc, the form of this function is dependent on γ.
Case 1: γ is an integer, then btγc = tγ for each t, i.e. LP(t) is polynomial of degree 1.
Case 2: γ is rational, writing γ = p/q, (p ≥ q) with gcd(p, q) = 1. The symbol btγc is now dependent on whether
q divides t. Indeed, let t ≡ r mod q so that btγc = p(t − r)/q + brγc, which is almost a polynomial except that its
coefficients are periodically changing. Further, note that the least integer dilation t of P that makes tγ an integer is
exactly q.
Case 3: γ is irrational, here btγc has no right to be a polynomial, or anything close for that matter.

To attempt to formalize the implication of this example it will be important to make additional definitions.
A polytope is called integral if it has lattice points as vertices, and called rational if those vertices are rational
coordinates, otherwise the polytope is irrational. Moreover, a formal sum of powers of t with coefficients ai(t) is
called a quasi-polynomial with deg = d

d∑
i=0

ai(t)t
i.
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Where the ai : N→ Z are periodic with finite period, for each i.
The period of a quasi-polynomial is the least common integer between the periods of the coefficient functions

denoted P . The denominator of a polytope P is the least integer D such that DP is integral. Period collapse is the
situation where P < D, i.e. the period is less than the denominator.

As found in Case 1 where γ was an integer the counting function was a polynomial, this generalizes to all polytopes
with integral lattice points as proved originally by E. Ehrhart ([39]). This theory is actually called Ehrhart theory. For
Case 2, γ being rational, generalizes to all rational polytopes having a quasi-polynomial for their counting function.
In some interesting situations the period of the counting function is equal to 1 so that the quasi-polynomial is actually
a polynomial, thus D > P = 1 implies period collapse in this situation. Although, notice that for the example we
had D = P = q so period collapse does not occur in the example. For Case 3, when vertices are irrational the theory
is burgeoning [40] here counting functions have been found to be polynomials and quasi-polynomials. Morally the
denominator of an irrational polytope should be infinite. Consider trying to applying the definition and arriving at
the conclusion that there exists no integer large enough to make an irrational polytope integral. By this presumption
every irrational polytope with a (quasi-) polynomial counting function exhibits, an extreme form of, period collapse.
Which makes this case especially interesting for combinatorialists.

Example 4.2
Let P = T (1, 1), the triangle with vertices (0, 0), (0, 1), (1, 0), its counting function gives the (t+1)-th triangle number
for each t ∈ Z≥1, i.e. LT (1,1)(t) = (1/2)(t+ 1)(t+ 2). This is a polynomial in t and a stepping stone to examples of
period collapse.

From now on we will work only in dimension 2 (d = 2), so all our polytopes will be polygons, and all our
polygons will be triangles. With this restriction it is time to reflect on how one can connect this theory to symplectic
embeddings. The work discussed in previous chapters comes to the forefront here. Recall the ECH capacities of
ellipsoids E(u, v), Nk(u, v), u, v ∈ R2

>0. Furthermore, define T (u, v) to be the following triangle.

Figure 3: Triangle T (u, v)

Introduce a new counting function,

Lu,v(t) = #{k : Nk(u, v) ≤ t}

(the number of those k for which Nk(u, v) ≤ t) for t ∈ Z>0. We will show that the two counting functions are equal,
i.e Lu,v(t) = LT (u,v)(t), ∀t ∈ Z>0.

Let, ux+ vy = mu+ nv, m,n ∈ Z≥0, x, y ∈ R≥0, u, v ∈ R>0 and some arbitrary t ∈ Z>0. The following sets are
equal because of the definition of Nk(E(u, v)),

{k | Nk(E(u, v)) ≤ t} = {(m,n) ∈ Z2
≥0 | mu+ nv ≤ t}.

The next equality follows from the identity we called forth,

{(m,n) ∈ Z2
≥0 | mu+ nv ≤ t} = {(x, y) ∈ Z2

≥0 | ux+ vy ≤ t}.

Thus, as the sets are finite

Lu,v(t) = #{k | Nk(E(u, v)) ≤ t} = #{(x, y) ∈ Z2
≥0 | ux+ vy ≤ t}.
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Note that the last expression is precisely the number of integer points in the t-scaling of T (u, v) and so

Lu,v(t) = LT (u,v)(t).

Then as t ∈ Z>0 was arbitrary the above equality holds for all t ∈ Z>0. We can now reach the interesting equivalence
between symplectic embeddings and combinatorics via sharpness of ECH capacities for the ellipsoid, see introduction.

Lemma 2 (Sharpness for Combinatorics).

E(a, b)
s
↪−→ E(c, d) ⇔ LT (a,b)(t) ≥ LT (c,d)(t), for each t ∈ Z>0

Proof. Given sharpness

E(a, b)
s
↪−→ E(c, d) ⇔ ck(E(a, b)) ≤ ck(E(c, d)), for each k ∈ Z≥0.

A necessary condition for the right hand side of the implication to hold is

{k : ck(E(c, d)) ≤ t} ⊂ {k : ck(E(a, b)) ≤ t}, for each t ∈ Z>0.

This is from ck(E(a, b)) ≤ t being a weaker condition than ck(E(c, d)) ≤ t. By induction on t sufficiency follows. As
each set is finite this is also equivalent to

#{k : ck(E(c, d)) ≤ t} ≤ #{k : ck(E(a, b)) ≤ t}, for each t ∈ Z>0, equivalently
La,b(t) ≤ Lc,d(t), for each t ∈ Z>0.

Moreover, by the above argument

LT (c,d)(t) ≤ LT (a,b)(t), for each t ∈ Z>0.

So that the chain of equivalences imply the Lemma.

Even though this equivalence between symplectic embeddings and the inequality of counting functions is a tool
unto itself. So far, though, practical applications seem to imply a need to prove equality of counting functions. For
this we will introduce another definition, two polytopes are said to be Ehrhart equivalent if they have the same
counting function.

4.2 Combinatorical Proofs of Symplectic Embeddings
It will be necessary to repeatedly refer back to a diophantine equation (an equation that requires solutions to be
integers). To that end define

fk,l(p, q) = kp2 − (l + k + 1)pq + lq2 + 1

and seek the positive integer solutions to
fk,l(p, q) = 0. (4.1)

The following figure shows the positive part of the underlying curve to this equation when k = l = 1.

Figure 4: A (positive) portion of the underlying equation x2 − 3xy + y2 + 1

The following Theorem is due to Cristofaro-Gardiner and Kleinman that relates the solutions of (4.1) to Ehrhart
equivalence. Restrict to (k, l) ∈ {(1, 1), (2, 1), (3, 2)}, the only positive integers for which both k and l both divide
k + l + 1. There are counterexamples to the theorem when not restricting for instance when (k, l) = (3, 1), Remark
1.6, [5].
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Theorem 8 (Theorem 1.3, [5]). Fix (k, l) ∈ {(1, 1), (2, 1), (3, 2)} and triangles T (q/kp, p/ql) and T (1/k, 1/l), the two
triangles are Ehrhart equivalent if and only if (4.1) holds for these (p, q, l, k), (p, q) ∈ Z2

≥0 as well as gcd(kp2, lq2) = 1.

To make this theorem useful to understanding points on the staircases we will also need to identify what exactly
are the positive integers solutions of (4.1) for each pair (k, l). These will turn out to be exactly related to the recursive
sequences found for past staircases.

The equation (4.1) may at first seem arbitrary but what has recently become significant in this area is leading
and sub-leading asymptotics [41]. By leading asymptotics it is meant the coefficient of the highest power of a
(quasi-)polynomial. The associated coefficient to the t2 term of LT (u,v)(t) is the area of T (u, v)

Area(T (q/kp, p/ql)) =
1

2kl
= Area(T (1/k, 1/l)).

The coefficient of t in the counting function is the sub-leading asymptotic and corresponds to the “affine perimeter”.
Theorem 8 then is stating the necessary and sufficient condition for Ehrhart equivalence is equality of affine perimeter.
As it happens fixing (k, l) ∈ {(1, 1), (2, 1), (3, 2)} will mean that the counting functions will be polynomials.

Figure 5: General Triangle
Figure 6: Specific Triangle

Before that though we will need to explain what the counting functions are for the triangles above. Let
gcd(kp2, lq2) = 1, now Theorem 2.10. of Beck and Robins [42] implies, for a = b = 0, e = kp2, f = lq2 and
r = pq (Fig. 5 to Fig. 6)

LT (q/kp,p/ql)(t) =
1

2kl
t2 +

1

2
t

(
q

kp
+
p

lq
+

1

klpq

)
(4.2)

+
1

4

(
1 +

1

kp2
+

1

lq2

)
+

1

12

(
kp2

lq2
+
lq2

kp2
+

1

lkp2q2

)
+ s−tpq(kp

2, 1; lq2) + s−tpq(lq
2, 1; kp2).

Where the final line contains two Fourier-Dedekind sums, given in general

sn(a, b; c) =
1

c

c−1∑
i=1

ξnic
(1− ξac ) (1− ξbc)

.

With ξc the c-th root of unity. The counting function LT (1/k,1/l)(t) follows similarly by taking p = q = 1. If we were
given that the two functions are equal then at least the coefficients in front of t and t2 must be equal. For t2 this
is immediate as the coefficients are both 1/kl. However, the equation resulting from equating coefficients of t gives
something more interesting. Namely,

q

kp
+
p

lq
+

1

klpq
=

1

k
+

1

l
+

1

kl
.

Multiplying on both sides by klpq gives

lq2 + kp2 + 1 = lpq + kqp+ pq,

and rearranging is exactly (4.1)
lq2 + kp2 − (l + k + 1)pq + 1 = 0.

This implies that Ehrhart equivalence is necessary. Now for the sufficiency we rely on the computation by Cristofaro-
Gardiner and Kleinman. The authors work with the Fourier-Dedekind sums of LT (q/kp,p/ql)(t) via discrete Fourier
series. Along the way Beck and Robins Theorem 8.8 (Rademacher reciprocity) is stated incorrectly, here it is
corrected. The correction is the change from a cyclic permutation of (a, b, c) to what is stated below.
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Lemma 3 (Rademacher reciprocity). Let n = 1, 2, ..., (a+ b+ c)− 1. Then

sn(b, c; a) + sn(a, c; b) + sn(a, b; c) =

− n2

2abc
+
n

2

(
1

ab
+

1

ca
+

1

bc

)
− 1

12

(
3

a
+

3

b
+

3

c
+
a

bc
+

b

ca
+

c

ab

)
.

An alternative formulation for n = 0, Corollary 8.7 of Beck and Robins, also corrected.

Lemma 4.
s0(b, c; a) + s0(a, c; b) + s0(a, b; c) =

1− 1

12

(
3

a
+

3

b
+

3

c
+
a

bc
+

b

ca
+

c

ab

)
.

From these two lemmas and previous work done on the Fourier-Dedekind sums sufficiency can be proven on a
case by case basis. A crucial step in the argument, impossible without the correction, is based on the fact that for
all a, b and n, sn(a, b; 1) = 0. Which follows from the term containing an empty sum that is conventionally 0. Thus,
sn(a, 1; b) + sn(b, 1; a) + sn(a, b; 1) = sn(a, 1; b) + sn(b, 1; a) which is the type of term inside the counting functions
that Cristofaro-Gardiner and Kleinman obtain.

In the special case (k, l) = (1, 1) these lemmas imply that the counting function is precisely that for the triangle
in example 4.2, namely (1/2)(t + 1)(t + 2). As the triangles, T (q/p, p/q), we are concerned with have a non-trivial
denominator these are examples of triangles that exhibit period collapse.

Now we will expose the sequences used to unify the approach. That approach being, to calculate the values of
functions

ca,k,l = inf{λ | E(1, a)
s
↪−→ B4(λ)},

for (k, l) ∈ {(1, 1), (2, 1), (3, 2)}. Recursively define a sequence dependent on k and l, r(k, l)0 = r(k, l)1 = 1

r(k, l)2n+1 =
k + l + 1

k
r(k, l)2n − r(k, l)2n−1,

r(k, l)2n =
k + l + 1

l
r(k, l)2n−1 − r(k, l)2n−2.

With (k, l) = (1, 1)

r(1, 1)2n+1 = 3r(1, 1)2n − r(1, 1)2n−1,

r(1, 1)2n = 3r(1, 1)2n−1 − r(1, 1)2n−2.

Which is the same recursive definition for both even and odd terms and also the recursive definition of the odd-indexed
Fibonacci numbers so that r(1, 1)n = gn, mentioned in the introduction. We also define the sequence paramount to
the minimal obstruction problem for a = 1, b = µ, and c = µ, d = (k/l)µ. Define,

a(k, l)n =


kr(k,l)2n+1

lr(k,l)2n
, n even

lr(k,l)2n+1

kr(k,l)2n
, n odd.

Again for (k, l) = (1, 1), both even and odd terms are the same and equal to r(1, 1)2
n+1/r(1, 1)2

n = g2
n+1/g

2
n. These

are special because when µ =
√
a(1, 1)n we have the discrete set of solutions to the minimal obstruction which was

the goal to solve.

4.3 Solving the Diophantine Equation
We want to solve (4.1) in the special case of (k, l) = (1, 1) which contains all the information about triangles
T (q/p, p/q) equivalent to T (1, 1). Then by sharpness for combinatorics, Lemma 2, implies a symplectic embedding

E

(
q

p
,
p

q

)
s
↪−→ B4(1).

By scaling up and down by p/q means the next symplectic embedding is equivalent to the previous

E

(
1,
p2

q2

)
s
↪−→ B4

(
p

q

)
.

Therefore, if the an(1, 1) really do solve our problem then (p, q) = (gn+1, gn) for some n ∈ Z≥0. We would then
expect (p, q) = (gn+1, gn) to solve f1,1(p, q) = 0. What we will show is that in some specific way these are the only
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solutions, to the Diophantine equation at least. Proposition 4.1, [5] solves (4.1) in more generality and strength than
is really needed for what we want to solve. However, we will follow the structure but not the content.

The equation we care about solving is x2 − 3xy + y2 + 1 = 0 which we now rearrange to[
x
y

]T [
1 − 3

2
− 3

2 1

] [
x
y

]
+ 1 = 0.

The primary solution to this equation is (x, y) = (1, 1) as 1 − 3 + 1 + 1 = 0. More solutions will be found via
applying matrices g to (1, 1) such that

gT
[

1 − 3
2

− 3
2 1

]
g =

[
1 − 3

2
− 3

2 1

]
.

If those solutions are also to be integers then we need g to also have integer entries. The matrices that we care
about will have an interpretation on the curve itself as horizontal and vertical transformations that are the basis for
matrices g. Explicitly,

σ =

[
−1 3
0 1

]
, τ =

[
1 0
3 −1

]
.

These matrices are involutions which imply that they canonically split R2 into Z2 and R2 \ Z2. As σ fixes the
vertical coordinate it is a horizontal transformation and τ is a vertical transformations because it fixes the horizontal
coordinate. Now to show σ and τ satisfy (4.3).

ϕσ(A) =

−1 0

3 1

 1 − 3
2

− 3
2 1

−1 3

0 1

 =

−1 3
2

3
2 − 7

2

−1 3

0 1

 =

 1 −3 + 3
2

− 3
2

9
2 −

7
2

 =

 1 − 3
2

− 3
2 1

 ,
and,

ϕτ (A) =

1 3

0 −1

 1 − 3
2

− 3
2 1

1 0

3 −1

 =

− 7
2

3
2

3
2 −1

1 0

3 −1

 =

 9
2 −

7
2 − 3

2

−3 + 3
2 1

 =

 1 − 3
2

− 3
2 1

 .
In the following, assume (x, y) ∈ {(p, q) | f(1,1)(p, q) = 0}, this is for convenience to lower the density of notation.

What we will now attempt is to find all positive integer solutions of f(1,1)(p, q) by creating a graph. This graph will
be the limit of a sequence of graphs all having the same properties and the limit will have vertices as precisely the
solutions we care about. First, for a definition and brief conversation about graphs.

Definition 14. A graph G = (V,E) is a pair. The first of the pair is V a set containing vertices, vi, and the second
E a subset of the power set of V containing only two point sets, edges ei,j = {vi, vj}. We will use the convention
V (G) for the set of vertices of the graph and E(G) for the set of edges. A graph is said to be connected if between
each pair of vertices there exists a trail of edges connecting them.

An important distinction to make is the graph G as an abstract object and G being embedded into another space
X. In the latter we have that V ⊂ X and E ⊂ Lines(X), where Lines(X) is the set of paths for each pair of points
in X ×X. We will restrict the edges to being the “shortest” path, one for each pair of points, which is found through
choosing a metric on X. We are about to take X = R2 so we choose the Euclidean metric.

Figure 7: First example, Graph G0 Figure 8: Basis for the induction, Graph G1
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The first example of a graph we will encounter is G0 = (V,E) with V (G0) = {v0, v1, v2} and E(G0) = {e0,1, e0,2}.
To embed this graph in R2, we need to choose points for the vi. Let v0 = (1, 1), v1 = (2, 1), and v2 = (1, 2) Fig 7.
Then, e0,1 and e0,2 are the straight lines connecting, v0 to v1 and v0 to v2, respectively. This graph is connected
because, v1 is connected to v0 by e0,1, v1 is connected to v2 via e0,1 and e0,2, and v0 is connected to either v1 from
e0,1 or v2 from e0,2. A fact from graph theory is that adding a vertex to a graph along with an edge connecting it
to any point of the connected part of the graph results in another connected graph.

The sets {π1(v2) > x} and {π2(v1) > y} (πi projection onto the i-th coordinate, i = 1, 2) are the sec-
tions along the curve from v0 to v1 and v1 to v2, respectively. The set {π1(v2) > x} is contained entirely in
�̊({(1, 1), (1, 2), (0, 1), (0, 2)}) and, similarly, {π2(v1) > y} is entirely contained in �̊({(1, 1), (2, 1), (1, 0), (2, 0)}).
Therefore, neither {π1(v2) > x} nor {π2(v1) > y} contain integers. The operation �̊ takes points as its arguments
and makes a set, the interior of the square made out of said points.

We will now induct to form a connected graph that will have precisely all the integer solutions to f1,1(x, y) = 0
as vertices.

Proof.

(1) Basis. Form the graph G1 = (V,E) with V (G1) = V (G0)∪{σ(v2), τ(v1)} and label v3 = σ(v2) and v4 = τ(v1)
so that V (G1) = {v0, v1, v2, v3, v4}, depending on the new labeling write E(G1) = E(G0) ∪ {e2,3, e1,4} =
{e0,1, e0,2, e2,3, e1,4} Fig 8. As we have seen, neither {π1(v2) > x} nor {π2(v1) > y} contain integers. By
the property of τ preserving solutions and being a vertical transformation, {π1(v4) > x} = τ({π2(v1) > y}).
Furthermore, the property that τ is an involution implies {π1(v4) > x} contains no integers. It follows in
almost the same way that {π2(v3) > y} = σ({π1(v2) > x}) contains no integers. Here we have added two
vertices, both with edges connecting them to G0. Therefore, G1 must be connected by the fact above.

(2) IH. Assume Gn = (V,E) has V (Gn) = {v0, v1, v2, ..., v2n−1, v2n} and

E(Gn) = {e0,1, e0,2, e2,3, e1,4, ..., e2n−2,2n−1, e2n−3,2n}.

Also assume that Gn is connected and neither {π1(v2n) > x} nor {π2(v2n−1) > y} contain integers.

(3) Induction Step. Form the graph Gn+1 = (V,E) with V (Gn+1) = V (Gn) ∪ {σ(v2n), τ(v2n−1)} and label
v2n+1 = σ(v2n) and v2n+2 = τ(v2n−1) so that V (Gn+1) = {v0, v1, v2, ..., v2n−1, v2n, v2n+1, v2n+2}. Dependent
on the new labeling, write

E(Gn+1) = E(Gn)∪{e2n,2n+1, e2n−1,2n+2} = {e0,1, e0,2, e2,3, e1,4, ..., e2n−2,2n−1, e2n−3,2n, e2n,2n+1, e2n−1,2n+2}.

By the hypothesis, neither {π1(v2n) > x} nor {π2(v2n−1) > y} contain integers. Then, the property of τ
preserving solutions and being a vertical transformation, {π1(v2n+2) > x} = τ({π2(v2n−1) > y}). Furthermore,
the property that τ is an involution implies {π1(v2n+2) > x} contains no integers. It follows in almost the same
way that {π2(v2n+1) > y} = σ({π1(v2n) > x}) contains no integers. In this step we have added two vertices to
Gn, both with edges connecting to Gn making Gn+1 connected by the fact already discussed.

(4) Conclusion. For each n ∈ Z≥1, Gn is connected and neither {π1(v2n+2) > x} nor {π2(v2n+1) > y} contain
integers.

From the above analysis of G0 we have, for each n ∈ Z≥0, Gn is connected and neither {π1(v2n+2) > x} nor
{π2(v2n+1) > y} contain integers. As V (Gn) ⊂ V (Gn+1) and E(Gn) ⊂ E(Gn+1) the limit of these graphs is
well-defined. We call the limit G∞. By construction G∞ is connected and V (G∞) = {(x, y) | f(1,1)(x, y) = 0} ∩ Z2.

We claim that as σ and τ contain the recurrence relation for the odd-index Fibonacci numbers along with initial
solution (g1, g0) = (1, 1) the vertices of G∞ are

V (G∞) = {(gn+1, gn)}n≥0 ∪ {(gn, gn+1)}n≥1.

This characterizes all the positive integer solutions to (4.1) for (k, l) = (1, 1).

Isolated Solutions to the Minimal Obstruction Problem
From considering the relationship between symplectic embeddings and counting functions we can now calculate
ca(1,1)n,k,l. For now though we stay general and simplify by letting an and rn denote by a(k, l)n and r(k, l)n,
respectively. With (k, l) fixed in {(1, 1), (2, 1), (3, 2)} as before. Need to show that can,k,l are points on the sub-graph
that are the discrete set of solutions to the minimum obstruction problem.
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From the definition of an, (l/k)an = (rn+1/rn)2 for n even and = (l2/k2)(rn+1/rn)2 for n odd. So what needs to
be shown is

ca(k,l)n,k,l =

{
rn+1

rn
n even

lrn+1

krn
n odd

.

We will show the above for (k, l) = (1, 1). We take (p, q) = (gn+1, gn) which we have proved satisfy the Diophantine
equation. Thus we must have that T (q/p, p/q) and T (1, 1) are equivalent, as long as p = gn+1 and q = gn are relatively
prime by applying Theorem 8. We now prove this last requirement by induction.

(i) Basis. We have g0 = 1 is relatively prime to g1 = 1 by choice of (x, y) = (1, 0),

g0 · x+ g1 · y = g0 · 1 + g1 · 0 = 1 · 1 + 1 · 0 = 1.

(ii) IH. Assume gn−1 and gn are relatively prime.

(iii) Induction Step. By assumption there exist integers (x, y) such that

gn−1 · x+ gn · y = 1.

As gn+1 = 3gn − gn−1 take (x′, y′) = (y + 3x,−x) so that we have

gn · x′ + gn+1 · y′ = gn · y + gn · (3x)− 3gn · x+ gn−1 · x = gn−1 · x+ gn · y = 1.

(iv) Conclusion. Thus, gn and gn+1 are relatively prime for all n ≥ 0.
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5 Conclusion
The final conclusion from the previous section is that can,1,1 = gn+1/gn. As an = g2

n+1/g
2
n we have then verified a

family of symplectic embeddings, parametrized by n ∈ Z≥0, namely

E

(
1,
g2
n+1

g2
n

)
s
↪−→ B

(
gn+1

gn

)
.

The ellipsoid and ball above have the same volume, g2
n+1/g

2
n, so that the points on the sub-graph of ca,1,1 are

(g2
n+1/g

2
n, gn+1/gn). These are then the discrete set of solutions to the minimal obstruction problem, which was the

verification that this thesis aimed for.
We will now discuss how we have come to this solution. The most difficult problem lay in understanding the tool

of ECH capacities. In essence, when taking the capacities for granted, the level of this thesis becomes merely of an
advanced undergraduate. Therefore, we focus on the penultimate story.

Let a, b > 0 such that a/b is irrational and Y = ∂E(a, b). The set Y is described by a line x/a + y/b = 1,
(x, y) = (π|z1|2, π|z2|2) variables in R2

≥0. By giving a topology on the line and pre-imaging back to C2 we can give Y
the topology of a smooth (closed) manifold. With the smoothness comes a contact 1-form λ giving rise to the contact
structure ξ and the Reeb vector field R (although all we care about are R’s orbits). Through λ we can define A, the
symplectic action, with critical points as Reeb orbits. We defined a way to turn Y into a symplectic manifold R×Y ,
and by following Morse theory we were motivated to study the “flow lines” in R × Y that asymptotically approach
cylinders defined by Reeb orbits. The flow lines are defined not via downward gradient flow but by a souped-up
version of the Cauchy-Riemann equations that describe J-holomorphicity via an almost complex structure J on R×Y .
By the Riemann-Roch theorem, the space of J-holomorphic curves has a local finite dimension which under further
conditions can make this space discrete. It is the count of sufficiently identified J-holomorphic curves of a specific
type that defines the embedded contact complex and, under a lot of work, the embedded contact homology. From
here the full ECH spectrum for Y was defined through filtered ECH and the minimum number of generators needed
to generate each filtered ECH module. The full ECH capacities were defined via the full ECH spectrum whenever Y
is the boundary of a Liouville domain and ω = dλ|Y , which is the case as Y = ∂E(a, b). Finally, by approximating
rational ellipsoids by irrationally parametrized ones we can define the ECH spectrum for E(a, b), a, b ∈ Q>0 and so
imply when a symplectic embedding exists from the sharpness of ECH capacities for ellipsoids.

The symplectic embeddings that we investigated were for the ellipsoid into ball problem, with the extra condition
of equal volume or minimal obstruction condition. In view of furthering this research, consider investigating how to
apply the graph theory method of the past section to (k, l) ∈ {(2, 1), (3, 2)} to find the discrete solutions to the other
minimal obstruction problems.
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A Background Geometry

A.1 Smooth Manifolds
Definition 15 (Definition 5.1, [13]). A topological space M is locally Euclidean of dimension n if every point p in
M has a neighbourhood U such that there is a homeomorphism φ from U onto an open subset of Rn. We call the
pair (U, φ : U → Rn) a chart, U a coordinate neighbourhood, and φ a coordinate map on U . The chart (U, φ) is said
to be (centered) about p if U is a neighbourhood of p and φ(p) = 0.

Note : We can always arrange for a chart to be “(centered) about” p. When we say smooth in the following, and
in the rest of this thesis, what is meant is infinitely many times differentiable (C∞). If smooth is omitted at any
moment it is because it is assumed. If a circumstance requires a class less than smooth, such a situation will be
indicated.

Definition 16 (Definition 5.2, [13]). A topological manifold is a Hausdorff, second countable, locally Euclidean space
of some dimension n.

Definition 17 (Definition 5.5, [13]). Two charts (U, φ), (V, ψ) of topological manifolds are said to be smooth com-
patible if the two maps

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ),

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ),

are smooth.

Note : Compatibility holds vacuously over U ∩ V = ∅. The two maps are inverses of each other and so are
collectively called the transition map, and the plural is left for the collection of transition maps on a manifold.

Definition 18 (Definition 5.6, [13]). A smooth atlas on a locally Euclidean topological space M is a collection
{(Uα, φα)} of pairwise smooth compatible charts that cover M , (M =

⋃
α Uα).

An atlas is called maximal if it is not contained in a larger atlas, in fact there is a unique maximal atlas on every
topological manifold (Prop. 5.10, [13])

Definition 19 (Definition 5.9, [13]). A smooth manifold is a topological manifold with a maximal smooth atlas. A
manifold is said to have dimension n if its connected components have dimension n.

There is an obvious extension to the Cartesian product of smooth manifolds. Let M and N be smooth manifolds,
with maximal smooth atlases {(Uα, φα)} and {(Vβ , ψβ)}, respectively. The maximal atlas forM×N can be obtained
by disjoint union of smooth compatible charts with the atlas {(Uα × Vβ , φα × ψβ)}.

Definition 20 (Definition 6.1, [13]). Let M be a smooth manifold of dimension n. A function f : M → R is said to
be smooth at p ∈M if there exists a chart (U, φ) about p for which f ◦φ−1 : φ(U)→ R is smooth at p. The function
f is smooth if it is smooth at every point p ∈M .

Note : The function f is not assumed to be continuous, however the definition implies that f cannot be otherwise.

Definition 21 (Definition 6.5, [13]). Let N and M be manifolds of dimension n and m, respectively. A continuous
map F : N →M is smooth at p ∈ N if there are charts (V, ψ) about F (p) and (U, φ) about p such that ψ ◦F ◦φ−1 :
φ(F−1(V ) ∩ U) → ψ(F (F−1(V ) ∩ U)) is smooth at φ(p). The continuous map F is said to be smooth (between N
and M) if it is smooth at every point p ∈ N .

A diffeomorphism F between two manifolds is a bijective smooth map F : N →M whose inverse F−1 is smooth.
In particular transition maps are (local) diffeomorphisms. It is also possible to re-write the definitions for chart as a
pair (U, φ), U still an open set but instead φ would be a diffeomorphism onto its image.

It is a fact that f : M → Rn is smooth if and only if each of its component functions f1, ..., fn : M → R are
smooth (Prop. 6.13, [13]). Furthermore, the composition of smooth functions is smooth. (Prop. 6.9, [13])

Partial derivatives of maps from manifolds into Euclidean space or into other manifolds are necessary to define.
Let M be an n-dimensional smooth manifold, f : M → R a smooth map and (U, φ) = (U, x1, ..., xn) a chart on M .
The components of φ are xi defined by ri ◦ φ with ri the standard coordinates on Rn, for i = 1, .., n. Then,

∂f

∂xi
=
∂(f ◦ φ−1)

∂ri

are equal as functions on φ(U).
In the special case that f = φ we have ∂xj

∂xi = δij , where δij is the Kronecker delta which is 0 for i 6= j and 1 for
i = j.
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Definition 22 (Definition 6.23, [13]). Let F : N → M be a smooth map, and let (U, φ) = (U, x1, ..., xn) and
(V, ψ) = (V, y1, ..., ym) be charts on N and M respectively such that F (U) ⊂ V (this condition allows us to skip the
continuity assumption present throughout). Denote by

F i := yi ◦ F = ri ◦ ψ ◦ F : U → R

the i-th component in the chart (V, ψ). Then the matrix [∂F i/∂xj ] is called the Jacobian matrix.

When taking M = N and F = 1M the Jacobian matrix becomes [∂yi/∂xj ]. This is the Jacobian matrix of the
transition map ψ ◦ 1M ◦ φ−1 = ψ ◦ φ−1. Thus, the partial derivatives of the transition map are

∂(ψ ◦ φ−1)i

∂rj
=
∂yi

∂xj
.

Equal as functions on φ(U ∩V ). We will call a manifold that has transition maps with positive Jacobian determinant
orientable. An example of an orientable manifold is the circle and the classical non-orientable surface is the möbuis
strip.

This extension of partial derivatives to manifolds allows us to consider vectors on a manifold locally as linear
combinations of partial derivative operators in the respective local coordinates given by the chart on the manifold.
Furthermore, we define an operation on a function such that the operated function applied to a partial derivative
will compute the derivative of the function. Indeed, evf (∂/∂xi) = ∂f/∂xi where ev stands for “evaluate the function
f by the following derivative” taken as the argument. In particular consider evxj , as we have already seen that
evxj (∂/∂x

i) = δij . This seems remarkably similar to the dual basis of a vector space and, in fact, it is!

A.2 Vector Bundles
Given a onto map π : E →M , the inverse image π−1({p}) (for p ∈M) is called the fiber at p. Alternative notation,
π−1({p}) = Ep with π−1(U) = EU . For two onto maps π : E →M , π′ : E′ →M (same co-domain M), φ : E → E′

is called fiber-preserving if φ(Ep) ⊂ E′p for all p ∈M .
Let π : E → M be a smooth onto map between manifolds E and M . We call π : E → M locally trivial vector

bundle of rank r if

(i) each fiber Ep has the structure of a vector space of dimension r,

(ii) for each p ∈ M there exists U an open neighbourhood of p and φ : EU → U × Rr a smooth fiber-preserving
map which when restricted to any fiber Eq, q ∈ U is a vector space isomorphism to {q} × Rr.

We call U a trivializing open set (for E) and φ a trivialization (of E over U).
A collection {(U, φ)}, {U} an open cover ofM , is called a local trivialization (for E), and {U} is called a trivializing

open cover (of M for E).
A smooth (real) vector bundle of rank r is the triple (E,M, π) consisting of (i) E (total space), (ii) M (base

space), both smooth manifolds, and (iii) a smooth onto map π : E →M locally trivial of rank r. A common, though
not completely correct, saying to describe this triple is “E is a vector bundle over M ”.

With π : E →M a smooth vector bundle of rank r, a chart (U,ψ) = (U, x1, ..., xn) on M and

φ : EU
∼−→ U × Rr, φ(e) = (π(e), c1(e), ..., cr(e))

is a trivialization for E over U . Then

(ψ × 1) ◦ φ = (x1, ..., xn, c1, ..., cr) : EU
∼−→ U × Rr ∼−→ ψ(U)× Rr ⊂ Rn × Rr

is a diffeomorphism of EU onto its image, thus a chart map on E. Explicitly the chart would be (EU , (ψ × 1) ◦ φ).
A section of a vector bundle E π−→ M is a map in the reverse direction that when composed with π gives the

identity on M . Moreover, M s−→ E with π ◦ s = 1M is a section of E, when s is a smooth section it is a section and
a smooth map of manifolds.

We denote Γ(E) for the space of smooth global sections on the vector bundle. This is a vector space over R and
a module over C∞(M,R) (smooth functions from M to R). When a smooth section is just as stated it should be
inferred that it is global, otherwise local will be the attached quantifier along with a neighbourhood U . If needed
Γ(E,U) denotes smooth local sections on U .

A smooth frame of E over M is a collection of smooth sections s1, ...sr, defined on all of M , that satisfy the
properties for being a basis on every fiber (similarly for a local smooth frame).

Given a basis on each fiber any smooth section can be decomposed onto the smooth frame, fiberwise (Prop.
12.10, [13]). Consider the case of transition maps on the bundle E. These “glue” together the pre-images by π of
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overlapping charts on M . Let (EUα , (ψα × 1) ◦ φα) and (EUβ , (ψβ × 1) ◦ φβ) be two charts on E then the transition
map is

[(ψα × 1) ◦ φα] ◦ [(ψβ × 1) ◦ φβ ]−1 : ψβ(Uα ∩ Uβ)× Rr → ψα(Uα ∩ Uβ)× Rr

and explicitly (with a smooth frame {s1, ..., sr})

(p, c1, ..., cr) 7→ (ψ−1
β (p), c1, ..., cr) 7→ (ψα ◦ ψ−1

β (p), cisi︸︷︷︸
sum

) 7→ (ψα ◦ ψ−1
β (p), d1, ..., dr)

In the following, and almost everywhere else in this thesis, Einstein summation convention is in use, i.e. whenever
two indices appear in an expression sum over the index. For a particular p the ci’s are real numbers and so are dj ’s.
There is a transformation taking each ci to dj by way of gij and summation over the upstairs with the downstairs
indices, dj = gijci. This is the so-called Einstein summation convention in practice. As we have this for each i and
j then [gij ] must be a (r × r)-matrix of real numbers. By preserving the frame (which amounts to a pointwise basis)
[gij ] ∈ GL(r,R) so that we can compute inverses. We can now retract the dependence on a point p to obtain [(gαβ)ij ]
a (r × r)-matrix of real valued functions, alternatively a (r × r)-matrix of real entries -valued function. Note that
gαβ is restricted to only act locally between overlapping charts, we call these maps gluing co-cycles. Properties of
gluing co-cycles follow, gαα = 1, gαγgγβ = gαβ , g−1

αβ = gβα. Where as the matrix valued function is non-singular at
every point then there must exist a well-defined pointwise inverse. The collection {gαβ} determine how the bundle
E over M can transform over charts.

We can also define a complex vector bundle by replacing R with C in the above. Furthermore, we will need what
it means for (E, π,M) and (E′, π′,M ′) to be isomorphic (as vector bundles), that is a pair (φ̃, φ). A smooth map
φ̃ : E → E′ that descends to a smooth map φ : M →M ′ and is also a fiberwise linear isomorphism.

A.2.1 Examples of Vector Bundles

Now to apply the ideas of the last paragraph of the previous subsection. Begin by identifying vectors v at a point
p ∈M by taking the coordinates from a chart (Uα, φα) = (Uα, x

1, ..., xn) about p and writing

v = vi(p)
∂

∂xi

∣∣∣
p
.

The collection of vectors identified like this form the tangent space of M at p, TpM .
The vector bundle E = TM = {(p, v)|v ∈ TpM} is called the tangent bundle over M with projection π(p, v) = p.
Each tangent space has the same vector space dimension, the same dimension as the manifold M , say n, so that the
bundle is of rank n. One smooth frame over a neighbourhood of p are the partial derivatives with respect to the
coordinate chart {∂/∂x1, ..., ∂/∂xn}. The transformation between overlapping charts (Uα, φα) = (Uα, x

1, ..., xn) and
(Uβ , φβ) = (Uβ , y

1, ..., yn) is given by the Jacobian matrix of the transition maps

∂

∂yj
=
∂xi

∂yj
∂

∂xi
.

Given the Einstein summation convention this formula looks almost like cancelling fractions, of course this not what
is happening here. In this case {gαβ} are the Jacobians of the transition maps between overlapping charts, (Uα, φα)
and (Uβ , φβ), on M .

By revisiting the evaluation map we could identify co-vectors w at a point p ∈M by taking the coordinates from
a chart (Uα, φα) = (Uα, x

1, ..., xn) about p and writing

w = wi(p)evxi |p.

With this collection of co-vectors we similarly form the cotangent space of M at p, T ∗pM . Note that the evaluation
of a coordinate on a partial derivative at p gives a real number. The cotangent bundle then follows from writing
E = T ∗M = {(p, w)|w ∈ T ∗pM}, with projection π(p, w) = p.

A smooth frame for the cotangent fibres in a neighbourhood of p is the evaluation of each of the coordinates in
the chart {evx1 , ..., evxn}. The transformation happens in the opposite way

evyj =
∂yj

∂xi
evxi .

Therefore the gluing co-cycles are the inverses for the Jacobian of transition maps. This has a deeper significance in
the general bundle theory where E∗ is the dual bundle to E by inverting all of the gluing cocycles.

Up until now we have avoided talking what the evaluation map is. To try to understand it further pick a chart
(U, φ) = (U, x1, ..., xn). By definition, evf (∂/∂xi) = ∂f/∂xi and because evxj (∂/∂x

i) = δji we necessarily obtain

evf =
∂f

∂xi
evxi .
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The above seems remarkably familiar to the multivariate chain-rule in calculus. In fact the usual notation for ev is
d so that the above expression becomes

df =
∂f

∂xi
dxi.

A.3 Differentiable Forms
We will need to define d on more just than functions, but before that we will need to introduce k-forms. Returning
for a moment to the notion of smooth sections: Γ(TM) =: X (M) vector fields on M , Γ(T ∗M) =: Ω1(M) with
C∞(M) =: Ω0(M). Thus, for now our evaluation map acts like ev : Ω0(M)→ Ω1(M) or d : Ω0(M)→ Ω1(M).

The element dxi is called a (differential) 1-form. Given another 1-form dxj we may take, what is called, the
wedge product ∧. This is given locally by a chart (U, φ) = (U, x1, ..., xn) and v1, v2 ∈ X (M,U)

dxi ∧ dxj(v1, v2) = det
[
dxi(v1) dxj(v1)
dxi(v2) dxj(v2)

]
= dxi(v1)dxj(v2)− dxj(v1)dxi(v2),

but can be extended globally.
Three properties drop out for the wedge product from the determinant. First, dxi ∧ dxj = 0 whenever, i = j.

Second, dxi ∧ dxj = −dxj ∧ dxi. Finally, because the determinant is linear this procedure could be done on an
arbitrary 1-form expanded on a smooth frame. A k-th wedge is a wedge product of a k number of 1-forms.

Now to define the k-th exterior power of M . This is the bundle E = ∧kT ∗M , the set of pairs (p, α) where
α belongs to the real span of all k-th wedge products of 1-forms. The sections Ωk(M) := Γ(∧kT ∗M) are called
(differentiable) k-forms. A frame using a chart (U, φ) = (U, x1, ..., xn) on M is given by

{dxI}I = {dxi1 ∧ · · · ∧ dxik}I

with I a multi-index running over all k-tuples (i1, ..., ik) such that 1 ≤ i1 < · · · < ik ≤ n. An alternative definition
of the wedge product appears for a k-form ω, l-form η in the frame above,

ω ∧ η = ωIηJdx
I ∧ dxJ .

Where the sum is over the disjoint union of I and J . Furthermore, ω ∧ η = (−1)klη ∧ ω.
From this we can now define how d acts on k-forms, from now on the map that satisfies the previous “chain-rule”

and satisfies the following extra properties will be called the exterior derivative (Prop. 19.1, [13]).

1. d ◦ d = 0,

2. d(ω ∧ α) = dω ∧ α+ (−1)kω ∧ dα, ω a k-form.

The operation satisfying the above two conditions and df = (∂f/∂xi)dxi is unique.
The first example of a co-chain complex (a sequence of modules, or vector spaces, with a differential increasing

the index that also squares to zero) will be the following

0→ Ω0(M)
d0−→ Ω1(M)

d1−→ · · · dn−2−−−→ Ωn−1(M)
dn−1−−−→ Ωn(M)→ 0.

In almost all cases each di is just denoted d. The above construction is called the de Rham complex. Note : all
k-forms with k > n are naturally 0.

We will encounter many counterparts to co-chain complexes called, just, chain complexes (sequences of modules,
or vector spaces, with a differential decreasing the index, that also squares to zero).

Those k-forms ω with dω = 0 are called closed. If there exists a (k − 1)-form η with dη = ω, we call ω exact.
Of course, all exact forms are closed which means Im di−1 ⊂ Ker di and the exact sequence of cohomology groups
Hi

dR(M) can be formed by “moduloing out” all closed forms that are not exact. More precisely, we have

0→ H0
dR(M)

d̃0−→ H1
dR(M)

d̃1−→ · · · d̃n−2−−−→ Hn−1
dR (M)

d̃0−→ Hn
dR(M)→ 0,

with d̃i the induced differentials. It will not be necessary to keep the decoration dR, nor d̃i, and so we write instead
H•(M) := H•dR(M), and d, in the sequel.

A further linear operator on k-forms takes v ∈ X (M) a vector field on M and ω a k-form, such that ιvω is a
(k − 1)-form. For (k − 1) vector fields v2, ..., vk, ιv acts like so

ιvω(v2, ..., vk) = ω(v, v2, ...vk).

We call the map that does the above and satisfies the next two properties interior multiplication (Prop. 20.8, [13])
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1. ιv ◦ ιv = 0,

2. ιv(ω ∧ α) = ιvω ∧ α+ (−1)kω ∧ ιvα, ω a k-form.

The operation satisfying the above two conditions is unique.
Due to the linearity of whichever form ιv is being applied is C∞ function linear. There is also an operation called

the Lie-derivative of a form with respect to a vector field. The Lie-derivative has many equivalence definitions. The
one presented here we will take to be a definition, Cartan’s formula,

LX(ω) = dιXω + ιXdω.

Where X is a vector field and ω a k-form, for some k.
Further, linear operations on forms include pushforwards and pullbacks. A map F : N → M lifts to map F∗,p

(pushforward at p) from the tangent space of N at a point p ∈ N to the tangent space of M at F (p). The action on
a vector Xp

F∗,p(Xp)(f) = Xp(f ◦ F ) (or in terms of evaluation) = evf◦F (Xp) = d(f ◦ F )(Xp).

Locally F∗ is the Jacobian of F , also known as the differential.
Let v1, ..., vk be vectors at p ∈ N , then the pullback on a k-form ω is

(F ∗ωp)(v1, ..., vk) = ωp(F∗,p(v1), ..., F∗,p(vk)),

(the dependence of the pullback and the vectors on a point p is dropped for convenience).
The pullback is linear over the wedge product i.e. F ∗(η ∧ ω) = F ∗η ∧ F ∗ω (Prop. 18.11, [13]), and commutes

with the exterior derivative F ∗dω = d(F ∗ω) (Prop. 19.5, [13]). To distinguish, the pullback is the same term used
to refer to ∗ acting on a function f that in turn acts on another function φ by f∗φ = φ ◦ f , a contravariant operation
on maps.

A.4 Miscellanea
A lot of geometry is not immediately necessary to understand the background material. That is why we push the
less critical definitions to this subsection. The first of those less critical definitions is a submanifold (analogous to
subset, subspace and so on). Firstly we need to define an immersion and an embedding

Definition 23. A smooth map ϕ : N → M is called an immersion at p if ϕ∗,p (the pushforward at p) is injective.
Furthermore, ϕ is called an embedding if it is an immersion for all p ∈ N and a homeomorphism onto its image.

Definition 24. We will call N a submanifold, of dimension n, of a manifold M of dimension m when n ≤ m, if N
is itself a manifold, and the inclusion map i : N →M (i(p) = p) is an embedding.

The condition homeomorphism-onto-its-image allows for the image of an embedding to have a topology induced
from the ambient manifold, making a submanifold. During this discussion of related topics to submanifolds it would
be wise to define when two submanifolds intersect transversally as this appears many times in the course of the
thesis.

Definition 25. Let N1 and N2 be two submanifolds of a manifold M . N1 and N2 are said to intersect transversally
when

for every p ∈ N1 ∩N2 TpN1 + TpN2 = TpM.

It is the case that if N1, N2 intersect transversally their intersection will only contain isolated points. This means
its dimension will be 0. A necessary condition for N1 and N2 to intersect transversally is if they have compatible
dimension, the sum of their dimensions is the dimension of the manifold M . In our special case M is of dimension 4
and the submanifolds we have investigated in Section 2 had dimension 2 so that intersection and most importantly
self-intersection could occur.

A hypersurface N of M is a co-dimension 1 submanifold. One example of a hypersurface is the boundary of
a manifold with boundary. To define this we can begin again with defining topological manifolds not by local
homeomorphisms to Rn but instead considering a different codomain. The codomain we consider is the left half-
plane Hn. The left half-plane is Hn = {(x1, ..., xn) ∈ Rn | xn ≤ 0} (which we attach the subspace topology to) and
we call those manifolds locally homeomorphic to the half-plane, manifolds with boundary. In this appendix, up until
now, we have actually been talking about manifolds without boundary which we now call closed. The construction
is now precisely the same as in appendix A.1 but substituting Rn with Hn.

The boundary of a manifold (with boundary) M is the set of those points p for which every neighbourhood of
p has homeomorphic image in Hn always intersecting with the ambient space, Rn. This is the intuitive notion of
boundary and for topological reasons it is difficult to prove that is right one but we take it as our definition in any
case. The notation for the boundary of M is ∂M . The interior of M , Int M , is defined as M \ ∂M .
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B J-holomorphic curves

B.1 Connections and Chern Class
An algebraic tool will be needed in the following which we state now. Let V and W be a finite dimensional vector
spaces and let W ∗ be the dual vector space of W then

W ∗ ⊗ V ∼= Hom(W,V ).

Where X ⊗ Y can be defined via the universal property (making it unique) of being the “filter” for any bilinear map
of the Cartesian product of vector spaces X × Y .

It is possible to apply this isomorphism fiberwise over two vector bundles E1, E2 creating the new vector bundle
Hom(E1, E2) := E∗1 ⊗ E2, where the dual of a vector bundle was encountered in appendix A.2. In particular, by
taking E1 = E2 = E, E∗ ⊗ E =: End(E) this defines the fiber-preserving linear maps from E to itself.

From this tool it is possible to consider extensions of forms that are E (total space)-valued. The whole story is
almost the same as in appendix A.1 but instead define Ωk(M,E) = Γ(∧kT ∗M ⊗ E) to be E-valued k-forms.

There is also an extension of the covariant exterior derivative for E-valued forms, namely

dE : Ωk(M,E)→ Ωk+1(M,E), with

dE(µ ∧ ω) = dEµ ∧ ω + (−1)kµ ∧ dω

where µ ∈ Ωk(M,E) and ω is some other (ordinary) form. In this case, dE ◦ dE may not be zero.

Definition 26 (9.1.1, [43]). A (Koszul) connection (∇) is a bilinear map from X (M)× Γ(E) to Γ(E), that satisfies
the following two properties:

∇X(hσ) = h(∇Xσ) + dh(X)⊗ σ
∇hXσ = h(∇Xσ).

Where h ∈ C∞(M), σ ∈ Γ(E) and X ∈ X (M).

(9.2.3.1, [43]) A Koszul connection on a vector bundle π : E → M gives rise to a uniquely defined covariant
exterior derivative dE for which the identity dEσ = ∇•σ ∈ Γ(T ∗M ⊗ E) = Ω1(M,E), holds for all σ ∈ Γ(E). Now
to define how dE acts on η ∈ Ωk(M,E): For X0, ...Xk ∈ X (M), we obtain

dEη(X0, ..., Xk) = (−1)i∇Xi(η(X0, ..., X̂i, ..., Xk)) + (−1)i+jη([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xk)1{i<j}

the ˆ denotes removal, and the bracket [_,_] is the commutator bracket of vector fields. For the case k = 0,
dEη(X0) = ∇X0η, η ∈ Ω0(M,E) = Γ(E).

(9.2.4, [43]). Let {s1, ..., sr} be a smooth frame of a rank r vector bundle E. Then, as before dEsi ∈ Ω1(M,E)
for each i, there exists a matrix [ωji ] ∈Mr(Ω

1(M,E)) for which

dEsi = sj ⊗ ωji .

The matrix of 1-forms [ωji ], for each frame, are called the connection forms. Given a section σ ∈ Γ(E,U), with U a
neighbourhood of p ∈M and a local frame {s1, ..., sr}, then at a point p

σp = (σisi)p.

Thus, locally, the covariant exterior derivative applied to any section σ is

dEσ = sj ⊗ σiωji + si ⊗ dσi.

It is possible to put further restrictions on the connection to turn it into a orthogonal/unitary connection where
the connection form takes values in the set of traceless skew-symmetric/skew-Hermitian endomorphisms of E. A
Hermitian vector bundle which is a complex vector bundle with a holomorphic structure and a Hermitian metric.
A Hermitian connection ∇ is a connection on a Hermitian vector bundle E such that ∇ is compatible with the
Hermitian metric 〈, 〉 in the following way:

d〈ξ, ζ〉 = 〈∇ξ, ζ〉+ 〈ξ,∇ζ〉, for all ξ, ζ ∈ E.

(9.3.1, [43]) We can now define the curvature of a connection form. By definition, dE(dEσ) ∈ Ω2(M,E) and is
C∞(M)-linear so that given a local frame and a section σ = σisi then

dE(dEσ) = sj ⊗ (Rjiσ
i),
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with R = [Rji ] ∈ Ω2(M,End(E)) and
Rji = ωjk ∧ ω

k
i + dωji .

When wanting to move across local frames gluing co-cycles are needed. Let g be a gluing co-cycle on the intersection
of two local neighbourhoods we have

R̂ = g−1Rg and ω̂ = g−1dg + g−1ωg,

thus R transform tensor-like whereas ω does not. Meaning ω transforms dependent on the gluing co-cycle, whereas
R does not. This fact when considering simultaneously diagonalizable matrices means

tr(R̂) = tr(g−1Rg) = tr(R)

so that tr(R) is globally defined.
A further useful property is the Bianchi identity

dRji = Rjk ∧ ω
k
i − ω

j
k ∧R

k
i ,

(9.3.6, [43]).
Given that the trace is a linear operator d(tr(R)) = tr(dR) and from the Bianchi identity

tr(dRji ) = dRii = Rik ∧ ωki − ωik ∧Rki = 0,

we see that d(tr(R)) = 0. The last equality following from the fact that Rki is a 2-form and so no sign appears
under interchange of the wedge product. We now have that tr(R) is closed and it can be shown that it defines a
cohomology class by showing that difference choices of ∇ make tr(R) differ by an exact form (Theorem 1.35 (1),
[18]). This means that [tr(R)] ∈ H2(M).

In the real case define the first chern class to be c1(E) = [tr(R)]. Locally R is skew-symmetric so that all
along the diagonals have to be zeros, implying a zero trace and thus c1(E) vanishes. In the complex case define
c1(E) = (1/2πi)[tr(R)]. Here R is locally skew-Hermitian meaning R is a purely imaginary matrix and a purely
imaginary trace. Dividing by i implies c1(E) is real. (Theorem 1.35 (2)/(3), [18]).

B.2 Singular Homology and Poincaré Duality
Definition 27. A chain complex C• is a descending chain of algebraic objects (vector spaces/modules/groups) with
a differential ∂ such that ∂k ◦ ∂k+1 = 0 for each k (usually denoted ∂2 = 0).

· · · ∂k+1−−−→ Ck
∂k−→ Ck−1

∂k−1−−−→ · · · → 0

Elements of Ck are called k-chains. Define subsets of k-chains by Z(Ck) := Ker ∂k, called cycles, and subsets of
(k + 1)-chains by B(Ck) := Im ∂k+1, called boundaries, . As ∂k ◦ ∂k+1 = 0 for each k, then Im ∂k+1 ⊂ Ker ∂k for
each k, it makes sense to take the quotient by Im ∂k+1, a sub-object. Homology is then defined as the quotients and
the k-th homology is

Hk := Z(Ck)/B(Ck).

We encounter multiple examples of homology in this thesis, we now show the build up to homology classes and
induced maps in (singular) homology. The primary reference here is Hatcher’s book, [44].

A n-simplex ∆n is the convex hull of (n+1) points v0, ..., vn such that v1−v0, ..., vn−v0 are linearly independent.
By identifying two n-simplices under an orientation preserving homeomorphism we can consider the equivalence class
of ∆n by [v0, ..., vn]. The faces of n-simplices are (n − 1)-simplices and the equivalence classes are [v0, ..., v̂i, ..., vn],
where vi is removed.

Now we will define singular homology. A singular n-simplex is a continuous map σ : ∆n → X, possibly not nicely
embedded. Let Cn(X) denote the free Z-module with generators as singular n-simplicies. Singular n-chains are sums∑
i niσi, ni ∈ Z with σi : ∆n → X. The differential here is

∂n : Cn(X)→ Cn−1(X),

∂n(σ) =

n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn].

This differential squares to zero from lemma 2.1, [44].
We may write Bn(X) := Ker ∂n for the set of (singular) boundaries and Im ∂n+1 =: Zn(X) the set of (singular)

cycles. We can now define the n-th singular homology groups as

Hn(X) := Zn(X)/Bn(X)

(page 108, [44]).
There is a notion that plays a significant throughout this thesis, that being homotopy.
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Definition 28 (page 3, [44]). A homotopy between two continuous functions f, g : X → Y is a family of continuous
functions ht : X → Y such that h0 = f and h1 = g, (x, t) 7→ ht(x) from X × [0, 1]→ Y .

Two functions f and g are called homotopic, if there exists a homotopy between them.
We call two spaces homotopy equivalent if there exist f : X → Y and g : Y → X such that f ◦ g is homotopic to

1Y and g ◦ f homotopic to 1X . A fact called homotopy invariance (Corollary 2.11, [44]) is that homotopy equivalent
spaces have isomorphic homology groups, we use this in Section 3.4.

Remark. As we are on the topic of homotopy, in this thesis “generic” J/λ/τ refers to a time-dependent collection
Jt/λt/τt which give a homotopy to standard Jstd/λstd/τstd. The philosophy around this is that the spaces of
almost complex structures, contact forms, symplectic trivializations are contractible meaning there will always exist
a homotopy to the standard structure in that space. Furthermore, if the statement of a proposition/theorem mentions
generic there is a further proof that needs to be made that the result is independent of homotopy. Then the standard
structure can be taken and thus the result is independent of that structure.

Now for the induced map in (singular) homology. A map f between spaces X and Y induces a map f# in the
chain complex. The map f# : Cn(X)→ Cn(Y ) is defined via the composition ∆• → X → Y , f# := f ◦ σ. The map
f# acts linearly, f#(

∑
i niσi) =

∑
i nif#σi =

∑
i nif ◦ σi.

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·

· · · Cn+1(Y ) Cn(Y ) Cn−1(Y ) · · ·

∂n+2 ∂n+1

f#

∂n

f#

∂n−1

f#

∂n+2 ∂n+1 ∂n ∂n−1

(page 111, [44]).
In the above figure we need to show that each square commutes, i.e. f#∂ = ∂f#.

f#∂(σ) = f#

∑
i

(−1)iσ|[v0,...,v̂i,...,vn]

=
∑
i

(−1)i f ◦ σ︸ ︷︷ ︸
f#σ

|[v0,...,v̂i,...,vn]

= ∂f#(σ).

Due to this commutation f# becomes a well-defined map which now induces the chain map f∗ : Hn(X)→ Hn(Y ).
Then f∗ is well-defined because of the following claim, f# takes cycles to cycles (1) and boundaries to boundaries
(2). We have f#∂ = ∂f#. Let α be a cycle, then ∂α = 0, and

∂(f#α) = f#(∂α) = f#(0) = 0.

The first equality follows from the commutation relation and the last equality from the linearity of f#. The preser-
vation of boundary follows directly from the commutation relation: f#∂β = ∂f#β for all β.

The two basic properties of the chain map are: (1) (fg)∗ = f∗g∗, ∆
σ−→ X

g−→ Y
f−→ Z. With (fg)∗ : Hn(X) →

Hn(Z), and (2) 1∗ = 1.
Singular homology appears multiple times so we attempt to better understand it via familar objects, submanifolds.

The lecture notes of Nicolaescu [45], specifically Section 7.3 on intersection theory and background from Section 7.2,
will be our primary reference in the following.

Let M be a smooth oriented n-dimensional manifold without boundary. Before discussing intersection theory we
have to explain a relevant detail associated to de Rham cohomology missed from appendix A.1, namely Poincaré
duality.

We attempt to explain this by stating the following pairing for Ωk(M)×Ωn−kc (M). The subscript c on the second
coordinate denotes •-forms with compact support meaning those •-forms ω with Cl(M \Ker(ω)) is compact. For a
smooth n-dimensional manifold M , the pairing is the following (Section 7.2.2, [45])

〈ω, η〉 =

∫
M

ω ∧ η.

The pairing is a map into R and equal to the above if ω ∈ Ωk(M) and η ∈ Ωn−kc (M), otherwise the pairing is
0. Fixing ω forces the map to be D = Dk : Ωk(M) → (Ωn−kc (M))∗ : ω 7→

∫
M
ω ∧ • (with codomain the dual of

Ωn−kc (M)). We would like to show that this map is independent of cohomologous elements. As this is a linear map
we only need show that D(ω)(dρ) = 0 for ρ ∈ Ωn−k−1(M) and some closed k-form ω,

D(ω)(dρ) =

∫
M

ω ∧ dρ =

∫
M

(ω ∧ dρ+ (−1)kdω ∧ ρ) = (−1)k
∫
M

d(ω ∧ ρ) =︸︷︷︸
Stokes

(−1)k
∫
∂M

ω ∧ ρ = 0,
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as M is a manifold without boundary. Stokes refers to Stokes Theorem (Theorem 23.12, [13]) which says
∫
M
dω =∫

∂M
ω whenever ω an (n−1)-form andM a manifold of dimension n. After a similar computation there is an induced

map also D : Hk(M)→ (Hn−k
c (M))∗ where H•c (M) is the cohomology generated from the co-chain complex Ω•(M).

In other words, the pairing 〈•, •〉 : Hk(M) × Hn−k
c (M) → R is well-defined. Poincaré duality is then the induced

dual map (Hk(M))∗ to Hn−k
c (M) under the isomorphism between the second dual of a finite vector space and itself.

Our plan is to define a new homology which we can then identify with singular homology, and further with de
Rham cohomology via Poincaré duality. These identifications will lead to defining the intersection number associated
to compatible dimension cycles in singular homology.

Let M be a smooth oriented n-dimensional manifold. A k-dimensional cycle in M is a pair (S, φ) such that S is
a compact (oriented) k-dimensional manifold without boundary and φ : S → M a smooth map. Denote Ck(M) for
the set of pairs (S, φ), (Def. 7.3.1, [45]).

We will define an equivalence relation of Ck(M), ∼c.

(S1, φ1) ∼c (S2, φ2) ⇔ there exists Σ and Φ : Σ
smooth−−−−→M such that

{
∂Σ = (−S1) t S2

Φ|Si = φi, i = 1, 2

(Def. 7.3.2, [45]).
Where we have used the notation −S1 is the same manifold as S1 with the opposite orientation, and also t

for disjoint union. We say two cycles satisfying the equivalence relation are cobordant, side note Φ is called the
cobordism of cobordant cycles. The set Ck(M) modulo cobordant cycles will be Zk(M), and [S, φ] the equivalence
class of (S, φ) in Zk(M).

Further properties of cycles include trivial, meaning there exists Σ a (k + 1)-dimensional compact manifold with
boundary such that ∂Σ = S, and there exists Φ : Σ → M smooth map such that Φ|S = φ. Under the further
assumption that M is connected the trivial cycles form the unit equivalence class [0], the notation for which will
become clear in a moment.

Moreover, a cycle (S, φ) is degenerate if and only if (S, φ) is cobordant to (S′, φ′) such that φ′ is constant on each
of the connected components of S′.

If given (S1, φ1), (S2, φ2) cobordant cycles then ((−S1) t S2, φ1 t φ2) is a trivial cycle. To see this take Σ and Φ
as in the definition of the equivalence relation. From assuming ∼c is actually an equivalence relation, an addition of
classes can be defined like so

[S1, φ1] + [S2, φ2] := [S1 t S2, φ1 t φ2].

Under the claim that this addition is well-defined (and commutative) along with [0] the unit element turns Zk(M)
into an Abelian group, with inverses −[S, φ] = [−S, φ]. To define Hk(M), we form the subgroup generated by all
degenerate cycles and take the quotient of Zk(M) by this subgroup, (Prop. 7.3.4, [45]).

To each cycle there is a linear functional in (Hk(M))∗ defined for ω ∈ Hk(M) as
∫
S
φ∗ω. Then from the discourse

on Poincaré duality we may identify this map with an element of Hn−k
c (M). We use δS to symbolize the Poincaré

dual of the cycle (S, φ).
There are four properties of δ• to make sure our map is well-defined on the group Hk(M). Firstly, δ• is the

same element, up to exact form, over cobordant cycles. It is trivial (i.e. the 0 element in Hn−k
c (M)) on trivial

cycles. The dual is additive over disjoint unions, with additive inverse on oppositely oriented cycles. So that now
δ : Hk(M)→ Hn−k

c (M) is well-defined and which we will call the homological Poincaré duality, (Prop. 7.3.10, [45]).
We now define invariants associated to pairs of cycles. Given M a smooth connected oriented n-dimensional

manifold M and S a k-dimensional submanifold of M , the inclusion map ι : S ↪→ M is smooth and (S, ι) defines a
k-cycle in M .

Given a (n−k)-cycle (T, φ), T an oriented manifold, we can define the intersection number when S is transversal
to φ. Transversallity will occur when (a) φ−1(S) intersection with T is finite and (b)

φ∗(TxT ) + Tφ(x)S = Tφ(x)M (direct sum).

Define the intersection number of S and T at x, denoted ix(S, T ). This number is equal to 1 when the tangent
spaces φ∗(TxT ) and Tφ(x)S have the same orientation with respect to the tangent space Tφ(x)M and −1 if they have
opposite orientations, with respect to Tφ(x)M . Then by finiteness condition we define the “full” intersection number
of T and S by

S · T =
∑

x∈φ−1(S)

ix(S, T ),

(Def. 7.3.11, [45]).
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B.3 Cauchy-Riemann Type Operators
Keeping in the general framework of Section 2 it will be necessary to first prove that ∂ satisfies a Leibnitz rule. That
being, for any smooth section v ∈ Γ(E) and f ∈ C∞(Σ) we have

∂(fv) = f∂(v) + (∂f)⊗ v.

Proof.

∂(fs) = d(fv) + J ◦ d(fv) ◦ j
= df ⊗ v + f(dv) + J [df(j•)⊗ v + f(dv(j•))]
= f(dv) + J(f(dv(j•))) + df ⊗ v + J(df(j•)⊗ v)

= f [dv + J(dv(j•))] + [df + J(df(j•))]⊗ v
= f [dv + J ◦ dv ◦ j] + [df + J ◦ df ◦ j]⊗ v
= f∂(v) + (∂f)⊗ v.

Given a holomorphic structure on E, a collection of holomorphic gluing co-cycles gαβ : Uα ∩Uβ → GL(n,C). By
natural identification GL(n,C) ∼= GL(2n,R) there is a standard complex structure ι̂. To say g ∈ C∞(Σ,GL(n,C)) is
holomorphic it means the following expression is zero

∂ ι̂(g) = dg + ι̂ ◦ dg ◦ j.

As g is matrix valued function then it can be thought of instead as a matrix of smooth functions. Let gjk be the
kj-th function of the matrix, then the above formula descends to the holomorphic operator ∂, which by the above
condition must be zero.

To prove that our section is well-defined will need to prove that it transforms tensor-like, i.e. g−1 ◦ ∂̂ ◦ g = ∂. To
that end choose a smooth frame {v1, ..., vn} and act on the transformed frame. Then

∂̂(gjkvj) = ∂̂(gjk)⊗ vj + glk∂̂(vl) = glk∂̂(vl) = glk∂(vl).

Therefore, there is no need to distinguish between ∂ and ∂̂, and our section is now globally defined. Note that this
depended primarily on the fact that the components of the transition map were holomorphic. Therefore, ∂ (the
anti-holomorphic operator) would not be globally defined as there would be dependence on the transition map.

From our discussion so far, including Section 2, it seems prudent to generalize the types of operators we are
encountering. Indeed,

Definition 29 (Definition 2.41, [10]). A Complex-Linear Cauchy-Riemann type operator on (E, J) → (Σ, j) is a
complex linear map

D : Γ(E)→ Γ(Hom(TΣ, E)),

satisfying the Leibnitz rule

D(fv) = (∂f)v + f(Dv), for all v ∈ Γ(E), f ∈ C∞(Σ).

For brevity we shall write C-linear C-R type operator for Complex-Linear Cauchy-Riemann type operator. Fix
(E, J)→ (Σ, j) and D,D′ are C-linear C-R type operators. Then for some v ∈ Γ(E)

(D −D′)(fv) = (∂f)v + f(Dv)− (∂f)v − f(D′v) = f(D −D′)(v)

so that D′ −D is C∞-linear. Similar to the case for (Koszul) connections we can decompose D′ −D onto a smooth
frame and make a matrix of E-valued complex anti-linear 1-forms. As ∂ is itself a C-linear C-R type operator we
can take D′ = ∂ and recover a Cristoffel symbols type theorem.

Take some connection ∇ : Γ(E)→ Γ(HomR(TΣ, E)), then

∇+ J ◦ ∇ ◦ j : Γ(E)→ Γ(HomC(TΣ, E))

is a C-linear C-R type operator.
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Proof. Firstly, (∇+J ◦∇◦j) is C-linear from the fact that ∇ is C-linear. The complex anti-linearity is by construction
as the addition of J ◦ ∇ ◦ j projects off the complex linear term.

Now for the Leibnitz rule, let f ∈ C∞(Σ) and v ∈ Γ(E) be arbitrary

(∇+ J ◦ ∇ ◦ j)(fv) = ∇•(fv) + J(∇j•(fv))

= df ⊗ v + f∇•(v) + J(df(j•)⊗ v + f∇j•(v))

= df ⊗ v + J(df(j•))⊗ v + f(∇•(v) +∇j•(v))

= (∂f)⊗ v + f(∇+ J ◦ ∇ ◦ j)(v).

We will take the following to be fact.

Proposition 5 (Proposition 2.44, [10]). If there exists a Hermitian vector bundle (E, J)→ (Σ, j) with C-linear C-R
type operator D : Γ(E)→ Γ(HomC(TΣ, E)), there exists a unique Hermitian connection ∇ such that D = ∇+J◦∇◦j.

We will need real-linear Cauchy-Riemann type operators in the sequel which necessitates a definition.

Definition 30 (Definition 2.48, [10]). A Real-Linear Cauchy-Riemann type operator on a complex vector bundle
(E, J)→ (Σ, j) is a real-lienar map D : Γ(E)→ Γ(HomC(TΣ, E)) such that the Leibnitz rule is satisfied

D(fv) = (∂f)v + f(Dv), for all f ∈ C∞(Σ,R), v ∈ Γ(E).

We will write, simply R-linear C-R type operator for Real-Linear Cauchy-Riemann type operator.
Returning for a moment to the state of affairs, first of all (Σ, j) a Riemann surface and (M,J) an almost complex
manifold. Then B = C∞(Σ,M) is an infinite-dimensional smooth manifold (Banach manifold) and symbolically
E → B is a Banach space bundle over B with fibers Eu = Γ(HomC(TΣ, u∗TM)). By pulling back J on TM define a
complex bundle structure on u∗TM → Σ. The tangent space over the manifold B, TuB = Γ(u∗TM) so that tangent
vectors at a point u ∈ B are just vector fields along u.

We define, as discussed before, the section of the Banach space bundle by

∂J : B → E ,
∂Ju = du+ J ◦ du ◦ j.

Of course, we are interested in the set ∂
−1

J ({0}). In an analogy to the finite dimensional case we use the inverse
function theorem to create a differentiable structure. Of course, we have a problem the inverse function theorem is
for finite dimensions but this technicality will not effect us too much. In any case there does exist an inverse function
theorem for Banach manifolds and there is a much more pressing problem that our operator is not linear. We need
our operator to be approximated by a linear operator so that we may apply Fredholm theory.

For now we will only concern ourselves with the finite dimensional case. Let E → B be a smooth vector bundle
of real rank k, over an n-dimensional manifold B. Let s : B → E be a smooth section transverse everywhere to
the zero section, meaning s−1({0}) ⊂ B defines a smooth submanifold of dimension (n − k) (Theorem 2.5.1, [10]).
Now choose a (Koszul) connection ∇ on E → B. The map (∇s)p : TpB → Ep is independent of this choice for
p ∈ s−1({0}), due to the fact that TE splits canonically into horizontal and vertical subspaces along the zero section.
Keep in mind this idea going forward as it will appear again in this appendix as we are aiming to have a connection
independent result.

At once we linearize s at p ∈ s−1({0}) by writing

Ds(p) : TpB → Ep.

Intersections of s with the zero section happen only at s−1({0}) and we have a transverse intersection if and only if
Ds(p) is surjective for each p ∈ s−1({0}) (this is why the Fredholm operator needs to be surjective).

Now let us apply the ideas from the finite dimensional case to the infinite. First, consider the Banach space
bundle Ê that contains E as subbundle, with fibers Êu = Γ(HomR(TΣ, u∗TM)). Choose a connection ∇ on M and
Ê , meaning it has as first slot a vector field on M and second slot a smooth section of Hom(TΣ, •∗TM) where the •
will be replaced by u ∈ B.

Take a smooth parametrization of a path τ 7→ uτ ∈ B (a path of smooth functions) and a section `τ ∈ Êuτ , along
the path. We will assume that the covariant derivative ∇τ `τ ∈ Êuτ has the form

(∇τ `τ )(X) = ∇τ (`τ (X)) ∈ (u∗τTM)z = Tuτ (z)M, z ∈ Σ, X ∈ TzΣ

A simplification in symbols has been made by ∇τ = ∇∂/∂τ . We will also use ∂τ = ∂/∂τ , both out of convenience.
Notice also, as was the case for the finite dimensions, ∇τ `τ is independent of the connection ∇ at any τ such that
`τ = 0.
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Now to linearize ∂J . Let u ∈ ∂−1

J ({0}) further let {uτ}τ∈(−1,1) be a smooth family of maps such that u0 = u
with ∂τuτ |τ=0 =: η ∈ Γ(u∗TM). The linearization is

D∂J(u) : Γ(u∗TM)→ Γ(Hom(TΣ, u∗TM)),

the unique linear map such that

D∂J(u)η = ∇τ (∂Juτ )|τ=0

= ∇τ [duτ + J(uτ ) ◦ du ◦ j]|τ=0. (B.1)

The J(uτ ) appears to emphasize that the almost complex structure on TM has been pulled back to u∗τTM .
To obtain a tangible expression pick holomorphic coordinates s+ it near z ∈ Σ and evaluate on ∂s by (B.1)

∇τ [duτ + J(uτ ) ◦ du ◦ j]|τ=0∂s = ∇τ [∂suτ + [J(uτ )∂t]uτ ]|τ=0. (B.2)

A symmetric connection ∇ on M satisfies the condition ∇XY −∇YX = [X,Y ]. Where [X,Y ] is the commutator
bracket of vector fields, is zero for commuting vector fields which are all we will encounter. So for us a symmetric
connection amounts to the property ∇XY = ∇YX. We are allowed to enforce this condition without penalty due to
the result being connection independent. Therefore,

∇τ∂suτ |τ=0 = ∇s∂τuτ |τ=0

= ∇sη and
∇τ∂tuτ |τ=0 = ∇t∂τuτ |τ=0

= ∇tη.

Notice the swap via the symmetry of the connection.
Then (B.2) can be re-written after the following computation,

∇sη +∇τ ([J(uτ )∂t]uτ )|τ=0 = ∇sη + (J(uτ )|τ=0)∇tη + [∇τ (J(uτ ))∂t]uτ |τ=0

= ∇sη + J(u)∇tη + [∇τ (u∗τJ)∂t]uτ |τ=0 connection acting on the pullback
= ∇sη + J(u)∇tη + [(∇∂τuτ |τ=0

J)∂t]u

= ∇sη + J(u)∇tη + [(∇ηJ)∂t]u.

The first equality is from applying the Leibnitz rule. Removing the coordinates we result in

D∂J(u) = ∇η + J(u) ◦ ∇η ◦ j + (∇ηJ)du ◦ j. (B.3)

What is surprising is that the above expression is not only linear but also complex anti-linear thus D∂J is not only
a section of Ê but of E as well (pages 44-45, [10]). Now to prove this.

Proof. We will begin by showing that for any vector field X, ∇XJ and J anticommute. Firstly, take some vector
field X, remembering that J maps TM to TM and thus is a (1, 1)-tensor, the covariant derivative then acts like so

(∇XJ)(Y ) = ∇X(J(Y ))− J(∇XY ), for all vector fields Y.

We need to show the expression (∇XJ)(JY ) + J(∇XJ)(Y ) vanishes for all vector fields X,Y . Indeed, let X,Y be
any two vector fields then

(∇XJ)(JY ) + J(∇XJ)(Y ) = ∇X(J(J(Y )))− J(∇X(J(Y ))) + J(∇X(J(Y )))− J2(∇XY )

= −∇XY +∇XY − J(∇X(J(Y ))) + J(∇X(J(Y ))) = 0.

Therefore, J(∇XJ)J = ∇XJ and in particular for X = ∂η, J(∇ηJ)J = ∇ηJ . The first two terms of (B.3) form a
complex anti-linear map so that we need only concern ourselves with the third term. By projecting off the complex
linear term we result in

(∇ηJ)du ◦ j − J ◦ ((∇ηJ)du ◦ j) ◦ J = 0

which follows precisely from the anti-commutativitiy property we have shown already.

From now on we use (B.3) as a definition
Du := D∂J(u),

this is a real-linear map taking vector fields along u to sections of HomC(TΣ, u∗TM). To prove that Du defines a
R-linear C-R type operator it is left to show that the Leibnitz rule is satisfied
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Proof.

Du(fη) = ∇(fη) + J(u) ◦ ∇(fη) ◦ j + (∇fηJ) ◦ du ◦ j
= df ⊗ η + f∇η + J(u) ◦ (df ⊗ η + f∇η) ◦ j + f(∇ηJ)du ◦ j
= [df + J(u) ◦ df ◦ j]⊗ η + f∇η + fJ(u) ◦ ∇η ◦ j + f [(∇ηJ)du ◦ j]
= [df + J(u) ◦ df ◦ j]⊗ η + f [∇η + J(u) ◦ ∇η ◦ j + (∇ηJ)du ◦ j]
= (∂f)⊗ η + fDuη.

There is a theorem we have missed that we will be state now as it pertains to creating a holomorphic structure
on a vector bundle. The vector bundle in question will be HomC(TΣ, u∗TM).

Theorem 9 (Theorem 2.45, [10]). For any complex-linear Cauchy-Riemann type operator D on a complex vector
bundle (E, J) over a Riemann surface (Σ, j), there is a unique holomorphic structure on (E, J) such that the naturally
induced ∂-operator is D.

The idea is to use the linearized operator Du to define a holomorphic structure on HomC(TΣ, u∗TM) so that du
is a holomorphic section. As we have covered (Σ, j) is in fact a complex manifold so that TΣ → Σ has a natural
holomorphic structure, it is thus possible to talk about holomorphic vector fields on Σ. To this end we now supply
two more lemmas without proof.

Lemma 5 (Lemma 2.55, [10]). Suppose X is a holomorphic vector field on some open subset U ⊂ Σ, U ′ ⊂ U is
another open subset and ε > 0 a number such that the flow ϕtX : U ′ → Σ is well-defined for t ∈ (−ε, ε). Then the
maps ϕtX are holomorphic.

This is a characteristic situation of flows and the idea of the proof is to work in local holomorphic coordinates.
Then apply the local ∂ operator to the flow and use uniqueness results of ODEs to surmise the flow, for any time,
vanishes under the operator.

Lemma 6 (Lemma 2.56, [10]). For any holomorphic vector field X defined on an open subset U ⊂ Σ, Du[du(X)] = 0
on U .

In a sufficiently small neighbourhood it is possible to define the flow ϕtX which is holomorphic by the above lemma
so that maps along the flow are J-holomorphic.

We have that the C-R type operator Du is R-linear, what we require instead is C-linear. So we project off the
complex anti-linear part

DC
u :=

1

2
(Du − J ◦ Du ◦ J),

with the innocuous introduction of a half. This defines a C-linear map

Γ(u∗TM)→ Γ(HomC(TΣ, u∗TM)),

and, as has nearly always been the case, we prove the defined map satisfies the Leibnitz rule

DC
u(fη) =

1

2
[(∂f)⊗ η + (Duη)f − J ◦ ((∂f)⊗ η + (Duη)f) ◦ J ]

=
1

2
[(∂f)⊗ η − J2((∂f)⊗ η)] + [DC

uη]f

=
1

2
[(∂f)⊗ η + (∂f)⊗ η] + fDC

uη

= (∂f)⊗ η + fDC
uη.

This makes DC
u into a C-linear C-R type operator.

The induced bundle u∗TM → Σ for any smooth J-holomorphic curve u : Σ→M admits a holomorphic structure
for which holomorphic vector fields along u satisfy DC

uη = 0. In addition, for any local holomorphic vector field X
on Σ,

DC
u [du(X)] =

1

2
Du[du(X)]− 1

2
JDu[J ◦ du(X)] = −1

2
JDu[du(jX)] = 0.

The last equality follows from (jX) also being a holomorphic vector field, and ∂J(u) = 0. Now du(X) is a holomorphic
section on u∗TM whenever X is holomorphic on TΣ. Therefore, du ∈ Γ(HomC(TΣ, u∗TM)) is holomorphic. Now
we are able to enforce conditions on the space of critical points of u.
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Corollary 3 (Corollary 2.59, [10]). If u : Σ→M is smooth and J-holomorphic and not constant then

Crit(u) := {z ∈ Σ | du(z) = 0}

contains at most a countable number of points.

This corollary is important for making the jump from somewhere-injective to almost everywhere injective J-
holomorphic curves, see Section 2.

B.4 Sobolev Completions of Vector Bundles
To begin talking about Sobolev Completions we must understand the motivation. In the theory of PDEs some
solutions may not carry the same amount of derivatives that would be expected from being a solution. In these cases
a type differentiability is associated, weak differentiability. We are supported in this discussion by the book of Evans
[46].

We begin with the most well-behaved functions we could conceivably come up with, smooth functions with
compact support on an open domain U ⊂ Rn. We denote the space of these functions by C∞c (U) and φ belongs to
this space if it vanishes outside U and we can take an infinite number of its derivatives. Sometimes φ is called a test
function. On this space the following is well-defined, for α = (i1, ..., in) a multi-index we write Dαφ = ∂i1x1

· · · ∂inxnφ.
This operator on φ takes each partial derivative in the coordinate xj of φ, ij-times for j = 1, ..., n. We let |α| =
i1 + · · ·+ in be the degree of the operator Dα. We will need a further definition to apply this operator to functions
not of this well-behaved type.

In the definition below we will employ L1
loc(U) which is the space of locally L1-functions on U i.e. if u ∈ L1

loc(U)
then for each open relatively compact V such that V ⊂ U , u is L1-integrable on V . We assume in this subsection
that the reader is familiar with basic integration theory, if not review here [47].

Definition 31 (Section 5.2.1, [46]). Suppose u, v ∈ L1
loc(U) and α a multi-index. We say v has a weak α-th partial

derivative of u, which we write v = Dαu. This is only possible if∫
U

uDαφdx = (−1)|α|
∫
U

vφ

for every test function φ ∈ C∞c (U).

The integral identity can be shown to be satisfied by a test function φ and a “normally” degree |α| differentiable
function u. This is via |α| applications of integration by parts, which picks up the sign (−1)|α|. It is then natural to
ask for such an identity to hold for the weak-case.

Now to define Sobolev spaces, which are essentially function spaces that have weak derivatives lying in Lp spaces.

Definition 32 (Section 5.2.2, [46]). The Sobolev space W k,p(U) consists of all locally L1 functions u : U → R such
that for each multi-index α with |α| ≤ k we have that u is weak α differentiable and its weak derivative Dαu is in
Lp(U).

From now on we identify functions in W k,p(U) that are equal almost everywhere. It is possible to define a norm
that makes W k,p(U) into a Banach space (Theorem 2, [46]) which is precisely the reason we took this detour in the
first place. For applications, we care about taking n = 2 and identifying R2 with C. This is because the domain
of our functions will be a Riemann surface Σ. Define the locally Sobolev functions W k,p

loc (U) as those functions on
U ⊂ C that belong to W k,p(V ) for each relatively compact V such that V ⊂ U .

Properties of these spaces follow now. Let U ⊂ C with smoothly varying boundary, then there are natural
continuous inclusions of W k+d,p(U) into Cd(U) whenever kp > 2 (for d non-negative integer). We also have the
obvious inclusion of W k,p into W k−1,p.

Further related properties of W k,p(U) need the requirements, k ≥ 1 and p > 2. First being that W k,p(U) forms
a Banach algebra. The second is pairing that composes a continuous function f , defined on an open subset Ω with
u ∈W k,p(U) is continuous. For this to be well-defined u(U) ⊂ Ω, the pairing explicitly is (f, u) 7→ f ◦ u.

The properties of the last 2 paragraphs is the content of Lemmma 2.96 of Wendl [10]). They will be needed to
define a differentiable structure on the Sobolev type sections of vector bundles displayed in Section 2. The theory
behind those bundles will be exposed now.

Exposition of Banach manifold and Banach space bundles rely on Lang’s book ([48]). First some preliminaries.
Let E be a real vector space. We call E a topological vector space when E has a topology in which + and · are

continuous. Also assume E is Hausdorff and locally convex. By the later we mean every neighbourhood of 0 contains
a neighbourhood U of 0 such that for 0 ≤ t ≤ 1, tU + (1− t)U ⊂ U .

The maps between topological vector spaces E and F are continuous linear maps. Let L(E,F ) denote the space of
these maps. If T ∈ L(E,F ) is invertible with continuous and linear inverse then T is called a toplinear isomorphism.
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The set of toplinear isomorphism, Lang denotes by Lis(E,F ) and defines Laut(E) := Lis(E,E). The linear maps
of linear maps will be denoted L2(E,F ) = L(E,L(E,F )). Those maps of L2(E,F ) that are symmetric in their
arguments will be L2

sym(E,F ).
A Banachable space is a complete topological vector space with a topology induced by a norm. With a norm

that induces the topology, a Banachable space becomes a Banach space. Such a norm is not unique but there is no
harm in just as well calling Banachable spaces with some norm a Banach space. Via corollary to the open mapping
theorem any continuous bijective linear map between Banach spaces E and F is actually a toplinear isomorphism.
The set L(E,F ) is also a Banach space. From now on all topological vector spaces are Banach spaces.

Now to discuss the generalization of differentiation to this situation. Let E and F be two topological vector
spaces. Assuming the existence of norms on E and F , we call ϕ tangent to 0 if ‖ϕ(x)‖F ≤ ‖x‖Eψ(x). Where ψ is
such that limx→0 ‖ψ(x)‖F = 0. The maps ‖ · ‖E and ‖ · ‖F are norms on E and F , respectively.

Let U be open in E and f : U → F a continuous map. Define f to be differentiable at x0 ∈ U if there exists λ a
continuous linear map from E to F by letting

f(x0 + y) = f(x0) + λy + ϕ(y)

for y near 0 and ϕ tangent to 0. The map λ is called the derivative of f at x0 and written Df(x0) or f ′(x0) or df(x0).
If f is differentiable at all x0 ∈ U then f is just called differentiable and we denote the derivative Df ∈ L(E,F ).

If f is differentiable then f is of class C1. Define inductively when f is of class of Ck by saying Df is of class
Ck−1. Note that for f of class C2, D2f := D(Df) ∈ L2(E,F ). Furthermore, if f is locally homogeneous of degree 2
i.e. when f(tx) = t2f(x) for t > 0 then action of f is (1/2)D2(f)(0))(x, x). If f is of two variables then D1 and D2

are the partial derivatives with respect to each coordinate.
By an extension of the chain rule we can say if two maps f and g are of class Ck then so is their composition

f ◦ g. From the setting of Banach spaces we have an analogous implicit function theorem which means that it is
possible to write down the inverse of a function f that has locally non-singular derivative df .

Now to deal with actual manifolds. The following is a radically generalized definition which we will restrict very
soon.

Definition 33 (Section 2.1, [48]). Let X be a set. An atlas of class Ck (k ≥ 1) on X starts as a collection of pairs
(Ui, ϕi) (called charts) with i in some indexing set. This collection must satisfy the following conditions

(i) Each Ui is a subset of X and ∪iUi ⊃ X.

(ii) Each ϕi is a bijection from Ui onto an open subset ϕi(Ui) of some Banach space Ei and for any i, j, ϕi(Ui∩Uj)
is open in Ei.

(iii) For Ui, Uj with non-empty intersection, the map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is a Ck-isomorphism for each pair of indices i, j.

Note that even though X is just a set, the topology on X can be induced from the atlas. It should be remarked
upon that the Ck-isomorphism can only be guaranteed by the implicit function. Furthermore, in the definition X
does not even need to be necessarily Hausdorff (or second countable), nor do the Ei in (i) need to be the same.
However, we will not need this type of generality and require X to be Hausdorff, second countable and there to exist
a Banach space E that replaces Ei for each i. In the language of Lang this would be an E-atlas.

We call a chart (U,ϕ), an open subset U of X is compatible with the atlas {(Ui, ϕi)} if ϕ : U → U ′ with U ′

an open subset of E and ϕi ◦ ϕ−1 is a Ck-isomorphism for each i. Two atlases are compatible if their charts are
mutually compatible. Compatibility of atlases is an equivalence relation and by defining a Ck differentiable structure
on X we mean to choose a equivalence class of compatible atlases. Then by saying that X is an E-manifold, or a
manifold modelled by E, we mean that X has a differentiable structure, a collection of atlases that are all E-atlases.
We recover finite dimensional manifolds by letting E = Rn for some n > 0.

From manifolds we move to vector bundles immediately. This brings us one step closer to the technicalities of
Theorem 2 as we will now understand the framework to define the Banach space bundles used there.

Definition 34 (Section 3.1, [48]). Let X be a manifold of class Ck, k ≥ 0, π : E → X is a linear continuous map,
where E is a Banach space. Let {Ui} be an open covering of X such that, for each i, we have a mapping

τi : π−1(Ui)→ Ui × E.

Together the pairs {(Ui, τi)} must satisfy

1. Each map τi is a Ck-isomorphism and commutes with the projection on Ui. This means, the following diagram
commutes
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π−1(Ui) Ui × E

Ui

τi

Specifically, there is an isomorphism on each fiber (write τi(x) or τix)

τix : π−1(x)→ E.

2. For two Ui and Uj , the map
τjx ◦ τix : E → E

is a toplinear isomorphism.

3. For Ui, Uj with non-empty intersection, the map from Ui ∩ Uj into Laut(E,E) is portrayed as

x 7→ (τj ◦ τ−1
i )x.

The collection of pairs {(Ui, τi)} is a trivializing covering for π (or for E), and {τi} are the trivializing maps.
Under x ∈ Ui, τi trivializes at x.

We call two trivializing covers {(Ui, τi)} and {(Vj , µj)} equivalent if their pairs mutually satisfy (ii) and (iii).
This is an equivalence relation and an equivalence class of trivializing cover defines a vector bundle structure on π
(or E). We say E is the total space and X the base space as in the finite dimensional case. By moving the Banach
space structure of E to each fiber π−1(x) via the toplinear isomorphism τix of (ii), these fibers become Banachable
spaces. Then using (iii) this Banachable structure will be same. Same meaning that choosing distinct norms via
two distinct toplinear isomorphisms τix and τjx on the same fiber, these norms will turn out to be equivalent.

Before describing the Banach space bundles used in the technical details and connect this train of theory back
to Sobolev completions will need a very useful function in many sub-fields of geometry, the exponential map. The
exponential map for our purposes will define a differentiable structure on maps of class W k,p from the Riemann
surface Σ and the almost complex manifold M .

First of all the first example of a Banach space bundle is the tangent bundle over a manifold. Let X be a manifold
of class Ck (k ≥ 1). Let x be a point in X, we will consider triples (U,ϕ, v) with (U,ϕ) a chart about x and v an
element of ϕ(U) lying in a vector space that X is modelled on. Two triples (U,ϕ, v) and (V, ψ,w) will be called
equivalent if and only if the following identity holds

(ψ ◦ ϕ−1)′(ϕ(x))v = w.

From the chain rule this is an equivalence relation and we call equivalence classes of triples [(U,ϕ, v)] tangent vec-
tors of X at x. The tangent space of X at x, Tx(X), is the collection of these equivalence classes. The tangent bundle
of X will be T (X) = {(x, [U,ϕ, v]) | [U,ϕ, v] ∈ Tx(X)} with natural projection π : T (X) → X by π(x, [U,ϕ, v]) = x
is a vector bundle, in Lang’s sense, of class Ck−1. In analogy to the differential or pushforward we will define a map
between tangent spaces from a map Ck, f : X → Y between manifolds X and Y . At x ∈ X denote Tx(f) for the
map between Tx(X) and Tf(x)(Y ) for the pushforward of f at x. This map acts locally as simply the derivative. By
simplifying an equivalence class [U,ϕ, v] to just v we find Tx(f)(v) = (f(x), f ′(x)v).

In this specific example a section, a Ck−1 toplinear map ξ : X → T (X) satisfy π ◦ ξ = 1X , is called a vector field
as previous. In the local picture by identifying T (U) with U ×E, U open subset of X and E a Banach space. Then ξ
has two components (g1, g2) where the condition π ◦ ξ = 1X implies that g1(x) = x. So that ξ(x) = (x, g2(x)), from
ξ being Ck−1 then g2 is also Ck−1 toplinear map. We can take this one step further by defining the double tangent
bundle as T (T (X)) a Ck−2 manifold with projection Tπ : T (T (X))→ T (X). Sections of this bundle will be needed
in defining the exponential map through integral curves.

Firstly, a curve is a map α : J → X, X a manifold both of class Ck (k ≥ 2) and J an open interval in R. An
integral curve of a vector field ξ is map of open interval J containing 0 in R, α : J → X with initial starting point
α(0) = x0 and α′(t) = ξ(α(t)) for all t ∈ J . On points of uniqueness and existence we will rely on Section 4.1 of
Lang’s book and from now on assume both. For α′ we mean Tα ◦ ι, with ι(t) = (t, 1). Assume from now on J is an
open interval containing 0.

We call β a lifting of a curve α : J → X of class Cl (l ≤ k) into T (X) such that β : J → T (X) and π ◦ β = α. A
second-order vector field over X is a toplinear map F of class Ck−2 such that Tπ ◦ F = 1X . For each integral curve
β of F with canonical lifting π ◦ β then (π ◦ β)′ = β.

Let α : J → X be a curve in X, we say α is geodesic with respect to F if the curve α′ : J → T (X) is an integral
curve of F . In the local situation, U an open subset of X and E a Banach space, we identify T (U) with U ×E and
T (T (U)) with (U × E) × (E × E). Here π maps from U × E to U and Tπ from (U × E) × (E × E) to U × E. By
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writing (x, u, v, w) ∈ (U × E) × (E × E) then Tπ(x, v, u, w) = (x, u). Similar to vector fields on X there is a local
representation, a Ck−2 map f : U ×E → E ×E that has two components (f1, f2). Under the requirement that f is
a local representation of a vector field on T (U) then f(x, v) = (v, f2(x, v)). Now α is a geodesic with respect to F
such that α′ = v, α′′ = f2(x, v).

We care about those vector fields F on T (X) called sprays which have local representative f2 as a homogeneous
map of degree 2 in the second variable. With f2 as above and U an open subset of X and we require f2(x, tv) =
t2f2(x, v) for all t > 0 and x ∈ U . By the previous discussion f2 has action as follows f2(x, v) = (1/2)D2

2f2(x, 0)(v, v).
It is also possible to define a spray via a symmetric bilinear map x 7→ B(x) such that B(x) = (1/2)D2

2f2(x, 0). Making
this local situation global over the entire manifold is tackled in Proposition 3.4 of Lang and not discussed here.

Finally, by letting F be a spray on X and βv an integral curve with respect to F with initial condition v. Then
define a map v 7→ βv(1) and exp(v) = πβv(1) where v can only be mapped if βv is at least defined on [0, 1], this
is achievable by Theorem 2.6 and Corollary 2.7 of [48]. Denote by expx the restriction of exp to the tangent space
Tx(X) so that expx : Tx(X)→ X. The exponential map is of class Ck−2 when X is a manifold of class Ck (k ≥ 2).
The use for the exponential is a way to locally reconstruct X from its tangent bundle T (X).

Now with all of this theory we can get to the applications bringing Sobolev completions together with the space of
J-holomorphic curves. As a reminder the space we are trying to study is a subset of smooth functions from Riemann
surface (Σ, j) and symplectic 4 dimensional almost complex manifold (M,J)

{u ∈ C∞(Σ,M) | du ◦ j = J ◦ du}.

From what we have been discussing of maps between tangent bundles an equivalent the condition could replace the
above avoiding misleading notation, Tu ◦ j = J ◦ Tu. In any case we need to understand the Sobolev completions of
vector bundles to apply the linearization of the Cauchy-Riemann type operator of appendix B.3 rigorously.

Let Σ be a Riemann surface and consider a general vector bundle of rank r, E over Σ. We write W k,p
loc (E) for

those sections of E → Σ are of class W k,p on relatively compact subsets of a given open subset of Σ. Maps between
manifolds can be defined similarly. When Σ is compact W k,p

loc (E) and W k,p(E) agree, we will assume this for Σ to
avoid more complicated problems of non-canonical topology. That topology, we define now which will be put the
structure of a Banach space on the fibers. From Σ being compact we can pick a finite covering {Ui}mi=1,m <∞ and
assume there exists respective chart maps ϕi such that Ωi := ϕi(Ui) ⊂ C with trivilizations Φi : EUi → Ωi × Cr.
Along with, the covering, charts and trivilizations, we will need a partition of unity {αi : Σ→ [0, 1]}mi=1 subordinate
to the covering. A partition of unity is guaranteed to exist for a topology (Theorem 36.1, [49]) and on manifolds
(Prop. 13.6, [13]), they work like follows. A collection of real-valued maps with sum

∑m
i=1 αi = 1 which could be

subordinate to a covering, which means supp(αi) ⊂ Ui. The exact definition is not very important, the purpose of
the αi’s are to globally define the following norm, for any section v : Σ→ E

‖v‖Wk,p(E) =

m∑
i=1

‖pr2 ◦ Φi ◦ (αi · v) ◦ ϕ−1‖Wk,p(Ωi).

The norm inside the sum is the norm on functions of class W k,p from Ωi to Cr(= R2r). Let us check the function
inside the sum is well-defined,

Ωi
ϕ−1
i−−→ Ui

αi·v−−−→ EUi
Φi−→ Ωi × Cr pr2−−→ Cr.

So that we are in the situation of the previous Sobolev theory with n = 2r. These fibers with this norm are actually
Banachable spaces, but we are not too concerned as it is possible to make them Banach spaces. Furthermore, the
norm is not canonical but, luckily enough, the topology induced is canonical.

Now we will consider maps of Sobolev type between manifolds where we will impose kp > 2, which implies that
our maps are at least continuous. This is the beginning of making Theorem 2 rigorous as we turn to B = C∞(Σ,M)
and making B into a complete space Bk,p = W k,p(Σ,M). In that theorem we had that the tangent space at a point u
was TuB = Γ(u∗TM), so we analogize and assume TuBk,p = W k,p(u∗TM) giving motivation to following definition.

Definition 35 (Definition 3.4, [10]). Let k ∈ N and p ≥ 1 be such that kp > 2, pick any smooth connection ∇ on
M and a smooth function g from Σ to M . Pick a neighbourhood Ug of the zero section in g∗TM such that for every
z ∈ Σ, the exponential map exp restricted to Ug ∩ Tg(z)M is an embedding. Then define the space of maps of class
W k,p between Σ and M as

W k,p(Σ,M) := {u ∈ C0(Σ,M) | u = expgη with g ∈ C∞(Σ,M) and η ∈W k,p(g∗TM)}.

What do we mean then by exp as we previously defined via a spray. Well this happens via the connection ∇. We
say that γ is a geodesic with respect to ∇ when ∇γ̇(t)γ(t) = 0. But then

∇γ̇(t)γ(t) = 0 ⇐⇒ γ̈(t) = f2(γ(t), γ̇(t)).
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Noting that any γ has image in M . We now lift to X = C∞(Σ,M) by defining B(g)(η, η) = (1/2)D2
2f(g, 0)(η, η)

with f(x, v) = (v, f2(x, v)), f2 from above and g ∈ X, η ∈ W k,p(g∗TM). This defines bilinear map but also a local
representation of a spray, as we know the result, in the end, is connection independent so that this choice does not
matter intensely.

What does matter is that by using the Lemma 2.96 of Wendl’s notes, the properties of Sobolev spaces, implies
a W k,p-differentiable structure can be put onto W k,p(Σ,M). What is entirely non-obvious is that this structure is
given through maps η 7→ expfη taking open subsets W k,p(g∗TM) into C0(Σ,M).

The last note to play, let Ek−1,p be a Banach space bundle with fibers Ek−1,p
u = W k,p(Hom(TΣ, u∗TM)) with

Banach space structure defined via the norm as in the general case but with E = Hom(TΣ, u∗TM). The rest of the
linearization can now be carried out but using the inverse function theorem for Banach manifolds on the smooth
section

∂J : Bk,p → Ek−1,p : u 7→ du+ J ◦ du ◦ j

about zero.
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