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A computational approach to predicting 
drug resistance in kinase dependent 
lung cancer 

Abstract 
The use of kinase inhibitors in cancer treatment has shown much potential in improving how 

common variants of lung cancer are treated (Gautschi et al., 2012; Han et al., 2005; Shaw et al., 

2013). The major issue all current inhibitors face is that after a period of treatment, resistance 

against the drugs tends to develop. A common mechanism for drug resistance in kinase driven lung 

cancer is the emergence of secondary mutations (Barouch-Bentov & Sauer, 2011). In some cases, it is 

possible to switch to a different inhibitor after resistance develops (J. C.-H. Yang et al., 2017). While 

this is often known for the most common resistance mutations, in cases with novel mutations there 

is often little to no information available to make informed clinical decisions. Computational methods 

such as homology modeling and molecular docking could provide a solution to this issue, but large 

scale implementation of such methods is difficult as it currently requires a large time investment by 

knowledgeable experts to interpret the relevant data (van Kempen et al., 2018). To help resolve this 

issue, molecular docking filters were designed that can identify docking poses that provide indicators 

of drug sensitivity in an automated manner. Validating these filters using known resistance mutations 

showed that such a method has the potential to drastically reduce the workload required to draw 

conclusions from docking data, potentially allowing for broader application of computational 

methods in predicting drug efficacy and informing clinical decision-making. 

Introduction 
Non-small cell lung cancer (NSCLC) causes around 1.6 million deaths worldwide each year, making it 

one of the leading causes of death in the western world (Heron, 2018; Wasserman, 2015). Based on 

cell size, the disease can be categorized into small-cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC). Out of these two types, NSCLC is by far the most common, making up around 85% of 

all cases (Hammerschmidt & Wirtz, 2009). 

Like all forms of cancer, NSCLC is the result of uncontrolled cell proliferation. A common mechanism 

by which this occurs in NSCLC as well as other cancer types, is deregulation of kinase signaling (Paul & 

Mukhopadhyay, 2004). Kinases are involved in the regulation of many cellular processes including 

cell-growth, differentiation and apoptosis (ZHANG & LIU, 2002). Knowledge about the expression of 

mutated kinases in tumors is of high importance, as it often warrants the use of specific drugs to 

better treat the patient (Singh, Singh, & Silakari, 2016; Thomas, Rajan, & Giaccone, 2012). Kinases 

that are most commonly mutated in NSCLC to form oncogenic drivers are the epidermal growth 

factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B (BRAF) and Anaplastic 

Lymphoma Kinase (ALK). Taken together, mutations in these kinases drive an estimated 19-30% of all 

NSCLC cases (Kris et al., 2011; Vijayalakshmi & Krishnamurthy, 2011).  
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EGFR 
Out of the tree kinases mentioned previously, the epidermal growth factor receptor is the most 

common driving factor in the development of lung cancer (Kris et al., 2011; Vijayalakshmi & 

Krishnamurthy, 2011). EGFR is a member of the ErbB family of kinases and consists of an extracellular 

domain containing the ligand binding site, a membrane-spanning hydrophobic domain and a 

cytoplasmic domain containing the tyrosine kinase domain (Ferguson, 2008). 

In wild-type EGFR, the binding of an agonist such as epidermal growth factor (EGF) to the 

extracellular domain activates EGFR by causing dimerization and a structural change in the 

intracellular tyrosine kinase domain (Figure 1) (Lemmon & Schlessinger, 2010; X. Yu, Sharma, 

Takahashi, Iwamoto, & Mekada, 2002). Once activated, specific tyrosine residues are phosphorylated 

which can recruit proteins with Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains 

(Normanno et al., 2006). These adaptor proteins can activate several signaling pathways such as 

MAPK and AKT, which are involved in regulating cell growth, proliferation and cell survival (Figure 2). 

Because of this, improper activation of EGFR can be a driving factor in cancer (Normanno et al., 2006; 

Oda, Matsuoka, Funahashi, & Kitano, 2005). 

 

Figure 1 - Schematic view of EGFR (shown in blue and purple) dimerization after binding of Epidermal growth factor 
(ligands are displayed in red). The cell membrane is displayed as a gray bar (adapted from: Goodsell, 2010). 
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Figure 2 - ErbB activated pathways responsible for the oncogenic effects of uncontrolled EGFR activation (adapted from 
Normanno et al., 2006) 

Deregulation of EGFR function can occur due to several reasons. These include increased EGFR 

expression due to gene amplification, mutations activating EGFR or a combination of the two. 

Activating mutation of EGFR consist primarily of exon 19 deletions and point mutations in exon 21 

(Yoshida et al., 2007). Such mutations cause a change in the equilibrium between catalytically active 

and inactive EGFR, favoring bioactive conformations (A. Kumar, Petri, Halmos, & Boggon, 2008). In 

the past decade, much effort has been made to develop drugs that can prevent aberrant EGFR 

signaling. For this purpose, the EGFR tyrosine kinase inhibitors erlotinib, gefitinib, dacomitinib, 

afatinib and osimertinib were developed. These drugs target the ATP binding site on the tyrosine 

kinase domain, preventing ATP from binding and thus halting the phosphorylation of EGFR targets 

(Cakar & Göker, 2016). In clinical trials, such drugs were shown to provide a clear survival advantage 

over conventional chemotherapy when applied selectively to patients with EGFR driven NSCLC 

(Rosell et al., 2012; J. C.-H. Yang et al., 2017). In this patient group, these EGFR tyrosine kinase 

inhibitors (TKIs) are FDA approved and are currently used in clinical practice.  

ALK 
Another kinase that forms a common driving factor in NSCLC is Anaplastic Lymphoma kinase (ALK). 

ALK is believed to have a physiological function in the brain development during embryogenesis 

(Bayliss, Choi, Fennell, Fry, & Richards, 2016). Contrary to EGFR which is expressed in healthy tissue, 

ALK serves no physiological function in in adult human lung tissue and is normally not expressed here 

(Uhlen et al., 2015). Since ALK expression is limited in healthy tissue, ALK is a drug target that can be 

used to target cancer cells expressing it in a selective manner. In cancer, ALK expression is commonly 

the result of gene rearrangement leading to its expression as a fusion gene (Roskoski, 2013). ALK 

fusions were first identified in anaplastic large-cell lymphoma (ALCL) where it is mostly expressed as 
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a fusion with nucleophosmin (NPM). Currently, over 20 different ALK fusions have been reported in 

different types of cancer (Shaw & Engelman, 2013). In NSCLC, ALK is commonly expressed as a fusion 

with Echinoderm microtubule-associated protein-like 4 (EML4) (Zeng & Feldman, 2016). 

ALK fusion proteins show constituent activity and are oncogenic due to their ability to activate 

signaling pathways involved in regulating cell survival and proliferation. Pathways influenced by ALK-

fusion proteins can be seen in Figure 3 and include PI3K-AKT, JAK-STAT and MAPK (Roskoski, 2013). 

Studies have shown that the growth of tumors expressing ALK tends to be dependent on its 

continued expression (Gerber & Minna, 2010). To take advantage of this, ALK inhibitors can be used 

to treat tumors expressing ALK-fusion proteins. In the past decade, multiple such inhibitors have 

been developed and are now used in clinical practice. In clinical studies, ALK inhibitors were shown to 

greatly benefit patients with ALK-positive lung cancer compared to chemotherapy treatment 

(Roskoski, 2017; Rothenstein & Chooback, 2018; Shaw et al., 2013). For ALK inhibition, the inhibitors 

crizotinib, ceritinib, alectinib, brigatinib are currently FDA approved. Another inhibitor, entrectinib, is 

currently under FDA review and could be added to this list in the future (Drilon et al., 2017).  

 

Figure 3 - Signaling pathways activated by ALK-fusion proteins. (Adapted from Roskoski, 2013) 

BRAF 
BRAF is a serine/threonine kinase that is part of the mitogen activated protein kinase (MAPK) 

signaling pathway (Peyssonnaux & Eychène, 2001). This pathway is involved in many processes 

related to cell proliferation, growth and survival (Sánchez-Torres, Viteri, Molina, & Rosell, 2013). Like 

its isoforms ARAF and CRAF, BRAF belongs to the Rapidly Accelerated Fibrosarcoma (RAF) family of 

kinases. In healthy tissue, the MAPK pathway is activated as a result of growth factors binding to a 

trans membrane receptor tyrosine kinase (Seger & Krebs, 1995). This results in a cascade of protein 

activation in which BRAF is activated by RAS after which it in turn phosphorylates MEK. This cascade 
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results in the activation of ERK which is then transferred to the nucleus where it activates 

transcription factors that promote cell proliferation and inhibit apoptosis (Figure 4)(Sánchez-Torres 

et al., 2013). BRAF as a driver in cancer is most commonly seen in melanoma where ~66% of tumors 

show activating BRAF mutations (Davies et al., 2002). In NSCLC, the percentage of cases showing 

activating mutations of BRAF is significantly lower at ~3% of patients (Brose et al., 2002). While BRAF 

mutations are a relatively rare occurrence in NSCLC, due to the large amount of total cases, BRAF 

remains an important drug target in this condition. The most common activating mutations of BRAF 

are a substitution of the val600 residue with glutamic acid (V600E) or lysine (V600K) (Bradish & 

Cheng, 2014; Luk et al., 2015). V600 mutation results in the formation of constituently active BRAF 

monomers (Spagnolo, Ghiorzo, & Queirolo, 2014). For treatment of NSCLC expressing V600 mutated 

BRAF, the inhibitors dabrafenib and vemurafenib are used in clinical practice. Using these inhibitors, 

a better progression free survival is obtained compared to using conventional chemotherapy (Amaria 

et al., 2018; Larkin & Fisher, 2012).  

 

Figure 4 – Overview of the RAS-RAF-MEK-ERK signaling pathway. Oncogenic activation of BRAF can drive tumor growth 
through deregulation of this pathway (adapted from Sánchez-Torres et al., 2013) 

Drug resistance 
Based on results from clinical trials, it has been shown that treatment of kinase dependent NSCLC 

with kinase inhibitors is very effective. However, while these therapies are highly effective initially, 

treatment with any of the current inhibitors leads to the emergence of drug resistance. This is a 

major limiter on the efficacy of these treatments (Bean et al., 2008; Ryohei Katayama, 2018; R. J. 

Sullivan & Flaherty, 2013). A common mechanism by which drug resistance emerges is through 
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secondary mutations of the kinase (Bean et al., 2008; Li et al., 2017).While such a mutation might 

render he current therapy ineffective, it is in many cases possible to switch to another inhibitors that 

is still effective (J. C.-H. Yang et al., 2017). However, while the drug sensitivity of some common 

mutations is well known, in cases of uncommon or novel mutations medical professionals often have 

little to no information available to help inform clinical decision-making.  

In order to resolve this issue, tumor boards at the UMCG have implemented computational methods 

such as homology modeling and molecular docking to predict the effects of mutations on drug 

efficacy. In this manner, drug sensitivity has been assessed in over 70 cases in which little to no 

literature information was available. This has allowed for more informed clinical decision making in 

cases with novel resistance mutations (van Kempen et al., 2018). While this method can provide 

medical experts with the information they need to make informed clinical decisions, interpreting the 

data currently requires a large time investment by knowledgeable experts. Molecular docking can 

lead to the generation of up to hundreds of potential binding poses per drug which currently have to 

be evaluated manually. This is a major limitation on the scalability of such methods which prevents 

them from being implemented more broadly in the treatment of patients. 

In order to resolve this limitation, molecular docking filters were designed to identify binding poses 

with predictive value in regard to the efficacy of kinase inhibitors. The filters that were designed for 

this are based around well understood geometric restrictions on the various interactions between 

the drugs and the kinases in the bound form. This report describes the setup of a computational 

pipeline starting from the mutation to the filtering of the docking dataset. The filters will be validated 

by examining the filtering results for mutations with known sensitivity or resistance to kinase 

inhibitors. This way, the report looks to show if these filters can be used to greatly reduce the work 

required to extract predictions of drug efficacy from computational data. Should that be the case, 

then this potentially enables a broader implementation of computational methods to predict drug 

efficacy in patients expressing novel kinase mutations. This could allow for patients to be treated in a 

more personalized and effective manner, while preventing side-effects from ineffective treatments. 

Materials and methods 

Homology modeling 
The first step to computationally predicting the effects of mutations on the efficacy of drugs is to 

determine the effects of said mutation on the structure of the target protein. An accessible method 

for doing so is homology modeling. Using this method, the structure of a protein of interest can be 

predicted based on the known structure of a protein with high sequence identity (Waterhouse et al., 

2018). In order for reliable models to be generated, the sequence identity of the template structure 

with the structure of interest should be as high as possible (Gromiha, Nagarajan, & Selvaraj, 2019). In 

the case of the kinases ALK, BRAF and EGFR, this criterion can be met by making use of publicly 

available crystal structures for these kinases from the RCSB protein databank (Berman, 2000). By 

using these crystal structures as templates, the difference between the generated models and the 

template structures is limited to only a few amino acids. Since this is only a minor difference, it is 

expected to result in the generation of reliable high quality homology models. 
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In order to predict drug efficacy accurately, an effort has to be made to ensure that the homology 

models generated can accurately represent the protein as it interacts with the inhibitors. For this 

purpose, a selection of PDB crystal structures was made based on four selection criteria. The first 

criterion was related to the presence of mutations in the template structures. Generally, this should 

be avoided as it likely reduces the sequence identity with the mutant structures. For this reason, in 

ALK and EGFR only wild-type crystal structures were selected as templates. For BRAF, structures 

containing the V600E mutation were also used. This was done since this is the most common primary 

BRAF mutation seen in patients, and the inhibitors are specifically indicated for cases with V600 

mutated BRAF (Holderfield, Deuker, McCormick, & McMahon, 2014). Because of this, many of the 

secondary mutations where it would be useful in practice to predict BRAF inhibitor efficacy concerns 

mutations that include an alteration of the V600 residue. In order to ensure the highest possible 

sequence identity in BRAF, mutations containing V600 mutations will be modeled using templates 

containing the V600E mutant. Furthermore, some of the BRAF crystal structures available through 

the PDB contain several surface residue mutations to assist in expression, since these are not 

believed to impact the overall structure of the kinase, these will be ignored for the purpose of model 

selection (Tsai et al., 2008). 

The second selection criterion is related to the structure of the kinase domain. The inhibitors 

discussed in this report bind their respective kinases in specific conformations. In the computational 

setup used, it is therefore important to select templates that show conformations compatible with 

inhibitor binding. To ensure this, two aspects of the protein structure will be used as inclusion criteria 

for template structures. These aspects are the positioning of the regulatory αC-helix as well as the 

DFG motif (Figure 5). These aspects are indicative of the catalytic activity of the kinase conformation 

(Roskoski, 2013; Vijayan et al., 2015). In bioactive conformations, both the αC-helix and the DFG 

motif are in the so called “in” position. The difference between the αC-in and αC-out position can be 

seen in Figure 6. The αC-in position allows the helix to form the interactions necessary for catalytic 

activity (Roskoski, 2017). The DFG-motif refers to the orientation of the “Asp-Phe-Gly (DFG)” residues 

in the activation loop. The DFG motif is referred to as “out” if it is rotated away from its conformation 

in the active state (Treiber & Shah, 2013). As can be seen in Figure 7C/D, the state of the DFG motifs 

has a large impact on the positioning of the activation segment of the kinase and determines the 

accessibility of an allosteric binding pocket (Nagar et al., 2002). The EGFR and ALK inhibitors referred 

to in this report can bind to catalytically active conformations of their respective kinase (Roskoski, 

2016). In order to properly assess binding in the computational setup, templates will therefore be 

selected to have the αC-in and DFG-in conformation. For the BRAF inhibitors dabrafenib and 

vemurafenib however, templates will be selected that are DFG-in but αC-out. This is because the 

sulfonamide group in these drugs causes a shift of the αC-helix to the out position, making them 

incompatible with rigid αC-in structures (Roskoski, 2016). 

Thirdly, a requirement was set for the resolution of the structure. Structures with high resolution are 

not useful for the purpose of predicting drug binding since there is much uncertainty in the location 

of the atoms in the structure. Because of this, structures with a resolution above 3 Å were not used 

for the modeling. 

The last selection criterion is used to ensure that the static structures selected are in a conformation 

that is compatible with the binding of inhibitors. The binding of ligands to proteins can cause changes 

in their structure which is commonly referred to as “induced fit” (Morando et al., 2016). When 
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working with static models, this can greatly impact the models ability to properly bind the inhibitors 

(Grebner et al., 2016). Because of this, only crystal structures co-crystallized with one of the 

inhibitors that will be used for docking were selected for the modeling step. 

Since the homology models are generated based on models that have an inhibitor co-crystallized, it is 

important to take into account that the induced fit effect can cause these models to show bias 

towards binding the co-crystallized drug. To highlight the effect co-crystallization with specific ligands 

has on the obtained crystal structure, Figure 8 shows the variation in the location of residues in EGFR 

crystal structures bound to various inhibitors. As can be seen in this figure, significant variation in the 

location of residues can be seen in many of the residues surrounding the binding pocket. To mitigate 

this problem, ensemble docking will be used. This entails that every drug is docked on a set of 

homology models based on different crystal structures (Amaro et al., 2018). This way, a larger 

portion of the conformational space of the kinase can be explored to more accurately identify which 

mutations hinder drug binding. 

To find models that suit the template criteria, a PDB search was done for EGFR, BRAF and ALK 

structures in complex with the inhibitors mentioned previously. Whether or not these models passed 

the template criteria was assessed through visual inspection in PyMOL. The results of this analysis 

can be seen in Table 1,   
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Table 2 and Table 3. Based on the template criteria, the selection of templates was as follows: For 

EGFR, the structures 1M17, 4G5J, 4WKQ, 4I23 and 4ZAU met all criteria and were selected as 

templates. In BRAF, 3OG7, 4XV2, 4RZV and 5CSW were selected. Though the 4RZV model does 

contain an additional R509H mutation, this model was still selected as the mutation is well known to 

prevent BRAF dimerization but has not shown an effect on inhibitor binding (Poulikakos et al., 2011). 

After model selection, the public modeling server SWISS-MODEL was used for the generation of 

homology models. This is a well-established protein modeling server based on the ProMod3 

modeling engine (Waterhouse et al., 2018). 

 

Figure 5 – EGFR kinase domain and ATP binding pocket. Highlighted are the regulatory αC-helix as well as the DFG-motif. 
These aspects are used in the selection of template crystal structures for the generation of homology models. 

 

Table 1 – EGFR crystal structures taken from the PDB. Structures were assessed on being in the active conformation, the 
presence of existing mutations and their resolution. 

EGFR 
models 

Ligand Mutation Resolution αC & DFG 
in 

4HJO erlotinib V924R 2.75Å No 

1M17 erlotinib - 2.6Å Yes 

4I22 gefitinib V924R/L858R/T790M 1.71Å No 

4WKQ gefitinib - 1.85Å Yes 

3UG2 gefitinib G719S/T790M 2.5Å Yes 

2ITO gefitinib G719S 3.25Å Yes 

2ITY gefitinib - 3.42Å Yes 

2ITZ gefitinib L858R 2.8Å Yes 

4G5J afatinib - 2.8Å Yes 

4G5P afatinib T790M 3.17Å No 
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4I23 dacomitinib - 2.8Å Yes 

4I24 dacomitinib T790M 1.8Å No 

4ZAU Osimertinib - 2.8Å Yes 
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Table 2 - BRAF crystal structures taken from the PDB. Structures were assessed on being in the active conformation, the 
presence of existing mutations and their resolution. 

BRAF 
models 

Ligand Mutation Resolution αC-helic DFG-
motif 

5CSW dabrafenib - 2.66Å out in 

4XV2 dabrafenib V600E 2.5Å out in 

5HIE dabrafenib β3-αC del 3Å malformed in 

4RZV vemurafenib R509H 2.99Å out in 

3OG7 vemurafenib V600E 2.45Å out in 

 

Table 3 - ALK crystal structures taken from the PDB. Structures were assessed on being in the active conformation, the 
presence of existing mutations and their resolution. 

ALK models Ligand Mutation Resolution αC & DFG 
in 

2XP2 crizotinib - 1.9Å Yes 

2YFX crizotinib L1196M 1.7Å Yes 

4ANQ crizotinib G1269A 1.76Å Yes 

4ANS crizotinib L1196M/G1269A 1.85Å Yes 

5AAA crizotinib L1198F 1.73Å Yes 

5AAB crizotinib C1156Y/L1198F 2.2Å Yes 

5AAC crizotinib C1156Y 1.7Å Yes 

4MKC ceritinib S1281G 2.01Å Yes 

6MX8 brigatinib - 1.96Å Yes 

5FTO entrectinib - 2.22Å Yes 

4CLI lorlatinib - 2.05Å Yes 

4CLJ lorlatinib L1196M 1.66Å Yes 
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Figure 6 – Overlay of an active and inactive EGFR kinase domain. The αC-helix can be seen to be in the αC-in and αC-out 
conformations n the active and inactive conformations respectively. 
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Figure 7 – The DFG motif and its effect on kinase structure. A) The DFG motif in the active “in”-conformation B) The DFG 
motif flipped in the inactive “out”-conformation. C) Kinase structure in the DFG-in conformation, the activation segment 
is highlighted in yellow. D) Kinase structure in the DFG-out conformation. The activation segment is highlighted in yellow 
and an allosteric pocket that is accessible in this conformation is highlighted in the yellow circle. (adapted from Treiber & 
Shah, 2013) 
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Figure 8 - Averaged location of alpha-carbon in the PDB structures used for homology modeling. The width of the line 
and the color indicate the root mean square deviation (RMSD) in the location of the atoms. Atoms with more variation in 
their location are represented by a greater line width. The RMSD values displayed range from 0.08 (dark blue), to >1.5 
(red). (The displayed range of values was clamped at a max of 1.5Å to make differences in variability across the structure 
more visible)  (PDB IDs used: 1M17, 2ITW, 2ITX, 2ITY, 2J6M, 4G5J, 4I23, 4WKQ, 4ZAU, 6D8E) 

 

Molecular docking 
After homology modeling, clinically used small molecule inhibitors for the modeled kinase will be 

docked used Smina. This is an open-source molecular docking program based on Autodock Vina 

(Koes, Baumgartner, & Camacho, 2013). 

The inhibitors used for the docking were Erlotinib, gefitinib, afatinib, dacomitinib and osimertinib for 

EGFR, Dabrafenib and Vemurafenib for BRAF and alectinib, brigatinib, ceritinib, crizotinib, entrectinib 

and lorlatinib for ALK. When generating binding poses, Smina makes use of a randomized monte-

carlo search algorithm to find ways in which the ligand can bind the protein that reduce the free 

energy of the system (Trott & Olson, 2009). In order to guarantee that the ATP binding pocket is 

properly searched for possible binding modes, both the area for the search and the search depth 

need to be properly defined. To make the entirety of the binding pocket accessible for the search 

algorithm, the search location will be defined as the boxed position of the co-crystallized ligand of a 

PDB crystal structure expanded by 5 angstrom in all directions. The ligand locations selected come 

from PDB structures 6MX8, 3OG7 and 4ZAU for ALK, BRAF and EGFR respectively. To guarantee that 

this area covers the binding pocket in its entirety, All homology models were aligned to the crystal 

structure from which the ligands location was used to define the area. After the alignment, the 

search area was validated visually using PyMOL (Figure 9). 
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Figure 9 – Search areas defined for docking of inhibitors on structures of EGFR, BRAF and ALK. The boxes outlining the 
search area can be seen to cover the binding pockets entirely. 

For the docking runs, the search exhaustiveness was set to 32 and SMINA was set to look for at most 

25 poses within an energy range of 10kcal/mol of the highest predicted affinity pose found. Other 

settings were left at their default. Using these settings, Smina was used to obtain a list of up to 25 

possible binding poses for each drug with a predicted binding affinity for each pose in kcal/mol. Since 

the search function used relies on randomization, docking of the ligands was repeated in triplicate to 

increase the reproducibility of the search. 

In order to validate that binding poses closely resembling the drug binding modes seen in crystal 

structures can be generated in this manner, cross docking was performed. Here, the inhibitors for 

each kinase were docked onto the PDB crystal structures for the templates selected for the 

generation of homology models without introducing any mutations. To ensure the process is similar 

to what will be done with the homology models and to fill out missing residues, the PDB crystal 

structures were first submitted to SWISS-Model using their original FASTA sequences as the target. 

After static docking, the extent to which the generated poses resembled the known binding modes 

was quantified by calculating a root mean square deviation for each pose. When calculating the 

RMSD for these poses, it has to be noted that not all atoms in the drug interact with the kinase in the 

bound state. Parts of these drugs are exposed to the solvent, allowing for much variation in the 

position of these atoms. Because of this, using an all atom RMSD would not provide an adequate 

indicator for the quality of a generated binding pose. An example of this is shown in Figure 10, this 

figure shows a SMINA generated pose for gefitinib that maintains all interactions with the kinase that 

the crystal structure pose forms. However, since the solvent exposed tail doesn’t align with the 

crystal structure binding pose, the all atom RMSD (2.83Å) doesn’t reflect this. To rectify this, a 

selection of atoms was made to represent the part of the drug whose location is strictly defined in 

the bound state. The first selected point makes use of a characteristic hydrogen bond these inhibitors 

form with the hinge region of the kinase. An overlay of the EGFR, BRAF and ALK inhibitors in which 

this bond is highlighted can be seen in Figure 11. The second and third atom were selected to be the 

atoms furthest removed from the bond that are still in the same plane as the hydrogen bond 

acceptor atom. These three points define the location of a ring structure whose location is strictly 

determined by a combination of the hydrogen bond and hydrophobic interactions. Additional points 

were added based on other interactions formed between the drug and kinase. Many of the inhibitors 
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contain an aryl group that occupies a hydrophobic pocket near the ATP binding site. These include 

the EGFR inhibitors Erlotinib, Gefitinib, afatinib and dacomitinib, as well as both BRAF inhibitors and 

the ALK inhibitors crizotinib, ceritinib, brigatinib and entrectinib. Since the positioning of this group is 

well defined by hydrophobic interactions, a point was added to define the position of this ring. All 

atoms selected for the RMSD calculation are shown in Figure 12, Figure 13 and Figure 14. 

During the re-docking, poses with an RSMD of 2Å or lower will be accepted as highly similar to the 

crystal structure binding pose. This cutoff was chosen as it is commonly used to identify similar 

binding poses (Ravindranath, Forli, Goodsell, Olson, & Sanner, 2015). Should such a binding pose be 

found, then it will be concluded that Smina is able to generate binding poses similar to the crystal 

structure binding mode for the drug in question. 

 

 

Figure 10 – SMINA generated gefitinib binding pose (magenta), superimposed on gefitinib crystal structure binding pose 
take from PDB accession code 4wkq. All atom RMSD between these poses is 2.83Å. 
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Figure 11 - Overlay of PDB crystal structures of EGFF, ALK and BRAF kinase domains in complex with their inhibitors. A 
characteristic hydrogen bond formed with the hinge region of the kinase domain is highlighted. PDB accession codes of 
structures shown are 1M17, 4G5J, 4WKQ, 4I23, 4ZAU, 3OG7, 4XV2, 2XP2, 5J7H, 4CLI and 5FTO 

 

Figure 12 – EGFR inhibitors used during docking. Highlighted in red circles are the atoms used to calculate the RMSD 
value for each pose relative to a crystal structure pose. 
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Figure 13 - BRAF inhibitors used during docking. Highlighted in red circles are the atoms used to calculate the RMSD value 
for each pose relative to a crystal structure pose. 

 

Figure 14 - ALK inhibitors used during docking. Highlighted in red circles are the atoms used to calculate the RMSD value 
for each pose relative to a crystal structure pose. 
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Design of docking filters 
The manner in which ALK, BRAF and EGFR inhibitors interact with the kinase protein is known from 

crystal structures. However, many of the poses generated by Smina do not match this binding mode. 

These poses often lack interactions necessary for proper binding such as the characteristic hydrogen 

bond with the kinase hinge region. Since these binding poses do not resemble the known binding 

mode, the data on binding affinity provided by these poses is not clinically relevant. In order to 

reduce the amount of data that needs to be reviewed, these poses can therefore be filtered out. 

For this purpose, a total of three filters will be designed to identify poses similar to the known 

binding mode from the docking dataset. The first filter will be based around the RMSD value as 

described previously. This filter can be used to identify poses that retain hydrophobic interactions 

and defines the correct orientation for the drug in the binding pocket. The second filter that will be 

designed is based around the strength of the hydrogen bond with the hinge region of the protein. A 

normalized measure of the strength of this bonds can be calculated based on its geometric features 

(Irbäck, Mitternacht, & Mohanty, 2009). Aspects of this that determine the strength of a hydrogen 

bond are the length of the bond and the angles between the donor, hydrogen and acceptor atoms (R. 

Kumar, Schmidt, & Skinner, 2007). The effect of distance on hydrogen bond strength can be 

approximated using the Lennard-Jones potential (Jones, 1924). This potential can be expressed as: 

      [(
 

 
)
  

 (
 

 
)
 

] 

Here,   is the depth of the potential well. Since we are working with normalized measures, this 

variable has a value of 1.   is the finite distance at which the potential equals 0. In hydrogen bonds 

this is ~1.5 Å (Dannenberg, 1998). The variable r is the distance between the hydrogen bond and the 

acceptor atom in angstrom. 

The angle component of bond strength can be calculated using a formula from a paper by Irbäck et 

al. (Irbäck et al., 2009): 
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The variables in this formula are as follows:   is the angle between the donor, hydrogen and 

acceptor,   is the angle between the donor hydrogen, the acceptor atom and the averaged position 

of all atoms forming covalent bonds with the acceptor atom. This averaged position is used since its 

geometry dictates that it is in a direct line with the acceptor atom and the average position of 

electrons involved in the hydrogen bond. Figure 15 displays a 2D representation of the angles used. 

The normalized bond strength is expressed as the product of the Lennard-Jones potential and the 

angle component. 
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Figure 15 - 2D view of an NHN hydrogen bond. The * symbol shows the averaged positions of the carbons connected to 
the acceptor atom.   and   are the angles used in the bond strength calculations. 

To determine how strong the hydrogen bond needs to be for it to be comparable to those found in 

crystal structures, the strength of this bond will be determined in PDB crystal structures of kinase 

inhibitors in complex with EGFR, BRAF and ALK. The strength of the hydrogen bonds in these 

structures will be used as a reference point for determining the minimum bond strength a pose 

should have to pass the filter. 

The final position based filter will check for specific interactions for individual drugs. The first 

interaction that will be checked for is the correct placement of the ring structure in the hydrophobic 

pockets for the inhibitors that explore this pocket. This will be done by calculating the distance of a 

specified atom in this group relative to its expected location based on crystal structures. Should this 

distance exceed 5 angstrom, it can be assumed that the ring has been rotated outside of the 

hydrophobic pocket, causing the pose to fail the filter. Atoms used for all drugs this filter is applied to 

can be seen in Figure 16. Another drug specific filter will be implemented to indirectly determine the 

ability of poses for drugs that form a covalent bond with the kinase to form this bond. Since covalent 

bonds are not considered during the docking process, no direct indicator of covalent bonding is 

available in the docking data. Since the warhead groups that form the covalent bond do not 

otherwise form strong interactions with the kinase, their positioning will not be a reliable indicator 

for covalent bond formation. What can be done instead is to measure the distance between the pose 

and crystal structure locations of the atom connecting the warhead to the area of the drug whose 

location is defined in the RMSD filter. Should this atom have shifted by more than the van der Waals 

radius of a carbon, it will be assumed that the warhead will have shifted too far to still be in range for 

covalent bond formation. The atoms used for this can be seen in Figure 17. 
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Figure 16 – Atoms used in the drug specific filters used to detect the aryl group occupying the hydrophobic pocket being 
flipped outside the pocket. 



Keivn Doornhof – S2706288 

 

Figure 17 – EGFR inhibitors that form a covalent bond with the kinase. Highlighted in red are the atoms that will be used 
to assess if a generated pose is likely to be able to form this bond. Should a shift in the location of this atom be greater 
than the van der waals radius of a carbon, the pose fails the filter. 

Aside from the filters looking at structural aspects of the binding pose, a separate filter will be 

designed that looks at the predicted binding affinity as provided by SMINA. In the cross-docking 

dataset, the highest affinity pose passing all filters for each drug will be marked as a reference for 

how strong the interaction is predicted to be in sensitive mutations. Should the binding affinity of a 

generated pose be significantly lower than this value, it will be assumed that it is no longer able to 

effectively compete with ATP binding. As an initial cutoff for this filter, an increase in binding affinity 

of over 10% will be used as the maximum increase to filter out weak binding poses. 

Validation of docking filters 
In order to validate if the docking filters can be used to detect poses useful in predicting drug 

resistance, they will be applied to docking data for a set of mutations known to be sensitive or 

resistant to specific inhibitors. An initial set of mutations was obtained from case studies. This list 

was further supplemented with the most commonly reported mutations in the COSMIC mutation 

database for which information about drug sensitivity was available. The mutations that were 

selected for EGFR, ALK and BRAF as well as the resistance they are known to confer can be seen in 

Table 4, Table 5 and Table 6. For each of the selected mutations, homology models were generated 

with SWISS model for each template crystal structure. Static docking was then run on these models 

as described earlier. After docking, each pose in the generated dataset was assigned a score based on 

the number of filters it passes. After scoring the poses individually, a score for each drug on 

individual models was assigned based on the largest number of filters passed in all docking poses for 

that drug. The scores across different models for the same mutant were then assessed for the 

presence of patterns indicating whether or not the drug is capable of binding the mutant kinase. 

Should models for mutations that are known to be resistant to specific inhibitors consistently show 

no poses passing all filters, then this will be used to show that the filters are able to both select 
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binding poses that are consistent with the known binding modes from crystal structures as well as 

that the data can be used as an indicator for the resistance conferred by various drugs. 

Table 4 – EGFR mutation in NSCLC with known impact on kinase inhibitor efficacy. 

EGFR mutation Known sensitive Known resistant Reference 

G719A/C/S All - (Y. Kobayashi et al., 
2015) 

T790M Osimertinib Erlotinib, gefitinib, 
dacomitinib, afatinib 

(S. Kobayashi et al., 
2005; S. Wang, Cang, & 
Liu, 2016) 

T790M/G796R/S - All (S.-H. I. Ou et al., 2017) 
T790M/L718Q - All (Callegari et al., 2018) 
T790M/L792F - All (Y. Kobayashi et al., 

2017) 
T790M/L792H - All (Q. Zhang et al., 2018) 

 
T790M/C797S - All (Ercan et al., 2015) 
G724S - Osimertinib (Fassunke et al., 2018; 

Oztan et al., 2017) 
T854A Erlotinib, gefitinib Dacomitinib, Afatinib, 

Osimertinib 
(Bean et al., 2008; 
Goyal, Jamal, Shanker, 
& Grover, 2015) 

E764_S752del/ 
T790M/ 
P794L 

Afatinib Osimertinib (van Kempen et al., 
2018) 

A763insFQEA Erlotinib  (Voon, Tsui, Rosenfeld, 
& Chin, 2013) 

D761Y  Erlotinib, gefitinib (Balak et al., 2006) 
E709A All - (Huang, 2004; Y. 

Kobayashi et al., 2015) 
E709K All - (Y. Kobayashi et al., 

2015) 
E746_A750del All - (Fukuoka et al., 2011) 
L747P  Erlotinib, gefitinib (G. Yu et al., 2015) 
L747S  Erlotinib, gefitinib (Chiba et al., 2017) 
L747_S752del All - (Fukuoka et al., 2011) 
L858R All - (Rosell et al., 2012) 
L858R/D761Y Erlotinib, gefitinib - (Balak et al., 2006) 
L858R/ 
V843I 

- Erlotinib, gefitinib, 
dacomitinib, afatinib 

(Stewart, Tan, Liu, & 
Tsao, 2015) 

L861Q All - (Lynch et al., 2004; J. C. 
H. Yang et al., 2015) 

S768I Dacomitinib, afatinib Osimertinib (Nasu et al., 2018; J. C. 
H. Yang et al., 2015) 

V769insASV Erlotinib, gefitinib - (Vyse & Huang, 2019) 
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Table 5 - ALK mutations in NSCLC with known impact on kinase inhibitor efficacy. 

ALK mutation Known sensitive Known resistant Reference 

D1203N - Crizotinib (Rolfo et al., 2014) 
E1210K/D1203N - Crizotinib, brigatinib (Heuckmann et al., 

2011; Yoda et al., 
2018) 

G1202R Lorlatinib Crizotinib, ceritinib, 
brigatinib, alectinib 

(Akamine, Toyokawa, 
Tagawa, & Seto, 2018; 
Hatcher et al., 2015) 

G1269A Ceritinib Crizotinib (Friboulet et al., 2014) 
L1196M Ceritinib, brigatinib, 

entrectinib, lorlatinib 
Crizotinib (Ryohei Katayama, 

2018) 
L1198F Crizotinib Lorlatinib (Li et al., 2017) 
V1180L Brigatinib, ceritinib, 

lorlatinib 
Crizotinib, alectinib (R. Katayama et al., 

2014; Lin et al., 2018; 
Takigawa, 2018) 

C1156Y/L1198F Crizotinib Lorlatinib (Shaw et al., 2016) 
S1206C Crizotinib Ceritinib (Umapathy, Mendoza‐

Garcia, Hallberg, & 
Palmer, 2019) 

E1210K/S1206C - Crizotinib, brigatinib (Gainor et al., 2016) 
I1171N/S/T Ceritinib, brigatinib, 

lorlatinib 
Crizotinib, alectinib (Sehgal et al., 2019) 

E1210K - Crizotinib (Gainor et al., 2016) 
C1156Y Alectinib, entrectinib, 

lorlatinib 
Crizotinib, ceritinib (Friboulet et al., 2014; 

Shaw et al., 2016; 
Song, Wang, & Zhang, 
2015; I. Sullivan & 
Planchard, 2016) 

F1174C Alectinib Crizotinib, ceritinib (Carneiro et al., 2018; 
Friboulet et al., 2014) 

F1174L Ceritinib Crizotinib (Debruyne et al., 2016) 
F1174V Alectinib Crizotinib (S. H. Ou et al., 2016) 
L1152R Alectinib, brigatinib Crizotinib, ceritinib (Sabari et al., 2017; 

Tchekmedyian, Ali, 
Miller, & Haura, 2016) 

1151Tins Alectinib Crizotinib, ceritinib (Friboulet et al., 2014; 
Tran & Klempner, 
2016) 
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Table 6 - BRAF mutation in NSCLC with known impact on kinase inhibitor efficacy. 

BRAF mutation Known sensitive Known resistant Reference 

V600D/E/G/K/M/R All - (Chapman et al., 2011; 
Falchook et al., 2012) 

V600E/ 
T529I/M/N 

- Dabrafenib, 
vemurafenib 

(Whittaker et al., 2010) 

V600K/L505H - Vemurafenib (Hoogstraat et al., 
2015) 

G466V - Dabrafenib, 
vemurafenib 

(Wan et al., 2004) 

V600E/L514V - Vemurafenib (J. Wang et al., 2018) 
G469A - Vemurafenib (Porcelli et al., 2015) 
G469L - Vemurafenib (Gautschi et al., 2013) 
L597Q/R/S/V Vemurafenib - (Dahlman et al., 2012) 
V600E/D587N All - UMCG case 
V600E/H608Y All - UMCG case 
V600K/I617V All - UMCG case 
K601E Dabrafenib - (Murali, Menzies, & 

Long, 2012) 

 

 

E. Coli expression of ALK 
In order to allow for experimental validation of the predictions made using the computational 

methods, a method is needed that would allow for fast and reliable production of kinase proteins. 

This would allow for the use of methods like microscale thermophoresis (MST) or protein kinase 

assays to validate the predicted binding of drugs as well as their ability to inhibit mutant kinase 

function (Jerabek-Willemsen et al., 2014). A first step towards such a method was made by 

performing an expression screening, testing the ability of different E. coli cell lines to express the 

human ALK tyrosine kinase domain. 

For this purpose, cDNA encoding for the wild-type human ALK tyrosine kinase domain was ordered 

from Eurofins Scientific. The DNA sequence was digested using NcoI and HindIII and ligated into 

pETM-11 and pETM-30 vectors for screening. These vectors were subsequently used to transform E. 

coli cell lines BL21 Star (DE3), Origami 2(DE3), Rosetta 2(DE3)pLysS and LOBSTR. Cells were 

transformed using the Heat Shock method and plated overnight at 37:C on LB-Agar medium with the 

correct antibiotics (Table 7). A single colony was then selected and transferred into 10mL LB agar 

with the correct antibiotics for the strain and vector. Following overnight incubation at 37:C, the LB 

was added to a 1L volume of LB and incubated at 37:C on a 180RPM shaker. When the culture 

reached an optical density (OD) of 0.6 at 600nm, 1mM IPTG was added to induce protein expression 

overnight. 

After overnight expression, cells were spun down for 30 minutes at 5000rpm after which the 

supernatant was discarded. The pellet was then dissolved in buffer containing 20.8mM NaHPO4, 

19.2mM NaH2PO4, 0.5M NaCl, 5% v/v glycerol and 10mM imidazole. Lysozyme was added to the 

buffer followed by incubation at 4deg for 30 minutes. The solution was then sonicated for a total 

pulse time of 2 minutes with 0.5 sec pulse time per cycle and 3s intervals. 
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After sonication, solution was centrifuged for 1 hour at 18000rpm at 4 degrees. The pellet and 

supernatant were separated and the supernatant was used in nickel column purification. During 

purifications, a total of 5 wash steps were performed using 20mL of 20.8mM NaHPO4, 19.2mM 

NaH2PO4, 0.5M NaCl, 5% v/v glycerol buffer. This was followed by 5 elution steps using the same 

buffer with 300mM imidazole added. Fractions collected during purification as well as a small 

amount of resuspended pellet were run on an SDS-PAGE gel to look for the presence of and assess 

the expression of ALK in each combination of cell line and vector. 

Table 7 – Antibiotics used after transforming each cell line with pETM-11 and pETM-30 vectors. Kanamycin is included in 
all cell lines since the resistance is conferred by the vector. 

E. coli strain Antibiotics 

BL21 Star (DE3), 50 µg/mL kanamycin 
34 µg/mL Chloramphenicol 

Origami 2(DE3) 50 µg/mL kanamycin 
12.5 µ/mL Tetracyclin 

Rosetta 2(DE3)pLysS 50 µg/mL kanamycin 
34 µg/mL Chloramphenicol 

LOBSTR 50 µg/mL kanamycin 

 

Results and discussion 

Cross docking 
Before docking was performed on mutated homology models, cross docking using the inhibitors for 

EGFR, BRAF and ALK was performed on the crystal structures used as templates in the modeling step. 

The purpose of this was to validate that, when docking on these models, SMINA is able to generate 

binding poses for the drug that closely resemble known crystal structure binding poses. In order to 

ensure the docking procedure is the same as it is for the homology models, the crystal structures 

were first run through SWISS-Model with their original FASTA sequence as the target. This way, 

missing residues will be filled out in the same manner as will be the case in the homology models. 

SMINA was then used to dock the inhibitors on the structures of their respective kinase. 

After the docking was completed, RMSD values were generated for each pose using the locations of 

the atoms noted in the materials and methods section. To indicate how similar poses in the docking 

dataset are to crystal structure poses, the lowest RMSD poses for each drug on the models of its 

respective kinase were used. The RMSD values for these poses can be seen in Figure 18. In this figure, 

it can be seen that for all drugs except for ceritinib, the lowest RMSD pose found never exceeded 2Å. 

This indicates that SMINA is able to generate binding poses similar to what is seen in crystal 

structures. For ceritinib however, all binding poses generated on the 5FTO template exceeded 5Å. 

This shows that binding poses similar to the crystal structure binding mode for this drug will likely not 

be generated on this model regardless of the effects additional mutations may have on drug binding. 

Because of this, docking results on models using this template cannot be considered reliable for 

ceritinib. When interpreting docking results for this drug, results for 5FTO templates should therefore 

not be considered. 
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To verify the similarity of the low RMSD poses with the crystal structure binding modes, a visual 

inspection of generated poses was done in PyMOL. An example of a pose considered to closely 

resemble the crystal structure binding pose for an EGFR, BRAF and ALK inhibitor can be seen in Figure 

19. Representative examples of poses for each drug can be found in supplementary figures: Figure S 

1, Figure S 2 and Figure S 3. In the visual assessment, it was confirmed that the EGFR and BRAF 

inhibitors docked properly on all models. For ALK however, relevant differences were found between 

the crystal structure binding modes and the docking poses for alectinib, brigatinib, ceritinib and 

crizotinib. Firstly, the length of the characteristic hydrogen bond in generated poses for alectinib on 

the 2XP2, 4CLI and 5FTO templates exceeded 3Å in all poses. Since this bond is required for proper 

inhibitor binding, these templates lack a generates pose that accurately reflects how alectinib 

interacts with ALK. The same result was found for brigatinib and ceritinib on the 4CLI and 5FTO 

models. An example of the effect observed can be seen in Figure 20. Finally, it was found that 

crizotinib poses generated on the 4CLI template don’t match the orientation of an aryl group that 

forms multiple hydrophobic interactions with ALK. In the generated poses, this group is flipped or 

rotated away from the pocket, breaking the hydrophobic interactions that serve to stabilize the drug 

inside the binding pocket (Figure 21). Since the generated ALK poses poorly resemble the known 

crystal structure binding modes, the predictions made about inhibitor efficacy with ALK mutations 

will likely reflect the known resistances very poorly.  

Based on these results, binding of EGFR and BRAF inhibitors appears to be modeled properly. For ALK 

however, many models did not generate proper binding poses for multiple ALK inhibitors. Because of 

this, it can be expected that the predictions made about drug efficacy will better reflect the known 

resistances in EGFR and BRAF compared to ALK. 
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Figure 18 – Lowest RMSD for binding poses generated for each drug during cross-docking. A, B and C show the minimum 
RMSD calculated using the selected points outlined in the materials and methods section for EGFR, BRAF and ALK 
inhibitors respectively. 
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Figure 19 – Generated binding poses for Erlotinib (A), vemurafenib (B) and crizotinib (C) in complex with EGFR, BRAF and 
ALk respectively (shown in magenta). Crystal structure binding modes taken from crystal structures with PDB accession 
codes 1M17 (A), 3OG7 (B) and 3AOX (C) shown in green. Generated poses can be seen to closely resemble the crystal 
structure binding mode. Oxygen and Nitrogen atoms are colored red and blue respectively. 

 

Figure 20 – A) Crystal structure binding mode for Alectinig (PDB accession code: 3AOX), a hydrogen bond with a bond 
length of 1.7Å can be seen. B) Docking poses for Alectinib representative of those generated on template structures 4CLI, 
5FTO and 2XP2. While the overall orientation of the generated poses is similar to the crystal structure, the poses appear 
displaced causing a large increase in the hydrogen bond length, eliminating this interaction. Oxygen and Nitrogen atoms 
are colored red and blue respectively 
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Figure 21 – Generated binding poses for crizotinib on the 4CLI template structure (shown in magenta) most closely 
resembling the crystal structure binding mode (shown in green). The aryl group highlighted in the red circle is flipped in 
the generated poses, causing interactions normally formed by this group to be lost. Oxygen, nitrogen, chlorine and 
fluorine atoms are colored red, blue, dark green and white respectively 

Docking filters 
A total of four docking filters were designed to help identify poses that can indicate that an inhibitor 

is capable of properly binding and thus inhibiting a mutant kinase. As described in the materials and 

methods section, the first filter removes poses with a predicted binding affinity more than 10% 

higher than predicted for the template structure. Another filter makes use of the RMSD of the 

selected atoms as described previously. A third filter checks for drug specific interactions such as the 

positioning of specific ring structures and the possibility for the formation of covalent bonds. 

The final filter has to test for the presence of the hydrogen bond the inhibitors form with the hinge 

region of the kinase. In order to do this, a maximum strength this bond can have needs to be 

determined to serve as a cutoff value for filtering poses. To establish such a value, 52 crystal 

structures of ALK, BRAF and EGFR in complex with inhibitors were obtained from the PDB. The 

normalized bond strength of the characteristic hydrogen bond was determined in each structure as 

described in the materials and methods section. The normalized bond strengths can be found in the 

supplementary Table S 1. Within this set of structures, the maximum normalized hydrogen bond 

strength with the hinge region residue was found to be -0.1509. To account for the limited number of 

crystal structures available for determining a cutoff, half this value (-0.07545) was used as a 

maximum cutoff for hydrogen bond strength in the filter. 

Filter validation 
In order to assess the quality of the predictions made using the filtering setup, it was applied to the 

most common mutations with known clinical relevance for EGFR, BRAF and ALK.  
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EGFR 

For EGFR, the mutations G719A/C/S, G724S, T790M, T790M/C797S, T790M/G796R, T790M/G796S, 

T790M/L718Q, T790M/L792F, T790M/L792H, T854A, A763insFQEA, D761Y, E709A, E709K, 

E746_A750del, L747P, L747S, L747_S752del, L858R, L858R/D761Y, L858R/V843I, L861Q, S768I and 

V769insASV were modeled. For all these mutations, information regarding their sensitivity to some 

or all available EGFR inhibitors is publicly available. Homology models for these mutations were 

generated using the crystal structures with PDB accession code 1m17, 4g5j, 4i23, 4wkq and 4zau as 

templates. The inhibitors erlotinib, gefitinib, afatinib, dacomitinib and osimertinib were docked on 

the generated homology models after which the docking poses were scored based on how many of 

the filters they pass. The results of this analysis are shown in Figure 22. The first point of interest 

consists of the filtering results for the crystal structure templates used to generate the other 

homology models. As can be seen in these results, all models pass all filters for each drug. This 

further confirms that docking on the selected models can produce poses highly similar to what is 

seen in crystal structures. Should changes to this be seen in the mutated models, this can be viewed 

as a potential indicator for drug resistance.  

The mutations G719A, G719C and G719S are activating mutations located in the binding pocket. 

These can lead to the development of NSCLC by making it more energetically favorable for the kinase 

to adopt a catalytically active conformation (Y. Kobayashi et al., 2015). Since the template structures 

used for generating the homology models were already in the active conformation, it is expected 

that little effect will be seen on the docking results for activating mutations. These mutations do not 

confer drug resistance. In the docking results, it can be seen that the generated poses for the 

inhibitors pass all filters in the majority of models. The only exception to this is osimertinib. While 

these mutations do not confer resistance to osimertinib, the lack of passing poses for this drug is not 

entirely unexpected. Osimertinib is a drug specifically designed to be effective against T790M 

mutated EGFR (Soejima, Yasuda, & Hirano, 2017). The absence of this mutation leaves an area of 

unoccupied space directly next to the bound form of osimertinib. To illustrate this, Figure 23 shows 

and compares a binding poses generated for the G719A and T790M models of the 1M17 template. 

As can be seen, the docking for the non-T790M model results in the drug being moved further into 

the pocket to occupy the small cleft of unoccupied space.  This causes these poses to fail the RMSD 

filter. 

The T790M mutation is one of the most common causes of resistance against EGFR inhibitors 

(Gazdar, 2009). This mutation introduces a bulky methionine residue into a hydrophobic pocket that 

is explored by erlotinib, gefitinib, dacomitinib and afatinib. Figure 24 shows an overlay of crystal 

structure poses for these drugs onto the 4ZAU T790M model. As can be seen in this figure, the 

binding mode for these drugs is sterically hindered by the presence of the Met790 residue when it is 

in the orientation predicted by SWISS-Model. Due to the steric clash caused by this, T790M mutant 

EGFR is only sensitive to inhibition with osimertinib (H. Zhang, 2016). Within the set of mutations 

modeled, the T790M mutations as well as all other mutations containing T790M are expected to be 

resistant against erlotinib, gefitinib, afatinib and dacomitinib. These mutations are: T790M, 

T790M/C797S, T790M/G796R, T790M/G796S, T790M/L718Q, T790M/L792F and T790M/L792H. In 

the docking results for these mutations, the vast majority of models for these drugs failed to pass 

one or multiple filters. This provides a clear indications of drug resistance which aligns with the 

known resistance for these mutants. Furthermore, in the T790M single mutant results, osimertinib is 



Keivn Doornhof – S2706288 

shown to pass all filters in all models. This indicates that osimertinib is effective in T790M mutant 

NSCLC. These results accurately reflect what is known from literature. 

The T790M/C797S mutation is resistant against all clinically used EGFR inhibitors, including 

osimertinib. The mechanism for its resistance against osimertinib is the loss of a covalent bond that 

osimertinib normally forms with the cys797 residue. When looking at the docking data for this 

mutation, no indications of resistance against osimertinib can be seen. This is expected, since 

covalent interactions are not directly assessed during docking. While this could limit the predictive 

value of the filtering setup, since the covalent bonding EGFR inhibitors only form a single covalent 

bond all with this same cysteine residue, this shortcoming will not greatly affect the predictive value 

of the setup in novel mutations. 

The mutations G796R, G796S and L718Q all interfere with osimertinib binding by abolishing critical 

hydrophobic interactions between EGFR and the inhibitor (Callegari et al., 2018; S.-H. I. Ou et al., 

2017; Q. Zhang et al., 2018). When generating models for these mutations, the T790M mutation was 

added to the models as well. This was done since in cases described in literature, this mutation 

appeared after treatment with osimertinib on T790M mutated EGFR (Callegari et al., 2018; Q. Zhang 

et al., 2018). When looking at the docking results for these mutations, the results for T790M/G796R 

show a very clear indication of drug resistance. That this mutation would have a stronger effect on 

osimertinib binding compared to G796S is expected since an arginine residue is much larger than the 

serine residue.  Besides eliminating a hydrophobic interaction, the G796R mutation also leads to 

steric hindrance with osimertinib binding, creating a very clear indication of resistance in the filtering 

data (Figure 25). 

The G796S mutation is also known to hinders osimertinib binding (S.-H. I. Ou et al., 2017). Though the 

serine residue is considerably less bulky than the arginine introduced by the G796R mutation, it still 

interferes with the positioning of the osimertinib acrylamide group. Figure 26A and B show the clash 

with the crystal structure pose location of the acrylamide linker caused by the G796S mutation. In 

multiple models, this resulted in a shift of the acrylamide linker group away from the Cys797 residue. 

Figure 26C shows an example of a pose where such a shift was seen. This shift causes the pose to fail 

the filter checking for drug specific interactions and suggests that the G796S mutations could hinder 

the formation of the covalent bond by keeping the acrylamide warhead away from the cysteine 

residue. Since G796S fails to pass the filters in multiple models, this leads to the conclusion that this 

mutation could be resistance against osimertinib. This result is in line with previous literature 

detailing the resistance conferred by this mutation (S.-H. I. Ou et al., 2017). 

The L718Q has a mechanism of resistance similar to G796R/S, in that it also eliminates a hydrophobic 

interaction between EGFR and osimertinib. Like was seen in those mutations, failure to pass all filters 

can again be seen in multiple models. As was the case with G796S, visual inspection of the generated 

poses revealed a shift in the acrylamide group greater than 1.7Å. This is expected to hinder covalent 

bond formation with the C797S residue. A representative example of a L718Q pose can be seen in 

Figure 27. Like G796R/S, L718Q is known to confer resistance to osimertinib, the docking results 

obtained therefore match existing literature (Callegari et al., 2018). 

Mutations of the L792 residue are known to cause steric interference with the methoxy group of 

osimertinib (Y. Kobayashi et al., 2017; Q. Zhang et al., 2018). In the poses generated for the L792F 

models based on PDB structures 1m17, 4g5j, 4i23 and 4wkq, this resulted in a shift of the acrylamide 
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warhead that will likely prevent the formation of a covalent bond with Cys797. The only model in 

which the shift was not large enough to show in the filtering results is 4zau. Since the 4ZAU template 

structure was originally co-crystallized with osimertinib, induced fit provides a potential explanation 

for the pass seen in this model. In the case of L792H mutation, no clear indication of osimertinib 

resistance is seen in the filtering results. When inspecting the generated poses for osimertinib 

however, a displacement of the acrylamide group similar to what was seen in L792F could be seen. 

The displacement in this mutation was smaller than the van der waals radius of a carbon (1.7Å), 

which is why these poses did pass the filters. While a stricter filter could have more accurately 

predicted drug resistance in this case, doing so could also lead to false positives in detecting drug 

resistance since propensity for covalent bond formation is measured in a very indirect manner. This 

result shows that while static docking as used here can provide valuable information about drug 

resistance in many cases, more subtle changes in drug binding are likely to be overlooked. 

The triple mutant case E746_S752del/P794L/T790M has been previously assessed at the UMCG 

tumorboard. Here this mutation was predicted to be resistant against osimertinib but sensitive to 

afatinib. The resistance and sensitivity to osimertinib and afatinib respectively was confirmed when 

the patient was treated using these drugs (van Kempen et al., 2018). When looking at the filtering 

data however, the results predict resistance against afatinib. A possible explanation for this is that 

during the analysis done at the tumorboard, a template model was used that contained the T790M 

mutation (PDB accession code: 4I24). In this case, this brings the starting sequence closer to the 

mutated target, which could increase the accuracy of the method. The use of template structures 

with fewer sequence differences might allow for more accurate predictions in this case. 

The remaining resistance conferring mutations located in the ATP binding pocket are G724S, which is 

resistant against osimertinib, and T854A, which confers resistance to erlotinib and gefitinib. In both 

of these cases, the docking data aligns poorly with the known resistances conferred by these 

mutations. Visual inspection of the data similarly provided no indication of drug resistance. A 

potential explanation for this can be found in literature detailing potential mechanisms of drug 

resistance for the G724S and T854A mutations. Both of these mutations have an impact on the 

flexibility of the kinase structure. In both cases, it has been hypothesized that the resistance that is 

seen results from structural changes that are the result of this change in flexibility (Fassunke et al., 

2018; Goyal et al., 2015). Considering that only static models are used in the current filtering setup, it 

would be impossible to identify such effects in the docking results. 

The remaining mutations are located outside of the ATP binding pocket. When looking at the data for 

resistance conferring mutations outside the pocket such as D761Y, L747P, L747S and L858R/V843I, it 

can be seen that the resistance conferred by these mutations is not correctly predicted. This is 

expected, since these mutations can only impact drug binding through their effects on the 

positioning of other residues that are located in the binding pocket. Since only static homology 

models were used, the extent to which such effects can be predicted is limited. This makes it unlikely 

that the effects of these mutations will be predicted correctly. Knowing this, it is important to realize 

that this approach is only effective when applied to mutations of those residues in close proximity to 

the drug binding pocket. 
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Figure 22 - Filtering results for EGFR mutations. First line for each mutant shows known inhibitor sensitivity (green: sensitive, red: 
resistant, gray: unknown), followed by a line of whitespace and the results per model. (4, 3, 2, 1 and 0 filter passes for green, yellow, 
orange, red and dark red respectively) 
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Figure 23 - A) Docking pose generated for osimertinib in the G719A model for the 1M17 template (shown in magenta) 
overlayed onto the crystal structure binding mode for osimertinib from the 4ZAU PDB structure (shown in green). B) 
Docking pose generated for osimertinib in the T790M model for the 1M17 template (shown in magenta) overlayed onto 
the crystal structure binding mode for osimertinib from the 4ZAU PDB structure (shown in green). The Thr790/Met790 
residues are shown as space filling spheres. A small cleft of unoccupied space is located next to bound osimertinib in 
non-T790M models. During docking, this causes SMINA to shift the drug further into the binding pocket than is seen in 
the crystal structure binding mode. Nitrogens and oxygens are colored red and blue respectively 

 

Figure 24 – Crystal structure binding modes for the EGFR inhibitors erlotinib, gefitinib, dacomitinib and afatinib overlayed 
onto the 4ZAU based homology model of T790M mutant EGFR. Clear steric interference with the known binding mode 
for these inhibitors can be seen in the image. 
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Figure 25 - Crystal structure binding modes for osimertinib overlayed onto the 4ZAU based homology model of 
T790M/G796R mutant EGFR. The mutated arginine residue  in the SWISS-Model predicted orientation can be seen to 
take up a part of the pocket that osimertinib normally occupies when binding to EGFR.  

 

Figure 26 – A shows the crystal structure binding mode of osimertinib taken from the 4ZAU crystal structure. In B, it can 
be seen that the G796S mutation causes steric interference with the position of the acrylamide group that normally 
forms a covalent bond with the Cys797 residue. In C, A binding pose representative of those generated for osimertinib on 
G796S homology models is shown. Here, a displacement of the acrylamide linker of 1.7Å can be seen that is expected to 
prevent formation of the covalent bond. 
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Figure 27 – Poses representative of those generated for various mutations that interfere with osimertinib binding. 
T790M/L718Q  and T790M/L792F show a shift in the acrylamide linker group greater than the van de waals radius of a 
carbon (1.9Å and 1.8Å for both mutants respectively). This Is expected to hinder covalent bond formation. The 
T790M/L792H mutant showed a smaller shift in the acrylamide group of 1.5Å. All these mutations are known to confer 
resistance to osimertinib (Callegari et al., 2018; Y. Kobayashi et al., 2017; Q. Zhang et al., 2018). Nitrogens and oxygens are 
colored blue and red respectively. 

BRAF 

For BRAF, the drugs dabrafenib and vemurafenib were docked on homology models based on PDB 

crystal structure 3OG7/4XV2 for V600 mutants and 4RZV/5CSW for other mutants. The filtering 

results for BRAF are shown in Figure 28.  

The pdb structures 3og7 and 4xv2 were used in V600 mutant cases since they contain the V600E 

mutation, bringing them closer to target sequence of the homology model. The single V600 mutants 

are all either known or believed to be sensitive to BRAF inhibition (Chapman et al., 2011; Falchook et 

al., 2012). When looking at the docking results for these mutations, no convincing indicators of drug 

resistance can be seen. In V600K, one of the models fails to produce a pose passing all filters. When 

visually examining the generated poses however, it can be seen that a pose was generated which 

closely matches the crystal structure binding mode (Figure 29). While this pose comes just short of 

passing the hydrogen bond strength filter, its clear similarity with the crystal structure binding mode 

indicates that this does not indicate drug resistance. Because of this, the data for V600 mutations fits 

the inhibitor sensitivity described in literature. 

While not having been reported in patients, it has been shown that mutations of the T529 residue, 

which are homologous to T790 mutations in EGFR, will likely cause drug resistance due to steric 

hindrance (Figure 30) (Whittaker et al., 2010). For this residue, homology models were created for 

the double mutants V600E/T529I, V600E/T529M and V600E/T529N. When looking at the filtering 

results for these mutations, it can be seen that in all cases, one or both models failed 3 or all filters. 

This indicates that the generated poses on these models strongly differ from the crystal structure 
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binding poses. Considering that the drugs docked properly on the crystal structures the models are 

based on, this indicates that these mutations could confer resistance against the BRAF inhibitors. 

Another mutation in the binding pocket that is known to confer resistance to the BRAF inhibitor 

vemurafenib is V600K/L505H. In the docking results for this mutation, Both models failed to generate 

vemurafenib poses passing all filters. Visual inspection of the generated poses revealed that poses 

closely matching the crystal structure binding pose were generated in these models (Figure 31). 

However, while the poses themselves are similar, the SMINA predicted binding affinity shows a 17% 

increase in the binding affinity from -11.5kcal/mol to -9.5kcal/mol. This causes these poses to fail the 

binding affinity filter indicating that this mutation could confer resistance against vemurafenib. 

A common mechanism of resistance against BRAF is increased dimerization with CRAF (Poulikakos et 

al., 2011). Since this a mechanism completely unrelated to inhibitor binding, it is expected that 

mutations with this mechanism will not show indicators of drug resistance in the filtering data. 

L514V/V600E is a mutation that likely confers resistance in this manner (J. Wang et al., 2018). As 

expected, when looking at the filtering results, no clear indication of drug resistance can be seen. The 

mutation G466V shares this mechanism of resistance as well (Wan et al., 2004). Here however, the 

data does indicate that the ability of the inhibitors to bind BRAF is affected. Visual inspection of the 

generated poses confirmed that none of the generated poses for dabrafenib on either model and no 

poses for vemurafenib on the 5CSW matched the crystal structure binding pose. Considering the 

mechanism of resistance however, the ability for the inhibitors to bind BRAF is not relevant in this 

case. 

BRAF mutations of the G469 residue are known to lead to constitutively active BRAF (Porcelli et al., 

2015). From case studies in which G469L mutant BRAF was expressed, it is known that this mutations 

is not sensitive to the inhibitor vemurafenib. This is believed to be the result of the leucine sidechain 

sterically interfering with the Lys483 residue. This causes the sidechain for the Lysine to shift closer 

to the binding pocket where it interferes with vemurafenib binding (Gautschi et al., 2013). When 

looking at the filtering results for this mutation, it can be seen that this data similarly suggests that 

this mutation confers resistance against vemurafenib. Poses for vemurafenib bound in both models 

either had a high RMSD or a predicted affinity that was greatly reduced relative to the docking results 

on the template. Like described by Gautschi et al, the homology models generated for docking also 

showed a small displacement of the Lys483 residue which could be responsible for the docking 

results obtained for this mutant (Figure 32). 

The G469A has also been reported to cause resistance to vemurafenib (Porcelli et al., 2015). Contrary 

to G469L however, no indication of drug resistance can be seen in the filtering data for this mutant. A 

potential explanation for this result is that while G469A is resistance to a certain degree, 

vemurafenib can still bind and inhibit this mutant. This is known both from inhibition as well as 

patient data in which a partial response to vemurafenib was achieved in patients expressing this 

BRAF mutation. 

The remaining mutations located in the binding pocket that have known sensitivity to BRAF inhibitors 

that were modeled are of the L597 residue. The BRAF mutants L597Q, L597R, L597S and L597V have 

all been reported to be sensitive to vemurafenib (Dahlman et al., 2012). When looking at the docking 

results for these mutations, it can be seen that they are in agreement with these results. Visual 

inspection of the passing poses revealed no clear differences with the crystal structure binding poses.  
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For BRAF, three mutations were modeled that were previously investigated at the UMCG 

tumorboard. These are V600E/D587N, V600E/H608Y and V600K/I617V. All of these were predicted 

to be sensitive to BRAF inhibition when analyzed manually. This was confirmed when the patients 

responded to BRAF inhibition therapy. In the filtering analysis, all models for V600E/D587N and 

V600K/I617V produced poses for dabrafenib and vemurafenib passing all filters. This indicates that 

these mutations are sensitive to BRAF inhibition which is in line with the patient outcomes. For 

V600E/H608Y, no pose passing all filters was found for dabrafenib in the 3OG7 model. Upon manual 

inspection of the lowest RMSD generated poses, a binding pose closely resembling the crystal 

structure pose for dabrafenib was found. This pose failed to pass all filters since its normalized h-

bond strength was marginally lower than the cutoff value set. Considering how closely this pose 

matches the crystal structure binding mode, the results for the 3OG7 model can be said to predict 

that dabrafenib can properly bind this model. The pose in question is shown in Figure 33. Keeping 

that in mind, the results obtained using the filters match those found earlier in manual analysis. 

Lastly, the out of pocket mutation K601E has been included. This mutation is known to be insensitive 

to dabrafenib treatment. In the filtering results however, no such effect is visible. Similar to EGFR, 

this shows the ineffectiveness of this setup when dealing with mutations not in close proximity to the 

bound drug. 
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Figure 28 - Filtering results for BRAF mutations. First line for each mutant shows known 
inhibitor sensitivity (green: sensitive, red: resistant, gray: unknown), followed by a line of 
whitespace and the results per model. (4, 3, 2, 1 and 0 filter passes for green, yellow, orange, 
red and dark red respectively) 
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Figure 29 – Generated binding pose for dabrafenib on the 3OG7 model for V600K (shown in magenta). In the filtering 
setup, this pose fails to pass the hydrogen bond filter. Compared to the crystal structure binding pose for dabrafenib 
(shown in green), the generated pose appears highly similar, From this image it can be seen that this pose does 
accurately represent the crystal structure binding pose. This means that the failure to pass the hydrogen bond filter in 
this case does not indicate drug resistance. 

 

Figure 30 – Crystal structure binding poses of dabrafenib (magenta) and vemurafenib (white) superimposed on the 
V600E/T529M homology models for the 3OG7 template. As can be seen, the SWISS-Model predicted orientation of the 
methionine residue causes a steric clash with the crystal structure binding modes of the inhibitors. 
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Figure 31- Vemurafenib pose generated on the 3OG7 model for V600K/L505H (shown in green). The pose can be seen to 
closely overlap with the crystal structure binding mode for vemurafenib found in the crystal structures (shown in 
magenta). However, the introduction of the polar Histidine residue caused a change in the predicted binding affinity 
from -11.5 kcal/mol to -9.5 kcal/mol. This is an increase of 17%, causing the pose to fail the affinity filter which can 
indicate drug resistance. Nitrogen, oxygen fluorine and sulfur are colored blue, red, white and orange respectively. 
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Figure 32 - Displacement of the BRAF L483sidechain resulting from the introduction of the G469L mutation in the 5CSW 
homology model for this mutation. This shift in the residue side chain is believed to prevent proper binding of 
vemurafenib in the binding pocket (Gautschi et al., 2013). 

 

Figure 33 – Generated dabrafenib binding pose in the 3OG7 model for BRAF V600E/H608Y (shown in magenta). The 
crystal structure binding pose for dabrafenib is shown in green. It can be seen that the generated pose closely resembles 
the known binding mode of dabrafenib. However, his generated pose failed the hydrogen bond filter due to the length of 
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its hydrogen bond. Still, since the bond strength was only marginally lower than what was considered acceptable in the 
filter, this pose should be considered indicative of proper binding for dabrafenib in this model. 

ALK 

Similar to what was found during cross-docking, the filtering results indicate that many of the 

inhibitors did not dock properly on the template crystal structures. Since this indicates that the 

docking poses do not accurately reflect real-world binding events, the predictive capabilities for the 

filters using these models is expected to be very low. 

Docking data was generated and filtered for the ALK mutations D1203N, E1210K/D1203N, G1202A, 

G1202R, G1269A, L1196M, L1198F, V1180L, C1156Y/L1198F, E1210K, E1210K/S1206C, I1171N, 

I1171S, I1171T, S1206C, C1156Y, F1174C, F1174L, F1174S, F1174V, L1152R and 1151Tins. The 

filtering results for ALK mutations are shown in Figure 34. In this figure, no clear correlation can be 

seen between the known drug resistance of the mutations and the number of filters passed. As an 

example. Figure 35 shows a generated docking pose for crizotinib docked onto the L1196M model for 

the 6MX8 template. The L1196M mutation is equivalent to the T790M mutation in EGFR, and should 

sterically interfere with the binding of crizotinib (Heuckmann et al., 2011). As can be seen in the 

image however, the generated crizotinib pose closely resembles the cristal structure binding mode. 

None of the docking results show any indication of crizotinib resistance caused by the L1196M 

mutation. Resistance conferred by other mutations aligns equally as poor with the filtering results. 

Based on this, it can be stated that the use of the current setup will provide little in terms of useful 

information for novel ALK mutations. A potential explanation for the poor performance of the filters 

in ALK cases is that this kinase is expressed in cancer solely due to a translocation of the gene. Many 

different translocations of ALK have been reported and these could have an effect on the structure of 

the ALK tyrosine kinase domain (Chiarle, Voena, Ambrogio, Piva, & Inghirami, 2008). The 

translocation of the gene therefore adds a variable affecting the structure of the kinase that is not 

taken into account in the docking setup. Since the effect of the fusion partner is not taken into 

account in the process, this could negatively impact the validity of the generated data. A possible 

reason for the poor performance of the filter in ALK cases is therefore the effect different fusion 

partners can have on the ALK structure. 
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Figure 34 - Filtering results for ALK mutations. First line for each mutant shows known inhibitor sensitivity (green: sensitive, red: 
resistant, gray: unknown), followed by a line of whitespace and the results per model. (4, 3, 2, 1 and 0 filter passes for green, yellow, 
orange, red and dark red respectively) 
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Figure 35 – Generated docking pose for cizotinib on the L1196M model for the 6MX8 template (shown in magenta). The 
generated pose can be seen to resemble the crystal structure binding pose for crizotinib shown in green. Nitrogen and 
oxygen are shown in blue and red respectively. 

E. coli expression of ALK 
In order to facilitate in future experiments for expressing the ALK tyrosine kinase domain in E. coli, an 

expression screening was performed. In the screening, E. coli cell lines BL21 Star (DE3), Origami 

2(DE3), Rosetta 2(DE3)pLysS and LOBSTR  were transformed with pETM-11 and pETM-30 vectors 

containing the DNA sequence for the human ALK tyrosine kinase domain in frame with the N-

terminal his-tag. 1L of E. coli culture was produces as described in the materials and methods section 

after which the expression was assessed through SDS-PAGE on fractions collected during nickel-

purification. The ALK tyrosine kinase domain has a size of roughly 37kDA. In expression with the 

pETM-11 vector, a band at this size could indicate that ALK is expressed. In the expression with 

pETM-30, the expression product is expected to have a size of around 64 kDa. The increase in size is 

due to the GST tag added by the vector. In the results for the pETM-11 vectors, a band corresponding 

to ALK expression was not seen in any of the cell-lines. While a line can be seen in the pellet that is 

close to the correct size, the same band can also be seen in the gels for the pETM-30 vector, 

indicating that this does not correspond to ALK. 

For pETM-30 expression, the bands seen on the gel for the elution fractions were identical to those 

seen for pETM-11.This indicates that the lines seen do not correspond to expression of ALK. In the 

pellet fraction however, bands of the correct size were seen in the Origami 2 and LOBSTER cell lines. 

Based on these results, out of the strains tested, the Origami 2 and LOBSTER cell lines with the pETM-

30 vector are seen as most suitable for ALK expression. 
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Figure 36 – SDS-PAGE gels for the BL21 Star (DE3) cell line transformed with the ALK-pETM-11 and ALK-pETM-30 
construct. The lanes  correspond to: Pe: Pellet (insoluble), La: Protein size ladder, Ft: Flowthrough, W…: Denotes a wash 
fraction, E…: Denotes an elution fraction. 
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Figure 37 - SDS-PAGE gels for the Origami 2 (DE3) pLysS cell line transformed with the ALK-pETM-11 and ALK-pETM-30 
construct. The lanes  correspond to: Pe: Pellet (insoluble), La: Protein size ladder, Ft: Flowthrough, W…: Denotes a wash 
fraction, E…: Denotes an elution fraction. Expression of ALK was found in the pellet (insoluble) 
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Figure 38 - SDS-PAGE gels for the Rosetta 2(DE3) cell line transformed with the ALK-pETM-11 and ALK-pETM-30 construct. 
The lanes  correspond to: Pe: Pellet (insoluble), La: Protein size ladder, Ft: Flowthrough, W…: Denotes a wash fraction, 
E…: Denotes an elution fraction. 
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Figure 39 - SDS-PAGE gels for the LOBSTR cell line transformed with the ALK-pETM-11 and ALK-pETM-30 construct. The 
lanes  correspond to: Pe: Pellet (insoluble), La: Protein size ladder, Ft: Flowthrough, W…: Denotes a wash fraction, E…: 
Denotes an elution fraction. Expression of ALK was found in the pellet (insoluble) 
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Conclusion 
The use of molecular modeling and docking has much potential in predicting the efficacy of drugs. In 

kinase driven cancer, such computational methods have been shown to be able to generate useful 

information about the efficacy of kinase inhibitors in individual patients (van Kempen et al., 2018). 

Because of this, the implementation of such methods in clinical practice could enable medical 

professionals to make better informed decisions about patient treatment. Currently, limiting factors 

on the application of computational methods such as molecular docking are the time investment and 

knowledge needed to correctly interpret the generated data. 

During this project, the use of docking filters to reduce the amount of docking data, as well as 

provide easily interpretable predictions on drug efficacy was explored in the context of kinase driven 

NSCLC. For EGFR and BRAF inhibitors, the use of such filters was shown to be able to identify 

generated binding poses matching the inhibitors binding mode as seen in crystal structures. This 

makes these filters a useful tool in reducing the volume of generated binding poses, allowing for 

easier interpretation of the data. Furthermore, when using such filters to score generated poses, it 

was shown that in many cases drug sensitivity could be correctly predicted in a fully automated 

fashion. In cases where the setup failed to provide clear predictions on drug efficacy, correct 

conclusions could in many cases still be drawn quickly by manually examining the lowest RMSD poses 

as identified using the filters. In cases where the conclusions based on the filter data were incorrect, 

the reasons for the filters to fail were usually explainable when considering the mutations 

mechanism of drug resistance.  

Overall, this report has illustrated the use of molecular docking filters in predicting the efficacy of 

EGFR and BRAF inhibitors. This has much potential in allowing for easier and more widespread 

implementations of computational methods that can improve and personalized treatments in 

diseases such as NSCLC.  
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Supplementary figures 

 

Figure S 1 – Crossdocking binding poses representative of those passing the RMSD filter for EGFR. The crystal structure 
binding mode for each drug is shown in green for reference. The generated pose is shown in magenta. Nitrogen, Oxygen, 
Chlorine and Fuorine are colored blue, red, green and white respectively. 
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Figure S 2 - Crossdocking binding poses representative of those passing the RMSD filter for EGFR. The crystal structure 
binding mode for each drug is shown in green for reference. The generated pose is shown in magenta. Nitrogen, Oxygen, 
Fuorine and Sulfur are colored blue, red, white and orange respectively. 
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Figure S 3 - Crossdocking binding poses representative of those passing the RMSD filter for ALK. The crystal structure 
binding mode for each drug is shown in green for reference. The generated pose is shown in magenta. Nitrogen, Oxygen, 
Fuorine, Chlorine and Sulfur are colored blue, red, white, green and orange respectively. 

 

Table S 1 - Normalized Hydrogen bond strength for hydrogen bonds with hinge region residues in PDB structures of EGFR, 
ALK and BRAF in complex with  kinase inhibitor. 

PDB 
code 

H-bond 
strength 
(normalized) 

4g5j -.2047 
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4g5p -.2255 

3aox -.8714 

5j7h -.5274 

4mkc -.4884 

2wgj -.6405 

2xp2 -.6284 

2yfx -.5676 

3zbf -.4390 

4anq -.6252 

4ans -.5706 

5aaa -.5951 

5aab -.4996 

5aac -.4930 

4xv2 -.6315 

5csw -.7295 

5hie -.6514 

4i23 -.8594 

4i24 -.6892 

5fto -.5387 

5ftq -.6785 

5kvt -.4457 

1m17 -.9042 

4hjo -.6378 

2ito -.4622 

2ity -.9247 

2itz -.9538 

3ug2 -.7582 

4i22 -.7697 

4wkq -.5605 

5y7z -.5193 

5y80 -.4872 

1xkk -.6284 

4cli -.7827 

4clj -.6523 

5a9u -.6180 

5aa8 -.5023 

5aa9 -.5479 

2jiv -.3113 

3w2q -.4470 

4zau -.4982 

1uwh -.4621 

1uwj -.1944 

3heg -.1509 

3rgf -.2705 
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3wze -.2888 

4asd -.3650 

5hi2 -.3005 

2ivu -.4548 

3og7 -.4844 

4rzv -.2400 

5hes -.7030 

 


