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Abstract

Planets form around young stars inside a protoplanetary disk (PPD). Theory predicts that
these nascent planets can open up gaps in the protoplanetary disk, wherein a circumplanetary
disk (CPD) forms around planet. To understand more about these CPDs, we build a model
in which the influence of the star on the temperature structure and Far-UV radiation field of
the CPD is studied. The model consists of a star surrounded by a PPD which comprises an
inner and outer disk separated by a gap in which a planet surrounded by a CPD is placed.
The model was built using MCMax3D, which utilizes the Monte Carlo method in order to
numerically solve the radiative transfer equation of the full system (PPD + CPD). We investigate
6 models which comprises the full system (inner and outer disk), the removal of the inner disk,
the removal of the inner disk and placing the CPD 10 au closer to the star, and the reduction of
the planet’s luminosity by an order of magnitude for all three geometrical changes. We only find
a significant impact of star on the temperature of the CPD when the inner disk was removed,
and the CPD was placed 10 au closer to the star. A difference in temperature was evident for
both planetary luminosities between the outer edge of the side facing the star (CPDL) and
the opposite side pointing away from the star (CPDR). For the default luminosity case (Lp =
1.01× 10−2 L�), the temperature of both sides amounted to TCPDL = (72± 20) K and TCPDR =
(44± 12) K. For the lower luminosity case (Lp = 1.01× 10−3 L�), we find TCPDL = (100± 34) K
and TCPDR = (33± 17) K. As for the Far-UV radiation field, we find χCPDL = (2.5± 0.4)× 104

and χCPDR = (4.7± 0.9)× 103 for Lp = 1.01× 10−2 L�, and χCPDL = (7.2± 2.0)× 104 and
χCPDR = (2± 3)× 103 for Lp = 1.01× 10−3 L�. The large errors — especially for the Far-UV
radiation field — are due to the lack of photons reaching the CPD. This has to do with the
way MCMax3D distributes the photons and the relatively small size of the CPD. We suggest
several ways to improve the MCMax3D code for CPD models as used in this thesis. Nonetheless,
these 3D dust radiative transfer models provide great insight in the temperature structure and
radiation field of CPDs, which are useful for studying chemistry in circumplanetary disks.
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Chapter 1

Introduction

When a molecular cloud becomes unstable to gravitational collapse, protostars will start to form
in the denser regions of the cloud. The structure within the cloud is inhomogeneous, meaning
that its velocity and density fields exhibit turbulent behaviour. As a consequence, the collapsing
cloud will have a non-zero angular momentum which will, due to the conservation of angular
momentum, start to form a disk around the protostar — a protoplanetary disk (Armitage 2010).

Observations of such disks have indicated that protoplanetary disks can possess substructure
in the form of rings, gaps, and spiral arms. The Disk Substructures at High Angular Resolution
Project (DSHARP) (Andrews et al. 2018), for instance, utilized the Atacama Large Millimeter
Array (ALMA), in order to map the 1.25 mm continuum of 18 protoplanetary disks. The results
brought to light a prevalence of annular substructure within at least 17 of those disks. These gaps
(and rings) occurred at virtually any radius in the disk ranging from 5 au till even beyond 150 au.
Some gaps were shallow and clustered together; others were deep and well-stratified. Sometimes
even both types were present in the same disk. These observed annular substructures bear a
strong resemblance to the gaps formed in hydrodynamical simulations of planet-disk interactions
(Huang et al. 2018; Zhang et al. 2018). An example of such similarities is shown in Fig. 1.1.
The formation of these gaps could thus imply the presence of a planet. It has been hypothesized
that such planets can form disks within its Hill sphere — so-called circumplanetary disks (CPD)
(e.g., Szulágyi et al. 2018). It has been conjectured that these CPDs might be the birthplace
of moons. So far, only a few possible candidates have been detected (Isella et al. 2019) and
thus not very much is known about these CPDs. We therefore decided to make a model of a
protoplanetary disk in which a planet with a CPD has been inserted. By testing the model for
various parameters that are based on what the theory predicts, we might better understand as
to why (almost) no CPDs have been detected so far. However, due to the limited amount of time
assigned to this project we will mainly focus on the CPD’s temperature and, to a lesser extent,
on its radiation field. More specifically: what parameters affect the temperature structure in
the CPD and in what way? Additionally, we will investigate how the radiation of the CPD
will influence its surroundings. But before setting up this model, we must first understand how
planet-disk interactions could eventually lead to CPD formation.

1.1 Planet-disk interaction

One of the most fundamental phenomena within a protoplanetary disk is angular momentum
transport which drives processes such as planet migration, accretion and gap formation. Un-
derstanding the basic principles behind angular momentum transport is thus indispensable for
understanding disk evolution.
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1.1. Planet-disk interaction Mark van der Keijl

Figure 1.1: left panel: ALMA observation of the AS 209 protoplanetary disk displaying annular sub-
structure. center panel: Result of hydrodynamical simulation with a single planet (Mp/M∗ =
0.1MJ/M�) at 99 au. right panel: Result of hydrodynamical simulation using the same
planet, but with different parameters for the protoplanetary disk (Zhang et al. 2018).

1.1.1 Angular momentum transport

For an isolated system, the total (global) angular momentum has to be conserved, but the local
angular momentum, however, can change. In a geometrically thin disk, the specific angular
momentum is given by:

l = rvφ,gas =
√
GM∗r (1.1)

where r is the radius of the disk, vφ,gas the tangential velocity of the gas,M∗ the mass of the star,
and G the gravitational constant (Armitage 2010). Since Eq. 1.1 is an increasing function of
radius, the gas will lose angular momentum if it were to move inwards and vice versa. Because the
global angular momentum has to be conserved, a local loss of angular momentum prompts a gain
in angular momentum elsewhere in the disk, i.e. a certain amount of inward flow induces an equal
amount of outward flow. This process is made possible by the disks’ viscosity. In a viscous fluid,
random motions generate microscopic interactions which in turn transfer momentum from the
fast-moving part to the slow-moving part (Clarke and Carswell 2007; Fraternali 2019). Because
the fluid elements closer to the star orbit with a higher velocity than the fluid elements further
away from the star, an exchange of angular momentum naturally follows. This drives, among
other things, accretion and disk evolution as local parcels of gas lose their angular momentum
and spiral inwards. As gas is being accreted by the central star, the disk will — in order to
conserve the total angular momentum — start to viscously spread out (Hartmann et al. 1998).
Consequently, the gas surface density Σ(r, t) (in units of g/cm2) of the disk will decrease as
function of time and radius (see Fig. 1.2). The time scale on which the surface density gradient
is smoothed out by the viscosity is given by the viscous time scale:

τν ≈
r2

ν
(1.2)

where r is the disk radius and ν is the disk viscosity. The viscous time scales for protoplanetary
disk generally amount to about a few million years (Armitage 2010).

1.1.2 Perturbations

When a planet is orbiting a star it will perturb the density within the disk. A subsequent
shearing motion will then form spiral waves by shearing out the sound waves that emanate from
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Mark van der Keijl 1.1. Planet-disk interaction

Figure 1.2: Gas surface density plotted as function of radius for 3 instances in time: t1 = 0.32 Myr,
t2 = 1.0 Myr, and t3 = 3.2 Myr. Additionally, the Hayashi minimum mass solar nebula
surface density distribution, Σ ∝ R−3/2, has been added for reference (Hartmann et al. 1998;
Hayashi 1981).

the planet. Those spiral waves around the planet manifest themselves in two forms: a leading
inner spiral arm and a trailing outer spiral arm. The inner spiral arm drags the planet along,
accelerating it and thus increasing its angular momentum. Conversely, the outer spiral arm
pulls the planet back, decelerating it and reducing its angular momentum (W. Kley and R. P.
Nelson 2012; Wilhelm Kley 2019). An example of such a perturbation is depicted in the left
panel of Fig. 1.3. In the right panel a schematic representation of the second perturbing factor
is shown: the corotation region. The corotation region is mapped out by the particles moving
in a horseshoe shaped orbit at the same speed as the planet — it is corotating with the planet.
Fluid elements end up in the horseshoe region when they are close to the planet’s orbital radius
but have not been able to enter the planet’s Hill sphere (the region around the planet in which
the planet’s gravitational pull is dominant over all other gravitational forces) (Armitage 2010;
Richard P. Nelson 2018). Because the corotation region has a non-zero radial width, the orbiting
fluid elements will have a slightly larger or smaller orbital radius depending on which side of the
corotation region they are. At the U-turns the orbital radius will slightly change, prompting a
change in angular momentum of the fluid elements which will consequently engender a torque
acting on the planet.

In order to deeper understand the forces generated by the corotation region let us work out
a simplified example. Imagine a planet with mass mp residing in a circular orbit. Its angular
momentum is given by:

Jp = mpr
2
pΩp (1.3)

Where rp is the orbital radius of the planet and Ωp the planet’s orbital speed (in s−1) (Wilhelm
Kley 2019). the density asymmetries at the U-turns generate a torque, Γp, which is defined as
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1.1. Planet-disk interaction Mark van der Keijl

Figure 1.3: Left panel : orbiting planet perturbing the disk’s density. Notice how the inner spiral leads
and the outer spiral trails behind. The planet is the white dot (or overdensity) moving
counterclockwise around the star. Right panel : Schematic of the flow field. The disk is
subdivided into three regions: an inner disk, a corotation region resembling the shape of a
horseshoe, and an outer disk. Because the system is viewed from the planet’s perspective, the
faster-moving inner disk rotates counterclockwise and the slower-moving outer disk clockwise.
The corotation region is static since it orbits at the same speed as the planet. The fluid
elements within the corotation region approach the planet (the white dot located left of
the inner disk) from two sides and slightly change their orbital radius at the U-turns. As
elucidated in (Eq. 1.1), the angular momentum changes as function of radius. As a result,
the fluid elements will exchange angular momentum with the planet at the U-turns which
will, according to Eq. 1.4, exert a torque on the planet (W. Kley and R. P. Nelson 2012).

the time-derivative of the angular momentum:

Γp =
dJP
dt

= 2mpΩprp
∂rp
∂t

(1.4)

Recall that a torque is of the form Γp = rp × F, where F is the force. And because the force,
due to the asymmetries, is tangential to the planet’s orbit, the cross product will dictate that Γp
will be pointing in the z-direction (coming out of Figure Fig. 1.3 towards you).
In order to find the total torque, Γp needs to be integrated over all individual contributions of
the entire disk (assuming a flat two-dimensional case):

Γtot = −
∫
disk

Σ(rp× Fs)zdf =

∫
disk

Σ(rp×∇ψp)zdf =

∫
disk

Σ
∂ψp
∂φ

df (1.5)

Where Fs is the specific gravitational force (i.e., force per unit mass) between the planet and
a small surface element df ; Σ(r, φ) is the surface density (g/cm2) and ψp is the gravitational
potential of the planet (recall the expression for the gravitation field: Fs = g = −∇ψp). The
final expression of Eq. 1.5 was obtained by only considering the azimuthal component of the
cylindrical coordinate system, i.e. ∇ψp = 1

rp

∂ψp
∂φ φ̂. From Eq. 1.5 we can thus infer to what

extent the asymmetry changes the angular momentum of the planet. The aggregate of those two
forces will bring about a change in the planet’s angular momentum and consequently its orbital
radius. As a result, the planet will migrate inwards or outwards, depending on whether it gains
or loses angular momentum (W. Kley and R. P. Nelson 2012; Wilhelm Kley 2019).
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Mark van der Keijl 1.2. CPD formation

1.1.3 Gap formation

Within the disk there are two main opposing forces: the viscous forces that try to smooth out
the disk’s surface density gradient by redistributing angular momentum, and the perturbing
forces — in our case the planet — that tries to create annular substructure via exchange of
angular momentum. For low-mass planets the disk remains almost unperturbed as the viscosity
dominates. But for high-mass planets the perturbing effects become so strong that a gap starts
to open up. This occurs when the planet orbits around the star with a larger velocity than
the material exterior to the planet (larger orbital radius) and slower than the material interior
(smaller orbital radius) to the planet (Bryden et al. 1999; Papaloizou and Lin 1984). Because of
the viscosity, momentum from the fast-moving parts will be transferred to the slow-moving parts
of the fluid (Fraternali 2019). As a result, angular momentum is transferred from the interior
part to the planet which is then transferred to the exterior part. In other words, the interior
material will lose angular momentum and move further inwards and the exterior material will
gain angular momentum and move outwards leaving a gap in its wake. The depth and width of
the gap will depend on the planet’s mass and the viscosity and pressure of the disk (Armitage
2010; W. Kley and R. P. Nelson 2012).

1.2 CPD formation

At first sight, one would expect that the newly formed gap would completely impede the planet’s
ongoing gas accretion rate. This was assumed by the earlier models of CPD formation, in which
the CPD had already completely formed before the gap opened up (e.g., Bagenal et al. 2004;
Pollack and Consolmagno 1984). Later studies have shown, however, that the planet still receives
a diminished, yet on-going influx of gas due to the non-vanishing viscosity within the gap (given
that the viscosity is not too low) (W. Kley 1999).

Due to the reduced accretion rate, the planet starts cooling off while its mass continues to
increase. As a result, the planet’s hydrostatic equilibrium — the balance between the internal
thermal pressure and the gravitational forces — gets disrupted as the gravitational pressure
becomes dominant and the planet starts to contract (Armitage 2010; Ward and Canup 2010).
Additionally, the accretion of gas will transfer angular momentum to the planet which, because
of the conservation of angular momentum, causes an increase in angular velocity as the planet
continues to contract. The angular velocity keeps building up until a critical rate for rotational
instability is reached. At which point the most rapidly rotating material around the equator is
flung out creating a so-called ‘spin-out disk’ (Ayliffe and Bate 2009; Korycansky et al. 1991).

If the protoplanetary disk keeps feeding the gas accretion during the contraction phase, then
at one point the angular momentum of the incoming gas will be too great for it to settle on
the continually shrinking planet; the gas within the Hill sphere remains orbiting around the
planet and starts to form an ‘accretion disk’ (Canup and Ward 2002). Some earlier models have
assumed that the gas accretion ends before the planet starts to contract, meaning that a pure
spin-out disk will be formed. Another model suggests that the planet ceases to contract as gas
continues to be supplied by the circumstellar disk, resulting in a pure accretion disk. In reality,
however, a CPD is probably a combination of both processes (Ward and Canup 2010).

1.3 Irradiation of the CPD

What we have discovered so far, is that the formation of stars and its planets tend to adhere to a
hierarchical structure; after a protoplanetary disk has formed around the star, a circumplanetary

7



1.3. Irradiation of the CPD Mark van der Keijl

disk might eventually form around planets that have enough mass to accrete gas. Because a CPD
is located inside a gap within the protoplanetary disk, its main source of radiation generally
comes from the planet. To what extent the star illuminates the CPD relative to the planet,
depends on a many variables (e.g., luminosity of the planet compared to luminosity of the star,
distance between CPD and star, the optical depth of the medium etc.). The irradiation is an
important factor for the temperature structure and the radiation field within the CPD. Both
of these parameters greatly influence the CPD’s chemical composition as well as its luminosity.
Moreover, an increase in temperature will lead to an increase in viscosity, profoundly impacting
the further evolution of the disk as a consequence. We will, however, only investigate how the
temperature changes under varying circumstances, as its subsequent implications are outside the
scope of this project. But before that, we must first address how the photons actually propagate
through the medium.

1.3.1 The radiative transfer equation

One of the most pivotal physical quantities for the propagation of photons is the specific intensity
Iν , which describes the amount of energy carried in a given direction (Pinte 2015). The energy
crossing a surface area dA, in a frequency range dν and time interval dt, and through a solid
angle dΩ is defined as:

dE = IνdAdtdΩdν (1.6)

Iν =
dE

dAdtdΩdν
(1.7)

where Iν is the specific intensity in units of erg s−1 cm−2 Hz−1 ster−1. If a ray passes through
free space (i.e., vacuum), then the intensity will remain constant:

dIν
ds

= 0 (1.8)

In reality, however, Iν does not stay constant as the ray always passes through some matter
which will add or remove energy from beam depending on the opacity, kν , of the material. As
a result, the expression for the energy ( Eq. 1.6) must be complemented by the spontaneous
emission coefficient or emissivity jν :

dE = jνdV dΩdtdν (1.9)

where jν is in units of erg s−1 cm−3 Hz−1 ster−1. Notice that by moving a distance ds with a
beam of cross section dA maps out a volume of dV = dsdA. The intensity added to the beam
is then:

dIν = jνds (1.10)

Conversely, the intensity lost is given as:

dIν = −ανIνds (1.11)

Where αν is the extinction coefficient with units of cm−1. By integrating αν over a distance ds,
we can derive a unitless quantity called the optical depth τ :

dτν = ανds (1.12)

8



Mark van der Keijl 1.3. Irradiation of the CPD

Another way to describe the optical depth is by using the opacity kν . The (radiative) opacity
is defined as the capacity of matter to absorb or scatter photons as function of frequency and is
given in units of cm2/g:

dτν = kνρdz (1.13)

where ρ is the density of the medium in g/cm3 and dz the infinitesimal distance travelled into
this medium in cm (LeBlanc 2010). The optical depth quantifies how opaque a medium is at
a given frequency (LeBlanc 2010) or, more precisely, the number of mean free paths a photon
can travel before being absorbed (Pinte 2015). If τ < 1 the medium is optically thin and the
photon can quite easily pass through the medium without being absorbed. If τ > 1 the medium
is optically thick and the photon can barely penetrate the medium as almost all photons get
absorbed.
Adding Eq. 1.10 and Eq. 1.11 together gives us the main radiative transfer equation:

dIν(s)

ds
= jν − αν(s)Iν(s) (1.14)

1.3.2 Kirchhoff’s law

Imagine a cavity containing an emitting material that is in thermal equilibrium with the cavity,
i.e. the temperature in the cavity has one discrete value. At that point, the intensity within the
cavity is equal to the Planck function (Iν = Bν) and does not change as function of distance
(dIν(s)

ds = 0). Rewriting Eq. 1.14 gives:

dIν
ds

= jν(s)− αν(s)Bν(T ) = 0 (1.15)

jν = ανBν(T ) (1.16)

Where Eq. 1.16 is known as Kirchhoff’s law which tells you that, in the case of thermal equi-
librium, the emissivity jν of the material depends only on its temperature and the absorption
coefficient αν . It holds as long as the medium is in local thermodynamic equilibrium (LTE).

1.3.3 The source function

We can generalize Kirchhoff’s law by defining the so-called source function:

Sν =
jν
αν

(1.17)

We can thus rewrite Eq. 1.14 as

dIν(s)

ds
= αν(s)[Sν(s)− Iν(s)] (1.18)

dIν(τν)

dτν
= Sν(s)− Iν(s) (1.19)

Here we substituted dτν = ανds. If the medium is in LTE (i.e., dIν
ds = 0 and Iν(T ) = Bν(T )),

the source function will equal the Planck function: Sν = Bν(T ).
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1.4. Continuum radiative transfer Mark van der Keijl

1.3.4 Scattering

The final contribution to the radiative transfer equation is the scattering of photons which can
cause a beam to either lose or gain energy; energy can be scattered away from the beam, while it
can also be scattered towards the beam from the other surrounding beams. In order to implement
the scattering component to the radiative transfer equation, the radiation fields in all directions
and all positions need to be considered:

dIν(s, ~n)

ds
= −αextν (s)Iν(s, ~n) + αabsν (s)Bν(T (s)) + αscaν (s)

1

4π

∫
Ω
ψν(s, ~n′, ~n)Iν(s, ~n′)dΩ′ (1.20)

where αabsν and αscaν are the absorption and scattering cross section, respectively. Adding these
two components together gives the extinction cross section: αextν = αabsν + αscaν . Finally, The
scattering phase function, ψν(s, ~n′), takes the random directions of scattered photons into account
by computing the probability that a photon will be scattered from direction ~n to a direction
~n′. This severely complicates the solution of the radiative transfer equation, as it needs to be
simultaneously solved for all rays and along all directions in order to obtain the intensity Iν(s, ~n).

1.3.5 The complexity of radiative transfer

The previous sections have expounded the various facets of the radiative transfer equation. The
complexity in solving this equation arises when the parameters have to be frequently recalculated.
This happens in optically thick regions, where the density of the medium is so high that the
photon can only travel an incremental distance before being scattered again. Conversely, in
optically thin regions, the photons barely interact with the medium and can therefore propagate
without too much interruption. The complexity becomes more apparent if we combine all hitherto
treated components into one equation:

dIν(s)

ds
= αextν (s)[Sν(s)− Iν(s)] (1.21)

where

Sν(s) = Semissionν (s) + Sscatteringν (s) (1.22)

= αabsν (s)Bν(T (s)) + αscattν (s)
1

4π

∫
Ω
ψν(s, ~n′, ~n)Iν(s, ~n′)dΩ′ (1.23)

The problem lies in the fact that Eq. 1.21 and Eq. 1.22 are coupled, as the scattering term of
the source function depends on the specific intensity Iν(s, ~n′). In order to get a proper result,
Eq. 1.21 and Eq. 1.22 thus need to be solved together (Pinte 2015).

1.4 Continuum radiative transfer

The composition of protoplanetary disks consists of gas and dust of which dust only makes up for
∼ 1% of the total mass. Even though the amount of dust is nugatory compared to the amount
of gas, it does, in fact, play an important role in setting the temperature of the disk. Dust grains
heat up when they absorb a photon and, conversely, cool down when re-emit a photon, but unlike
gas, which absorbs and emits only at specific discrete wavelengths, dust interacts with the stellar
radiation on a continuous range of wavelengths. The continuum opacities are thus dominated
by the dust. Dust grains absorb, scatters and polarizes more efficiently at shorter wavelengths,
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and re-emits more efficiently at longer wavelengths (Pinte 2015). As depicted in Fig. 1.4, the
capability of the dust to absorb radiation happens predominantly in the wavelength range up to
the optical (i.e., up to λ ≈ 0.8µm). The amount of absorbed radiation sets the dust temperature
and dictates the amount of radiation it subsequently emits. How much radiation is absorbed
and scattered depends on the geometry of the disk, the properties of the dust and the intensity
of the stellar radiation (Pinte 2015).

Figure 1.4: Dust opacity plotted as function of wavelength for the Small Magellanic Cloud (SMC) grain
size distribution model (Ma et al. 2019; Weingartner and B. T. Draine 2001).

1.4.1 Dust grain dominance

The abundance, or rather the density of the dust grains will determine whether a region is
optically thin or thick; in optically thin regimes, the radiation field is dominated by the stellar
radiation field which also sets the dust temperature. Conversely, in optically thick regions the
stellar radiation cannot penetrate through the dense slab of dust grains as they get immediately
absorbed by the outer layer. This “self-shielding“ causes the dust-grains within that region to
be only heated by its own infrared emission, which is significantly less energetic than the stellar
flux (Bruce T. Draine 2011; Maciel 2013; Pinte 2015).

Aside from the amount of grains, the properties of the dust (i.e., the opacity law see Fig. 1.4)
are also an important factor in setting the temperature. Smaller grains have a more steep opacity
law between the optical and mid-infrared regimes. Because they are not good emitters in the
mid-infrared, they need to reach rather high temperatures in order to emit the absorbed energy.
Larger grains, on the other hand, have a flat opacity law; they absorb less stellar radiation and
re-emit more in the infrared. As a result, the smaller grains will attain a much higher temperature
than the large grains (Pinte 2015; Woitke, Min, et al. 2016a). For t
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1.5. Scientific goal Mark van der Keijl

1.5 Scientific goal

The main aim is thus to investigate the impact of the stellar radiation on the temperature
structure and the radiation field of the CPD under various circumstances. The theory in this
chapter served to provide all the knowledge required for understanding the subsequent results.
In Chapter 2, we describe the method that sets up our model and calculates its temperature
and radiation field. Chapter 3 has been subdivided into 2 sections: the technical part and the
scientific part. The technical part treats the experimental nature of this project by testing which
set-up yields the most accurate results within a reasonable simulation time. The scientific part
then uses this specific set-up for 6 different models. Finally, chapter 4 summarizes the main
findings and discusses its implications.
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Chapter 2

Methodology

Let’s get this show on the road!

MCMax3D

Figure 2.1: Schematic of the spherical coordinate system. The midplane (i.e. the plane of the planet’s
orbit) is located at θ = π

2 (or z = 0). The midplane is a cardinal point of this project and
will often be referred to.

The program that is used for setting up the model is MCMax3D (Min, Bouwman, et al. 2016;
Min, Dullemond, et al. 2009). As the name suggests, this program generates the disk model
in 3D space using a spherical coordinate system (see Fig. 2.1) which will later be converted
into Cartesian coordinates for the plotting. The motive for opting for MCMax3D, however,
lies not so much in its ability to operate in 3D as in its flexibility in building up a planetary
system; the protoplanetary disk is subdivided into so-called zones, all of which have their own
parameter space and are thus independent from one another. A zone is essentially a component
of the whole disk-system that is (in general) physically separated from any other zone. The most
notable parameters of the zones are the dust mass (Mdust), the inner (Rin) and outer radius
(Rout), and its positional arguments (xyz). If no positional arguments are specified then the
zone will regard the Origin of the spatial grid as its center. For the zone that constitutes the
CPD, however, a specification of its positional arguments are required in order to place the zone
around the planet that orbits the star at some radius. Moreover, the parameters of the zones
can be procedurally changed to probe the CPD’s temperature and radiation field under varying
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2.1. Monte Carlo Mark van der Keijl

circumstances (e.g., place the CPD closer to the host star).
The model that MCMax3D builds is, unlike hydro-dynamical simulations, completely static,

meaning that no geometrical structures that make up the model move. This serves the purpose
of investigating the radiative influences within the disk model. As explained in the introduction
(Sect. 1.3), solving the continuum radiative transfer in a diverse system like a protoplanetary disk
is exceedingly complex. MCMax3D tackles this problem by utilizing the Monte Carlo method.

2.1 Monte Carlo

Figure 2.2: Schematic of the 3D random walk of the photon packet. The full line represents a photon
packet emitted from the star, and the dashed line a photon packet emitted by the dust (in
the disk) (Pinte 2015).

The Monte Carlo method solves the continuum radiative transfer equation by randomly
drawing photon packets from a probability distribution function in an iterative way. Each photon
packet is individually followed as it is scattered, absorbed and re-emitted until it eventually leaves
the system (see Fig. 2.2). When a photon packet gets absorbed, it transfers its energy to the cell
(i.e., the dust grains in that cell), heating it as a consequence. This absorption process destroys
the photon packet, but its transferred energy will be re-emitted in the next iteration. The
scattering of a photon packet will only change the propagation direction of the incident photon.
Because this procedure relies on ‘randomness’, some regions receive less photons than others
leading to noisy results, i.e. Monte Carlo noise. This drawback is inherent to the Monte Carlo
method due to its probabilistic nature, and can be reduced by increasing the number of sampled
photons at the cost of longer computation times. Furthermore, for a very large probability of
interaction (e.g., regions with a very high optical depth), the photon packet takes a long time
to propagate through the medium as it constantly interacts with the medium. Conversely, a
very low probability of interaction causes the photon to ‘freely’ propagate through the medium,
producing no data about that region as a consequence. The big advantage of the Monte Carlo
method, however, is that it works very well in 3D as it accurately traces the propagation of the
photons (Pinte 2015).

2.2 Model Set-up

For this particular project, we classify three zones: the inner disk (zone 1), the outer disk (zone
2) and the CPD (zone 3). Additionally, the host star and the planet are both regarded as
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light sources as they both emit photons required for the Monte Carlo simulation. In terms of
radial size, the inner disk extends from an inner radius of Rin = 0.4 au to an outer radius of
Rout = 18 au, and the outer disk extends from an inner radius of Rin = 22 au to an outer radius
of Rout = 500 au. The void in between the outer edge of the inner disk and the inner edge of
the outer disk constitutes a gap in which the planet has been placed at x = 20 au. Finally,
the third zone (i.e., the CPD) surrounds the planet (Rp = 0.54 R� = 2.5× 10−3 au) with an
inner radius of Rin = 10−3 au to an outer radius of Rout = 1 au relative to the planet’s location.
Furthermore, for each zone the number of grid points needs to be specified in order to define the
zone’s resolution. We distinguish three types of grid points according to the spherical coordinate
system: the azimuthal grid points (φ), the polar grid points (θ), and the radial grid points (r).1

Together they comprise a complete sphere in which a CPD or protoplanetary disk structure can
be formed.
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Figure 2.3: Scatter plot of the the radial and polar grid points for the two values of φ which are on one
line with the star and the planet, i.e. (z,y) = (0,0) (see left panel of Fig. 2.4). The number
of grid points used in this example for the azimuthal, polar and radial components amount
to 60, 50 and 60, respectively. These grid points belong to zone 3 (the CPD) for which the
planet is located in the center.

In Fig. 2.3 the distribution of the grid points is displayed for the two values of φ that are in
line with the star and planet. This grid point configuration is also the template for the plots that
will be shown in the Results section. Notice how the grid points are logrithmically spaced; they
cluster around their Origin and take continuously larger steps as they move away from it. The
spherical components have been converted into Cartesian coordinates to facilitate the plotting
routine. The radial grid points are the lines that begin close to the planet (located at (x,z) =
(20,0)) and move logrithmically outward. The number of polar grid points determine in how
many slices each semicircle will be subdivided (50, in this case). The polar grid points start from
the top of the sphere (θ = π

2 or z = 1 in this plot) and end at the bottom (θ = 3
2π or z = −1).

In Fig. 2.4, the dust density structure of the complete system is depicted on a Cartesian
coordinate grid in the xz-plane (left panel) as well as a midplane cut in the xy-plane (right panel).
The star is located in the center ((x, y, z) = (0, 0, 0)) and is enveloped by a protoplanetary disk.
The protoplanetary disk has been split in two by the gap opened up by the planet. Starting

1In the code the azimuthal, polar and radial grid points are referred to as np, nt and nr, respectively.
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2.2. Model Set-up Mark van der Keijl

from the star (at (x, z) = (0, 0) or (x, y) = (0, 0)) and moving outwards along the positive x-axis,
we come across three zones in the following order: The inner disk (zone 1), the CPD (zone
3) and the outer disk (zone 2). The CPD is labeled as zone 3, since it was last added to the
system. Notice that the density gradient (and thus the mass distribution) in each zone is such as
explained in the introduction; the bulk of the mass resides in the midplane (all x and y-values at
z = 0) which then exponentially decreases as function of z (Woitke, Min, et al. 2016b). This slice
also clearly displays the flaring behaviour of both the protoplanetary disk and the CPD. Notice
how the density within the midplane barely changes as function of radius (r =

√
x2 + y2). The

difference in density for each zone is brought about by the differing mass assigned to each zone.
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Figure 2.4: Dust density contour of the protoplanetary disk with a planet and CPD placed in the gap
(at x = 20 au). Left: xz-plane of the protoplanetary disk with CPD. Right: xy-plane in the
midplane, i.e. at θ = π

2 .

Quantity Symbol Star (star01) Planet (star02)

Temperature T 4000 K 2500 K
Luminosity L 1.01 L� 1.01× 10−2 L�
Radius R 2.09 R� 0.54 R�
Mass M 1 M� 1.91× 10−2 M�
Position x,y,z (0,0,0) au (20,0,0) au

Table 2.1: Main parameters used for the star and planet.

The parameters of the system (such as the previously mentioned number of grid points, radius
of each zone etc.) can be changed in the input.dat file. In Table 2.1 a list of the parameters
— in default settings — for the planet and star are listed. The star’s parameters are based
on the spectrum of a T Tauri star. For the planet we assume 1% accretion luminosity (i.e., it
is a young accreting planet) which is added to the total photospheric luminosity of the planet
(hence 1.01× 10−2 instead of 10−2). It is important to be consistent with this so as to keep the
photospheric emission for both models the same. The accretion luminosity for both the star and
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Quantity Symbol Inner disk (zone1) Outer disk (zone2) CPD (zone3)

Inner radius Rin 0.4 au 22 au 3× 10−3 au
Outer radius Rout 18 au 500 au 1 au
Exp. decline radius Rexp 18 au 100 au 21 au
Dust mass Mdust 2× 10−5 M� 1× 10−4 M� 10−10 M�
Radial grid points nr 60 60 60
Polar grid points nt 50 50 50
Azimuthal grid points np 60 60 60
Radial density gradient rα α = −1 α = −1 α = −1
Flaring rβ β = 1.15 β = 1.15 β = 1.15
Position x,y,z (0,0,0) au (0,0,0) au (20,0,0) au

Table 2.2: Parameters used for each zone.

planet should increase the strength of the UV field. Finally, the planet’s coordinates have been
specified to manually place it at the desired location.

In Table 2.2 all the relevant parameters for each zone are listed. As previously mentioned,
each zone can be individually changed, which offers quite a bit of freedom in building up a
protoplanetary disk structure. The coordinates for the CPD have been specified in order to
place it around the planet. The parameters Rin and Rout set the starting and end point of each
zone in units of au, respectively. Rexp determines at what radius the surface density will start
to decline exponentially. Mdust sets the total dust mass which MCMax3D also uses to calculate
the gas mass by simply multiplying it with a factor 100 (since a gas-to-dust mass ratio of 100
is assumed). Notice how the dust mass of the CPD is considerably lower than that of the other
zones. This has been done to account for the smaller volume and by keeping the CPD optically
thin enough so that photons can pass through more easily. denspow and shpow determine what
power law the zone should follow as function of radius for the radial density gradient (∝ r−1) and
degree of flaring (∝ r1.15), respectively. Finally, nr, nt and np represent the number of radial,
polar and azimuthal grid points, respectively. The reading and processing of the MCMax3D data
is done with Python.
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Chapter 3

Results

Using MCMax3D for this particular end has never been done before, giving this project a highly
experimental nature. The Results section has, therefore, been split up into two sections: The
Technical (Sect. 3.1) and the Scientific (Sect. 3.2) part. In Sect. 3.1, a default model will be put
forward whose number of grid point and number of photons will be procedurally changed. The
goal is to find the best configuration for the amount of photons and spatial grid points required
to achieve accurate results within an acceptable amount of computation time. In Sect. 3.2, this
configuration will be used for 6 different models which comprise a change in the CPD’s luminosity
and position as well as the complete removal of the inner disk. The CPD’s temperature and
radiation field for each model will subsequently be investigated.

3.1 Technical tests

MCMax3D has two input parameters that can significantly influence the accuracy of the results
as well as the computation time of the simulations, namely the amount of generated photons and
grid points. For this project both these input parameters have been divided into three modes: the
low amount (L), the high amount (H), and the very high amount (Hmax). How this translates
into the number of photons and grid points is shown in table Table 3.1. We have chosen the
name Hmax since that is the absolute maximum number of photons MCMax3D can generate due
to its 32 bit limit (231 ≈ 2.1 × 109). The same is true for the number of grid points: originally
we had set them at (φ, θ, r)= (240, 200, 240) to continue the trend of doubling the number grid
points, but at that point the output became larger than 2 Gb which started to cause problems.
This limit is due to the routine that writes the fits files, but the details of this caveat still need
to be further investigated.

Mode Number of photons Number of grid points
Low (L) 107 (φ, θ, r)= (60, 50, 60)
High (H) 109 (φ, θ, r)= (120, 100, 120)
Very High (Hmax) 2.1× 109 (φ, θ, r)= (200, 200, 200)

Table 3.1: The modes and their corresponding number of photons and grid points.

The number of grid points in Table 3.1 are displayed in a (φ, θ, r) format, multiplying these
dimensions with each other gives us the total number of grid points:
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L = 60× 50× 60 = 1.8× 105 gridpoints (3.1)

H = 120× 100× 120 = 1.44× 106 gridpoints (3.2)

Hmax = 200× 200× 200 = 8× 106 gridpoints (3.3)

3.1.1 Assessing the quality of each configuration

With these three modes and its two variable input parameters, a total of nine configurations can
be realized. The accuracy of each configuration will be assessed by looking at the noise level
of the temperature in the CPD. In our set-up (Fig. 2.4), the CPD has a side facing the star
(i.e., the left side of the CPD) and a side pointing away from the star (i.e., the right side of the
CPD). The importance of these two sides will be further explained in Sect. 3.2. For now, we
are only interested in the noise-level as a means to quantify the accuracy of each configuration.
In Fig. 3.1, a schematic depicts how the CPD is split into two semicircles: the left and right
CPD. The two radii in line with the star (located on the left) are called CPDL (at φ = π) and
CPDR (at φ = 0). The φ-values extend around CPDL and CPDR such that one third of their
respective semicircle is sweeped out. These areas (or sextants) are highlighted in brown and are
symmetric around CPDL and CPDR. Every φ slice has the same number of radial grid points
that maps out the radius of the disk at a given angle. The idea is to reduce the Monte Carlo noise
within the two sextants by averaging over the multiple φ-values for each radial grid point. The
obtained average temperatures will then be regarded as the temperature belonging to CPDL and
CPDR. We could have chosen to average over all φ-values so as to reduce the Monte Carlo noise
even further, but that would smooth out the possible temperature difference between CPDL and
CPDR which is important for Sect. 3.2.

CPDLCPDL CPDRCPDR

rrPhotonsPhotons

xx

..y..y

PlanetPlanet
StarStar

zz

Figure 3.1: Schematic of midplane cut (z = 0) in the xy-plane centered around the planet (not on scale):
this schematic serves to get a better grasp of how the temperature plots are created. In
the bottom left corner the orientation of the Cartesian coordinate system is displayed (z
comes out of the paper and goes in to the paper since we are in the midplane). The CPD is
delineated as the black circle with the planet in its center. The star is located on the left.
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By process of elimination, the configuration that gives rise to the most accurate and least time
consuming results will be selected. We will first start with finding the most optimal number of
photons while keeping the number of grid points fixed. The selected number of photons will then
be tested for the three modes of grid points until the best configuration is found. 6 configurations
will thus explicitly be compared with one another in the main text, while all 9 configurations are
more succinctly compared in Table 3.2.

Configuration Photons Grid points Li Lf Ri Rf
(φ, θ, r) Relative error in temperature

LL 107 (60, 50, 60) 123% 71 % 77% 67%
LH 107 (120, 100, 120) 434% 132% 159% 74%
LHmax 107 (200, 200, 200) 312% 138% 266% 126%
HL 109 (60, 50, 60) 7% 6% 8% 4%
HH 109 (120, 100, 120) 11% 7% 13% 10%
HHmax 109 (200, 200, 200) 27% 17% 22% 9%
HmaxL 2.1× 109 (60, 50, 60) 5% 5% 4% 3%
HmaxH 2.1× 109 (120, 100, 120) 10% 6% 9% 9%
HmaxHmax 2.1× 109 (200, 200, 200) 17% 17% 13% 12%

Table 3.2: Relative errors of the initial and final point radial grid point of the left (Li and Lf ) and right
(Ri and Rf ) disk half of the CPD.

3.1.2 Number of emitted photon packages

Selecting the optimal amount of photons is all about balance: using a lot of photons leads to a
longer computation time, while using too few will inevitably lead to inaccurate results. We are
therefore looking for the number of photons that can provide a reasonable accuracy within an
acceptable computation time. The following three configurations will be put to the test: LL, HL,
HmaxL. Where we use a low number of grid points for all three cases to minimize the required
computation time. The total amount of φ-values for these three configurations amount to 60 (see
Table 3.1), meaning that the two sextants each comprise 10 φ-values. The temperature values
of the left and right sextant are plotted as function of radial grid points, which are subsequently
overplotted by its average temperature and the corresponding error bars (the standard deviation).
Through the calculation of the standard deviation (i.e., the error), the noise can be quantified
and used for evaluating the accuracy of the various configurations.

To show the impact of the chosen number of photons on the results, the radial temperature
profiles of configuration LL and HL are displayed in Fig. 3.2 and Fig. 3.3, respectively. In the
LL configuration, the average temperature decreases quite erratically as function of radial grid
points, which is indicative of substantial noise: the first data point of CPDL and CDPR display
a relative error of 123% and 77%, respectively. In the last data point of CPDL and CPDR, we
notice a decrease in noise with a relative error of 71% and 67%, respectively. In HL, the decline
of the average temperature values proceed more smoothly as evidenced by their significantly
smaller errors: a relative error of 7% and 6% for the first and last data point in CPDL, and a
relative error of 8% and 4% for the first and last data point in CPDR. HmaxL is not displayed,
but is very similar to HL with a relative error of 5% and 5% for the first and last data point in
CPDL, and a relative error of 4% and 3% for the first and last data point in CPDR. HL and
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Hmax are thus almost equally accurate. Their relative computation time, however, is not at
all similar as HmaxL takes around twice as long to finish.1 For the sake of time, we therefore
decided to stick with 109 photons (H).
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Figure 3.2: Radial temperature profile for LL (107 photons): the yellow and green lines are all the tem-
peratures belonging to the φ-values within the left and right sextant, respectively. The blue
(left) and black (right) line represent the average temperature, both of which are comple-
mented with the standard deviation in the form of orange-red error bars. Top left: radial
temperature profile as function of radial grid points for the left side of CPD (CPDL). Bottom
left: zoom-in of top left panel for a clearer picture of the temperature behaviour at outer
edge of CPDL. Top right: radial temperature profile as function of radial grid points for left
side of CPD (CPDR). Bottom right: zoom-in of top left panel for a clearer picture of the
temperature behaviour at outer edge of CPDR.

1Note that computation time depends heavily on how many cores we could use during the simulations which
in turn depends on how many people were using the computer clusters. Hence this factor 2 difference is a rough
estimate, but still of significant value in determining the best configuration.
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Figure 3.3: Radial temperature profile for HL (109 photons): The plotting was carried out using the
exact same procedure as Fig. 3.2.
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3.1.3 Number of spatial grid points

Now that we have settled on the photon abundance, we can vary the number of grid points while
keeping the photon abundance fixed at H. Since we have already displayed the HL plot, only HH
and HHmax will be shown here.

The plots are displayed below (Fig. 3.4 and Fig. 3.5) and both seem quite a bit noisier than
HL (Fig. 3.3). The reason for this extra noise is because an increase in the number of grid points
leads to a smaller volume element per grid point. If the volume element decreases, then the
chance of a photon hitting it will also decrease, resulting in more noise. This means that a lower
number of grid point leads to more accurate results at the cost of a lower resolution. The latter
case is definitely not unimportant, as a higher resolution shows more structural details. However,
in the light of maximizing the accuracy of the results, a low number of grid points is deemed
necessary.

We have thus found that the errors in the H and Hmax level of photons are quite similar with
Hmax being slightly more accurate. Their accuracy both decreases for an increasing number of
grid points. As a result, the most accurate results are provided by the HmaxL configuration, but
considering its long computation time we we opted for HL as the most convenient configuration.
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Figure 3.4: Radial temperature profile for HH ((φ, θ, r)= (120, 100, 120)): The errors seem slightly
higher compared to HL.
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Figure 3.5: Radial temperature profile for HHmax ((φ, θ, r)= (200, 200, 200) ): Here the errors are
significantly larger than HH and HL.
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3.2 Scientific tests

In this section, we will investigate the influence of the star on the CPD’s temperature gradient
and radiation field for various models. Additionally, we will also briefly discuss the impact of the
CPD on the surrounding inner and outer disk.

The models that we shall be testing are based on the following phenomena: planets can have
different luminosity; some protoplanetary disk are devoid of inner disks, so-called transitional
disks (Kim et al. 2013); and planets can orbit the star at different orbital radii, influencing their
received stellar flux. Considering these factors, we get 3 main configurations:

1. The full system as depicted in Fig. 2.4.

2. The full system without the inner disk.

3. The full system without the inner disk and the planet plus CPD placed at a 10 au (instead
of 20 au) distance from the star.

Each of these configurations will be tested for two planetary luminosities: The default lumi-
nosity (Lp = 1.01× 10−2 L�) and the luminosity lowered by an order of magnitude (Lp =
1.01× 10−3 L�). For the first configuration, the influence of the CPD on the inner and outer
disk will also be examined.

The CPD’s dust density (and thus the gas density) are fixed for all models (Fig. 3.6). The
importance of the dust density should not be forgotten, however, as it dictates, among other
things, how much radiation penetrates and thus what temperature the CPD will ultimately
attain.
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Figure 3.6: Dust density of the CPD in the xz-plane, where z corresponds to the height of the disk.
Because the disk is symmetric along the x-axis, only the upper half of the disk is depicted.
The planet is located at 20 au, and is enveloped by the CPD with a radius of 1 au whose
z-values increase with increasing radius (x) due to flaring. Notice how the density is maximal
around the midplane and that it steeply decreases as function of z.
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3.3 Configuration 1: Full system

The temperature section consists of a three-way approach: first, the 3D temperature structure
of the full system — inner disk (if present), outer disk and CPD — will be depicted via a cut
through the xz-plane and and a cut through the midplane (xy-plane). Next, a scatter plot of
the radial temperature profile in the disk midplane — in line with the star and planet (φ = 0
and φ = π; see Fig. 3.1) — will be studied for all three zones. The impact of the CPD on the
inner and outer disk will also be investigated. After that, we zoom in on the left and right side
of the CPD and apply the exact same procedure as described in Sect. 3.1.1 and Fig. 3.1. Finally,
CPDL and CPDR will be plotted together to infer the star’s impact on the left and right side of
the CPD.

3.3.1 Temperature

The temperature of the full system is depicted in Fig. 3.7. The default settings (as shown in
Table 2.1 and Table 2.2) have been used for this configuration. The CPD is thoroughly heated
due to its low density and highly luminous planet (Lp = 1.01× 10−2 L�); the planet’s photons
easily cover the whole CPD until they irrevocably strand in one of the surrounding, more optically
thick zones. Notice how these photons still have plenty of energy to significantly heat up a small
area of the surrounding inner and outer disk. Conversely, no stellar photons really penetrate the
inner disk, implying that the CPD is solely heated by the planet. For the lowered luminosity case
Lp = 1.01× 10−3 L� in Fig. 3.8, the planet heats the CPD and surrounding inner and outer disk
to a considerably lesser extent. As a side note: since MCMax3D does not consider background
radiation its lowest temperature outputs amounts to −1 K (presumably, because those grid points
did not receive any photons, hence it was undefined). To overcome this non-physical value, we
capped the lowest temperature at that of the Cosmic Microwave Background TCMB = 2.73 K.

−20 −10 0 10 20
x [au]

−10

−5

0

5

10

z
[a

u]

−20 −10 0 10 20
x [au]

−20

−10

0

10

20

y
[a

u]

1.2

1.4

1.5

1.7

1.8

2.0

lo
g 1

0
(T

)
[K

]

Figure 3.7: The xz-plane (left) and midplane cut (right) of the 3D temperature structure for a default
planet luminosity (Lp = 1.01× 10−2 L�). Note that the temperature (i.e., the colorbar) is
logarithmically scaled.
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Figure 3.8: Exact same set-up as shown above, but now the planet luminosity has been reduced by an
order of a magnitude — Lp = 1.01× 10−3 L�.

By considering the radius in the midplane cut (y = 0 and z = 0, only x varies), the tem-
perature profile as function of radius that goes through all three zones is obtained (Fig. 3.9).
The inner disk (green) starts at x = 0.4 au with a temperature of ∼ 623 K which, at first, slowly
declines as function of x (note how the temperatures values cluster at x ≈ 0.4 au) until it starts
to decline exponentially till at around 0.5 au. At that point the shallow slope indicates a linear
(in log-log space) and smooth decline; the star’s radiation has become mostly extinct and thus
the dust grains heat each other via thermal emission only. Notice how the temperature of the
last few data points slightly increases as it approaches the CPD. The zoomed-in plot in the top
left corner depicts how the temperature of the outer edge of the inner disk (∼ 54 K, at 18 au) is
almost equal to the first data point of the left side of the CPD (CPDL, ∼ 52 K). The tempera-
ture then shoots up as it approaches the planet with a maximum temperature of Tmax = 2263 K
which is somewhat cooler than the planet (Tp = 2500 K). As it enters the right side of the CPD
(CPDR) and moves away from the planet, the temperature decreases until it is roughly the same
as the inner edge of the outer disk (∼ 55 K). The temperature of the outer disk then decreases
linearly as it moves away from the planet and starts approaching TCMB = 2.73 K. The lack of
data points between the CPD and the surrounding disks represents the gap in which the CPD
has been placed.

In Fig. 3.10 the same plot is shown for the lower planet luminosity Lp = 1.01× 10−3 L�. The
behaviour of the the CPD is still the same, except for the grid points centered around x = 20 au;
no photons have reached those areas and are thus equal to TCMB. The values on the y-axis have
also declined as the maximum temperature is now equal to ∼ 1717 K.
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Figure 3.9: Temperature in the midplane along the line of the star and planet as function of x (Lp =
1.01× 10−2 L�). The colours green, red, blue and orange represent the inner disk, CPDL,
CPDR and outer disk, respectively. The panel on the top left is a zoom-in of the CPD in
which the green and orange dot represent the the last and first data point of the inner and
outer disk, respectively. The y-axis has been capped at T = 500 K so that the exponential
curve in temperature of the CPD close the planet can be clearly discerned.
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Figure 3.10: Temperature in the midplane for the lower luminosity case (Lp = 1.01× 10−3 L�).
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In order to gain more insight on the influence of the CPD on the inner and outer disk, we ran
the exact same model only without the CPD and the planet. We then compared the two models
in Fig. 3.11 by plotting the resulting inner and outer disk together.

The blue and orange lines showcase the behaviour of the inner and outer disk with a CPD
in between them. Conversely, the green and red are the inner and outer disk without a CPD
or planet placed in between them. Notice how the blue line traces the green line, apart from
the MC noise, closely until it starts moving upwards at x ≈ 10 au. The blue line’s temperature
keeps increasing up till ∼ 54 K at which point it has reached the outer edge of the inner disk
(x = 18 au). The difference in temperature of the blue and green line is at that point ∼ 31 K.
At x = 22 au the photons hit the inner edge of the outer disk. However, now both the outer
disk with and without the CPD shoot up in temperature (their temperature difference is now
∼ 27 K); the outer disk is clearly heated up by the CPD, but what about the outer disk that has
no CPD near it? Due to the gap, the stellar photons can actually hit the inner rim of the outer
disk. And because of flaring, the inner rim of the outer disk is larger along z than the outer
rim of the inner disk (e.g., left panel Fig. 3.8), resulting in a larger surface area for the stellar
photons to impinge on. As a consequence, the inner rim of the outer disk will be additionally
heated by the star.
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Figure 3.11: Midplane temperature as function of radius for inner and outer disk for Lp = 1.01× 10−2 L�.

Now, in order to properly compare the temperature of the outer edge of CPDL with that
of CPDR, the Monte Carlo noise ought to be reduced like we did in Sect. 3.1.1. The true aim
of this procedure is to obtain a reliable comparison between CPDL and CPDR. Fig. 3.12 and
Fig. 3.13 display the the temperature for both CPDL and CPDR as function of radial grid points
for the Lp = 1.01× 10−2 L� and Lp = 1.01× 10−3 L�, respectively. The yellow (left) and green
(right) plots are all the temperatures for the relevant φ-values which have been overplotted with
its average temperature (blue and black line) and its additional error bars (for a more thorough
explanation see Fig. 3.1 and Fig. 3.2).
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Figure 3.12: Radial temperature profile as function of radial grid points in the midplane for the sextant
of φ-values for Lp = 1.01× 10−2 L�.
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Figure 3.13: Radial temperature profile as function of radial grid points in the midplane for the sextant
of φ-values for Lp = 1.01× 10−3 L�
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By plotting the average temperatures obtained in Fig. 3.12 and Fig. 3.13 together as function of
distance to the planet, a more detailed comparison can be realized. In Fig. 3.14 the temperature
is plotted as function of CPD radius (|x|) on logarithmic scales. In the top plot one can see how
the temperature first declines exponentially in log-log space (at around 3× 10−3 au) and then
continues to decline linearly in log-log space due to the self-heating of the dust.

In bottom panel of Fig. 3.14 the last three data points close to the CPD’s edge are shown.
The last data points of CPDL and CPDR at x = 1 au (i.e. the outer rim) have a value of
TCPDL = (50± 2) K and TCPDR = (51± 3) K, respectively. Notice how CDPL is slightly lower
in temperature than CDPR, which is the opposite of what we expected. However, since their
difference is minute and their errors clearly overlap, we conclude that CPDL and CPDR must
be equal in temperature. For the lower luminosity case (Fig. 3.15; top panel), the exponential
decline on log-log scale is very similar to the standard luminosity case (Fig. 3.14). But for
increasing x-values, the temperature starts to become more noisy as their uncertainties start to
increase. As for the bottom panel, we can draw a similar conclusion as for Lp: the temperatures
at the outer rim amount to TCPDL = (30± 4) K and TCPDR = (29± 3) K, i.e. CPDL is again
equal to CPDR.
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Figure 3.14: The average temperatures of CPDL and CPDR including their errors for Lp =
1.01× 10−2 L� as function of distance to the planet. Top: CPDR and CPDL plotted on a
logarithmic scale. Bottom: zoom-in of the last three data points plotted on a linear scale.
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Figure 3.15: Same as Fig. 3.14 but for a lower planetary luminosity (Lp = 1.01× 10−3 L�).

3.3.2 Radiation field

For the radiation field we focus on the wavelength range of 0.091µm < λ < 0.205µm which
comprises the Far-UV spectrum. This wavelength range plays an important role in the chem-
istry of the CPD (e.g., photo-ionization and photo-desorption processes). The radiation field is
normalized to the Draine field, which is a unitless quantity and is equal to 1 for the interstellar
radiation field (B. T. Draine and Bertoldi 1996; Woitke, Kamp, et al. 2009). This means that a
radiation field of 106, for example, is 106 times stronger than the interstellar radiation field.

The radiation field is computed separately from the temperature by using its own predefined
set of photons. MCMax3D uses a total of 3×106 photons, which it distributes and subsequently
integrates over 21 wavelengths points that comprise the 0.091µm < λ < 0.205µm wavelength
range.

The results for the radiation field in the xz-plane exhibited quite a few voids, i.e. some grid
points did not receive any radiation field photons. In fact, the radiation field was noisier than
the temperature. In order reduce the Monte Carlo noise as much as possible, we averaged over
all the φ-values for the θ-values that constitute the upper hemisphere of the CPD (the lower
hemisphere can be neglected, as the radiation field is symmetric around the midplane). The
procedure is similar the one shown in Fig. 3.1, but now the φ-values map out the entire circle
instead of two sextants.

The result for the default luminosity is depicted in Fig. 3.16: the isotropic nature of the
radiation and the averaging procedure are responsible for the symmetry along z at x = 20 au
(θ = 0) and the well-stratified nature of the annuli. As with the flux, the radiation field decreases
as function of 1/r2. The lack of data points at θ = 0 is due to a limitation of the code. Notice
how the annular structure disappears in the midplane (z = 0); the greater optical depth makes
it more difficult for the photons to penetrate, which weakens the radiation field’s intensity (as
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evidenced by the darker patches). Do not be fooled by the seemingly smooth structure of the
contour plot, however; there are actually very few data points, but the empty spaces are filled
up by plotting routine. This leads to a wrong impression of the actual accuracy of the radiation
field.Because of these inaccurate results, we decided to only show the default luminosity case
(Lp = 1.01× 10−2 L�) as lowering the luminosity would only lead to even worse results.
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Figure 3.16: xz-plane of the average radiation field for Lp = 1.01× 10−2 L�.

The outer rim of CPDL (just like with the temperature) might have a stronger radiation
field than the outer rim of CPDR if the intensity of the stellar radiation is strong enough.
Following the same methodology as for Fig. 3.12 and as describe in Sect. 3.1.1, we can plot the
average radiation field in the midplane as function of radial grid points. In Fig. 3.17, the first
thing that strikes the eye, is the asymmetry of the errors. This is because the radiation field,
χ, has been plotted on a log-scale. Moreover, the errors are so large that they extend all the
way to about ∼ −109, and we only plotted for positive χ-values (as negative values are non-
physical). The reason for these massive errors has to do with the fact that a lot of grid points
have undefined values for the radiation field (set at χ = 0), as they were never hit by a photon.
If we then average over the φ-values for each radial grid point along CPDL or CPDR, we get a
very inaccurate average value and thus extremely large standard deviations.

Close to the planet, the radiation field starts with a value of about 109 (for both CPDL and
CPDR) which decreases as function of radial grid points. Both CPDL and CPDR abruptly drop
off to χ = 0 after which they climb up again until they reach a local maximum of roughly χ = 104

after which they decline again until they settle at about χ = 102.
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Figure 3.17: Radiation field (χ) in midplane as function of radial grid points for all φ-values (Lp =
1.01× 10−2 L�). The radiation field is plotted on a logarithmic scale and the radial grid
points on a linear scale. The yellow and green lines are the radiation fields plotted for all
φ-values, the overplotted blue and black line represent the average radiation field for CPDL
and CPDR, respectively. The orange-red error bars below the average are so stretched out
due the logarithmic scaling. Notice the zero values of χ at nr = 12 for CPDL and nr = 8, 9
for CPDR.
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Finally, by plotting the average radiation field of CPDL and CPDR together, we can visualize
and infer the star’s influence on the CPD (as done before in Fig. 3.14). In Fig. 3.18, the radiation
field is plotted as function of CPD radius (|x|) on logarithmic scales. In the bottom plot, a zoom-
in of the last three data points highlights the difference between CPDL and CPDR at the outer
rim. At x = 1 au their values amount to χCPDL = 41± 83 and χCPDR = 55± 68. Their
overlapping errors prove that they are equivalent (as also evident from the plot).
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Figure 3.18: The average radiation field of CPDL and CPDR with their errors as function of distance
to the planet for Lp = 1.01× 10−2 L�. The x-values for both plots have been adjusted
such that the planet is located at x = 0 au for both cases. Top: CPDR and CPDL plotted
on a logarithmic scale. The bottom errors appear stretched due to the logarithmic y-axis.
Bottom: zoom-in of the last three data points plotted on a linear scale.
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3.4 Configuration 2: No inner disk

3.4.1 Temperature

The first noticeable difference — for both planet luminosities — after removing the inner disk,
is how the star now irradiates the outer disk directly. The stellar radiation is so strong, that
planet/CPD emission onto the inner rim of the outer disk has become negligible (See left panel
Fig. 3.19). Furthermore, the left side of the CPD for the low luminosity case (Fig. 3.20) seems
to be hotter than the right side, implying that the star heats it up additionally.
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Figure 3.19: The xz-plane (left) and midplane cut (right) of the 3D temperature structure for the default
planet luminosity (Lp = 1.01× 10−2 L�).
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Figure 3.20: Exact same set-up as shown in Fig. 3.19, but now the planet luminosity has been reduced
by an order of a magnitude — Lp = 1.01× 10−3 L�.
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The radial temperature profile as function of radial grid points plots are omitted here, as
they are not markedly different from the ones in the previous configuration. Furthermore, Their
main purpose was to illustrate the averaging procedure to begin with (the same applies for the
radiation field).

The average temperatures plots of CPDL and CPDR, however, are of interest: In Fig. 3.21,
one can see how the temperature at the outer edge of CPDL is lower than that of CPDR, i.e.
TCPDL = (58± 6) K and TCPDR = (68± 6) K. This is opposite from what we expected, but the
sudden temperature jump between the second to last and last data point indicate that Monte
Carlo noise must be at play here. Conversely, in the lower luminosity case (Fig. 3.22) one can see
an actual trend occur, meaning that the outer rim of CPDL does in fact get heated by the star,
with temperature values at the outer rim of: TCPDL = (74± 13) K and TCPDR = (65± 1) K.
However, the errors overlap which implies that CPDL and CPDR are equal. Notice how the
errors in CPDL are markedly larger than CPDR; a consequence from the star only heating up a
few grid points on the left side of the CPD, which generates larger errors.
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Figure 3.21: The average temperatures of CPDL and CPDR including their errors for Lp =
1.01× 10−2 L� as function of distance to the planet. Top: CPDR and CPDL plotted on a
logarithmic scale. Bottom: zoom-in of the last three data points plotted on a linear scale.
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Figure 3.22: The average temperatures of CPDL and CPDR including their errors for Lp =
1.01× 10−3 L�. Notice how CPDL is consistently higher.

3.4.2 Radiation field

The removal of the inner disk, seemed to have diminished the isotropy of the CPD’s radiation
field (Fig. 3.23). More importantly, in Fig. 3.24 a trend starts to form in which the radiation
field of CPDL is stronger than CPDR, with values at the outer rim of: χCPDL = (1± 5)× 104

and χCPDR = 552± 546. The huge errors are again evidence of the inaccuracy of the radiation
field.
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Figure 3.23: xz-plane of the average radiation field for Lp = 1.01× 10−2 L�.
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Figure 3.24: The average radiation field of CPDL and CPDR with their errors as function of distance to
the planet for Lp = 1.01× 10−2 L�.
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3.5 Configuration 3: No inner disk and closer to star

3.5.1 Temperature

In both Fig. 3.25 and Fig. 3.26, we notice an asymmetric temperature structure for the CPD and
an outer disk that is clearly only heated by the star. Less noticeable — hardly noticeable, in fact
— is the ‘shadow’ produced by the CPD. The inner edge of the outer disk is traced by a yellowish
line, which is not present at the φ-values where the CPD is blocking the stellar radiation.
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Figure 3.25: The xz-plane (left) and midplane cut (right) of the 3D temperature structure for a default
planet luminosity (Lp = 1.01× 10−2 L�).

−20 −10 0 10 20
x [au]

−10

−5

0

5

10

z
[a

u]

−20 −10 0 10 20
x [au]

−20

−10

0

10

20

y
[a

u]

1.2

1.4

1.5

1.7

1.8

2.0

lo
g 1

0
(T

)
[K

]

Figure 3.26: Exact same set-up as shown in Fig. 3.25, but now the planet luminosity has been reduced
by an order of a magnitude — Lp = 1.01× 10−3 L�.

Because the CPD is clearly heated by the star now, the radial temperature profile plots as
function of radial grid points are now markedly different: In Fig. 3.27, one can see how the
temperature of CPDL is clearly higher than CPDR. In Fig. 3.28, CPDR even seems to decline
for the last few grid points, but that could also be due to Monte Carlo noise.
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Figure 3.27: Radial temperature profile as function of radial grid points in the midplane for the sextant
of φ-values for Lp = 1.01× 10−2 L�.
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Figure 3.28: Radial temperature profile as function of radial grid points in the midplane for the sextant
of φ-values for Lp = 1.01× 10−3 L�
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By plotting CPDL and CPDR together we can see clear trends for both the default and low
luminosity case (Fig. 3.29 and Fig. 3.30, respectively), with temperatures at the outer rim of:
TCPDL = (72± 20) K and TCPDR = (44± 12) K, for the default luminosity case, and TCPDL =
(100± 34) K and TCPDR = (33± 17) K, for the low luminosity case. Notice how in Fig. 3.30 the
errors do not overlap for the last two grid points and that CPDR actually seems to decrease in
temperature.
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Figure 3.29: The average temperatures of CPDL and CPDR including their errors for Lp =
1.01× 10−2 L� as function of distance to the planet. Top: CPDR and CPDL plotted
on a logarithmic scale. Bottom: zoom-in of the last three data points plotted on a lin-
ear scale. top: one can distinguish a steep temperature fall-off between (3× 10−2 au and
3.5× 10−2 au), for larger radii the decline mellows down and becomes more shallow.
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Figure 3.30: The average temperatures of CPDL and CPDR including their errors for Lp =
1.01× 10−3 L�.

3.5.2 Radiation field

Fig. 3.31 depicts the radial radiation field profile as function of radial grid points. Also note
how the errors at the left side of the CPD at around 55th radial grid point are suddenly a lot
smaller than the rest (the same can be seen in CPDL at the 58th radial grid point). This is
simply because at those points the values of the radiation field are quite equal, i.e. most of the
φ-values at those radial grid points have an actual radiation field value. Finally, in Fig. 3.32
the errors of CPDL are markedly larger than CPDR; a consequence of the star only irradiating
random areas on the left of the CPD. The values of CPDL and CPDR at the outer rim amount
to: χCPDL = (2.5± 0.4)× 104 and χCPDR = (4.7± 0.9)× 103.
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Figure 3.31: Radiation field (χ) in midplane as function of radial grid points for all φ-values (Lp =
1.01× 10−2 L�).
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Figure 3.32: The average radiation field of CPDL and CPDR with their errors as function of distance to
the planet for Lp = 1.01× 10−2 L�.
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Chapter 4

Discussion and conclusion

Something is wrong... Don’t
worry! I’ll try to fix it.

MCMax3D

For this project we tested how the temperature and radiation field in a static circumplane-
tary disk (CPD) model changes due to irradiation from its host star. And what environmental
circumstances would increase or decrease the influence of the star’s irradiation onto the CPD. Ad-
ditionally, we also had a short look at the CPD’s impact on the temperature of its surroundings,
i.e. the protoplanetary disk (PPD) in which it resides.

We used MCMax3D to build up a protoplanetary disk consisting of an inner disk and an
outer disk. These disks were separated by a gap in which a planet with a surrounding CPD
was placed at a 20 au distance from the star. For a total of 6 models — each using 109 photon
packages and a grid point configuration of (φ, θ, r) = (60, 50, 60) abbreviated as HL — we tested
the influence of the star on the temperature and radiation field of the CPD. From the geometry
of our set-up we argued that the outer rim of CPDL (side of the CPD that is pointing in the
direction of the star) would be hotter than the outer rim of CPDR (side that is pointing away
from the star). The CPD itself was left unchanged for all models, meaning that its radius was
always 1 au and thus the outer rim of CPDL was always 2 au closer to the star than the outer
rim of CPDR. We distinguish three configurations:

1. the full system with inner disk, outer disk, and CPD placed in between them (HL).

2. the full system but inner disk removed (HLNODISK).

3. the full system but inner disk removed and planet and CPD placed at 10 au distance from
the star (HLNODISK10au).

Each of these configurations were tested twice: one with the default planet luminosity Lp =
1.01× 10−2 L� and one with the planet luminosity reduced by an order of magnitude Lp =
1.01× 10−3 L� (the model will then have ‘lumlow’ attached to its abbreviation). In order to
reduce the Monte Carlo noise, we averaged over a sextant of φ-values for CPDL (solar direction)
and CPDR (anti-solar direction) for the temperature. Because radiation field was even more
noisy, we averaged over the whole annulus of φ-values. The results of the temperature and
radiation field at the outer rim of the CPD for the various models are displayed in Table 4.1.
Note that we did not treat the radiation field for the lower luminosity case, as its values would
only be worse. Their values are, however, listed in Table 4.1 for completeness.
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Model Config. Temperature [K] Radiation field
TCPDL TCPDR χCPDL χCPDR

HL 1 50± 2 51± 3 41± 83 55± 68
HLlumlow 1 30± 4 29± 3 5± 10 7± 14
HLNODISK 2 58± 6 68± 6 (1± 5)× 104 552± 546
HLNODISKlumlow 2 74± 13 65± 1 (8± 20)× 103 (1.3± 2.0)× 103

HLNODISK10au 3 72± 20 44± 12 (2.5± 0.4)× 104 (4.7± 0.9)× 103

HLNODISK10aulumlow 3 100± 34 33± 17 (7.2± 2.0)× 104 (2± 3)× 103

Table 4.1: Values of the temperature and radiation field at the outer rim of CPDL (side facing the star)
and CPDR (side facing away from the star) for all six models.

For configuration 1 we found that — for both the default and lowered planet luminosity
— the star did not have any influence on the CPD’s temperature and radiation field, i.e. the
temperature gradient of the CPD remained symmetric. Because the CPD was surrounded by
an inner and outer disk, we also investigated how the CPD influenced the inner and outer disk.
We ran an additional HL model in which we removed the planet and CPD (but we retained the
gap). We found that in the midplane aligned with the star and planet (φ = 0 and φ = π), that
the last radial grid point of the inner disk’s outer edge was an additional ∼ 31 K warmer due to
the planet and CPD’s irradiance. Similarly, the planet and CPD increased the temperature of
the outer disk’s inner edge with an additional ∼ 27 K. The smaller difference in temperature for
the outer disk was brought about by the gap separating the inner from the outer disk; stellar
photons reached the inner edge of the outer disk via the gap as they got scattered towards the
midplane from the surface layers.

In configuration 2 we found that, for the default planet luminosity (Lp = 1.01× 10−2 L�), the
temperature at the outer rim did not change. For the lower luminosity (Lp = 1.01× 10−3 L�),
however, the temperature for the last three data points of CPDL were all higher than CPDR.
Unfortunately, their errors still overlapped, implying that there is no difference between the two.
However, the fact that CPDL was consistently higher for the last three data points than CPDR
did show us that a trend was forming. The same was true for the radiation field: for both default
and the lower planet luminosity, we found that the temperature of CPDL was higher than CPDR
for the last three data points, yet their errors still overlapped.

Finally, for the default luminosity in configuration 3, we found that the temperature of CPDL
was consistently higher than CPDR for the last four data points, and that their errors in the
second to last point did not even overlap (Fig. 3.29). However, for the very last data point (at
x = 1 au) the temperature of CPDR suddenly increased again such that the errors overlapped
again. But when we reduced the planet’s luminosity to Lp = 1.01× 10−3 L�, we found that for
the last two data points the temperature of CPDL was higher than CPDR and that their errors
did not overlap either. What’s more, as CPDL and CPDR approached their respective outer rim
the temperature of CPDL increased while the temperature of CPDR decreased (Fig. 3.30).

For the set-up that we used (see Table 4.1, for the exact details), we thus found that the
inner disk was too optically thick for the stellar radiation to penetrate and reach the CPD in
the midplane; no difference in temperature structure was found for both planetary luminosities.
When we removed that inner disk we noticed that the difference between CPDL and CPDR
became more apparent, but due to their overlapping errors we could not conclude that the
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difference was very significant, i.e. the Monte Carlo noise was still too great. However, when
we removed the inner disk and reduced the distance between the star and the planet from 20 au
to 10 au, we noticed a significant difference. This difference was even greater when the planet’s
luminosity was reduced to Lp = 1.01× 10−3 L�. The error of CPDL also increased when the
stellar radiation was strong enough to heat it up. This had to due with the fact that only certain
patches were heated up by the star, meaning that still too few stellar photons hit the left side of
the CPD to sufficiently reduce the Monte Carlo noise. As for the radiation field, it followed the
same trend as the temperature (i.e., how it changed for the 6 different models), but in all cases
the Monte Carlo noise was too great for it to have any reliable results.
In short the stellar flux impinging on the CPD become stronger when:

1. there is no attenuating medium in between the the star and the CPD (i.e., an inner disk)

2. the CPD is closer to the star, so that it receives more stellar photons.

3. the planet’s luminosity relative to the star’s luminosity is lowered

4.1 Planet Vs Star

We can actually roughly quantify this difference in temperature and radiation field, by calculating
the flux the outer rim of CPDL receives from the planet and the star (with the inner disk removed,
of course; so only applicable for configuration 2 and 3). This procedure will be carried out for
both planetary luminosities in only the midplane. Will also assume that both the star and planet
are point sources. A schematic is shown in Fig. 4.1.

RimRim PlanetPlanetStarStar

Figure 4.1: Schematic top-down view of star, planet and the left side of the CPD in midplane. Note that
I erroneously placed the planet at the Origin. Please try to imagine that x = 0 au is the
location of the star. Scenario 1: The star is located at x = 0 au, the planet at x = 20 au and
the CPDL outer rim at x = 19 au. Scenario 2: The star is located at x = 0 au, the planet at
x = 10 au and the CPDL outer rim at x = 9 au.

We consider two scenarios:

1. The star located at the Origin and the planet at x = 20 au

2. The star located at the Origin and the planet at x = 10 au

The flux is given to be (LeBlanc 2010):

F =
L

4πD2
(4.1)
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where L is the luminosity in erg/s and D is the distance from the object in cm. We have the
following given values:

Lstar = 1.01 L� Lp = 1.01× 10−2 L� Lplow = 1.01× 10−3 L� (4.2)
Dstar = 19 au Dstar2 = 9 au Dp = 1 au (4.3)

where Lstar, Lp and Lplow
1 is the luminosity of the star, luminosity of the planet, and the

luminosity of the planet but lowered by a factor 10, respectively. Dstar, Dstar2 and Dp is the
distance from the star to the outer rim for scenario 1, the distance from the star to the outer
rim for scenario 2, and the distance from the planet to the outer rim, respectively. Calculating
the stellar flux on the outer rim in scenario 1 and 2 and the flux of the planet for Lp and Lplow
on the outer rim, gives:

Fp = 1.37× 104 erg/s/cm2 (4.4)

Fplow = 1.37× 103 erg/s/cm2 (4.5)

Fstar = 3.81× 103 erg/s/cm2 (4.6)

Fstar2 = 1.70× 104 erg/s/cm2 (4.7)

Taking the ratio of Fp with respect to Fstar and Fstar2, and doing the same for Fplow gives:

Fp
Fstar

= 3.61
Fp

Fstar2
= 0.81

Fplow
Fstar

= 0.36
Fplow
Fstar2

= 0.08 (4.8)

The smaller the ratio the more dominant the stellar radiation. This shows that decreasing the
planet’s luminosity by a factor 10 increases the star’s influence by a factor of 10. Additionally,
placing the planet with CPD at x = 10 au increases the star’s radiative impact by a factor of
3.61
0.81 ≈ 4.5.2 These are, of course, hefty simplifications, but it serves to further explain our results.

4.2 Concluding remarks on improvements

The inaccuracies, both present for the temperature and the radiation field, were due to the small
size of the CPD and the way MCMax3D distributes its photons between multiple light sources.
The first case, can only be solved by either increasing the size of the CPD or increasing the
number of photons at the cost of longer computation times. The second case, is an indication
that MCMax3D needs optimization. The way it works right now, is that for two light sources
the total number of photons will be distributed according to their luminosity relative to each
other. For our models, we had a star with a stellar luminosity of L∗ = 1.01 L�, and two
planetary luminosities (1.01× 10−2 L� or 1.01× 10−3 L�). For the default planetary luminosity
(Lp = 1.01× 10−2 L�), we have a ratio of L∗/Lp = 100. According to this ratio, MCMax3D will
assign a hundred times more photons to the star. So when we used 109 photons, the planet (for
Lp = 1.01× 10−2 L�) only got to use 1% of all the photons (107). As for the radiation field we
had a total of 3×106 photons, so the planet only used 3×104 photons for the default luminosity
case, and merely 3 × 103 photons for the low luminosity case. Furthermore, the radiation field
comprised the Far-UV spectrum, which has a higher opacity (see Fig. 1.4) than the optical

1Normally, the default luminosity and lower luminosity were both indicated with Lp. But in order to properly
separate these two cases we used Lplow for the low luminosity.

2This value could also be obtained by simply taking the ratio of Fstar2
Fstar

=
(
Dstar
Dstar2

)2

=
(
19
9

)2 ≈ 4.5. Note that
this only works if their luminosities are the same.
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spectrum — which is most relevant for the temperature calculation — and is thus more easily
absorbed. In terms of computing the radiation field, improvements are clearly necessary: either
MCMax3D itself needs to be optimized or we need to upgrade from 32 bit to 64 bit so that a
total of 263 ≈ 9.2× 1018 photons can be used. The main problem will then be the computation
time, however.
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