3D dust modeling of circumplanetary disks

Mark van der Keijl

July 11, 2019

SECOND EXAMINER: MSc Kateryna Frantseva SUPERVISORS:

PROF. DR. INGA KAMP DR. CHRISTIAN RAB MSC NICK OBERG

Motivation

- Giant planets in solar system have moons
- ► These moons are regular satellites
- Possibly formed in circumplanetary disks (CPD)
- Candidates have only recently been observed

(Credit: The Graduate University for Advanced Studies/NAOJ)

Formation

- ▶ Planets form in protoplanetary disks via agglomeration
- ► Gaps form due to planet-disk interactions
- ▶ Planet forms circumplanetary disk in gap due to non-vanishing gas accretion

(Credit: Zhang et al., 2018)

Scientific goal

- Study impact of star on temperature and radiation field of circumplanetary disk
- ▶ Important for chemistry and thus observations
- Also study impact of circumplanetary disk/planet on protoplanetary disk
- Investigate the limits of the modelling program for this new set-up

Monte Carlo

- Solves continuum radiative transfer process by following photons individually
- ► Calculates the temperature of the system via the photon packets
- Relies on randomness which leads to noise
- Mimics 3D propagation of photons

MCMax3D

- Simulates RT process using Monte Carlo method
- ► Flexible in building up structure via 'zones'
- ► Generates a 'static' model in 3D
- ► Grid points are volume elements with which the photon packet interact

Model set-up (Dust density of system)

- ▶ T Tauri star with $L_* = 1.01 \, L_{\odot}$
- Default planet luminosity of $L_{\rm p} = 1.01 \times 10^{-2} \, \rm L_{\odot}$

Quantity

Inner disk

Outer disk

CPD

2 Main models

- 1. Full system (i.e., inner disk, outer disk and CPD)
- 2. Inner disk removed and CPD + planet placed at 10 au distance from the star

Tested for two planetary luminosities: $L_{\rm p}=1.01\times 10^{-2}\,L_{\odot}$ and $L_{\rm p}=1.01\times 10^{-3}\,L_{\odot}$

Dust temperature full system for $L_{\rm p}=1.01 imes 10^{-2}\, L_{\odot}$

- ▶ 3D model shows temperature asymmetry in midplane
- ▶ Interested in 'Solar' and 'Dark' side of circumplanetary disk

Dust temperature in midplane ($L_p=1.01 imes 10^{-2}\, {\rm L}_{\odot}$)

 Planet heats up surrounding inner and outer disk

Dust temperature in midplane $(L_p = 1.01 \times 10^{-3} \, {\rm L}_{\odot})$

11/21

Impact of CPD/planet on protoplanetary disk for $L_{ m p}=1.01 imes 10^{-2}\,{ m L}_{\odot}$

► Stellar photons heat up midplane of outer disk via gap

Inner disk removed and CPD/planet closer to star for $L_{ m p}=1.01 imes10^{-2}\,{ m L}_{\odot}$

Monte Carlo Noise reduction for temperature and radiation field

- Averaging procedure for temperature
- Sextants in order to maintain difference between Solar and Dark side
- Radiation field will be averaged over complete semi circles

Temperature CPD full system

- Average temperature of Dark and Solar side as function of distance to planet
- 1σ error bars is Monte
 Carlo noise
- Large errors are due to lack of photons
- Interested in outer edge to see maximal possible difference
- Star does not heat the circumplanetary disk

Temperature CPD reduced system

- Inner disk removed and planet/CPD placed at 10 au
- ► Solar side is clearly heated by star at the outer edge

Radiation field only for $L_{\rm p}=1.01 \times 10^{-2}\,{\rm L}_{\odot}$

- Far-UV $(0.1 \, \mu\text{m} < \lambda < 0.2 \, \mu\text{m})$
- Radiation field (χ) is normalized to Draine field
- ► Monte Carlo noise is very strong here
- Due to lack of radiation field photons
- Still a trend emerges

Comparing the differences

- ▶ Ratio of temperature at outer edge indicates asymmetry
- ightharpoonup Correlation between χ_{Solar} and T_{Solar}

Concluding remarks and future prospects

- ► The inner disk can make stellar radiation extinct, interesting to test for lower density
- MCMax3D could be improved by better control over selecting number of photon packets per source
- ► To properly study a circumplanetary disk model, more photon packets are required to account for its small size

Planet-disk interaction

$$I = rv_{\phi,gas} = \sqrt{GM_*r}$$

Dust grain opacity law

- Far-UV $(0.1\,\mu{\rm m} < \lambda < 0.2\,\mu{\rm m})$ has very high dust opacity
- Meaning it interacts easier with medium and thus propagates less far

(Credit: Weingartner and B. T. Draine, 2001)