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Abstract

The connection between binary quadratic forms and imaginary quadratic number
fields is studied with the aim of computing class numbers of orders in imaginary
quadratic fields. The form class group is constructed and we define the Dirichlet
composition of two primitive positive definite forms of the same discriminant. We
prove in detail that the operation induced by Dirichlet composition is well-defined
and provides an Abelian structure on the form class group. Algorithms to compute
the class number of the form class group are implemented in Sage. The construction
of the ideal class group is discussed next. We prove that every form class group is
isomorphic to an ideal class group of a unique order in an imaginary quadratic
field. The implemented algorithms are used to compute class numbers of orders in
imaginary quadratic fields. We finish with computing class numbers of the ring of
integers in imaginary quadratic fields to check whether they are unique factorization
domains.
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1 Introduction

1.1 History

One of the first problems related to quadratic forms is finding integers that can be the
value of a certain quadratic form over the integers. An example is finding Pythagorean
triples, which was already studied before the era. Another example is finding integer
solutions of equations of the form x2 − ny2 = 1, where n is a given positive nonsquare
integer, called Pell’s equations. This problem was studied by the Indian mathematician
Brahmagupta (598-668). In the previous century, Fermat (1607-1665) worked on similar
problems resulting in for example his theorem on sums of two squares. A general theory
of binary quadratic forms appeared in the book Disquisitiones Arithmeticae (1801) by
Gauss (1777-1855). He developed an equivalence relation on the set of binary quadratic
forms that share their discriminant and proved that some sets of equivalence classes
form an Abelian group. We will study the link between binary quadratic forms and
imaginary quadratic fields that is due to Kummer (1810-1893), Kronecker (1823-1891)
and Dedekind (1831-1916).

1.2 Outline

The aim of the thesis is to understand the connection between binary quadratic forms
and imaginary quadratic number fields. We will first study integral binary quadratic
forms, which are of the form

ax2 + bxy + cy2, where a, b, c ∈ Z.

For simplicity, we will often write “quadratic form” or just “form” to refer to an integral
binary quadratic form. The discriminant of a quadratic form with notation as above is
defined to be

D = b2 − 4ac.

A quadratic form is called primitive if its coefficients are relatively prime and positive
definite if it represents only positive integers. Two quadratic forms f and g are equivalent
if there exist integers p, q, r and s such that

f(x, y) = g(px+ qy, rx+ sy) and ps− qr = ±1.

We call f and g properly equivalent if ps− qr = 1. Both equivalence and proper equiva-
lence are equivalence relations, as is described in [11, Remark 1.22]. Proper equivalent
forms have the same discriminant and a form properly equivalent to a primitive positive
definite form is itself a primitive positive definite form, see [11, Proposition 1.16, Corol-
lary 1.19, Corollary 1.20]. The set of equivalence classes of primitive positive definite
forms of discriminant D with respect to proper equivalence forms a group C(D), called
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the form class group, see [7, Theorem 3.9]. The form class group will play an important
role in the computation of the class number of orders in imaginary quadratic fields.

In section 3, we will construct the ideal class group of orders in quadratic fields, which are
degree two extensions of the rational numbers. A complex number is called an algebraic
integer if it is a root of a monic polynomial with integer coefficients. The algebraic
integers in a quadratic field form a ring called the ring of integers, see [9, Corollary 1].
The ring of integers in a quadratic field K is an example of an order, which is a subring
of K containing 1 and moreover a free Z-module of rank two.

The construction of the ideal class group is based on fractional ideals. A fractional ideal
of an order O in a quadratic field K is a subset of K which is a nonzero finitely generated
O-module and has the form αI, where α ∈ K× and I is a nonzero ideal of O, see [6,
Theorem 2.3]. A fractional ideal J of O is called proper if O = {β ∈ K : βJ ⊂ J}. The
set of proper fractional ideals of an order forms an Abelian group under multiplication
and is denoted by I(O), see [7, §7A]. The set of principal fractional O-ideals, which are
of the form αO with α ∈ K×, forms a subgroup P (O) ⊂ I(O), as is stated in [7, §7A].
We can therefore form the quotient

C(O) := I(O)/P (O),

which is called the ideal class group of the order O. This group is finite, which follows
from [7, Theorem 7.7 (ii), Theorem 2.13].

The last section discusses the relation between the form class group and the ideal class
group. Let C(D) be the form class group of a negative discriminant D. Just like
quadratic forms, orders also have discriminants, as is described in [7, §7A]. It is proven
in [7, Exercise 7.3] that there exists a unique order O in an imaginary quadratic field
with discriminant D. The ideal class group C(O) of this order and the form class group
C(D) are isomorphic by [7, Theorem 7.7 (ii)]. It follows that C(O) and C(D) have the
same number of elements, which we call the class number. Computing the class number
is, in general, a difficult problem. Computing the number of elements in the form class
group however, is much easier, see for example [5, Algorithm 5.3.5]. This algorithm is
discussed in 2.18. The implementation of the algorithm in Sage is given in Appendix A.

1.3 Motivation

Computing the class number of the ring of integers measures how far the ring of integers
is from being a unique factorization domain. This is not true for orders that are not
maximal. The reason is that the ring of integers is a Dedekind domain, as stated in [7,
Theorem 5.5], which is not true for an order that is not maximal, see [7, §7A]. Dedekind
domains have the property that they are unique factorization domains if and only if they
are principal ideal domains, see [9, Theorem 18]. Dedekind domains are the subject of
subsection 3.4.
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The ring of integers in a quadratic field K is denoted by OK . If the class number of OK
is one, then I(OK) = P (OK), which implies that all proper fractional ideals of OK are
principal. Since the ideals of OK are proper fractional ideals, see [7, Exercise 7.6(b)],
we conclude that OK is a principal ideal domain. Hence, OK is a unique factorization
domain if the corresponding ideal class group is trivial. In the final section, we will
compute the class number of the ring of integers in multiple imaginary quadratic fields,
to determine whether the ring of integers is a unique factorization domain.
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2 Integral binary quadratic forms

An integral binary quadratic form

f(x, y) = ax2 + bxy + cy2

is called primitive if its coefficients a, b and c are relatively prime. An integer m is
represented by f(x, y) if the equation m = f(x, y) has an integer solution in x and y.
In case x and y of the integer solution are relatively prime, we say that m is properly
represented by f(x, y).

2.1 Equivalent forms

We can define an equivalence relation on the set of binary integral quadratic forms.

Definition 2.1. The quadratic form f(x, y) is equivalent to the form g(x, y) if there
exist integers p, q, r and s such that

f(x, y) = g(px+ qy, rx+ sy) and ps− qr = ±1.

We use f ∼ g to denote that f is equivalent to g.

To prove that this indeed defines an equivalent relation, we have to show that it is
reflexive, symmetric and transitive. Before we give this proof, we will first see how
equivalence is defined in terms of matrices.

Let f(x, y) = ax2 + bxy + cy2 be an arbitrary quadratic form. The form f has the
following matrix representation:

f(x, y) =
(
x y

)(a b
2

b
2 c

)
︸ ︷︷ ︸

Mf

(
x
y

)
.

This leads us to the following definition.

Definition 2.2. The matrix Mf of a quadratic form f is the unique 2 × 2 symmetric
matrix such that

f(x, y) =
(
x y

)
Mf

(
x
y

)
.

Let f and g be arbitrary quadratic forms. Let Mf be the matrix of f and Mg be the
matrix of g. Assume that f is equivalent to g, so there exist integers p, q, r and s such
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that f(x, y) = g(px+ qy, rx+ sy) and ps− qr = ±1. We can rewrite this as follows:(
x y

)
Mf

(
x
y

)
= f(x, y)

= g

((
x y

)(p r
q s

))
=
(
x y

)(p r
q s

)
Mg

(
p q
r s

)(
x
y

)
=
(
x y

)(p r
q s

)
Mg

(
p r
q s

)T (
x
y

)
,

(1)

where det

(
p r
q s

)
= ±1.

We are now ready to prove that the relation in Definition 2.1 is indeed an equivalence
relation.

Proof. It is clear that f ∼ f for every quadratic form f . Namely, pick p = s = 1 and
q = r = 0, then f(x, y) = f(px+ qy, rx+ sy) and ps− qr = 1. Therefore, the relation is
reflexive.

Suppose that for two quadratic forms f and g it holds that f ∼ g. Let Mf be the
matrix for f and Mg be the matrix for g. There exist integers p, q, r and s such that
f(x, y) = g(px+ qy, rx+ sy) and ps− qr = ±1. It follows from (1) that

Mf =

(
p r
q s

)
Mg

(
p r
q s

)T
.

Moreover det

(
p r
q s

)
= ±1, so the matrix

(
p r
q s

)
is invertible. Hence, we get

Mg = ±
(
s −r
−q p

)
·Mf · ±

(
s −r
−q p

)T
=

(
s −r
−q p

)
Mf

(
s −r
−q p

)T
This shows that

g(x, y) = f

((
x y

)( s −r
−q p

))
= f(sx− qy,−rx+ py).

Note that det

(
s −r
−q p

)
= ps− qr = ±1. Hence, we have that g ∼ f . This proves that

the relation is symmetric.
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Suppose we have three quadratic forms f, g and h for which it holds that f ∼ g and
g ∼ h. Let Mf be the matrix of f , Mg be the matrix of g and Mh be the matrix of h.
There exist p, q, r, s, t, u, v, w ∈ Z such that

f(x, y) = g
( (
x y

)(p r
q s

)
︸ ︷︷ ︸

A

)
and g(x, y) = h

( (
x y

)(t v
u w

)
︸ ︷︷ ︸

B

)
,

with detA = ±1 and detB = ±1. Following (1), we get two equations:

Mf = ATMgA and Mg = BTMhB,

so Mf = ATBTMhBA = (BA)TMhBA. Note that detBA = detB · detA = ±1. This
shows that f ∼ h and hence the relation is transitive. �

Definition 2.3. The equivalence in Definition 2.1 is called proper equivalence if ps−qr =
1 and improper equivalence if ps− qr = −1.

Remark 2.4. The matrices with integer entries and unit determinant form a group
called SL(2,Z). Specifically, SL(2,Z) is closed under matrix multiplication and taking
inverses. This is the reason that proper equivalence is also an equivalence relation and
the same proof as for equivalence can be used to prove it. The set of matrices with
integer entries and determinant −1 is not a group, since this set is not closed under
matrix multiplication. Therefore transitivity does not hold for improper equivalence, so
improper equivalence is not an equivalence relation.

Theorem 2.5 ([11, Proposition 1.17]). Equivalent forms represent the same set of in-
tegers.

Proof. Let f and g be two arbitrary quadratic forms and assume that f ∼ g. Further-
more, assume that m is an integer that is represented by f . Then there exist integers
p, q, r and s with f(x, y) = g(px + qy, rx + sy) and ps − qr = ±1. Moreover, the equa-
tion m = f(x, y) has an integer solution in x and y, so there exist a, b ∈ Z such that
m = f(a, b). Then it follows that

m = f(a, b) = g(pa+ qb, ra+ sb),

where pa+ qb, ra+ sb ∈ Z. Hence m is represented by g. Since f ∼ g is symmetric, we
also have that g ∼ f . Then the same proof shows that if the integer n is represented by
g, then n is represented by f . �

Corollary 2.6 ([11, Corollary 1.20]). Any quadratic form equivalent to a primitive form
is itself primitive.

Proof. Let f = kx2+lxy+my2 be a primitive quadratic form and let g = ax2+bxy+cy2

be an arbitrary quadratic form such that f ∼ g. Suppose g is not primitive. Then
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d := gcd(a, b, c) > 1. It follows that d|ax2 + bxy+ cy2 for all x, y ∈ Z. So for all integers
m that are represented by g, it holds that d|m. It follows from Theorem 2.5 that d|m for
all integers m that are represented by f . But this implies that d| gcd(k, l,m) and hence
gcd(k, l,m) > 1, which contradicts the assumption that f is primitive. �

Lemma 2.7 ([7, Lemma 2.3]). An integer m is properly represented by a quadratic
form f if and only if there exist B,C ∈ Z such that f is properly equivalent to the form
mx2 +Bxy + Cy2.

Proof. Assume that the integer m is properly represented by the form f(x, y) = ax2 +
bxy + cy2. Then there exist integers p and q, relatively prime, such that m = f(p, q).
By Bézout’s identity, we can find r, s ∈ Z such that ps− qr = 1. Then we obtain

f(px+ ry, qx+ sy) = a(px+ ry)2 + b(px+ ry)(qx+ sy) + c(qx+ sy)2

= (ap2 + bpq + cq2)x2 + (2apr + bps+ brq + 2cqs)xy

+ (ar2 + brs+ cs2)y2

= f(p, q)x2 +Bxy + Cy2

= mx2 +Bxy + Cy2.

Next assume that f is properly equivalent to the form g(x, y) = mx2 + Bxy + Cy2.
Since g(1, 0) = m, we have that g properly represents m. By Theorem 2.5, we get that
f represents m. It remains to show that f represents m properly. We can find integers
p, q, r and s such that g(x, y) = f(px+ qy, rx+ sy) and ps− qr = 1. Then

m = g(1, 0) = f(p, r).

Since ps − qr = 1, it follows from Bézout’s identity that gcd(p, r) = 1 and hence m is
properly represented by f . �

Corollary 2.8 ([11, Corollary 1.26]). Properly equivalent forms properly represent the
same set of integers.

Proof. Let f and g be two arbitrary quadratic forms with f properly equivalent to g.
Assume that m is an integer that is properly represented by f . Then it follows from
Theorem 2.5 that m is represented by g. We still have to prove that g represents m
properly. By Lemma 2.7, we know that there exist B,C ∈ Z such that f is properly
equivalent to the form mx2 +Bxy+Cy2. Using the symmetry and transitivity of proper
equivalence, we obtain that g is properly equivalent to mx2 +Bxy+Cy2. Then Lemma
2.7 implies that m is properly represented by g. �

Definition 2.9. Let f(x, y) = ax2 + bxy+ cy2 be a quadratic form. Then we define the
discriminant D of f to be D = b2 − 4ac.

Theorem 2.10 ([11, Proposition 1.16]). Equivalent forms have the same discriminant.
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Proof. Let f and g be two arbitrary quadratic forms with f ∼ g. Write g(x, y) =
ax2 + bxy+ cy2 so that the discriminant Dg is b2− 4ac. There exist integers p, q, r and s
such that f(x, y) = g(px+ qy, rx+ sy) and ps− qr = ±1. A simple computation shows

f(x, y) = (ap2 + bpr + cr2)x2 + (2apq + bps+ bqr + 2crs)xy + (aq2 + bqs+ cs2)y2

We can then compute the discriminant Df of f . This is an easy, but long computation,
so we will not do it in detail. We find

Df = (2apq + bps+ bqr + 2crs)2 − 4(ap2 + bpr + cr2)(aq2 + bqs+ cs2)

= (ps− qr)2(b2 − 4ac)

= Dg. �

The sign of the discriminant D of a quadratic form f(x, y) = ax2 + bxy + cy2 tells us
something about the sign of the integers that are represented by f . This is clear from
the following identity:

4af(x, y) = 4a(ax2 + bxy + cy2)

= 4a2x2 + 4abxy + 4acy2

= 4a2x2 + 4abxy + b2y2 − b2y2 + 4acy2

= (2ax+ by)2 −Dy2.

(2)

If D > 0, then the right-hand side of (2) can be positive or negative. This means
that f represents both positive and negative integers. In this case, we call f indefinite.
If D < 0, then we see that the right-hand side of (2) is positive. The sign of the
integers that f represents then corresponds to the sign of a. We call f positive definite
if a is positive, and negative definite if a is negative. The notions of indefiniteness,
positive definiteness and negative definiteness are invariant under equivalence. This
follows directly from Theorem 2.10 and Theorem 2.5, which state that equivalent forms
have the same discriminant and represent the same set of integers.

The discriminant D of a form f(x, y) = ax2 + bxy + cy2 also gives information about
the sign of the middle coefficient b of f . Namely, D = b2− 4ac ≡ b2 mod 4, so b is even
when D ≡ 0 mod 4 and b is odd when D ≡ 1 mod 4.

Lemma 2.11 ([7, Lemma 2.5]). Let D be an integer satisfying D ≡ 0, 1 mod 4 and
m an odd integer relatively prime to D. Then m is properly represented by a primitive
form of discriminant D if and only if D ≡ b2 mod m for some b ∈ Z.

Proof. Assume that m is properly represented by a primitive form f of discriminant D.
By Lemma 2.7, there exist b, c ∈ Z such that f is properly equivalent to mx2+bxy+cy2.
Then the discriminant D of f is b2 − 4mc, because equivalent forms have the same
discriminant. It follows that D = b2 mod m.
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Next assume that D ≡ b2 mod m for some b ∈ Z. Then there exists k ∈ Z such that
D = b2 + mk. We will show that we can pick b in such a way that D and b have the
same parity. First suppose that D is even. Then b2 and mk are either both even or
both odd. If b2 is even, and hence b is even, b has the same parity as D. If b2 is odd,
and hence b is odd, we can replace b by the even integer b+m. We can do this because
(b+m)2 mod m = b2 mod m. Next suppose that D is odd. Then either b2 is odd and
mk is even or vice versa. If b2 is odd, and hence b is odd, b has the same parity as D. If
b2 is even, and hence b is even, then we can replace b by the odd integer b+m. Hence,
we can assume that D and b have the same parity.

The next step is to show that D ≡ b2 mod 4m. Suppose that D is even, so D = b2 +
mk ≡ 0 mod 4. Then also b is even, which implies that b2 ≡ 0 mod 4. It follows that
mk ∈ 4Z and hence D ≡ b2 mod 4m. Now suppose that D is odd, so D = b2 +mk ≡ 1
mod 4. Then also b is odd, which implies that b2 ≡ 1 mod 4. It follows that mk ∈ 4Z
and hence D ≡ b2 mod 4m.

Since D ≡ b2 mod 4m, there exists c ∈ Z such that D = b2 − 4mc. The form mx2 +
bxy+ cy2 has discriminant D and properly represents m. To show that mx2 + bxy+ cy2

is primitive, suppose that n divides m, b and c. Then we also have that n divides D.
Since m and D are relatively prime, we must have that n = ±1. Hence, the form
mx2 + bxy + cy2 is primitive. �

2.2 Reduced forms

For the rest of this paper, we restrict ourselves to primitive positive definite forms. The
following definition applies to these forms.

Definition 2.12. We call a primitive positive definite form ax2 + bxy + cy2 reduced if

|b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.

Lemma 2.13 ([11, Proposition 1.39]). Let f = ax2 + bxy + cy2 be a primitive positive
definite form that is reduced. Then the smallest nonzero integer that is represented by
f is a.

Proof. Since f(1, 0) = a, the integer a is represented by f . Suppose that x and y are
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nonzero. Using that |b| ≤ a ≤ c, we can make the estimation

f(x, y) = ax2 + bxy + cy2

≥ ax2 − |bxy|+ ay2

= a(x2 + y2)− |bxy|
≥ 2a|xy| − |bxy| (3)

≥ a|xy|
≥ a,

where in (3) we have used that (|x| − |y|)2 = x2− 2|xy|+ y2 ≥ 0 and therefore x2 + y2 ≥
2|xy|. Moreover, we have that

f(0, y) = cy2 ≥ ay2 ≥ a for all nonzero integers y,

f(x, 0) = ax2 ≥ a for all nonzero integers x.

This proves that a is the smallest nonzero integer that is represented by f . �

The proof of the following theorem consists of three steps. Step 1 and 2 follow the proof
of [7, Theorem 2.8] and step 3 follows the proof of [10, Theorem 3.1].

Theorem 2.14. Every primitive positive definite form is properly equivalent to a unique
reduced form.

Proof. Let f be an arbitrary primitive positive definite form. In the first two steps we
will show that there exists a reduced form such that f is properly equivalent to this
form. In the final step we will show that this reduced form is unique.

Step 1. We will first show that f is properly equivalent to a form ax2 + bxy + cy2

satisfying |b| ≤ a ≤ c. Consider the set of all forms properly equivalent to f and pick
g(x, y) = ax2 + bxy + cy2 in this set so that |b| is as small as possible. Suppose that
a < |b|. Let m be any integer and define

h(x, y) := g(x+my, y)

= a(x+my)2 + b(x+my)y + cy2

= ax2 + (2am+ b)xy + (am2 + bm+ c)y2.

Then h is properly equivalent to g for all choices of m. Moreover, h is properly equivalent
to f , which implies that h is positive definite. Thus, the integer a satisfies the following
two properties: a > 0 and a < |b|. Note that 2am + b ≡ b mod 2a. We can therefore
choose m in such a way that |2am + b| ≤ a < |b|. This contradicts the minimality
of |b|. Hence, we must have that a ≥ |b|. Similarly, suppose that c < |b| and define
k(x, y) := g(x, nx + y) for any integer n. In the same way as before, we can pick n in
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such a way that |2cn+ b| ≤ c < |b| and get a contradiction with the minimality of |b|. It
follows that c ≥ |b|. Two cases remain: a ≤ c or a > c. In the first case, we obtain that
g satisfies |b| ≤ a ≤ c. In the second case, we define the form g′ to be

g′(x, y) = g(−y, x) = cx2 − bxy + ay2.

Then g′ does satisfy |b| ≤ c ≤ a. Moreover, g′ is properly equivalent to g, which implies
that g′ is properly equivalent to f .

Step 2. We have shown that there exists a form g(x, y) = ax2 + bxy + cy2 satisfying
|b| ≤ a ≤ c that is properly equivalent to f . We will show that g is properly equivalent
to a reduced form. Except for the two cases which are b < 0 and b = −a, and b < 0 and
a = c, the form g is itself reduced. In both cases, the form h(x, y) = ax2 − bxy + cx2 is
reduced. In the first case, that is b < 0 and b = −a, we have

g(x+ y, y) = a(x+ y)2 − a(x+ y)y + cy2

= ax2 + axy + cy2

= ax2 − bx2 + cy2

= h(x, y).

This shows that g is properly equivalent to h. In the second case, that is b < 0 and
a = c, we have

g(−y, x) = ay2 − bxy + cx2

= ax2 − bxy + cy2

= h(x, y).

This shows that g is properly equivalent to h in this case as well.

Step 3. In step 1 and 2, we have proven the existence of a reduced form h such that f
is properly equivalent to h. In this step, we will prove the uniqueness of such a reduced
form. We will do this by showing that different reduced forms cannot be properly
equivalent. Suppose g(x, y) = a′x2 + b′xy + c′y2 is a reduced form properly equivalent
to the reduced form f(x, y) = ax2 + bxy + cy2. By Theorem 2.5, f and g represent the
same set of integers. It follows from Lemma 2.13 that a = a′.

Suppose that c > c′. Since g is reduced, we have that c′ ≥ a′ = a, so it follows that
c > a. There exist integers p, q, r and s such that g(x, y) = f(px + qy, rx + sy) and
ps− qr = 1. This results in the following equalities for the coefficients of g:

a′ = ap2 + bpr + cr2, (4)

b′ = 2apq + bps+ bqr + 2crs, (5)

c′ = aq2 + bqs+ cs2. (6)

13



Using that c > a, Equation (4) leads to the inequality

a′ = ap2 + bpr + cr2

> ap2 − |bpr|+ ar2

= a(p2 + r2)− |bpr|.
(7)

Note that (|p| − |r|)2 = p2− 2|pr|+ r2 ≥ 0 and therefore p2 + r2 ≥ 2|pr|. It follows from
(7) that a′ > 2a|pr| − |bpr|. Since |b| ≤ a, we have a′ > a|pr|. We have already shown
that a′ = a, so this inequality can only hold when |pr| = 0. If p = 0, then (4) reduces
to a′ = cr2 > ar2, which again can only hold when r = 0. However, p and r cannot
both be zero, because in that case ps − qr = 0. Hence, p must be nonzero. If r = 0,
then ps − qr = 1 implies that ps = 1. Filling in r = 0 and ps = 1 in (5), we find that
b′ = 2apq + b. From the fact that f and g are reduced, we obtain

|b| ≤ a and |b′| ≤ a′ = a.

These inequalities only hold if 2apq = 0, which implies that q = 0. Hence, we find that
b′ = b.

Similarly, suppose that c < c′. Then there exist integers p, q, r and s such that f(x, y) =
g(px+ qy, rx+ sy) and pq − rs = 1. This equation results in the equalities (4), (5) and
(6) for the coefficients of f , where a, b and c are replaced by a′, b′ and c′ respectively,
and vice versa. In this way, the roles of the coefficients of f and g are reversed and using
the same proof as above, we conclude that b = b′.

Since equivalent forms have the same discriminant and we proved that a′ = a and b′ = b,
it follows that also c′ = c. Hence, we have that g = f . This shows that if two reduced
forms are properly equivalent, they must be equal. �

We restricted ourselves to the set of primitive positive definite quadratic forms. Remem-
ber that the discriminant of these forms is always negative. Fix an integer D < 0 and
consider the set of primitive positive definite forms of discriminant D. We can split this
set into equivalence classes by saying that two forms belong to the same equivalence
class if and only if they are properly equivalent. The number of equivalence classes in
the set of primitive positive definite forms of discriminant D is called the class number
and is denoted by h(D). Theorem 2.14 implies that every equivalence class contains
exactly one reduced form and hence h(D) is equal to the number of reduced forms of
discriminant D.

Theorem 2.15 ([7, Theorem 2.13]). Let the integer D < 0 be fixed. Then h(D) is finite
and the number of reduced forms of discriminant D is equal to h(D).

Proof. We have already argued that Theorem 2.14 implies that h(D) is equal to the
number of reduced forms of discriminant D. It remains to show that h(D) is finite.
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This follows from the following observation. Suppose that f(x, y) = ax2 + bxy + cy2 is
a reduced form of discriminant D. Then the coefficients of f satisfy |b| ≤ a ≤ c and
b2 ≤ a2. These inequalities lead to

−D = 4ac− b2 ≥ 4a2 − a2 = 3a2

and hence

a ≤
√
−D

3
. (8)

The integer D is fixed. Thus, the inequality |b| ≤ a and Equation (8) imply that there
are finitely many choices for the coefficients a and b of f . Since c is uniquely determined
by a and b, we also have finitely many options for the coefficient c of f . Hence, there
are finitely many reduced forms of discriminant D. Since the number of reduced forms
of discriminant D is equal to h(D), we have shown that h(D) is finite. �

2.3 Algorithms

We will look at two algorithms. The first algorithm finds and lists all the reduced forms
of a given negative discriminant. Counting the number of reduced forms gives the class
number. The goal of the second algorithm is to compute the class number in an efficient
way. Both algorithms are constructed using the theory discussed so far. We use the
notation (a, b, c) for the form ax2 + bxy+ cy2. This notation will come back in the next
section.

In the previous section, we have seen that reduced forms satisfy the inequalities

a ≤
√
−D

3
and |b| ≤ a ≤ c.

Moreover, b ≥ 0 if |b| = a or a = c. The input of the first algorithm is a negative

discriminant D. Then for all values a ∈
{

1, . . . ,

⌊√
−D
3

⌋}
, the algorithm checks for

every value b ∈ {−a, . . . , a} whether (a, b, c) represents a reduced form. Note that once
given the value of a and b, the value of c can be computed using the formula for the
discriminant.

Algorithm 2.16 (Computing reduced forms). Let D be a negative discriminant.

1. Set a = 1, b = −a, let c = b2−D
4a and go to step 4.

2. Set a = a+ 1. If a ≤
√
−D
3 , set b = −a, let c = b2−D

4a and go to step 4. Otherwise,

output the number of reduced forms and end the algorithm.
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3. Set b = b + 1. If b ≤ a, let c = b2−D
4a and go to the next step. Otherwise, go to

step 2.

4. If c is an integer, c ≥ a and gcd(a, b, c) = 1, then go to the next step. Otherwise,
go to step 3.

5. If |b| = a or a = c, go to the next step. Otherwise, go to step 7.

6. If b ≥ 0, output (a, b, c). Then go to step 3.

7. Output (a, b, c) and go to step 3.

Example 2.17. Let D = −12. Set a = 1, b = −1 and let c = b2−D
4a = 13

4 . Then c is not

an integer, so we set b = 0. It holds that b ≤ a, so we compute c = b2−D
4a = 3. Then

c is an integer, c ≥ a and gcd(a, b, c) = 1. We have therefore found the reduced form
(1, 0, 3).

We go back to step 3 and set b = 1. We still have b ≤ a, so set c = 13
4 . Since this is not

an integer, we set b = 2. Then b ≥ a, so we set a = 2. Note that a ≤
√
−D
3 = 2. Set

b = −2 and let c = 2. Then gcd(a, b, c) = 2, so we set b = −1. We have b ≤ a, so let
c = 13

8 , which is not an integer. Therefore, we set b = 0. Then b ≤ a, but gcd(a, b, c) = 2.
We set b = 1 and find c = 13

8 , which is not an integer. Finally, we set b = 2, which

implies that gcd(a, b, c) = 2. Then we set a = 3. Since we have a >
√
−D
3 = 2, we end

the algorithm. We have found one reduced form (1, 0, 3), so the class number is 1.

The second algorithm is obtained from [5, Algorithm 5.3.5]. It counts the number of
reduced forms of a given negative discriminant.

Algorithm 2.18 (Counting reduced forms). Let D be a negative discriminant.

1. If D ≡ 0 mod 4, let b = 0 and if D ≡ 1 mod 4, let b = 1. Let B =

⌊√
−D
3

⌋
and

set h = 1.

2. Set q = b2−D
4 and a = b. If a ≤ 1, set a = 1 and go to step 4.

3. If a|q and gcd(a, b, qa) = 1, set h = h+ 2, unless it also holds that a = b, a2 = q or
b = 0, then set h = h+ 1.

4. Set a = a+ 1. If a2 ≤ q, go to step 3.

5. Set b = b + 2. If b ≤ B, go to step 2. Otherwise output h, which gives the class
number of D.

Before proving this algorithm, we make the following observations.
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(i) We showed in the proof of Theorem 2.15 that B is an upper bound for the coefficient
a of a reduced form. Together with the inequality |b| ≤ a ≤ c, we obtain that
|b| ≤ B.

(ii) The integer q stands for the product of the coefficient a and c. Hence, we have
that a2 ≤ q if and only if a ≤ c.

(iii) The integer h counts the number of reduced forms of discriminant D.

Proof. In step 1, we let b be the smallest nonnegative integer matching the parity of D.
The inequality |b| ≤ a implies that the smallest integer that a can attain is b, so in step
2 we set a = b. The coefficient a must however be positive, because reduced forms are
positive definite. Therefore, if a ≤ 1, we set a = 1.

In step 3 and step 4, the algorithm checks for all values of a between b and c (observation
(ii)) if (a, b, c) defines a reduced form. If in step 3, we have a|q and gcd(a, b, qa) = 1, then
both (a, b, c) and (a,−b, c) define reduced forms, unless it also holds that a = b, a2 = q
or b = 0 in which case only (a, b, c) defines a reduced form. The value of h is adjusted
accordingly (observation (iii)).

In step 5, the value of b is changed to the next smallest integer having the same parity
as D. If b ≤ B, we go to step 2 and check again for all values of a between b and c if
(a, b, c) defines a reduced form. Otherwise, the algorithm ends.

Since B is an upper bound for the coefficient b of a reduced form (observation (i)), there
are only finitely many combination of coefficients (a, b, c) of which we have to check if
they define a reduced form. Hence, the algorithm ends in finitely many steps. �

The implementation of Algorithm 2.16 and Algorithm 2.18 in Sage can be found in
Appendix A.

2.4 The form class group

In this section, we fix a negative discriminant D and look at the set of primitive positive
definite forms of discriminant D. Proper equivalence splits this set into equivalence
classes. The set of equivalence classes of primitive positive definite forms of discriminant
D is denoted by C(D). We will study the operation that turns the set C(D) into a finite
Abelian group.

Definition 2.19. Let f(x, y) and g(x, y) be primitive positive definite forms of dis-
criminant D. Then a primitive positive definite form F (x, y) of discriminant D is the
composition of f and g if

f(x, y)g(z, w) = F (B1(x, y; z, w), B2(x, y; z, w)),
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where

Bi(x, y; z, w) = aixz + bixw + ciyz + diyw, i = 1, 2,

are integral bilinear forms.

Suppose that F (x, y) = Ax2 + Bxy + Cy2 is the composition of the primitive positive
definite forms f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2, so

f(x, y)g(z, w) = F (a1xz + b1xw + c1yz + d1yw, a2xz + b2xw + c2yz + d2yw). (9)

We can make the following claim of which the proof is discussed in [7, Exercise 3.1].

Claim.

a1b2 − a2b1 = ±f(1, 0), a1c2 − a2c1 = ±g(1, 0). (10)

Proof. Take x = z = 1 and y = w = 0. Then (9) becomes

aa′ = Aa21 +Ba1a2 + Ca22. (11)

Similarly, taking x = w = 1 and y = z = 0 in (9) gives

ac′ = Ab21 +Bb1b2 + Cb22. (12)

Set x = z = w = 1 and y = 0 in (9). Then we obtain

a(a′ + b′ + c′) = A(a1 + b1)
2 +B(a1 + b1)(a2 + b2) + C(a2 + b2)

2. (13)

If we substitute (11) and (12) in (13) and rewrite the resulting equation, we get

ab′ = 2Aa1b1 +B(a1b2 + b1a2) + 2Ca2b2. (14)

Equations (11), (12) and (14) give expressions for a′, b′ and c′. Using this expressions,
we can show that

a2(b′2 − 4a′c′) = (a1b2 − a2b1)2(B2 − 4AC)

from which it follows that a = f(1, 0) = ±(a1b2 − a2b1). In the same way, we can
find expressions for a′a, a′b and a′c, which we can use to show that a′2(b2 − 4ac) =
(a1c2 − a2c1)2(B2 − 4AC). It follows that a′ = g(1, 0) = ±(a1c2 − a2c1). �

Definition 2.20. The composition in Definition 2.19 is called a direct composition if
both signs in Equation (10) are +.

The following lemma is taken from [7, Lemma 3.5], but the proof is based on [3, Lemma
2.9].
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Lemma 2.21. Let p1, q1, . . . , pr, qr,m be integers with gcd(p1, . . . , pr,m) = 1. Then
there exists a unique integer B mod m such that

piB ≡ qi mod m, i = 1, . . . , r

if and only if
piqj ≡ pjqi mod m,

for all i, j = 1, . . . , r.

Proof. Assume that there exists a unique integer B mod m such that

piB ≡ qi mod m, i = 1, . . . , r.

Let i, j ∈ {1, . . . , r} be arbitrary. There exists integers k and l such that

piB = qi +mk,

pjB = qj +ml =⇒ qj = pjB −ml.

Using these equalities, we get

piqj = pi(pjB −ml)
= pjpiB − piml
= pj(qi +mk)− piml
= pjqi +m(pjk − pil)
≡ pjqi mod m

Next assume that piqj ≡ pjqi mod m for all i, j = 1, . . . , r. Since gcd(p1, . . . , pr,m) = 1,
a repeated application of Bézout’s identity implies that there exist integers a, a1, . . . , ar
such that am +

∑r
i=1 aipi = 1. It follows that

∑r
i=1 aipi ≡ 1 mod m. Let B be the

unique integer between 0 and m such that

B ≡
r∑
i=1

aiqi mod m.

Let j ∈ {1, . . . , r} be arbitrary. Then we find

pjB ≡
r∑
i=1

aipjqi mod m

=

r∑
i=1

aipiqj mod m

= qj

r∑
i=1

aipi mod m

= qj mod m.
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This proves that there exists an integer B mod m that satisfies piB ≡ qi mod m for
i = 1, . . . , r.

Next, we will show that the integer B is unique modulo m. Suppose that both B and B′

satisfy piB ≡ qi mod m for i = 1, . . . , r. Then for all i = 1, . . . , r, we have pi(B−B′) ≡ 0
mod m and hence m|pi(B − B′). Let k be the least integer such that m|k(B − B′). If
k = ±1, then m|(B −B′) and it follows that B ≡ B′ mod m. We will therefore assume
that k 6= ±1. Suppose there exists another integer l such that m|l(B − B′). Then
|l| ≥ |k|, so we can write l(B−B′) = r ·k(B−B′)+s(B−B′), where |s| < |k|. Note that
m|l(B−B′) and m|k(B−B′), so also m|s(B−B′). This is however a contradiction with
the minimality of k, unless s = 0. Therefore s = 0 and it follows that l is a multiple of
k. If m|pi(B −B′) and m - (B −B′), then this argument shows that pi, for i = 1, . . . , r,
is a multiple of k. Since gcd(p1, . . . , pr,m) = 1, it holds that gcd(k,m) = 1. By Bézout’s
identity, there exist integers x and y such that kx + my = 1. Multiplying by B − B′
gives k(B −B′)x+m(B −B′)y = B −B′. Note that m|k(B −B′) and m|m(B −B′)y,
so m|k(B −B′)x+m(B −B′)y = B −B′. Hence, B ≡ B′ mod m, which shows that B
is unique modulo m. �

Lemma 2.22 ([7, Lemma 3.2]). Let f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 +
b′xy+c′y2 have discriminant D such that gcd(a, a′, b+b

′

2 ) = 1. Then there exists a unique
integer B modulo 2aa′ such that

B ≡ b mod 2a, (15)

B ≡ b′ mod 2a′, (16)

B2 ≡ D mod 4aa′. (17)

Proof. First note that b and b′ have the same parity as both have the same parity as D.
Therefore, b+ b′ is even and b+b′

2 is indeed an integer.

Congruence (15) and (16) imply that there exist integers k and l such that B = b+ 2ak
and B = b′ + 2a′l. It follows that (B − b)(B − b′) = 4aa′kl, so we have

B2 − (b+ b′)B + bb′ = (B − b)(B − b′) ≡ 0 mod 4aa′.

Using (17), we can rewrite the above equation in the following way:

(b+ b′)B ≡ B2 + bb′ mod 4aa′ ≡ D + bb′ mod 4aa′.

Dividing by 2 gives
b+ b′

2
B ≡ D + bb′

2
mod 2aa′.

If we multiply (15) and (16) by a′ and a respectively, we obtain that the congruences in

20



Lemma 2.22 are equivalent to

a′B ≡ a′b mod 2aa′, (18)

aB ≡ ab′ mod 2aa′, (19)

b+ b′

2
B ≡ D + bb′

2
mod 2aa′. (20)

Since gcd(a, a′, b+b
′

2 ) = 1 and it holds that

a′ab′ ≡ aa′b mod 2aa′,

a′
D + bb′

2
≡ b+ b′

2
a′B mod 2aa′ =

b+ b′

2
a′b mod 2aa′,

a
D + bb′

2
≡ b+ b′

2
aB mod 2aa′ =

b+ b′

2
ab′ mod 2aa′,

we can apply Lemma 2.21 to find the unique integer B mod 2aa′ that satisfies (18),
(19) and (20). �

Definition 2.23. Let f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2 be
primitive positive definite forms of discriminant D such that gcd(a, a′, b+b

′

2 ) = 1. Then

F (x, y) = aa′x2 +Bxy +
B2 −D

4aa′
y2,

is the Dirichlet composition of f and g, where B is the unique integer modulo 2aa′ of
Lemma 2.22. We denote the Dirichlet composition of f and g by f ◦ g.

Lemma 2.24 ([8, Theorem 7.1]). Let f(x, y) = ax2 + bxy+ cy2 be a primitive form and
M an integer. Then f(x, y) properly represents at least one integer coprime to M .

Proof. We write M as its factorization into primes, so M =
∏n
i=1 p

ri
i . We will show

by contradiction that each pi is relatively prime to at least one of the integers f(1, 0),
f(0, 1) and f(1, 1). Let i ∈ {1, . . . , n} be arbitrary and suppose that pi is not coprime to
f(1, 0), f(0, 1) and f(1, 1). Then pi|f(1, 0) = a, pi|f(0, 1) = c and pi|f(1, 1) = a+ b+ c,
so also pi|b. Therefore pi divides all coefficients of f , which is a contradiction with the
fact that f is primitive. Hence pi is coprime to at least one of the integers f(1, 0), f(0, 1)
and f(1, 1).

Let (xi, yi) be the pair of integers such that f(xi, yi) is coprime to pi. Then f(xi, yi) is
coprime to prii . By the Chinese Remainder Theorem, there exist integers u and v that
satisfy the equations

u ≡ xi mod prii and v ≡ yi mod prii , i = 1, . . . , n.

Note that f(u, v) ≡ f(xi, yi) mod prii for all i = 1, . . . , n. This implies that f(u, v) is
coprime to prii for all i = 1, . . . , n. Hence, it follows that f(u, v) is coprime to M . �

21



Theorem 2.25 ([7, Proposition 3.8]). Let f(x, y) = ax2 + bxy + cy2 and g(x, y) =
a′x2 + b′xy + c′y2 be primitive positive definite forms of discriminant D such that
gcd(a, a′, b+b

′

2 ) = 1. Then the Dirichlet composition F (x, y) of f and g is a primitive
positive definite form of discriminant D. Moreover, F (x, y) is the direct composition of
f and g.

Proof. We have

B2 − 4aa′
B2 −D

4aa′
= B2 −B2 +D = D,

which shows that F has discriminant D. Moreover, the fact that f and g are positive
definite implies that aa′ > 0 and therefore F is positive definite.

Let C = B2−D
4aa′ , so that F (x, y) = aa′x2 +Bxy+Cy2. Since B ≡ b mod 2a, there exists

an integer k such that B = b+ 2ak. Then (x, y) 7→ (x+ ky, y) shows that f is properly
equivalent to

f(x+ ky, y) = a(x+ ky)2 + b(x+ ky)y + cy2

= ax2 + (b+ 2ak)xy + (c+ bk + ak2)y2

= ax2 +Bxy + a′Cy2,

where the last line follows from

a′C = a′
B2 −D

4aa′

=
(b+ 2ak)2 − b2 + 4ac

4a

=
b2 + 4abk + 4a2k2 − b2 + 4ac

4a
= c+ bk + ak2.

In the same way, we can show that g is properly equivalent to the form a′x2+Bxy+aCy2.
Namely, B ≡ b′ mod 2a′ implies that there exists an integer l such that B = b′ + 2a′l.
Then (x, y) 7→ (x+ ly, y) shows that g is properly equivalent to

g(x+ ly, y) = a′x2 + (b′ + 2a′l)xy + (c′ + b′l + a′l2)y2

= a′x2 +Bxy + aCy2,

where the last line follows from

aC = a
B2 −D

4aa′

=
(b′ + 2a′l)2 − b′2 + 4a′c′

4a′

= c′ + b′l + a′l2.
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Define X := xz − Cyw and Y := axw + a′yz + Byw. Then an elaborate computation
shows that

f(x+ ky, y)g(z + lw,w) = aa′X2 +BXY + CY 2.

Set x′ = x + ky and z′ = z + lw. If we substitute x and z by x′ and z′ respectively
in the equations for X and Y , we get that X ′ = xz + lxw + kyz + klyw and Y ′ =
axw + a′yz + (ak + a′l +B)yw. For this X ′ and Y ′ it holds that

f(x′, y)g(z′, w) = aa′(X ′)2 +BX ′Y ′ + C(Y ′)2 = F (X ′, Y ′),

which shows that F is the composition of f and g. Using the notation from Defini-
tion 2.19, we can read off from the equations for X ′ and Y ′ that

a1 = 1, a2 = 0,

b1 = l, b2 = a,

c1 = k, c2 = a′,

so it follows that

a1b2 − a2b1 = a = +f(1, 0), a1c2 − a2c1 = a′ = +g(1, 0).

Hence, F is the direct composition of f and g.

It remains to show that F is primitive. Suppose that there exists a prime p that divides
all the coefficients of F . Then p divides all integers that are represented by F . Note that
all integers of the form f(x, y)g(z, w) for x, y, z, w ∈ Z are represented by F , because F is
the composition of f and g. Since f and g are primitive positive definite forms, we know
by Lemma 2.24 that there exist integers q and r both coprime to p that are represented
by f and g respectively. Then the integer qr is also coprime to p and represented by
F . This is a contradiction with our assumption that p divides all the coefficients of F .
Hence, no prime p divides all the coeffients of F and it follows that F is primitive. �

Let f = (a, b, c) and g = (a′, b′, c′) be two primitive positive definite forms of discriminant
D for which the Dirichlet composition f ◦ g is defined. Then

f ◦ g = (aa′, B,C),

where C = B2−D
4aa′ and B the unique integer modulo 2aa′ of Lemma 2.22. The proof of

Theorem 2.25 shows that f is properly equivalent to the form f ′ = (a,B, a′C) and g
is properly equivalent to the form g′ = (a′, B, aC). Equations (15) and (16) state that
B ≡ b mod 2a and B ≡ b′ mod 2a′, so there exist integers k and k′ such that

B = b+ 2ak = b′ + 2a′k′. (21)

The Dirichlet composition of f and g is defined, so gcd(a, a′, b+b
′

2 ) = 1. By Bézout’s
identity, there exist integers n1, n2 and n3 such that

an1 + a′n2 +
b+ b′

2
n3 = 1.
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Using Equation (21), we can write this as

an1 + a′n2 +
B − 2ak +B − 2a′k′

2
n3 = a(n1 − kn3) + a′(n2 − k′n3) +Bn3 = 1,

which shows that gcd(a, a′, B) = 1. Hence, the Dirichlet composition of f ′ and g′ is
defined. It is easy to check that B satisfies the congruences in Lemma 2.22, so

f ′ ◦ g′ = (aa′, B,
B2 −D

4aa′
) = (aa′, B,C) = f ◦ g.

Remark 2.26. Let f(x, y) = ax2 + bxy + cy2 and g(x, y) be two arbitrary primitive
positive definite forms of discriminant D. By Lemma 2.24, g properly represents an
integer a′ coprime to a. Then it follows from Lemma 2.7 that there exist integers b′

and c′ such that g is properly equivalent to the form g′(x, y) = a′x2 + b′xy + c′y2. The
Dirichlet composition of f and g′ is defined, because gcd(a, a′) = 1. Since g′ is in the
same equivalence class as g, this implies that the Dirichlet composition is defined for any
pair of equivalence classes in the set C(D).

The next lemma proves that the Dirichlet composition of any pair of equivalence classes
in the set C(D) is well-defined. This means that for any two equivalence classes [f ], [g] ∈
C(D), there exists an equivalence class [h] ∈ C(D) such that for every f ′ ∈ [f ] and
g′ ∈ [g] for which the Dirichlet composition f ′ ◦ g′ is defined, f ′ ◦ g′ ∈ [h]. The proof
of the lemma uses the symbol ∼ to denote “is properly equivalent to”. Furthermore, a
form ax2 + bxy + cy2 is again denoted by (a, b, c). The proof of this lemma is based on
[8, Section 7.3].

Lemma 2.27. The Dirichlet composition on any pair of equivalence classes in the set
C(D) is well-defined.

Proof. Let
f1 = (a, b, c), g1 = (a′, b′, c′),

f2 = (u, v, w), g2 = (u′, v′, w′),
(22)

be primitive positive definite forms of discriminant D. Assume that f1 ∼ f2, g1 ∼ g2
and the Dirichlet compositions f1 ◦ g1 and f2 ◦ g2 are defined. We showed in the proof
of Theorem 2.25 that we can replace the functions in (22) by

f1 = (a,B, a′C), g1 = (a′, B, aC),

f2 = (u, V, u′W ), g2 = (u′, V, uW ),
(23)

which have exactly the same properties. We will continue the proof using the functions
in (23). We have

F1 = f1 ◦ g1 = (aa′, B,
B2 −D

4aa′
) = (aa′, B,C),
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where B is the unique integer modulo 2aa′ of Lemma 2.22, and

F2 = f2 ◦ g2 = (uu′, V,
V 2 −D

4uu′
) = (uu′, V,W ),

where V is the unique integer modulo 2uu′ of Lemma 2.22. In the next four steps we
will show that F1 ∼ F2.

Step 1. Suppose that f1 = f2, gcd(a, u′) = 1 and B = V . Then (a,B, a′C) =
(u,B, u′W ), which implies that a = u. We want to show that f1 ◦ g1 ∼ f1 ◦ g2, so
(aa′, B,C) ∼ (au′, B,W ). The matrices(

a′ B
2

B
2 aC

)
and

(
u′ B

2
B
2 aW

)
represent the forms g1 and g2 respectively. Since g1 ∼ g2, there exist integers p, q, r, s
such that (

p r
q s

)(
a′ B

2
B
2 aC

)(
p r
q s

)T
=

(
u′ B

2
B
2 aW

)
, ps− qr = 1. (24)

Then it holds that (
p r
q s

)(
a′ B

2
B
2 aC

)
=

(
u′ B

2
B
2 aW

)(
s −q
−r p

)
.

We can perform the matrix multiplication on both sides of the equation and compare
the upright coefficients of the resulting matrices. This gives pB2 + arC = −qu′ + pB2 ,
which simplifies to arC = −qu′. It follows that a|qu′. We assumed that gcd(a, u′) = 1,
so by Bézout’s identity there exist integers s and t such that as+u′t = 1. If we multiply
both sides of this equation by q, we get that qas + qu′t = q. It is clear that a|qas and
moreover a|qu′, which implies that a|qas + qu′t = q and q

a is an integer. Hence the
matrix (

p ra
q
a s

)
has integer coefficients.

If we explicitly compute the matrix on the left-hand side of Equation (24), we get(
a′p2 + prB + ar2C a′pq + qrB2 + psB2 + arsC

a′pq + psB2 + qrB2 + arsC a′q2 + qsB + as2C

)
=

(
u′ B

2
B
2 aW

)
.

Using the equalities obtained by comparing the coefficients of the matrices in the equation
above, we can show that(
p ra
q
a s

)(
aa′ B

2
B
2 C

)(
p ra
q
a s

)T
=

(
a(a′p2 + prB + ar2C) a′pq + qrB2 + psB2 + arsC

a′pq + psB2 + qrB2 + arsC 1
a(a′q2 +Bqs+ as2C)

)
=

(
au′ B

2
B
2 W

)
.
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Note that det

(
p ra
q
a s

)
= ps − qr = 1. Hence, the above computation shows that

(aa′, B,C) ∼ (au′, B,W ), so f1 ◦ g1 ∼ f1 ◦ g2.

Step 2. Suppose that g1 = g2, gcd(a, u′) = 1 and B = V . Then applying the same
argument used in Step 1, we can show that g2 ◦ f1 ∼ g2 ◦ f2. Hence, combining the
results of Step 1 and Step 2 gives

f1 ◦ g1 ∼ f1 ◦ g2 ∼ g2 ◦ f1 ∼ g2 ◦ f2 ∼ f2 ◦ g2.

Step 3. In Step 1 and Step 2, we have shown that f1 ◦g1 ∼ f2 ◦g2 under the assumption
that B = V . We now drop this assumption. Assume that gcd(aa′, uu′) = 1. Then either
aa′ and uu′ are both odd or one of aa′ and uu′ is even. If aa′ and uu′ are both odd,
then gcd(2aa′, uu′) = 1. If one of aa′ and uu′ is even, then without loss of generality we
can assume that aa′ is even (otherwise switch the roles of aa′ and uu′ in this step). It
follows that gcd(2aa′, uu′) = 1. By the Chinese Remainder Theorem, there is an integer
B∗ that satisfies the equations

x ≡ B mod 2aa′ and x ≡ V mod uu′.

Then there exist integers n1 and m such that

B∗ = B + 2aa′n1 = V + uu′m.

Since F1 and F2 have the same discriminant, the parity of B and V is the same. This
implies that the integer m must be even, so we write m = 2n2. Thus,

B∗ = B + 2aa′n1 = V + 2uu′n2.

The transformation (x, y) 7→ (x + a′n1y, y) takes f1 = (a,B, a′C) to f̃1 = (a,B∗, C1),
where C1 = aa′2n21 + Ba′n1 + a′C and the transformation (x, y) 7→ (x + an1y) takes
g1 = (a′, B, aC) to g̃1 = (a′, B∗, C ′1), where C ′1 = a2a′n21 +Ban1 + aC. Clearly, we have
that f1 ∼ f̃1 and g1 ∼ g̃1.

We want to find an expression for f̃1 ◦ g̃1. First we note that the integer B∗ satisfies
(15), (16) and (17) in Lemma 2.22. Therefore, f̃1 ◦ g̃1 = (aa′, B∗, C∗1 ), where

C∗1 =
B∗2 −D

4aa′

=
(B + 2aa′n1)

2 − (B2 − 4aa′C)

4aa′

= aa′n21 +Bn1 + C.

The transformation (x, y) 7→ (x+ n1y, y) takes F1 = (aa′, B, C) to

(aa′, B + 2aa′n1, aa
′n21 +Bn1 + C) = (aa′, B∗, C∗1 ).
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This shows that F1 ∼ f̃1 ◦ g̃1.

The transformation (x, y) 7→ (x + u′n2y, y) takes f2 = (u, V, u′W ) to f̃2 = (u,B∗, C2),
where C2 = uu′2n2 + V u′n2 + u′W , and the transformation (x, y) 7→ (x+ un2y, y) takes
g2 = (u′, V, uW ) to g̃2 = (u′, B∗, C ′2), where C ′2 = u2u′n22 + V un2 + uW . Clearly, we
have f2 ∼ f̃2 and g2 ∼ g̃2.

We want to find an expression for f̃2 ◦ g̃2. First we note that the integer B∗ satisfies
(15), (16) and (17) in Lemma 2.22. Therefore, f̃2 ◦ g̃2 = (aa′, B∗, C∗2 ), where

C∗2 =
B∗2 −D

4uu′

=
(V + 2uu′n2)

2 − (V 2 − 4uu′W )

4uu′

= uu′n2 + V n2 +W.

The transformation (x, y) 7→ (x+ n2y, y) takes F2 = (uu′, V,W ) to

(uu′, V + 2uu′n2, uu
′n22 + V n2 +W ) = (uu′, B∗, C∗2 ).

This shows that F2 ∼ f̃2 ◦ g̃2. Note that the middle coefficient of f̃1, g̃1, f̃2 and g̃2 is
B∗. If we assume that gcd(a, u′) = 1, then the argument used in Step 1 shows that
f̃1 ◦ g̃1 ∼ f̃1 ◦ g̃2 and g̃2 ◦ f̃1 ∼ g̃2 ◦ f̃2. It follows that

F1 ∼ f̃1 ◦ g̃1 ∼ f̃1 ◦ g̃2 ∼ g̃2 ◦ f̃1 ∼ g̃2 ◦ f̃2 ∼ f̃2 ◦ g̃2 ∼ F2.

Step 4. In this last step, we will show that for any f1, g1, f2, and g2 as given at the
beginning of this proof, we can always put ourselves in the situation of Step 3. Following
the argument given in Step 3, then shows that f1◦g1 ∼ f2◦g2. By Lemma 2.24, we know
that f1 properly represents an integer s coprime to aa′uu′. It follows from Lemma 2.7
that there exist integer B′ and C ′ such that the form f = (s,B′, C ′) is properly equivalent
to f1. In the same way, g1 properly represents an integer s′ coprime to aa′uu′s and there
exist integers B” and C” such that the form g = (s′, B”, C”) is properly equivalent to
g1. From the statements gcd(s, aa′uu′) = 1 and gcd(s′, aa′uu′s) = 1, it can be easily
proven that gcd(ss′, aa′) = gcd(ss′, uu′) = gcd(s, a′) = gcd(s, u′) = 1 using Bézout’s
identity. In Step 3, we have shown that f1 ◦ g1 ∼ f2 ◦ g2 assuming that gcd(aa′, uu′) = 1
and gcd(a, u′) = 1. Therefore, we can apply the argument in Step 3 to prove that
f ◦ g ∼ f1 ◦ g1 and f ◦ g ∼ f2 ◦ g2. Hence,

f1 ◦ g1 ∼ f ◦ g ∼ f2 ◦ g2. �

We have proven that Dirichlet composition is a well-defined operation on the set C(D).
We are now ready to prove that the set C(D) with the operation induced by Dirichlet
composition makes this set into a finite Abelian group. The proof of this theorem follows
both [7, Theorem 3.9] and [8, Section 7.2].
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Theorem 2.28. Let D ≡ 0, 1 mod 4 be negative. Then Dirichlet composition induces
a well-defined binary operation on C(D) which makes C(D) into a finite Abelian group.
The identity element is the class containing the form

x2 − D

4
y2 if D ≡ 0 mod 4,

x2 + xy +
1−D

4
y2 if D ≡ 1 mod 4,

which is called the principal form. The inverse of the class containing the form ax2 +
bxy + cy2 is the class containing the form ax2 − bxy + cy2.

Proof. Theorem 2.25 states that the Dirichlet composition of two primitive positive
definite forms of discriminant D is itself a primitive positive definite form of discriminant
D. Furthermore, Lemma 2.27 states that Dirichlet composition is well-defined on the
set C(D). It follows that the set C(D) is closed under Dirichlet composition.

Let [f ] be the class containing the form f = (a, b, c). Since the first coefficient of the
principal form is 1, the Dirichlet composition of f with the principal form is defined.
Taking B = b satisfies Equations (15), (16) and (17) in Lemma 2.22. Namely, if D ≡ 0
mod 4, then D is even and hence b is even, so b ≡ 0 mod 2. If D ≡ 1 mod 4, then D is
odd and hence b is odd, so b ≡ 1 mod 2. This shows that Equation (16) is satisfied. It
is clear that Equation (15) is satisfied and D = b2 − 4ac ≡ b2 mod 4a shows that also
Equation (17) is satisfied. Then the Dirichlet composition of f and the principal form is(

a, b,
b2 −D

4a

)
= (a, b, c) = f,

which shows that the principal form is indeed the identity element.

Let [f ] be the class containing the form f = (a, b, c) and [g] be the class containing the
form g = (a,−b, c). We want to show that [g] is the inverse of [f ]. Since gcd(a, a, b−b2 ) =
a, which might be larger than 1, the Dirichlet composition of f and g might not be
defined. The transformation (x, y) 7→ (−y, x) takes g to g′ = (c, b, a). Note that g′ ∼
g and gcd(a, c, b+b2 ) = gcd(a, b, c) = 1, because f is primitive. Hence, the Dirichlet
composition of f and g′ is defined. It is easy to check that taking B = b satisfies
Equations (15), (16) and (17) in Lemma 2.22. Then

f ◦ g′ =
(
ac, b,

b2 −D
4ac

)
= (ac, b, 1).

The transformation (x, y) 7→ (−y, x) takes f ◦g′ to (1,−b, ac), so f ◦g′ and (1,−b, ac) are
properly equivalent. It remains to show that f ◦ g′ is equivalent to the principal form. If
D ≡ 0 mod 4, then D and hence b is even, so b

2 is an integer. Then the transformation
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(x, y) 7→ (x+ b
2y, y) takes (1,−b, ac) to(

x+
b

2
y

)2

− b
(
x+

b

2

)
y + acy2 = x2 + (b− b)xy +

(
b2

4
− b2

2
+ ac

)
y2

= x2 +

(
−b2 + 4ac

4

)
y2

= x2 − D

4
y2.

Hence, f ◦ g′ is properly equivalent to the principal form.

If D ≡ 0 mod 4, then D and hence b is odd, so b+1
2 is an integer. Then the transforma-

tion (x, y) 7→ (x+ b+1
2 y, y) takes (1,−b, ac) to(

x+
b+ 1

2
y

)2

− b
(
x+

b+ 1

2
y

)
y + acy2 = x2 + (b+ 1− b)xy

+

(
(b+ 1)2

4
− b(b+ 1)

2
+ ac

)
y2

= x2 + xy +

(
−b2 + 1 + 4ac

4

)
y2

= x2 + xy +
−D + 1

4
y2.

Hence, f ◦ g′ is properly equivalent to the principal form.

Let [f ], [g] and [h] be equivalence classes in C(D). Let f = (a, b, c). Then g properly
represents an integer a′ coprime to 2a by Lemma 2.24. It follows from Lemma 2.7
that there exist integers b′ and c′ such that g is properly equivalent to g′ = (a′, b′, c′).
Similarly, h is properly equivalent to a form h′ = (a′′, b′′, c′′) with gcd(a′′, 2aa′) = 1. It
follows that gcd(a′′, 2a) = gcd(a′′, a′) = 1. The Chinese Remainder Theorem implies
that there exists an integer B satisfying

B ≡ b mod 2a,

B ≡ b′ mod a′,

B ≡ b′′ mod a′′.

There exist integers k, l and m such that

B = b+ 2ak = b′ + a′l = b′′ + a′′m.

The forms f , g′ and h′ have the same discriminant, so b, b′ and b′′ all have the same
parity. Therefore, a′l and a′′m have to be even. The integers a′ and a′′ are odd, because
gcd(a′, 2a) = 1 and gcd(a′′, 2a) = 1. Hence, l and m are even. We can thus write

B = b+ 2ak = b′ + 2a′l′ = b′′ + 2a′′m′,
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for some l′,m′ ∈ Z. We have the following transformations:

(x, y) 7→ (x+ ky, y) : f 7→ f̃ = (a,B, c1), where c1 = ak2 + bk + c,

(x, y) 7→ (x+ l′y, y) : g′ 7→ g̃ = (a′, B, c2), where c2 = a′l′2 + b′l′ + c′,

(x, y) 7→ (x+m′y, y) : h′ 7→ h̃ = (a′′, B, c3), where c3 = a′′m′2 + b′′m′ + c′′.

It is clear that f ∼ f̃ , g′ ∼ g̃ and h′ ∼ h̃. We have

f̃ ◦ g̃ = (aa′, B,C), where C =
B2 −D

4aa′
,

g̃ ◦ h̃ = (a′a′′, B, C ′), where C ′ =
B2 −D
4a′a′′

.

Moreover,

(f̃ ◦ g̃) ◦ h̃ = (aa′a′′, B,C1), where C1 =
B2 −D
4aa′a′′

,

f̃ ◦ (g̃ ◦ h̃) = (aa′a′′, B,C2), where C2 =
B2 −D
4aa′a′′

.

This shows that ([f ] ◦ [g]) ◦ [h] = [f ] ◦ ([g] ◦ [h]) and hence Dirichlet composition is asso-
ciative. This concludes the proof that the set C(D) provided with Dirichlet composition
is a finite Abelian group. �

3 Quadratic fields

A quadratic field is a subfield of the complex numbers which has dimension two as a
vector space over the rational numbers. Quadratic fields have the form

Q(
√
N) = Q[

√
N ] = {a+ b

√
N : a, b ∈ Q},

where N 6= 0, 1 is a squarefree integer. A field Q(
√
N) is called a real quadratic field if

N > 0 and an imaginary quadratic field if N < 0.

Definition 3.1. The discriminant dK of a quadratic field K = Q(
√
N) is

dK =

{
N if N ≡ 1 mod 4,

4N otherwise.

Note that a quadratic field K can be written in terms of its discriminant as Q(
√
dK).
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3.1 Algebraic integers

Definition 3.2. A complex number is called an algebraic integer if it is the root of a
monic polynomial with integer coefficients.

Theorem 3.3 ([9, Theorem 2]). The following are equivalent for α ∈ C:

1. α is an algebraic integer in a quadratic field;

2. The additive group of the ring Z[α] is finitely generated;

3. There exists a subring of C with a finitely generated additive group having α as a
member;

4. αA ⊂ A for some finitely generated additive subgroup A ⊂ C.

Proof.
(1) =⇒ (2) Assume that α is an algebraic integer. Then there exists a monic polynomial
with integer coefficients having α as a root. Let n be the degree of this polynomial. Note
that n ≤ 2 as α is an element in a quadratic field. Then the additive group of the ring
Z[α] is generated by 1, α, . . . , αn−1.

(2) =⇒ (3) The subring of C with a finitely generated additive group having α as a
member is the ring Z[α].

(3) =⇒ (4) Let A be the subring of C with a finitely generated additive group having
α as a member. Then clearly αA ⊂ A and A is a finitely generated additive group.

(4) =⇒ (1) Let a1, a2, . . . , an generate A. Then we can express each αai, for i =
1, . . . , n, as a linear combination

αai = mi1a1 +mi2a2 + · · ·+minan,

where mi1, . . . ,min ∈ Z. We can write this as
αa1
αa2

...
αan

 =


m11 m12 . . . m1n

m21 m22 . . . m2n
...

...
. . .

...
mn1 mn2 . . . mnn


︸ ︷︷ ︸

M


a1
a2
...
an

 .

It follows that

(αI −M)

a1...
an

 =

0
...
0

 .
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Since the ai, i = 1, . . . , n are not all zero, this equation implies that α is an eigenvalue
of M and hence the determinant of αI −M is zero. If we compute the determinant in
terms of the coefficients of αI −M , we get an expression of the form

αn + cn−1α
n−1 + · · ·+ c1α+ c0 = 0,

where cn−1, . . . , c1, c0 ∈ Z. Hence, α is the root of a monic polynomial with integer
coefficients. This shows that α is an algebraic integer. �

Definition 3.4. The set of algebraic integers in a quadratic field K is called the ring of
integers and is denoted by OK .

Lemma 3.5 ([9, Chapter 2, Lemma]). Let f ∈ Z[X] be monic and suppose that f = gh
for monic polynomials g, h ∈ Q[X]. Then actually g, h ∈ Z[X].

Proof. Let m > 0 be the smallest positive integer such that mg ∈ Z[X]. Suppose that
there exists an integer a > 0 dividing all the coefficients of mg. Since g is monic, the
first coefficient of mg is m and it follows that a divides m. Hence, we have m

a g ∈ Z[X].
The minimality of m implies that a = 1. Thus, the greatest common divisor of the
coefficients of mg is one. Let n > 0 be the smallest positive integer such that nh ∈ Z[X].
Then in the same way we can show that the greatest common divisor of the coefficients
of nh is one.

Suppose that mn > 1 and let p be any prime dividing mn. We have mnf = mg · nh.
Reducing the coefficients modulo p of the polynomials on both side of the equation gives

0̄ = m̄g · n̄h,

where m̄g, n̄h ∈ Z/pZ[X]. Note that Z/pZ[X] has no zero divisors as it is an integral
domain. Therefore, m̄g = 0̄ or n̄h = 0̄ and hence p divides all coefficients of mg or
all coefficiens of nh. However, we have shown that the greatest common divisor of the
coefficients of mg and the coefficients of nh is one, which is a contradiction. Hence, we
have mn = 1 and g, h ∈ Z[X]. �

Theorem 3.6 ([9, Corollary 1 of Theorem 1]). The set of algebraic integers in Q is
precisely Z.

Proof. Let α ∈ Z. Then α is a root of the monic polynomial x − α ∈ Z which shows
that α is an algebraic integer.

Let α ∈ Q be an algebraic integer. Then α is the root of the monic irreducible polynomial
g(x) = x − α ∈ Q[X]. As α is an algebraic integer, we know that α satisfies a monic
polynomial with integer coefficients. Let f ∈ Z[X] be the monic polynomial of least
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degree having α as a root. Note that the degree of f is either 1 or 2, because K is a
quadratic field. Suppose f has degree 2. Dividing f by g gives

f(x) = g(x)q(x) + r(x), where q(x), r(x) ∈ Q[X] and deg r < deg g.

The degree of g is 1. It follows that the degree of r is 0 and hence r is constant.
If we fill in α in the above equation, we get r(α) = 0, which implies that r(x) = 0.
Hence f(x) = g(x)q(x), where g and q are monic. Lemma 3.5 implies that g, q ∈ Z[X].
However, α must be a root of either g or q and both have degree less than f . This is a
contradiction. Hence f must have degree 1 and is therefore irreducible. Since the monic
irreducible polynomial having α as a root is unique, we get f(x) = x− α, which is only
possible if α ∈ Z. Hence, the algebraic integers in Q are precisely the integers and the
statement holds. �

The goal is to prove the following theorem, which describes exactly what the ring of
integers in a quadratic field looks like.

Theorem 3.7 ([9, Corollary 2 of Theorem 1]). The set of algebraic integers in the
quadratic field Q(

√
N), with N squarefree, is

Z[
√
N ] if N 6≡ 1 mod 4,

Z

[
1 +
√
N

2

]
if N ≡ 1 mod 4.

The proof will be given in section 3.3, but first we will explain the norm and the trace.

3.2 The norm and the trace

Let K = Q(
√
N) be a quadratic field and let α ∈ K\Q. Then there exist r, s ∈ Q with

s 6= 0, such that α = r + s
√
N . Note that α is a root of the monic polynomial

x2 − 2rx+ r2 −Ns2 ∈ Q[X]. (25)

Definition 3.8. The norm of α = r + s
√
N ∈ K is αᾱ, where we call ᾱ = r − s

√
N

the conjugate of α. We denote the norm of α by N(α). Note that in case N < 0, the
conjugate of α coincides with the complex conjugate.

Computing the norm of α gives N(α) = r2 − s2N .

Definition 3.9. The trace of α is α+ ᾱ, which we denote by T (α).
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Computing the trace of α gives T (α) = 2r. Thus, the polynomial in (25) becomes

x2 − T (α)x+N(α) ∈ Q[X].

If N(α) and T (α) are integers, then α is the root of a monic polynomial with integer
coefficients and hence an algebraic integer. We will show that the converse holds as well.

The next theorem is stated in the proof of [9, Corollary 2 of Theorem 1]. We need this
theorem to prove Theorem 3.7.

Theorem 3.10. The element α ∈ K is an algebraic integer if and only if N(α) and
T (α) are integers.

Proof. We still have to show the “only if” part. First note that if α ∈ Q, then Theo-
rem 3.6 shows that α ∈ Z. In this case N(α) and T (α) are integers.

Assume α = r + s
√
N , where s 6= 0, is an algebraic integer. Then α satisfies a monic

polynomial with integer coefficients. Let f ∈ Z[X] be the monic polynomial of least
degree having α as a root. Then f is irreducible in Z[X]. Since f is monic, f is also
irreducible in Q[X].

Note that the degree of f is two. We have already seen that the minimal polynomial
of α is x2 − T (α)x + N(α) and hence this polynomial is irreducible. Since the monic
irreducible polynomial having α as a root is unique, we get f(x) = x2 − T (α)x+N(α),
which is only possible if T (α) and N(α) are integers. This proves the theorem. �

3.3 The ring of integers

Lemma 3.11 ([9, Chapter 2, Exercise 25]). Let Q(
√
N) be a quadratic field. For every

x ∈ Q(
√
N), there exists a nonzero m ∈ Z such that mx ∈ OK .

Proof. Let x ∈ Q(
√
N). We can find p, q, r, s ∈ Z such that x = p

q + r
s

√
N . Note that p

and s are nonzero. Then the polynomial

x2 − 2
p

q
x+

p2

q2
− r2

s2
N

has p
q + r

s

√
N as a root. If we multiply this polynomial by q2s2, we get the polynomial

q2s2x2 − 2pqs2x+ p2s2 − r2q2N,

with integer coefficients and still having p
q + r

s

√
N as a root. Note that qs(pq + r

s

√
N)

satisfies a monic polynomial with integer coefficients, since

(qs(
p

q
+
r

s

√
N))2 − 2ps(qs(

p

q
+
r

s

√
N)) + p2s2 − r2q2N = 0.
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Hence qs(pq + r
s

√
N), with qs nonzero, is an algebraic integer. �

The first paragraph of the proof of the following theorem follows [9, Corollary 1 of
Theorem 2].

Theorem 3.12. Let K be a quadratic field. The ring of integers OK is a subring of K
whose field of fractions is K.

Proof. Suppose α and β are elements in OK . By part 2 of Theorem 3.3, Z[α] and Z[β]
are finitely generated additive groups. Let {a1, . . . an} be the set of generators for Z[α]
and {b1, . . . bm} be the set of generators for Z[β]. Then the products aibj for i = 1, . . . , n
and j = 1, . . . ,m generate the additive group Z[α, β]. Note that α + β and αβ are
elements of the ring Z[α, β]. It follows from part 3 of Theorem 3.3 that α + β and αβ
are algebraic integers and hence also elements of OK . This shows that OK is a subring
of K.

Let x ∈ K. It follows from Lemma 3.11 that there exists an integer m ∈ Z such that
mx ∈ OK . Hence, x = mx

m , which shows that x is in the field of fractions of OK . Thus,
we have shown that K is contained in the field of fractions of OK . Since the field of
fractions of OK is the smallest field containing OK , it follows that K is the field of
fractions of OK . �

We are now ready to prove Theorem 3.7.

Proof. Let α ∈ Q(
√
N). Then there exist r, s ∈ Q such that α = r+s

√
N . Theorem 3.10

shows that α is an algebraic integer if and only if N(α) = r2 − s2N and T (α) = 2r are
integers.

Assume that r2 − s2N and 2r are integers and let r2 − s2N = k. Then

4Ns2 = 4r2 − 4k = (2r)2 − 4k ∈ Z.

Suppose that 2s = p
q , with p, q ∈ Z and gcd(p, q) = 1. Then

(2s)2N =
p2

q2
N ∈ Z,

which implies that q = 1 or N
q2
∈ Z. Remember that N is a squarefree integer so that

N
q2
/∈ Z. Hence, we have q = 1 and 2s ∈ Z.

Define m := 2r and n := 2s. We have shown above that m,n ∈ Z if α is an algebraic
integer. Then m2 −Nn2 = 4r2 − 4Ns2, so we have

r2 −Ns2 ∈ Z ⇐⇒ 4|m2 −Nn2.

35



This implies that α is an algebraic integer if and only if m,n ∈ Z and 4|m2−Nn2. First
assume that N ≡ 2, 3 mod 4. It follows that 4|m2 + Nn2 if and only if m and n are
even. Moreover, m and n are even precisely when r and s are integers. Hence, α is
an algebraic integer if and only if r, s ∈ Z, so the set of algebraic integers in Q(

√
N) is

Z[
√
N ].

Next assume that N ≡ 1 mod 4. Note that N is squarefree, which implies that N 6≡ 0
mod 4. Then m2−Nn2 ≡ m2−n2 mod 4. It holds that 4|m2−n2 if and only if m and
n have the same parity. Note that

α = r + s
√
N =

m+ n
√
N

2
=
m+ n

2
+ n

(
−1 +

√
N

2

)
.

Since m and n have the same parity, m+n
2 is an integer. It follows that the set of algebraic

integers is contained in the set Z[−1+
√
N

2 ]. To show that the ring of integers is equal to

Z[−1+
√
N

2 ], note that we can write N = 4k + 1 for some k ∈ Z, as N ≡ 1 mod 4. Then
−1+

√
N

2 is a root of the monic polynomial x2 + x − k ∈ Z[X] and hence −1+
√
N

2 is an

algebraic integer. It follows from Theorem 3.12 that Z[−1+
√
N

2 ] is contained in the set

of algebraic integers of Q(
√
N), which proves the theorem. �

Remark 3.13. The ring of integers OK of a quadratic field K can be written in terms
of the discriminant dK of K as

OK = Z
[
dK +

√
dK

2

]
.

Corollary 3.14. Let K be a quadratic field. Then OK is a free Z-module of rank two.

3.4 Dedekind domains

Lemma 3.15 ([9, Chapter 2, Exercise 24]). A subgroup H of a free Abelian group G
of rank n is a free Abelian group of rank ≤ n.

Proof. The proof uses induction. First assume that n = 1. ThenG ∼= Z, so the subgroups
of G are isomorphic to the subgroups of Z, which are {0} and nZ, where n ∈ Z. Note
that {0} is a free Abelian group of rank 0 and nZ is a free Abelian group of rank 1.
Hence, the result holds for n = 1.

Assume that the result holds for n − 1. Let {x1, . . . , xn} be the set of generators for
G. Then every element x ∈ G can be written as x = a1x1 + · · · + anxn, for some
a1, . . . , an ∈ Z. Consider the projection on the first component π : G→ Z given by

a1x1 + · · ·+ anxn 7→ a1.
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Let K be the kernel of π. Then x2, . . . , xn generate K and hence K is a free Abelian
group of rank n−1. Note that H∩K is a subgroup of K and by the induction hypothesis
H ∩K is a free Abelian group of rank ≤ n− 1.

The set π(H) is a subgroup of Z, so π(H) is either {0} or of the form kZ for some k ∈ Z.
If π(H) = {0}, then H = H ∩ K, which is a free Abelian group of rank ≤ n − 1. If
π(H) = kZ, then this means that every element x ∈ H has its first component a1 ∈ kZ.
Pick h ∈ H such that π(h) = k. Then every integer multiple of h has its first component
in kZ and the set hZ is a subgroup of H. Note that hZ and H ∩K have only the zero
element in common. Moreover, we can write every element y ∈ H as y = rh+ s, where
r ∈ Z and s ∈ H ∩ K, which shows that H = hZ ⊕ H ∩ K. The set H ∩ K is a free
Abelian group of rank ≤ n − 1 and hZ ∼= Z. Hence, H is a free Abelian group of rank
≤ n. �

Lemma 3.16. Let A be a free Z-module of rank n and B a free Z-module such that
B ⊂ A. Then the quotient A/B is finite if and only if A and B have the same rank.

Proof. Assume A/B is finite. Let {x1, . . . , xn} be a basis of A. Since A/B is finite, the
elements xi+B ∈ A/B, where i = 1, . . . , n, have finite order. Thus, for i = 1, . . . , n, there
exist integers mi such that mixi +B = 0. This implies that m1x1, . . . ,mnxn ∈ B. If the
elements m1x1, . . . ,mnxn are linearly dependent over Z, then a1m1x1 + · · ·+anmnxn =
0 for some a1, . . . , an ∈ Z not all zero. This contradicts the fact that the elements
x1, . . . , xn are linearly independent. Hence, B contains the linearly independent elements
m1x1, . . . ,mnxn, which implies that the rank of B is at least n. Moreover, the rank of
B is at most n since B ⊂ A.

Assume A and B have the same rank. Let {x1, . . . , xn} be a basis of A. Since B ⊂
A, we can express any basis for B in terms of the basis for A. Hence, there exist
m1, . . . ,mn ∈ Z such that {m1x1, . . . ,mnxn} is a basis for B. Let x+ B ∈ A/B. Then
m1 · · · · ·mn(x+B) = B, which shows that every element in A/B has finite order. Hence,
A/B is finite. �

Corollary 3.17 ([7, Exercise 5.1]). Let K be a quadratic field and I a nonzero ideal of
OK . Then the quotient ring OK/I is finite. Hence, I is a free Z-module of rank 2.

Proof. Since I is a nonzero ideal, we can find a nonzero element α ∈ I. Let xn +
a1x

n−1 + · · ·+ an ∈ Z[X] be the minimal polynomial of α. Note that an 6= 0, otherwise
the polynomial would not be minimal. It follows that

an = −αn − a1αn−1 − · · · − an−1α ∈ I.

We can form the ideal anOK ⊂ I. Then the map

OK/anOK → OK/I,
α+ anOK 7→ α+ I.
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is clearly surjective. By Corollary 3.14, we have OK ∼= Z2. Therefore, OK/anOK ∼=
(Z/anZ)2 and hence OK/anOK is finite. The surjective map given above, implies that
the order of OK/I is less than or equal to the order of OK/anOK . Thus, the quotient ring
OK/I is finite. The ideal I is a subgroup of the additive group of OK . By Lemma 3.14,
OK is a free Abelian group of rank 2. Then Lemma 3.16 implies that I is a free Z-module
of rank 2. �

Theorem 3.18 ([9, Theorem 14]). The ring of integers OK in a quadratic field K is a
Dedekind domain, which means that

1. OK is integrally closed in K, i.e., if α ∈ K is the root of a monic polynomial with
coefficients in OK , then α ∈ OK ;

2. OK is Noetherian, i.e., every ideal of OK is finitely generated;

3. Every nonzero prime ideal of OK is maximal.

Proof.

1. Suppose a0, . . . , an−1 ∈ OK and α ∈ C satisfies

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0.

By part 2 of Theorem 3.3, the additive groups of the rings Z[a0],Z[a1], . . . ,Z[an−1]
are finitely generated. Using induction, it follows that the additive group of the
ring Z[a0, . . . , an−1] is finitely generated. Let {g1, . . . , gk} be the generating set
of the additive group of Z[a0, . . . , an−1]. Then the products giα

j for i = 1, . . . , k
and j = 0, . . . , n − 1 generate the additive group Z[a0, . . . , an−1, α]. Clearly α ∈
Z[a0, . . . , an−1, α], so it follows from part 3 of Theorem 3.3 that α is an algebraic
integer. Hence, OK is integrally closed.

2. By Theorem 3.14, the ring OK is a free Abelian group of rank two. Let I be an
ideal of OK . Then I is a subgroup of OK . Hence, I is a free Abelian group of rank
≤ 2 by Lemma 3.15. It follows that I is finitely generated as an ideal.

3. Let P be a nonzero prime ideal of OK . Then OK/P is an integral domain and
moreover finite by Corollary 3.17. Let α ∈ OK/P be nonzero. Consider the
sequence α, α2, α3, . . . . As OK/P is finite, we must have αn = αm for some
m,n ∈ N such that n < m. Then

0 = αn − αm = αn(1− αm−n).

The ring OK/P is an integral domain and hence contains no zero divisors, so either
αn = 0 or 1−αm−n = 0. For the same reason αn is nonzero, because α is nonzero.
Hence, 1−αm−n = 0, so αm−n = α ·αm−n−1 = 1, which shows that α is invertible.
This shows that OK/P is a field. It follows that P is maximal. �

38



3.5 Orders

Definition 3.19. An order O in a quadratic field K is a subset of K such that

1. O is a subring of K containing 1,

2. O is a free Z-module of rank 2.

Example 3.20. The ring of integers OK of a quadratic field K is an order in K. The

remark after Theorem 3.7 shows that OK = Z[dK+
√
dK

2 ], which satisfies the conditions
in Definition 3.19.

Theorem 3.21 ([7, §7A]). The ring of integers in a quadratic field K is the maximal
order in K.

Proof. Let O be an order in K with basis {α, β}. We can find n,m ∈ Z such that
nα,mβ ∈ OK by Lemma 3.11. Suppose that the elements nα and mβ are linearly
dependent. Then there exist nonzero u, v ∈ Z such that u · nα+ v ·mβ = 0. This is not
possible, since {α, β} forms a basis for O and hence α and β are linearly independent.
Thus, nα and mβ are two linearly independent elements in O, so {nα,mβ} is also a
basis for O. This shows that O ⊂ OK and hence OK is the maximal order in K. �

Definition 3.22. Let O be an order in a quadratic field K. Then |OK/O| is called the
conductor of the order and is denoted by f .

Lemma 3.23 ([7, Lemma 7.2]). Let K be a quadratic field of discriminant dK and O
an order in K. Then the conductor f of O is finite and

O = Z + fOK =

[
1, f · dK +

√
dK

2

]
.

Proof. We have seen that OK and O are free Abelian groups of rank 2, so it follows from
Lemma 3.16 that f is finite. The quotient OK/O is an Abelian group with f elements.
For every element α +O ∈ OK/O, we have fα +O = O, which shows that fOK ⊂ O.
By Definition 3.19, 1 ∈ O and therefore Z ⊂ O. It follows that Z + fOK ⊂ O. The

remark after Theorem 3.7 shows that OK = [1, dK+
√
dK

2 ], so Z+ fOK = [1, f · dK+
√
dK

2 ].

It is clear that [1, f · dK+
√
dK

2 ] has index f in OK . We have

f = |OK/(Z + fOK)| = |OK/O||O/(Z + fOK)|

and |OK/O| = f , which implies that |O/Z + fOK | = 1. Hence, O = Z + fOK =

[1, f · dK+
√
dK

2 ]. �
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Definition 3.24. Let O = [α, β]. Then the discriminant of O is the number

D =

(
det

(
α β
ᾱ β̄

))2

,

where ᾱ and β̄ denote the conjugates of α and β respectively.

Remark 3.25. We have to prove that the discriminant of an order is well-defined. In
other words, we have to show that the discriminant is independent of the integral basis
used, see [7, Exercise 7.3(a)]. Let O = [α, β] = [η, µ]. Then

α = n1η + n2µ, ᾱ = η̄ + µ̄,

β = m1η +m2µ, β̄ = m1η̄ +m2µ̄,

for some n1, n2,m1,m2 ∈ Z. It follows that(
α β
ᾱ β̄

)
=

(
η µ
η̄ µ̄

)(
n1 m1

n2 m2

)
︸ ︷︷ ︸

M

.

Note that M is a nonsingular matrix since α and β are linearly independent. In exactly
the same way, we have (

η µ
η̄ µ̄

)
=

(
α β
ᾱ β̄

)
N,

where N is a nonsingular matrix with integer entries. Then(
det

(
α β
ᾱ β̄

))2

=

(
det

(
η µ
η̄ µ̄

))2

(detM)2

=

(
det

(
α β
ᾱ β̄

))2

(detN)2(detM)2,

which shows that (detN)2(detM)2 = 1. Since M and N have integer coefficients,
detN, detM ∈ Z and thus detM = ±1 and detN = ±1. This argument shows that
matrices representing a change of basis always have determinant ±1. Hence,(

det

(
α β
ᾱ β̄

))2

=

(
det

(
η µ
η̄ µ̄

))2

,

which shows that the discriminant of an order is independent of the integral basis used.

In contrast to the ring of integers, orders that are not maximal are not Dedekind domains.
It follows from the following corollary that orders are Noetherian and every prime ideal
of an order is maximal.

Corollary 3.26. Let K be a quadratic field and I a nonzero ideal of O. Then the
quotient ring O/I is finite. Hence, I is a free Z-module of rank 2.
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Proof. The proof is exactly the same as the proof of Corollary 3.17. �

Using this corollary, it can be shown that orders are Noetherian in the same way as it
was shown for the ring of integers. The same holds for the proof of the fact that every
prime ideal of an order is maximal.

Orders are however not integrally closed, except for the maximal order. Suppose O is an
order in a quadratic field K with conductor f > 1. Note that an order is the maximal
order if and only if the conductor is one. Since f > 1, it holds that OK\O 6= ∅. Pick
α ∈ OK\O. Then α is an algebraic integer and hence satisfies a monic polynomial
with integer coefficients. The integers are contained in O, so α is the root of a monic
polynomial with coefficients in O. However, α /∈ O and therefore O is not integrally
closed.

3.6 Ideal class group

Definition 3.27. Let O be an order in a quadratic field K. A subset of K which is a
nonzero finitely generated O-module is called a fractional ideal of O.

Remark 3.28. If I is a fractional ideal of the order O in a quadratic field K and α ∈ K,
then αI is also a fractional ideal of the order O. Namely, αI is a finitely generated O-
module, because I is a finitely generated O-module.

Theorem 3.29 ([6, Theorem 2.3]). Let O be an order in a quadratic field K. Then I
is a fractional ideal of O if and only if I is of the form αJ , where α ∈ K× and J is a
nonzero ideal of O.

Proof. Let I be a fractional ideal of O. Then I is a finitely generated O-module, so
there exists a set {x1, . . . , xn} ∈ K such that I = Ox1 + · · ·+Oxn. By Lemma 3.11, we
can find di ∈ Z such that dixi ∈ OK for i = 1, . . . , n. Define d := d1 · · · dn. Using that
O ∈ OK , we get dI ⊂ OK . It follows that fdI ∈ O, where f is the conductor of O. Note
that fdI is an O-module contained in O, so fdI is an ideal of O. Hence, I = 1

fd · fdI,

where 1
fd ∈ K

×.

Take α ∈ K× and J a nonzero ideal of O. Corollary 3.26 implies that J is finitely
generated as a Z-module. It follows that J is finitely generated as an O-module. Hence,
αJ is a nonzero finitely generated O-module. This proves the theorem. �

Definition 3.30. Let O be an order in a quadratic field K. Then a fractional ideal I
of O is called proper if

O = {β ∈ K : βI ⊂ I}.
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Definition 3.31. A fractional ideal I of an order O is called invertible if there exists
another fractional ideal J of O such that IJ = O.

Lemma 3.32 ([7, Lemma 7.5]). Let K = Q(τ) be a quadratic field and let ax2+bx+c ∈
Z[X] be the polynomial of least degree having τ as a root such that a, b and c are
relatively prime. Then [1, τ ] is a proper fractional ideal of the order [1, aτ ] in K.

Proof. It is clear that [1, aτ ] satisfies the conditions in Definition 3.19 and hence [1, aτ ]
is an order. Moreover, it can easily be checked that multiplying an element in [1, aτ ] by
an element in [1, τ ] gives another element in [1, τ ], which implies that [1, τ ] is a fractional
ideal of [1, aτ ]. We will show that [1, τ ] is proper.

Let β ∈ K. In order to satisfy β[1, τ ] ⊂ [1, τ ], it must hold that

β · 1 ∈ [1, τ ],

β · τ ∈ [1, τ ].

The first line implies that β = n+mτ for some n,m ∈ Z. It follows that

βτ = (n+mτ)τ = nτ +mτ2 = nτ − m

a
(bτ + c)

= −cm
a

+

(
n− bm

a

)
τ,

where we used that τ is a root of the polynomial ax2 + bx+ c. Thus, βτ ∈ [1, τ ] if and
only if cm

a and n− bm
a are integers. We will show that cm

a and n− bm
a are integers if and

only if a|m. The “if” part is clear, so we will continue with the “only if” part.

Let k be the least integer such that a|km. If k = ±1, we are done. We will therefore
assume that k 6= ±1. Suppose there exists another integer l such that a|lm. Then
|l| ≥ |k|, so we can write lm = r · km+ sm, where |s| < |k|. Note that a|lm and a|km,
so also a|sm. This is however a contradiction with the minimality of k, unless s = 0.
Therefore s = 0 and it follows that l is a multiple of k. This argument shows that if cm

a

and bm
a are integers and a - m, then c and b are multiples of k. Since gcd(a, b, c) = 1,

it holds that gcd(a, k) = 1. By Bézout’s identity there exist integers x and y such that
ax+ ky = 1. Multiplying by m gives max+mky = m. Note that a|max and a|km, so
a|max+mky = m.

This shows that β[1, τ ] ⊂ [1, τ ] if and only if β = n+mτ for n,m ∈ Z, with a|m. Hence

{β ∈ K : β[1, τ ] ⊂ [1, τ ]} = [1, aτ ],

which proves that [1, τ ] is proper. �

Lemma 3.33. Let O be an order in a quadratic field. A nonzero fractional ideal of O
is a free Z-module of rank 2.
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Proof. Let I be a nonzero fractional ideal of O. Theorem 3.29 implies that there is an
ideal J of O and an element α ∈ K× such that I = αJ . By Lemma 3.26, J is a free
Z-module of rank 2. It follows that I = αJ is a free Z-module of rank 2 as well. �

Theorem 3.34 ([7, Proposition 7.4]). LetO be an order in a quadratic fieldK = Q(
√
N)

and let I be a fractional ideal of O. Then I is proper if and only if I is invertible.

Proof. Assume I is invertible. By definition, I is an O-module, which implies that
O ⊂ {β ∈ K : βI ⊂ I}. Let β ∈ {β ∈ K : βI ⊂ I}. There exists another fractional ideal
J of O such that IJ = O. Then we have

βO = β(IJ) = (βI)J ⊂ IJ = O,

which shows that β ∈ O. Hence, {β ∈ K : βI ⊂ I} ⊂ O and equality follows.

Assume that I is proper. By Lemma 3.33, I is a free Z-module of rank 2, so I = [α, β]
for some α, β ∈ K. We can write I = α[1, τ ], where τ = β

α . Note that α and β are not

both rational numbers, otherwise I is not a free Z-module of rank 2. Thus,
√
N appears

in the expression for α or β. It follows that K = Q(τ).

Let ax2 + bx+ c ∈ Z[X] with gcd(a, b, c) = 1, be the polynomial of least degree having τ
as a root. Then Lemma 3.32 implies that [1, τ ] is a proper fractional ideal of the order
[1, aτ ] of K. It follows that also I = α[1, τ ] is a proper fractional ideal of the order
[1, aτ ]. The polynomial ax2 + bx+ c has one other root which is τ̄ (the conjugate of τ).
Lemma 3.32 implies that [1, τ̄ ] is a proper fractional ideal of the order [1, aτ̄ ]. Note that
aτ̄ ∈ O is an algebraic integer, so aτ̄ = p

q + r
q

√
N , where q is either 1 or 2 by Theorem 3.7.

It follows that [1, aτ̄ ] = [1, aτ ]. Therefore, I ′ = ᾱ[1, τ̄ ] is a proper fractional ideal of the
order [1, aτ ].

We have
aII ′ = aαᾱ[1, τ ][1, τ̄ ]

= N(α)[a, aτ, aτ̄ , aτ τ̄ ]

= N(α)[a, aτ, aτ + aτ̄ , aτ τ̄ ]

= N(α)[a, aτ, aT (τ), aN(τ)].

(26)

Remember that the minimal polynomial of τ is x2 − T (τ)x+N(τ) ∈ Q[X]. We defined
ax2 + bx + c ∈ Z[X] to be the polynomial of least degree having τ as a root. Hence,
x2+ b

ax+ c
a is also the minimal polynomial of τ . Since the minimal polynomial is unique,

it follows that

x2 − T (τ)x+N(τ) = x2 +
b

a
x+

c

a
.

Hence

T (τ) = τ + τ̄ = − b
a
,

N(τ) = τ τ̄ =
c

a
.
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Equation (26) then becomes

aII ′ = N(α)[a, aτ,−b, c] = N(α)[1, aτ ] = N(α)O,

where the second equality follows from the fact that gcd(a, b, c) = 1. Thus

I

(
a

N(α)
I ′
)

= O,

where a
N(α)I

′ is a fractional ideal of O. Hence, I is invertible. �

Definition 3.35. The product of ideals I and J in a ring R is defined by

IJ =

{
n∑
i=1

xiyi : n ∈ Z≥0, xi ∈ I, yi ∈ J

}
.

Definition 3.36. Let αI, βJ ∈ I(O), where α, β ∈ K× and I, J are ideals in O. Define
the product of αI and βJ to be αβ(IJ), where IJ is as in Definition 3.35.

Theorem 3.37. Let O be an order and let I(O) denote the set of proper fractional
ideals of O. The set I(O) together with the operation defined in Definition 3.36 is a
group with unit element O.

Proof. It is clear that O is a nonzero finitely generated O-module, so O is a fractional
ideal. Moreover, the set O contains 1, which shows that for β ∈ K\O, βO 6⊂ O. Hence,
O is proper. Let I be a proper fractional ideal of O. Then I = αJ for some α ∈ K×
and ideal J of O. As I is an O-module, we have I · O = I. This shows that O is the
unit element of I(O).

Proper fractional ideals are invertible by Theorem 3.34. Let I be a proper fractional ideal
of O. Then there exists another fractional ideal I−1 of O such that II−1 = O. Thus,
I−1 is an invertible fractional ideal of O. Then Theorem 3.34 implies that I−1 ∈ I(O).
Hence, I(O) is closed under inverses.

Let I and J be proper fractional ideals of O. We can find elements α, β ∈ K× and ideals
I ′ and J ′ of O such that I = αI ′ and J = βJ ′. Then

IJ = (αI ′)(βJ ′) = (αβ)(I ′J ′),

where αβ ∈ K× and I ′J ′ is an ideal of O. Theorem 3.29 implies that IJ is a fractional
ideal of O. Moreover, Theorem 3.34 implies that there exist fractional ideals I−1 and
J−1 of O such that II−1 = O and JJ−1 = O. The product J−1I−1 is a fractional
ideal of O and IJ · J−1I−1 = O. This shows that IJ is invertible and hence proper by
Theorem 3.34. Hence, I(O) is closed under multiplication.
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Let I, J and K be proper fractional ideals of O. Then there exist elements α, β, γ ∈ K×
and ideals I ′, J ′ and K ′ of O such that I = αI ′, J = βJ ′ and K = γK ′. Then

(IJ)K = (αI ′βJ ′)γK ′ = αβγ(I ′J ′)K ′

and
I(JK) = αI ′(βJ ′γK ′) = αβγI ′(J ′K ′).

It follows from the associativity of ideal multiplication that (IJ)K = I(JK). This proves
the theorem. �

Theorem 3.38. Let O be an order. The set of principal fractional ideals of O, which
are of the form αO, α ∈ K×, forms a subgroup P (O) ⊂ I(O).

Proof. Lemma 3.26 states that ideals of O are finitely generated Z-modules and hence
finitely generated O-modules. Therefore, the principal ideals of O are fractional ideals.
Let α−1 ∈ K be the inverse of α. Then αOα−1O = O, which shows that αO is invertible
and hence proper by Theorem 3.34. Therefore the set of principal ideals of O is a subset
of I(O).

Note that O is a principal ideal of O, so P (O) contains the unit element of the group
I(O). The product of two principal ideals of O is again a principal ideal of O, so P (O)
is closed under multiplication. Moreover, P (O) is closed under inverses. This proves the
theorem. �

It follows from Definition 3.36 that the group I(O) is Abelian. Therefore, the following
definition makes sense.

Definition 3.39. Let O be an order. The quotient

C(O) = I(O)/P (O)

is the ideal class group of the order O. The number of elements in the ideal class group
is called the class number.

Remember that in Section 2.2, we defined the class number to be the number of elements
in the form class group. It is not a coincidence that the same terminology is used. In
the next section, we will prove that every form class group C(D) is isomorphic to a
unique ideal class group C(O). This implies that the class number of C(D) and the
class number of C(O) are equal.
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4 The relation between the form class group and the ideal
class group

In the previous two sections, we constructed the form class group and the ideal class
group. These two groups are related to each other. Namely, for every form class group,
there is a unique ideal class group isomorphic to this form class group. Remember that
the form class group is characterized by its discriminant. This discriminant plays an
important role in the construction of the isomorphism.

4.1 The isomorphism

Let O be an order in a quadratic field K. By Lemma 3.23, a basis of O is {1, f · dK+
√
dK

2 }.
Computing the discriminant of O using this basis gives

D =

(
det

(
1 f · dK+

√
dK

2

1 f · dK−
√
dK

2

))2

=

(
f · dK −

√
dK

2
− f · dK +

√
dK

2

)2

=
(
−f
√
dK

)2
= f2dK .

(27)

Note that f2 ≡ 0, 1 mod 4 and dK ≡ 0, 1 mod 4 such that D ≡ 0, 1 mod 4. This
relation between D and dK implies that D and dK have the same sign. Hence, if an
order in a quadratic field K has a negative discriminant, then K = Q(

√
dK) is an

imaginary quadratic field.

Theorem 4.1 ([7, Exercise 7.3(b),(c),(d)]). Let D be a negative integer such that D ≡
0, 1 mod 4. Then there is a unique order in a unique imaginary quadratic field whose
discriminant is D.

Proof. Let D be a negative integer and assume that D ≡ 0 mod 4. Then D = 4D′ for
some D′ ∈ Z. Let pr11 · · · prnn be the prime factorization of D′. Write ri = 2ki + li such
that li = 0, 1, for i = 1, . . . , n. Then

D′ = pr11 · · · p
rn
n = (p2k11 · · · p2knn ) · pl11 · · · p

ln
n = (pk11 · · · p

kn
n )2 · (pl11 · · · p

ln
n ).

Let N = pl11 · · · plnn . By construction N is squarefree. Moreover, N 6= 0, because D 6= 0,
and N 6= 1, otherwise D would be positive. Hence, K = Q(

√
N) is an imaginary

quadratic field. If N ≡ 1 mod 4, then dK = N . Define f = 2 · pk11 · · · pknn . Then the
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order O = [1, f · dK+
√
dK

2 ] in K has discriminant D. If N ≡ 2, 3 mod 4, then dK = 4N .

Define f = pk11 · · · pknn . Then the order O = [1, f · dK+
√
dK

2 ] in K has discriminant D.

Let D be a negative integer and assume that D ≡ 1 mod 4. Let pr11 · · · prnn be the prime
factorization of D. Write ri = 2ki + li such that li = 0, 1, for i = 1, . . . , n. Then

D = pr11 · · · p
rn
n = (p2k11 · · · p2knn )·pl11 · · · p

ln
n = (pk11 · · · p

kn
n )2·(pl11 · · · p

ln
n ) ≡ 1 mod 4. (28)

Define f = pk11 · · · pknn and N = pl11 · · · plnn . Note that (pk11 · · · pknn )2 ≡ 0, 1 mod 4, so
(28) is satisfied if and only if f2 ≡ 1 mod 4 and N ≡ 1 mod 4. By construction N
is squarefree. Moreover, N 6= 0, because D 6= 0, and N 6= 1, otherwise D would be
positive. Hence, K = Q(

√
N) is an imaginary quadratic field with N ≡ 1 mod 4, so

dK = N . Then D is the discriminant of the order [1, f · dK+
√
dK

2 ].

Let D be a negative discriminant. The argument above shows that D can be uniquely
written as f2dK , where dK is the discriminant of an imaginary quadratic field K. Re-

member that K = Q(
√
dK). The order [1, f · dK+

√
dK

2 ] in K has discriminant D. This
shows that an order in an imaginary quadratic field is uniquely determined by its dis-
criminant. �

Example 4.2. Let D = −96 ≡ 0 mod 4. The proof of Theorem 4.1 describes how we
can find the unique order whose discriminant is D. We have D = 4 ·D′, where D′ = −24.
The prime factorization of D′ is

D′ = −24 = −23 · 3 = 22 · −(2 · 3).

Let N = −6 and K = Q(
√
−6) a quadratic field. Then −6 ≡ 2 mod 4, so the discrimi-

nant of K is dK = 4 · −6 = −24. Hence, the order [1, 2 · −24+
√
−24

2 ] in the field Q(
√
−6)

has discriminant 22 · −24 = −96.

Theorem 4.1 shows that for any form class group C(D) of discriminant D, there is a
unique order O in a unique quadratic field K whose discriminant is D. Let O be an
order in an imaginary quadratic field with a negative discriminant D. Then the ideal
class group C(O) is isomorphic to the form class group C(D). This is explained in the
following theorem.

Theorem 4.3 ([7, Theorem 7.7(i),(ii)]). Let O be the order of discriminant D in an
imaginary quadratic field K. If f(x, y) = ax2 + bx + c is a primitive positive definite

form of discriminant D, then [a, −b+
√
D

2 ] is a proper ideal of O. The form class group
C(D) and the ideal class group C(O) are isomorphic. The isomorphism between C(D)
and C(O) is induced by the map

ax2 + bxy + cy2 7→

[
a,
−b+

√
D

2

]
.
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Proof.
Step 1. Let f(x, y) = ax2+bxy+cy2 be a primitive positive definite form of discriminant

D. We will first prove that [a, −b+
√
D

2 ] is a proper ideal of O. The zeros of f(x, 1) are
−b±
√
D

2a . Note that the zeros of f(x, 1) are complex since D < 0. One of these zeros lies
in the upper half of the complex plane and one in the lower half of the complex plane.

Call the zero in the upper half plane the root. The root of f is τ = −b+
√
D

2a , because
a > 0. We form the set[

a,
−b+

√
D

2

]
= a

[
1,
−b+

√
D

2a

]
= a[1, τ ].

By Lemma 3.32, [1, τ ] is a proper fractional ideal of the order [1, aτ ]. It follows from
Remark 3.28 that a[1, τ ] is a proper fractional ideal of [1, aτ ]. The set a[1, τ ] is actually
a proper ideal of [1, aτ ], because a[1, τ ] ⊂ [1, aτ ]. We will show that [1, aτ ] = O.

The order O has discriminant D in K. Therefore, D = f2dK , where f is the conductor
of O. We have seen before that D ≡ b2 mod 2 = b mod 2, so D has the same parity
as b. It also holds that D has the same parity as fdK . If D is odd, then f2 and dK are
odd and hence fdK is odd. If D is even, then either f2 or dK is even, so fdK is even.
We have

aτ =
−b+

√
D

2
=
−b+ f

√
dK

2
= −b+ fdK

2
+ f · dK +

√
dK

2
,

where b+fdK
2 ∈ Z, because b and fdK have the same parity. It follows that

[1, aτ ] =

[
1, f · dK +

√
dK

2

]
= O.

Hence, a[1, τ ] is a proper ideal of O.

Step 2. Before we can show that the given map induces an isomorphism, we first have to
prove two equivalences. We will use these equivalences when we show that the induced
map between C(D) and C(O) is well-defined and injective. Let f(x, y) and g(x, y) be
primitive positive definite forms of discriminant D. Let τ be the root of f and τ ′ be the
root of g. We will first prove the following equivalence:

f(x, y) and g(x, y) are properly equivalent (29)

⇐⇒ τ ′ =
pτ + q

rτ + s
, where p, q, r, s ∈ Z and ps− qr = 1.

Assume that f(x, y) and g(x, y) are properly equivalent, so there exist integers p, q, r
and s such that f(x, y) = g(px+ qy, rx+ sy) with ps− qr = 1. Then

0 = f(τ, 1) = g(pτ + q, rτ + s) = (rτ + s)2g

(
pτ + q

rτ + s
, 1

)
(30)
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and hence g(pτ+qrτ+s , 1) = 0. Note that if Im(pτ+qrτ+s ) > 0, then pτ+q
rτ+s is the root of g and

τ ′ = pτ+q
rτ+s by uniqueness of the root. We have

pτ + q

rτ + s
=

(pτ + q)(rτ̄ + s)

(rτ + s)(rτ̄ + s)
=
prN(τ) + qs+ psτ + qrτ̄

|rτ + s|2
,

so

Im

(
pτ + q

rτ + s

)
=

(ps− qr) Im(τ)

|rτ + s|2
=

Im(τ)

|rτ + s|2
> 0. (31)

Hence, τ ′ = pτ+q
rτ+s .

Now assume that τ ′ = pτ+q
rτ+s , where p, q, r, s ∈ Z and ps− qr = 1. Then (30) shows that

τ is the root of both f(x, y) and g(px + qy, rx + sy). We will show that this implies
that f(x, y) and g(px+ qy, rx+ sy) must be equal. Remember that f(x, y) and g(x, y)
are primitive positive definite forms of discrminant D. Since ps − qr = 1, g(x, y) and
g(px + qy, rx + sy) are properly equivalent and therefore g(px + qy, rx + sy) is also a
primitive positive definite form of discriminant D. Let f(x, y) = ax2 + bxy + cy2. Since
f(x, y) is primitive and the root τ of f(x, 1) = ax2 + bx + c is complex, f(x, 1) is the
polynomial of least degree such that a, b and c are relatively prime. Then Lemma 3.32
shows that [1, aτ ] is an order in K = Q(τ). We have(

det

(
1 aτ
1 aτ̄

))2

= (aτ̄ − aτ)2 = a2τ̄2 − 2a2τ τ̄ + a2τ2

= a2(τ̄ + τ)2 − 4a2τ τ̄ = a2T (τ)2 − 4a2N(τ). (32)

Remember that the minimal polynomial of τ is x2 − T (τ)x + N(τ) ∈ Q[X]. Moreover,
x2+ b

ax+ c
a is also the minimal polynomial of τ . Since the minimal polynomial is unique,

it follows that

x2 − T (τ)x+N(τ) = x2 +
b

a
x+

c

a
.

Hence

T (τ) = τ + τ̄ = − b
a
,

N(τ) = τ τ̄ =
c

a
.

Then Equation (32) becomes(
det

(
1 aτ
1 aτ̄

))2

= a2
b2

a2
− 4a2

c

a
= b2 − 4ac,

which shows that the discriminant D of f(x, y) is equal to the discriminant of the order
[1, aτ ]. Let g(px+ qy, rx+ sy) = a′x2 + b′xy + c′y2. In the same way, we can show that
D is equal to the discriminant of the order [1, a′τ ]. Theorem 4.1 states that the order of
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discriminant D is unique, so it follows that [1, aτ ] = [1, a′τ ] and hence a = a′. Moreover,
we have

T (τ) = − b
a

= − b
′

a′
,

N(τ) =
c

a
=
c′

a′
,

so b = b′ and c = c′. This shows that f(x, y) and g(px + qy, rx + sy) are equal, which
proves the equivalence in (29).

Step 3. Secondly, we will prove

τ ′ =
pτ + q

rτ + s
, where ps− qr = 1 ⇐⇒ [1, τ ] = λ[1, τ ′] for some λ ∈ K×. (33)

Assume τ ′ = pτ+q
rτ+s with ps− qr = 1. Let λ = rτ + s ∈ K×. We have

λ[1, τ ′] = (rτ + s)

[
1,
pτ + q

rτ + s

]
= [rτ + s, pτ + q] = [1, τ ],

since ps− qr = 1.

Next assume that [1, τ ] = λ[1, τ ′] for some λ ∈ K×. Then [1, τ ] = [λ, λτ ′]. It follows
that

λτ ′ = pτ + q,

λ = rτ + s,

for some p, q, r, s ∈ Z and hence τ ′ = pτ+q
rτ+s . Note that

(
p q
r s

)
is nonsingular, because

λτ ′ and λ are linearly independent. Moreover,

(
p q
r s

)
represents a change of basis, so

its determininant is ±1, see Remark 3.25. Note that τ ′ is the root of g and therefore lies
in the upper half of the complex plane. Equation (31) then implies that ps − qr > 0.
Hence ps− qr = 1, which proves (33).

Step 4. In this step, we will prove that the map

ax2 + bxy + cy2 7→

[
a,
−b+

√
D

2

]

induces a well-defined map between C(D) and C(O). Let f(x, y) = ax2 + bxy + cy2

and g(x, y) = a′x2 + b′xy + c′y2 be properly equivalent primitive positive definite forms
of discriminant D. Let τ and τ ′ be the roots of f and g respectively. Then f(x, y) is
mapped to a[1, τ ] and g(x, y) is mapped to a′[1, τ ′]. We will show that a[1, τ ] and a′[1, τ ′]
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belong to the same class in C(O). Equivalences (29) and (33) show that [1, τ ] = λ[1, τ ′]
for some λ ∈ K×. It follows that

a[1, τ ] = aλ[1, τ ′] = a[1, τ ′] · λO,

where the last equality follows from the fact that a[1, τ ′] is an ideal of O. This shows that
a[1, τ ] and a[1, τ ′] belong to the same class in C(O). Hence, the induced map between
C(D) and C(O) is well-defined.

Step 5. Next, we will show that the induced map between C(D) and C(O) is a ho-
momorphism. Let f(x, y) = ax2 + bxy + cy2 be a primitive positive definite form of
discriminant D and consider the equivalence class [f ] ∈ C(D). Let [g] be another equiv-
alence class in C(D). Remember that we can pick f ′(x, y) = a′x2 + b′xy + c′y2 in [g]
such that gcd(a, a′, b+b

′

2 ) = 1. Then the Dirichlet composition of f and f ′ is defined and
is given by

f ◦ f ′ = aa′x2 +Bxy +
B2 −D

4aa′
y2,

where B is the unique integer modulo 2aa′ such that

B ≡ b mod 2a, (34)

B ≡ b′ mod 2a′, (35)

B2 ≡ D mod 4aa′, (36)

see Lemma 2.22. Define 4 := −B+
√
D

2 . Equations (34) and (35) imply that there exist
k, l ∈ Z such that b = B + 2ak and b′ = B + 2a′l. It follows that

f 7→

[
a,
−b+

√
D

2

]
=

[
a,
−B − 2ak +

√
D

2

]
= [a,4],

f ′ 7→

[
a′,
−b′ +

√
D

2

]
=

[
a′,
−B − 2a′l +

√
D

2

]
= [a′,4],

f ◦ f ′ 7→

[
aa′,
−B +

√
D

2

]
= [aa′,4].

Note that

gcd

(
a, a′,

b+ b′

2

)
= gcd

(
a, a′,

2B + 2(ak + a′l)

2

)
= gcd(a, a′, B) = 1. (37)

Moreover,

42 =
B2 − 2B

√
D +D

4
≡ 2B2 − 2B

√
D

4
mod aa′

= −B−B +
√
D

2
mod aa′ = −B4 mod aa′,

(38)
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where the second equality follows from Equation (36). It follows that

[a,4][a′,4] = [aa′, a4, a′4,42] = [aa′, a4, a′4,−B4] = [aa′,4],

where we have used (37) and (38). This shows that the induced map between C(D) and
C(O) is a homomorphism.

Step 6. We will show that the induced homomorphism is injective. Let f(x, y) =
ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2 be primitive positive definite forms
of discriminant D and let τ and τ ′ be the roots of f and g respectively. Assume that
a[1, τ ] and a′[1, τ ′] are part of the same class in the group C(O). Then for some principal
fractional ideal αO with α ∈ K×, we have

a[1, τ ] = a′[1, τ ′] · αO = α
(
a′[1, τ ′] · O

)
= αa′[1, τ ′],

where the last equality follows from the fact that a′[1, τ ′] is an ideal of O. It follows
from the equivalences in (29) and (33) that f and g are properly equivalent. Hence, the
induced map between C(D) and C(O) is an injective homomorphism.

Step 7. The final step is to show that the induced injective homomorphism is surjective.
Let I be a fractional ideal of the order O in the imaginary quadratic field K. Lemma 3.33
states that I is a free Z-module of rank 2, so we can write I = [α, β] for some α, β ∈ K.
Switching α and β if necessary, we can assume that τ = β

α lies in the upper half of
the complex plane. Let ax2 + bx + c ∈ Z[X] be the polynomial of least degree with
gcd(a, b, c) = 1 and a > 0 having τ as a root. Note that the discriminant of ax2 + bx+ c
is negative, because τ /∈ R. Hence, the quadratic form f(x, y) = ax2 + bxy+ cy2 satisfies
D < 0 and a > 0 and is therefore positive definite. The form f(x, y) maps to a[1, τ ].
Note that

a[1, τ ] = α
a

α
[1, τ ] =

a

α
[α, β] = I · a

α
O,

which shows that a[1, τ ] is part of the same class in C(O) as I. Hence, C(D) and C(O)
are isomorphic. �

4.2 Computing class numbers

Let D be any negative discriminant and consider the form class group C(D). Let O
be the unique order of discriminant D in an imaginary quadratic field K. Theorem 4.3
states that C(D) and C(O) are isomorphic and therefore have the same class number. In
section 2.3, we looked at two algorithms that compute the class number of C(D). Using
these algorithms, we can easily compute the class number of any order with a negative
discriminant D satisfying D ≡ 0, 1 mod 4.
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D h(D) D h(D) D h(D) D h(D) D h(D)

-3 1 -36 2 -71 7 -104 6 -139 3
-4 1 -39 4 -72 2 -107 3 -140 6
-7 1 -40 2 -75 2 -108 3 -143 10
-8 1 -43 1 -76 3 -111 8 -144 4
-11 1 -44 3 -79 5 -112 2 -147 2
-12 1 -47 5 -80 4 -115 2 -148 2
-15 2 -48 2 -83 3 -116 6 -151 7
-16 1 -51 2 -84 4 -119 10 -152 6
-19 1 -52 2 -87 6 -120 4 -155 4
-20 2 -55 4 -88 2 -123 2 -156 4
-23 3 -56 4 -91 2 -124 3 -159 10
-24 2 -59 3 -92 3 -127 5 -160 4
-27 1 -60 2 -95 8 -128 4 -163 1
-28 1 -63 4 -96 4 -131 5 -164 8
-31 3 -64 2 -99 2 -132 4 -167 11
-32 2 --67 1 -100 2 -135 6 -168 4
-35 2 -68 4 -103 5 -136 4 -171 4

Table 1: Class numbers for the orders with discriminant D with −171 ≤ D ≤ −3

Computing the class number of the ring of integers measures how far the ring of integers
is from being a unique factorization domain. This will be the subject of the following
theorem.

Theorem 4.4. The class number of the ring of integers in a quadratic field is one if and
only if the ring of integers is a unique factorization domain.

The proof of this theorem requires the following results.

Theorem 4.5 ([9, Theorem 18]). A Dedekind domain is a unique factorization domain
if and only if it is a principal ideal domain.

Lemma 4.6 ([7, Exercise 7.6(b)]). All nonzero ideals of the ring of integers in a quadratic
field K are proper. This means that for every nonzero ideal I of OK , it holds that

OK = {β ∈ K : βI ⊂ I}.

Proof. Let I be a nonzero ideal in the ring of integers OK in a quadratic field K. We
have OK ⊂ {β ∈ K : βI ⊂ I}, since I is an ideal of OK . To prove that I is proper, we
have to show the inclusion {β ∈ K : βI ⊂ I} ⊂ OK . Suppose there exists α ∈ K\OK
such that αI ⊂ I. By Lemma 3.11, there exists an integer m such that mα ∈ OK , so
we can take m to be the smallest such integer. Let β = mα ∈ OK such that α = β

m . By
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assumption, β
mI ⊂ I ⊂ OK , so we have I ⊂ mOK . Thus, I is an ideal of OK contained

in the principal ideal mOK . This implies that I is a principal ideal of OK of the form
mγOK for some γ ∈ OK . We have

α ·mγ =
β

m
·mγ = βγ ∈ mγOK ,

so we can write β as mβ′ for some β′ ∈ OK . Then

α =
β

m
=
mβ′

m
= β′ ∈ OK ,

which is a contradiction. This proves the inclusion {β ∈ K : βI ⊂ I} ⊂ OK and hence
I is proper. �

We can now prove Theorem 4.4.

Proof. Let OK be the ring of integers in a quadratic field K and assume that the class
number of OK is one. It follows from Theorem 3.29 that the nonzero ideals of OK are
fractional ideals of OK . Moreover, the nonzero ideals of OK are proper by Lemma 4.6.
Hence, the nonzero ideals of OK form a subset of I(OK). The class number of OK is
one, which means that I(OK) = P (OK). Thus, all nonzero ideals of OK are principal
and therefore OK is a principal ideal domain. Theorem 4.5 implies that OK is a unique
factorization domain.

Assume that OK is a unique factorization domain. Then OK is a principal ideal domain
by Theorem 4.5, so all nonzero ideals of OK are of the form αOK , for some α ∈ OK .
It follows from Theorem 3.29 that all fractional ideals are of the form β · αOK , with
β ∈ K× and αOK a nonzero ideal of OK . Hence, all proper fractional ideals of OK are
principal and it holds that I(OK) = P (OK). The class number of OK is therefore equal
to one. �

Remark 4.7. The proof of Theorem 4.4 makes use of the fact that the ring of integers
in a quadratic field is a Dedekind domain. Since orders that are not maximal are not
Dedekind domains, Theorem 4.4 only applies to the maximal order in a quadratic field.

The bold numbers in Table 4.2 are discriminants of imaginary quadratic fields. They
are called fundamental discriminants. Since the conductor of the ring of integers is by
definition equal to one, Equation (27) implies that the ring of integers has the same
discriminant as the quadratic field it is contained in. Thus, when we compute the class
number for a fundamental discriminant D, we compute the class number of the ring of
integers in the unique imaginary quadratic field with discriminant D. We can read off
from Table 4.2 that the class number is one for the fundamental discriminants

D = −3,−4,−7,−8,−11,−19,−43,−67,−163.
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The imaginary quadratic fields with these discriminants are listed in the following table.

Discriminant Imaginary quadratic field

-3 Q(
√
−3)

-4 Q(
√
−1)

-7 Q(
√
−7)

-8 Q(
√
−2)

-11 Q(
√
−11)

-19 Q(
√
−19)

-43 Q(
√
−43)

-67 Q(
√
−67)

-163 Q(
√
−163)

Table 2: Fundamental discriminants with their corresponding imaginary quadratic field

Hence, the ring of integers of the fields in Table 4.2 are unique factorization domains by
Theorem 4.4. In 1966, Baker proved that the imaginary quadratic fields in Table 4.2 are
the only imaginary quadratic fields of which the ring of integers is a unique factorization
domain as a result of [1, Theorem]. In 1967, Stark gave another proof of this same result
in [12].

Finally, we compared the computation times of Algorithm 2.16 and Algorithm 2.18 for
large discriminants. We also added the time Sage takes to compute the class number,
for which we used the following command.

1 K.<a> = NumberField(x^2 + D)

2 \%time K.class_number()

The results are in the table below.

D Algorithm 2.16 Algorithm 2.18 Sage

−3 · 5 · 7 · 11 1.89 ms 1.83 ms 23.1 µs
−3 · 5 · 7 · 11 · 13 27.9 ms 8.02 ms 20 µs
−3 · 5 · 7 · 11 · 13 · 17 212 ms 43.1 ms 27.9 µs

−3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 1 min 2 s 13.5 s 30 µs
−3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 42 min 19 s 6 min 26 s 51 µs

Table 3: Comparison of the computation times
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5 Conclusion

We studied the connection between binary quadratic forms and imaginary quadratic
number fields with the aim of computing class numbers of orders in imaginary quadratic
fields. We first studied the integral binary quadratic forms in order to construct the form
class group. For a fixed negative discriminantD, we looked at the set of primitive positive
definite integral binary quadratic forms of discriminant D and applied proper equivalence
to this set. We proved in detail that the set of equivalence classes of primitive, positive
definite forms of discriminant D with the operation induced by Dirichlet composition is
an Abelian group. This is usually proven after the bijection between the form class group
and the ideal class group is established. We looked at two algorithms that compute the
class number of the form class group for a given negative discriminant.

Then we moved on to quadratic fields. Besides the construction of the ideal class group,
which is the main goal of this section, we also showed what the ring of integers exactly
looks like and that the ring of integers is a Dedekind domain. This property of the ring
of integers is important when we explained in the last section that the class number of
the ring of integers in a quadratic field measures how far the ring of integers is from
being a unique factorization domain.

In the last section, we finally proved that for every form class group, there is a unique
ideal class group that is isomorphic to this form class group, and vice versa. It is
important to understand how the unique ideal class group isomorphic to the form class
group is found. The key is the discriminant of both groups. We proved that for any
negative discriminant D, there is a unique order in a unique imaginary quadratic field
with discriminant D. The proof is constructive, so it shows how to find this unique
order. The form class group C(D) is then isomorphic to the ideal class group C(O),
where O is the unique order of discriminant D, and vice versa. We can therefore use
Algorithm 2.16 and Algorithm 2.18 to compute the class number of orders in imaginary
quadratic fields.

Many obtained results not only hold for quadratic fields, but for number fields in general.
The definition of the ideal class group of orders in number fields is for example the same
as for a quadratic field. It also holds that the ring of integers in a number field is a
unique factorization domain if and only if the class number of the ring of integers is
one. The computation of class numbers of orders in number fields of degree larger than
two requires other methods than the one we discussed. One method is described in [4],
where the analytic class number formula is used to develop an algorithm to compute the
class number of the ring of integers in algebraic number fields. Integral binary forms
cannot be used to compute class numbers of orders in algebraic number fields of degree
larger than two. The result in [2, Theorem 1.1] does however establish a link between
the integral binary cubic forms and cubic number fields.
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A Implementation of algorithms

Algorithm 2.16 (Computing reduced forms)

1 def class_number(D):

2 list = []

3 for a in range(1, floor(sqrt(-D/3)+1)):

4 for b in range(-a,a+1):

5 c = (b^2-D)/(4*a)

6 if c.is_integer() and c >= a and gcd(gcd(a,b),c)==1:

7 if abs(b) == a or a == c:

8 if b>= 0:

9 elt = [a,b,c]

10 list.append(elt)

11 else:

12 elt = [a,b,c]

13 list.append(elt)

14

15 return list, len(list)

Algorithm 2.18 (Counting reduced forms)

1 def h(d):

2 b = d%2

3 B = floor(sqrt(-d/3))

4 h=0

5 while (b <= B):

6 q = (b^2 - d)/4

7 a=b

8 if (a<1):

9 a=1

10 while (a^2 <= q):

11 if ((q%a == 0) and (gcd(gcd(a,b),q/a) == 1)):

12 if (a == b) or (a^2 == q) or (b == 0):

13 h = h+1

14 else:

15 h = h+2

16 a = a+1

17 b = b+2

18

19 print h
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