
UNIVERSITY OF GRONINGEN

BACHELOR’S THESIS MATHEMATICS

Controllability of RLC electrical
circuits with ideal components

Author:
Maico Engelaar

Supervisors:
1st: Prof. Stephan Trenn

2nd: Prof. Bayu Jayawardhanan

July 6, 2019

https://www.rug.nl/
https://www.rug.nl/staff/s.trenn/
https://www.rug.nl/staff/b.jayawardhana/


i

Abstract
Controllability of RLC electrical circuits with ideal components

by Maico Engelaar

In this paper, we investigate the controllability of RLC electrical circuits with
ideal components. For this, we make use of Differential Algebraic Equations
(DAE) and model the circuits by the use of the so-called branch-oriented model.
When considering the controllability of the circuits, we will make use of the
Kalman Controllability Decomposition (KCD) and in particular the augmented
Wong sequences which are tremendously help-full in constructing KCDs that
decouple the system into a completely controllable part, a behavioral controllable
part and an uncontrollable part. This paper will be concluded with some ob-
servations regarding the controllability of electrical circuits.
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Chapter 1

Introduction

Nowadays, electrical circuits are everywhere. Examples of electrical appli-
ances containing electrical circuits are flashlights, microwaves, computers,
vacuum cleaners and many others. In our day-to-day life, people might not
realize, but without understanding these complex circuits, our current way
of living would not be possible. It would not be a stretch to even state that
people nowadays are completely dependent on these circuits. Therefore, un-
derstanding electrical circuits is and has been over the last two centuries, an
important research topic for many scientists.

In this paper, we are going to study the controllability of electrical circuits.
In particular, we will consider RLC electrical circuits with ideal components.
Besides this main objective, we have the following questions that are of in-
terest to us:

• What are RLC electrical circuits?

• How can we model these RLC electrical circuits?

• What is controllability with regard to our model?

• What is the Kalman Controllability Decomposition (KCD) and how can
we use the KCD to investigate the controllability of our system?

In this paper, we are going to answer all of these questions. Of course, we
will also include the results regarding the main objective. But first, let us
consider the following overview regarding the topics that will be discussed
in this paper.

1.1 Overview

A particular kind of electrical circuits are those consisting of only resistors(R),
inductors(L), capacitors(C), current sources and voltage sources. These cir-
cuits are called RLC electrical circuits. These electrical circuits will be the
main focus of this paper. Furthermore, for simplicity, it is also assumed that
the resistor, inductor and capacitor components are all "ideal". In chapter 2
we will discuss RLC electrical circuits in more detail, including, Kirchhoff’s
laws, the components themselves and the many relations between voltages
and currents with regards to each of the components.
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When looking at systems in general, there is a need for mathematical models.
Mathematical models are used to describe the system into a form which can
be mathematically analyzed. Since electrical circuits are also systems, there
is a need to find an appropriate mathematical model. A few possible mod-
els includes the branch-oriented model, the nodal analysis models and the
loop analysis models. All of these models have in common, they make use
of Differential Algebraic Equations (DAE). In chapter 3 we will use graphs
and graph theory to model the many relations, between the currents and the
voltages, into a DAE system of the form Eẋ = Ax + Bu according to the
branch-oriented model. At the end of the chapter, we will consider some ex-
amples of DAE systems constructed from electrical circuits and also study
briefly the nodal analysis models and the loop analysis models.

When considering ODE systems of the form ẋ = Ax + Bu the definition of
controllability is rather straightforward: "every state is reachable from every
state." However, in case of DAE systems of the form Eẋ = Ax + Bu there are
two kinds of controllabilities that are of interest, namely complete controlla-
bility and behavioral controllability. In chapter 4 we will discuss the different
kinds of controllabilities with regards to both ODE and DAE systems. There-
after we will discuss the Kalman Controllability Decomposition and in par-
ticular the KCD that decomposes the DAE system with regard to complete-
and behavioral controllability. Furthermore, we will consider KCDs of both
general and regular DAE systems. We will end this chapter with some exam-
ples regarding KCDs of DAE systems both general and regular.

In chapter 5 we will discuss some examples of electrical circuits. In partic-
ular, we will use the previous established methods to investigate the con-
trollability of these examples. First some basic examples will be considered.
Thereafter, we will consider some examples more related to the structure of
electrical circuits and how the structure influences the controllability. The
chapter will be concluded with some hypotheses regarding the structure and
the controllability of electrical circuits.

We will finish this paper in chapter 6 with a conclusion/summary. After
chapter 6 there will be an appendix containing some data and a bibliography.
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Chapter 2

RLC electrical circuits

Electrical circuits exists in many shapes and forms. In this paper only cir-
cuits consisting of resistors(R), inductors(L1), capacitors(C) current sources
and voltage sources will be considered. These circuits are called RLC elec-
trical circuits. These kind of circuits are interesting since they have multiple
applications, among which applications in oscillator circuits.

The resistor, inductor and capacitor components each describe a relation be-
tween the current and the voltage through that particular component. It will
be assumed that all three of these components are "ideal". This will simplify
the relation between the current and voltage in each component (see chap-
ter 2.2). The sources are our input, which means that we decide what the
current/voltage through a particular current/voltage source shall be.

Using these relations and the inputs of the sources together with Kirchhoff’s
laws, it becomes possible to model RLC circuits into DAE systems. In this
chapter we will mostly focus on the components, the relations between the
currents and voltages with regards to these components and Kirchhoff’s laws.
At the end of the chapter, we will also discuss a special kind of RLC circuit.
In chapter 3 the construction of DAE systems will be discussed.

Remark 2.1. From now on when mentioning electrical circuits or just circuits, this
always refers to RLC electrical circuits with ideal components.

2.1 Kirchhoff’s laws

In 1845, German Physicist, Gustav Robert Kirchhoff devised two different
laws with respect to electrical circuits [2, Ch. 2.3 and 2.4]. These laws are
called Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). KCL
states that the sum of the currents entering a node should equal the sum of
the currents exiting the node. Here a node represents the point where two
or more components are connected. KVL states that in a loop the sum of the
voltages with the same orientation should equal the sum of the voltages with
the opposite orientation.

1Because I is already used for the current, instead L is used for the inductance in honor
of Emil Lenz, known for Lenz’s law [1]
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FIGURE 2.1

Remark 2.2. It will be assumed that during the entirety of this paper, the orientation
of current and voltage are always the same. This is just a mathematically convention
for simplicity.

Example 2.3. Take a look at figure 2.1. The KCL would state that at node 2
iR = iC + i. The KVL implies that in the loop from node 1 to node 1, going
through the capacitor, vR + vC + vL + v = 0.

Remark 2.4. It will also be assumed that both current i and voltage v are functions
of time even though this will not always be specifically stated.

For a more in-dept explanation on how to find the Kirchhoff’s laws, see [3,
Ch. 2.3] .

2.2 RLC Components

The three main components in a RLC circuit, besides the sources, are the
resistor, the inductor and the capacitor. As stated before, each one of them
will be assumed to be "ideal" for simplicity. For a more in-dept discussion
on the relation between the current and the voltage, within each component,
using Maxwell’s equations, see [3, Ch. 2.5]. The symbols used for a resistor,
inductor and capacitor are given in figure 2.2.

FIGURE 2.2:
Left is resistor. Middle is inductor. Right is capacitor
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2.2.1 Resistor

Resistors are used to regulate both the current and the voltage in the circuit.
In particular, it limits the flow of electrical current. A good comparison to
how this works, is with water tubes. If one narrows a certain part of the tube,
the flow (rate) of the water will decrease. A resistor does the same, but then
with electrical current.

The relation between the current and the voltage, within a resistor, was first
described by Ohm in 1827 [4] and for an ideal resistor is described by Ohm’s
law:

vR = RiR (2.1)

Here R is the positive resistance of the resistor measured in Ω (Ohm).

2.2.2 Inductor

An inductor has the property that when electricity runs through it, it will
store this electrical energy in the form of a magnetic field. Within an ideal
inductor, the following relation holds true between the current and the volt-
age:

L
d
dt

iL = vL (2.2)

Here L is the positive inductance of the inductor measured in H(enry).

2.2.3 Capacitor

A capacitor has the property that when electricity runs through it, it will store
this electrical energy in the form of an electrical field. Within an ideal capac-
itor, the following relation holds true between the current and the voltage:

C
d
dt

vC = iC (2.3)

Here C is the positive capacitance of the capacitor measured in F(arad).

2.3 Sources

There are two kinds of sources that are of interest to us, namely current
sources and voltage sources. The symbols for current and voltage sources
are given in figure 2.3.

−+

FIGURE 2.3:
Left is current. Right is voltage
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2.3.1 Current source

A current source generates a current, independent of the voltage. Because
one can choose what current it will generate, this is one of two ways for us to
influence the system/circuit.

2.3.2 Voltage source

A voltage source generates a voltage, independent of the current. Because
one can choose what voltage it will generate, this is one of two ways for us
to influence the system/circuit.

2.4 Special RLC circuits

Take a look at figure 2.4. What is represented here are two voltage sources
being connected to each other. In this specific example there are a total of 4
unknowns, namely v1, v2, i1 and i2. Furthermore, both v1 and v2 are inputs,
so both of them are known. However, two different problems occur in this
example. First of all, by KVL it is given that v1 = v2, so the inputs are not
without restrictions. Secondly, both i1 and i2 cannot be determined in this
specific example. The implications of this example are that not all circuits
can be uniquely solved and that not all circuits have a solution for any given
input. Later on when discussing specific examples of DAE systems, using
the DAE system constructed from this particular example, it will be shown
that indeed this circuit cannot be uniquely solved (see chapter 3.4).

−
+v1

i1

−+ v2

i2
FIGURE 2.4
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Chapter 3

Graphs, DAEs and Circuit models

There are many ways to model RLC electrical circuits. There is the so-called
branch-oriented model, the loop analysis models, the nodal analysis models
and many others. Even though there are many ways to model electrical cir-
cuit, most of these models have one thing in common, namely they make use
of Differential Algebraic Equations (DAE). In this chapter, it will be assumed
that we are using the branch-oriented model [3, 5, 6]. This model expresses
the many circuit equations in terms of the currents and the voltages. More
information regarding other models and why we use the branch-oriented
model, will be discussed in chapter 3.5.

If a RLC circuit consists of n components, each of these components has a
current and a voltage going through it. This implies that there are 2n un-
knowns. The component relations (see chapter 2.2) together with the inputs
of the sources, gives rise to n linearly independent equations. Together with
Kirchhoff’s laws, 2n equations can be found, making it possible to solve for
the 2n unknowns. These 2n equations, together with the assumption of us-
ing the branch-oriented model, can then be written into a DAE system of the
following form:

Eẋ = Ax + Bu (3.1)

where E, A are matrices in R2n×2n and B is a matrix in R2n×(k+p) with k the
number of voltage sources and p the number of current sources. x is a column
vector in R2n containing the 2n currents and voltages. u is a column vector
in Rk+p containing the k + p inputs of the sources.

While it is easy to find the first n equations, when considering both the inputs
of the sources and the component relations, the same cannot be said about the
other n equations one gets from Kirchhoff’s laws.

When looking at Kirchhoff’s laws, they give more equations then is needed.
Also some of these equations are linearly dependent (see chapter 3.2). Conse-
quently, there is a need to find n linearly independent equations from Kirch-
hoff’s laws. This can, however, be done by using graphs and graph theory.
Using graphs and graph theory, Kirchhoff’s laws can be rewritten into a form
which can be directly applied when constructing the DAE system (3.1).
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In this chapter we will first discuss the required background on graphs. Af-
ter that, this newly obtained knowledge will be applied to find n linearly
independent equations from the Kirchhoff’s laws. Next, a "blueprint" will
be given on how to construct the DAE system (3.1). Thereafter, there will be
some examples of DAE systems regarding various circuits. We will end this
chapter with a brief discussion regarding different kinds of circuit models.

3.1 Introduction to Graphs

In 1736, Swiss mathematician, Leonhard Euler wrote one of his most famous
works, his paper about the Seven Bridges of Königsberg [7]. This paper laid
the foundations of graph theory among others. In 1847, Gustav Robert Kirch-
hoff wrote a paper about a certain relation between the number of wires, the
number of junctions, and the number of loops in a circuit [8]. In his pa-
per he made use of a certain kind of graph called Trees (see definition 3.9).
However, it was in 1857 that, British mathematician, Arthur Cayley coined
the term Tree [9]. Nevertheless, the paper written by Kirchhoff shows that
using graphs, to study electrical circuits, has been a practice for almost two
centuries now.

Before looking at graph theory, some elemental properties of graphs need to
be established, among which the definition of a graph and what it means to
be a connected graph. [3, 5]

Definition 3.1. A directed graph (or just graph) is a triple G = (V, E, φ). Here
V is the set of nodes (also called vertices), E is the set of branches (also called
edges) and φ is the incidence map: φ : E → V × V; φ(e) = (φ1(e), φ2(e))
where φ1(e) = v1 is the initial node and φ2(e) = v2 is the terminal node.

Remark 3.2. In this paper when talking about graphs, this always refers to directed
graphs. There also exists graphs which are not directed, however these are of no
interest to us.

Definition 3.3. Let V′ ⊆ V, E′ ⊆ E|V′ = {e ∈ E | φ(e) ∈ V′×V′} and φ|E′ be
the restriction of φ on E′ then K = (V′, E′, φ|E′) is a subgraph. If V′ = V, then
K is called a spanning subgraph. If E 6= E′, then K is called a proper subgraph.

Definition 3.4. Let e ∈ E, let φ(−e) = (φ2(e), φ1(e)) and let E0 = {e,−e|e ∈
E}. Let w = {w1, ..., wr} ∈ Er

0, where vi = φ2(wi) = φ1(wi+1) for i = 1, .., r−
1, then this tuple is called a path from v0 to vr. Furthermore if ∀i ∈ {0, ..., r}
the vi are distinct them w is called an elementary path.

Definition 3.5. A loop is an elementary path with v0 = vr. A self-loop is a
loop with only 1 branch.

Definition 3.6. Two nodes v and v′ are called connected if there exists a path
from v to v′.

Definition 3.7. A graph is called connected if any two nodes in the graph are
connected.
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Definition 3.8. A graph G is called finite if both V and E are finite.

Definition 3.9. A Tree is a minimally connected (spanning sub)graph, that is,
it is connected without having any connected proper spanning subgraphs. If
a Tree consists of n nodes, it will also consist of exactly n− 1 branches.

Now that these definitions on graphs have been established, lets take a look
at the following example.

Example 3.10. In figure 3.1 there is both an example of a connected graph
and an example of a Tree. For simplification the directions of the branches
are not drawn in this example.

FIGURE 3.1: Left is a graph. Right is a Tree

When talking about graphs of electrical circuits, the idea is that nodes refer
to the points were two or more components are connected and branches refer
to the components themselves. Because not every graphs is a representation
of an electrical circuit, there will be some restrictions. The following remarks
state and explain some of these restrictions [3, Ch. 2.4.2].

Remark 3.11. When talking about electrical circuits, its obvious that the corre-
sponding graphs will contain at least two nodes and two branches. Therefore, no
cases in which there are less then two branches and/or two nodes will be considered.

Remark 3.12. When talking about electrical circuits, its obvious that the corre-
sponding graphs will be finite and connected. Furthermore, it can be assumed that
the graph does not contain any self-loops. Even if electrical circuits would contain
self-loops, these can be deleted without influencing the circuits themself, because both
current and voltage, over a self-loop, vanishes.

3.2 Kirchhoff’s laws and Graphs

Now that the most important definitions on graphs have been established,
next is to try finding n linearly independent equations from Kirchhoff’s laws
[3, 5, 6]. For this, the following definition is needed:

Definition 3.13. Let G = (V, E, φ) be a finite graph with n branches E =
{e1, ..., en} and m nodes V = {1, ..., m}. Assume the graph does not contain
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any self-loops. The All-node incidence (ANI) matrix of G is defined by A0 =
{ajk} ∈ Rm×n, where

ajk =


1 if branch k leaves node j
−1 if branch k enters node j
0 otherwise

Let L = {l1, ..., lb} be the set of loops of G. Then the All-loop (AL) matrix
B0 = {bjk} ∈ Rb×n is defined by:

bjk =


1 if branch k is in loop j and has the same orientation
−1 if branch k is in loop j and has the opposite orientation
0 otherwise

Remark 3.14. When talking about matrices A0 and B0 in relation to electrical cir-
cuits, it is always assumed that G is the graph corresponding to the electrical circuits.

Using definition 3.13, Kirchhoff’s laws can be rewritten into the following
forms:

A0i(t) = 0 (3.2)

B0v(t) = 0 (3.3)

where i(t) = (i1(t), ...., in(t))T are the currents through component/branches
1 till n and v(t) = (v1(t), ...., vn(t))T are the voltage drops/rises between the
initial nodes and terminal nodes of the branches 1 till n. Here it is assumed
that branch i corresponds to column i in both the matrices A0 and B0. The
equalities come from the Kirchhoff’s Current Law (KCL) and the Kirchhoff’s
Voltage Law (KVL), respectively.

Remark 3.15. Important to see is that each row of matrix A0 corresponds to one
of the equations from the KCL. The same is true for matrix B0. Each row of B0
corresponds to one of the equation from the KVL.

At the beginning of this chapter, it was stated that not all the equations from
Kirchhoff’s laws are linearly independent. To show this, see matrix A0. If
one takes the transpose of A0 and looks at the rows, one will see that they
contain exactly two nonzero entries, namely 1 and -1. This implies that

AT
0 (1, ..., 1)T = 0 (3.4)

which implies that the columns of AT
0 are linearly dependent, which results

in that the rows of A0 are linearly dependent. So indeed the KCL does not
give linearly independent equations. The same is true for the KVL since also
matrix B0 might have linearly dependent rows by construction. As an exam-
ple, think about the case that two loops might overlap in one branch. It can
then be shown that there exists a third loop of non-overlapping edges that is
linearly dependent to the first two loops.

Now that it is known that both the matrices A0 and B0 have rank lower then
the number of rows they contain, next is to find their specific ranks and a
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constructive method to delete the unnecessary rows in the matrices A0 and
B0.

When first considering the matrix A0 the following theorem will be of great
use:

Theorem 3.16. Let G = (V, E, φ) be a finite connected graph with n branches
E = {e1, ..., en} and m > 1 nodes V = {1, ..., m} and no self-loops. Let matrix
A0 ∈ Rm×n be the ANI matrix of G. Then Rank(A0) = m− 1.

Proof. Let A0 be the ANI matrix of graph G and assume that AT
0 x = 0 for

some x ∈ Rm. Assuming it is known that x does not contain any zero entries,
it can be concluded that all entries of x are the same. This can easily be seen
by first assuming that x has at least one entry that is different from the other
entries, say entry k and its value is l. If one then subtract the vector given in
(3.4), l-times from the previous mentioned vector, one gets a vector that is in
the kernel of AT

0 , is not the trivial vector and has a zero entry at entry k, hence
contradicting the assumption that all entries are non-zero.

Using the fact that the entries of x are all the same, it can be concluded that
the kernel of AT

0 has dimension 1. By the rank-nullity theorem of matrix AT
0

the result is that the rank of AT
0 equals m − 1 and therefore the rank of A0

equals m− 1.

Now to prove that x has indeed no zero entries see the following: Assume
that x ∈ Rm contains at least one zero entry. Rearrange now the rows of
matrix A0 in such a way that the first k entries of x are nonzero, whereas the
last m− k entries are zero, that is, x = [xT

1 0T]T, where x1 is an element of Rk.
By further reordering the columns of A0, it can be assumed that A0 will be of
the form:

A0 =

(
A11 0
A21 A22

)
(3.5)

where each column of A11 is not the zero vector. This gives AT
11x1 = 0. Now

take an arbitrary column a21,i from A21. Since each column of A0 has exactly
two nonzero entries, namely 1 and -1, either column a21,i has no, one or two
nonzero entries. If assuming that a21,i has two nonzero entries, this would
contradict the statement that A11 has no zero columns. If assuming that a21,i
has one nonzero entry, and the other nonzero entry is at the jth position in
column a11,i, the relation xT

1 A11 = 0 would imply that the jth entry in x1
would be equal to zero. Since this gives a contradiction, it can be concluded
that the matrix A21 is the zero matrix. However by construction of the ma-
trix A0 this would imply that the graph G is not connected. Therefore our
assumption that x contains zero entries is wrong.

Since a graph of an electrical circuit is finite, connected and has no self-loops
(see remark 3.12), by theorem 3.16, it holds that the rank of A0 equals m− 1
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when considering electrical circuits. Using this together with equation (3.4),
it can be seen that by arbitrarily deleting one row, the newly constructed
matrix Ã ∈ R(m−1)×n has m − 1 linearly independent rows. This matrix Ã
will be called the Incidence matrix of G. The equation

Ãi(t) = 0 (3.6)

where i(t) is the same as in equation (3.2), contains all linearly independent
equations that can be found by the KCL.

Let us next consider the matrix B0. However, lets first take a look at the
following 2 remarks.

Remark 3.17. If K = (V, E′, φ|E′) is a spanning subgraph of G = (V, E, φ), one
may, by suitable reordering of the columns, perform a partition of the loop matrix
according to the branches of K and G− K = (V, E− E′, φ|E−E′), that is, B0 = [BK
BG−K].

Remark 3.18. If a subgraph T is a Tree, then each branch e in G− T defines a loop
via (e, w1, ..., wl), where (w1, ..., wl) is the elementary path in T from the terminal
node to the initial node of e. This, together with the fact that a Tree consisting of m
nodes has exactly m− 1 branches, gives that the following form can be obtained by
reordering the rows of BT and BG−T:

BT =

(
B11
B21

)
, BG−T =

(
In−m+1

B22

)
(3.7)

Using these two remarks, the following theorem can be proven.

Theorem 3.19. Let G = (V, E, φ) be a finite connected graph with n branches
E = {e1, ..., en} and m > 1 nodes V = {1, ..., m} and no self-loops. Let matrix
B0 ∈ Rb×n be the AL matrix of G, where b is the number of loops in G. Then
Rank(B0) = n−m + 1.

Proof. First, let us prove that rank(B0)≤ n−m + 1. To show this, it is enough
to prove that im(BT

0 ) ⊆ ker(A0), where A0 is the ANI matrix of G. Showing
this is enough because the dimension of the kernel of A0 is equal to n−m+ 1
by the rank-nullity theorem.

Let l be a loop and let the vector bl = [bl1, ..., bln] ∈ R1×n \ {0} with

bjk =


1 if branch k belongs to l and has the same orientation
−1 if branch k belongs to l and has the opposite orientation
0 otherwise

Let a1, ..., an be the column vectors of A0. Then, by the construction of bl, each
row of the matrix [bl1a1...blnan] contains exactly two nonzero entries, namely
1 and -1. This implies that A0bT

l = bl AT
0 = 0. Since bl is a row of the AL

matrix B0, it can be concluded that indeed im(BT
0 ) ⊆ ker(A0) and therefore

rank(B0) ≤ n−m + 1.
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The next thing that needs to be proven is that rank(B0) ≥ n−m + 1. To proof
this, first consider a Tree T in G. Using remark 3.18, the AL matrix B0 can
be rewritten into the form given by (3.7). Because the matrix BG−T has full
column rank and n− m + 1 columns, it holds that rank(B0)≥ rank(BG−T) =
n−m + 1. This proves that indeed the rank of B0 is equal to n−m + 1.

As stated before, a graph of an electrical circuit is finite, connected and has no
self-loops, so by theorem 3.19, the rank of B0 is n−m + 1 when considering
electrical circuits. So if one takes n−m + 1 linearly independent rows from
matrix B0 and construct matrix B̃ ∈ R(n−m+1)×n out of those, one will have
the so called loop matrix of G. One way of constructing the loop matrix B̃ is
by doing the following.

Let G be the graph of an electrical circuit and delete branches in such a way
that you are left with a Tree T. The loop matrix can then be determined by
B̃ = [B11 In−m+1], where the jth row of B11 contains the information on the
path in T between the initial and terminal nodes of the (m− 1 + j)th branch
of G. By doing this one obviously gets a matrix B̃ ∈ R(n−m+1)×n which has
n−m + 1 linearly independent rows. The equation

B̃v(t) = 0 (3.8)

where v(t) is the same as in equation (3.3), contains all linearly independent
equations that can be found by the KVL.

Now that both, a method to find the incidence matrix Ã and a method to
find the the loop matrix B̃ have been established, all that is left is to check
whether the equations (3.6) and (3.8) are linearly independent. This is trivial
because in equation (3.6) there are only relations between currents, while
in equation (3.8) there are only relations between voltages. So indeed the
equations (3.6) and (3.8) are linearly independent and together give rise to n
linearly independent equations that are given by Kirchhoff’s laws.

Using equations (3.6) and (3.8) together with the inputs of the sources and
the component relations, we will, in chapter 3.3, construct a "blueprint" for
the DAE system (3.1).

3.3 The construction of the DAE system

As stated before, the following form of the DAE system will be used to model
the electrical circuits:

Eẋ = Ax + Bu (3.1)

Before it is possible to construct the matrices E, A and B, first the vectors x
and u need to be established. While it is known that x consist of all the cur-
rents and voltages, when considering the branch-oriented model, the partic-
ular ordering has not yet been decided. The same holds true for the vector u.
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The ordering that will be used in this paper, for x and u, is given in table 3.2.

Order x u
1 resistors (currents) Input voltage sources
2 capacitors (currents) Input current sources
3 inductors (currents)
4 voltage sources (currents)
5 current sources (currents)
6 resistors (voltages)
7 capacitor (voltages)
8 inductors (voltages)
9 voltage sources (voltages)

10 current sources (voltages)

TABLE 3.2: The order of the components

It is assumed that the component groups, i.e. resistors, capacitors, inductors,
voltage sources and current sources, have a separate ordering among them-
selves. Furthermore, it is assumed that this separate ordering is used con-
sistently throughout the construction. For example, the ith voltage source’s
voltage in x and the ith voltage source’s input in u, correspond to the same
voltage source.

Now that x and u are formally established, next the incidence matrix (3.6)
and the loop matrix (3.8) need to be considered. For both matrices it holds
that each column corresponds to one of the components in the circuit. Hence,
it is important that the ordering of columns corresponds to the ordering of
the vector x. If needed the columns can be rearranged in such a way that this
condition is satisfied.

Now that all of this has been established, the definition, which expresses how
to construct the matrices E, A and B, can be formulated as following:

Definition 3.20 (The construction of DAE systems). Let G be a graph of an
electrical circuit with n branches and m nodes. Let Ã ∈ R(m−1)×n and B̃ ∈
R(n−m+1)×n be the incidence- and loop matrix, respectively. Let r, c, l, k, p be
the number of resistors, capacitors, inductors, voltage sources and current
sources, respectively. Let R ∈ Rr×r be a diagonal matrix where entry Rii
contains the ith resistor’s resistance. Let C ∈ Rc×c be a diagonal matrix where
entry Cii contains the ith capacitor’s capacitance. Let L ∈ Rl×l be a diagonal
matrix where entry Lii contains the ith inductor’s inductance. Then

E =

# r c l k p r c l k p
n+r 0

c 0 C 0
l 0 L 0

p+k 0
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A =

# r c l k p r c l k p
m-1 Ã 0

n-m+1 0 B̃
r -R 0 I 0
c 0 I 0
l 0 I 0
k 0 I 0
p 0 I 0

B =

# k+p
n+r+c+l 0

k+p -I

Remark 3.21. Note that r + c + l + k + p = n.

Lets take a closer look at the constructed matrices and the DAE system (3.1).
Clearly, it can be concluded that each of the rows in the DAE system now
corresponds to either Kirchhoff’s laws, the component relations or the input
of the sources.

3.4 Examples of DAE systems

Now that it is known how to construct the matrices E, A and B in equation
(3.1), lets take a look at the following 2 examples.

Example 3.22. Let us again consider example 2.3 and figure 2.1. In this figure
there is exactly one of each component. Before one can find the matrices E,
A and B, first the vector x(t), the incidence matrix and the loop matrix need
to be constructed. Using what is written in chapters 3.2 and 3.3 about the
construction of x(t), Ã and B̃, one gets the following:

Ã =

 1 0 0 −1 0
−1 1 0 0 1
0 −1 1 0 −1



B̃ =

(
1 1 1 1 0
0 −1 0 0 1

) x(t) =



IR(t)
IC(t)
IL(t)
IV(t)
I(t)

VR(t)
VC(t)
VL(t)
V(t)
VI(t)


(3.9)

Here Ã was constructed by ignoring node 4 and B̃ by considering the Tree
constructed by removing the branches corresponding to both sources. Using
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(3.9) together with definition 3.20, the matrices E, A and B are as follows:

E =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 C 0 0 0
0 0 L 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, A =



1 0 0 −1 0 0 0 0 0 0
−1 1 0 0 1 0 0 0 0 0
0 −1 1 0 −1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 −1 0 0 1
−R 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0


, B =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
−1 0
0 −1


where R, C and L are the resistance, the capacitance and the inductance, re-
spectively.

Example 3.23. Let us again take a look at figure 2.4. This figure has already
been discussed in chapter 2.4. Let us now, however, consider the DAE system
corresponding to this electrical circuit. Without going into too much details,
the matrices E, A and B are as follows:

E = 04×4, A =


−1 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1

 , B =


0 0
0 0
−1 0
0 −1

 (3.10)

As can be seen from (3.10), the matrix E is the zero matrix and the matrix A
has zero determinant, so it can indeed be concluded that the DAE system,
described by (3.10), does not have an unique solution.

3.5 Circuit Models

As stated in the beginning of this chapter, there are many ways of modelling
electrical circuits. In this chapter, only the branch-oriented model was used.
Besides the branch-oriented model, one could also have used the nodal anal-
ysis models or the loop analysis models. [3, 5, 6]

While each model has their own advantages, the main reason why the branch-
oriented model is used, during the entirety of this paper, is because when one
uses the branch-oriented model, the vector x, in equation (3.1), is written in
terms of the currents and the voltages only. When discussing the controlla-
bility of RLC electrical circuits, having the system modelled using only the
currents and the voltages, it becomes much easier to understand which part
of the system is controllable and which part is not. When using other models
the vector x might include more abstract variables, which do not directly tell
us to which part of the system they refer to. So, with regards to this, only the
branch-oriented model was used.

The main difference between the branch-oriented model and the nodal anal-
ysis models/the loop analysis models is that the nodal analysis models/the
loop analysis models make use of node potentials respectively loop currents.
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The node potentials and loop currents are defined as follows:

v(t) = ÃTφ(t) (3.11)

i(t) = B̃T ι(t) (3.12)

where matrices Ã and B̃ are the same matrices as in equations (3.6) and (3.8).
φ ∈ Rm−1 is the vector containing the node potentials and ι ∈ Rn−m+1 is the
vector containing the loop currents. v(t) and i(t) are the same vectors as in
equations (3.2) and (3.3).

Loop analysis begins with the description of Kirchhoff’s voltage laws in the
form of equation (3.8) and then proceeds to replace, as far as possible, the
voltages of current-controlled components in terms of currents and eventu-
ally loop currents [6, Ch. 2.6]. For nodal analysis models the same happens
only instead of using equation (3.8), one uses equation (3.6) (Kirchhoff’s cur-
rent law), and instead rewrites the currents of voltage-controlled components
in terms of voltages and eventually nodal potentials. In the case of the nodal
analysis models, these kind of models are called Augmented Nodal Analysis
(ANA) models.

There are many types of nodal- and loop analysis models, but two interesting
ones are the Modified Nodal Analysis (MNA) model and the Modified Loop
Analysis (MLA) model. Both of them use the idea of reducing the number of
variables, while still attaining a form which is easy to set up in an automatic
way that makes them well-suited for computational purposes. [6, Ch. 2.3]

Remark 3.24. If instead of the branch-oriented model one would use either the nodal
analysis models or loop analysis models, one can still use equation (3.1). The only
differences would be the dimensions of the matrices and the elements of vectors x and
u.

For more information on nodal analysis models and loop analysis models
and in particular the DAE systems of these kind of models, see [3, 5, 6].

For more information on DAEs and in particularly time-invariant DAEs, see
[5]. [5] gives both an analytic study on time-invariant and time-variant DAEs
and might be of interest to those who want to do a more analytic study on
DAEs.

Now that all of these models have been briefly discussed, next we can take a
look at the controllability of DAE systems.
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Chapter 4

Controllability and Kalman
Controllability Decomposition

There are many ways to check the controllability of a system. One well-
known method is the so-called Kalman Controllability Decomposition (KCD).
This method uses the idea of splitting the system into a controllable and an
uncontrollable part. While indeed this method will be used, when consider-
ing systems of the form

Eẋ = Ax + Bu (4.1)

where E, A are matrices in Rl×n and B is a matrix in Rl×m (short-hand nota-
tion: (E, A, B) ∈ ∑l×n

m ), it first needs to be extended on.

When talking about systems of the form (4.1), there are two kinds of control-
lability that are of interest, namely complete controllability and behavioral
controllability (see definition 4.5). This is why the standard KCD is not ap-
plicable in this case. Instead, the KCD has to be modified in such a way that
it also separates the system with respect to complete and behavioral control-
lability.

Furthermore, when considering both general and regular systems (see re-
mark 4.1) of the form (4.1), the method on how to modify the KCD will differ.
While in both cases (augmented) Wong sequences will be used to construct
the KCDs, regular systems can be decomposed into a even more detailed
KCD.

In this chapter we will first discuss what controllability means with respect
to systems of Ordinary Differential Equations (ODE) and systems of the form
(4.1). After that, we will take a look at the Kalman Controllability Decomposi-
tion with respect to ODE systems and systems of the form (4.1). In particular,
when considering systems of the form (4.1), we will consider the general case
and the regular case. We will end this chapter with some examples regarding
KCDs of systems of the form (4.1).

Remark 4.1. A DAE (4.1) is called regular if l = n and det(sE− A) ∈ R[s] \ {0}.
If not regular, the system is called singular. [10, Ch. 1]

Remark 4.2. When considering systems of electrical circuits, all one has to do, is to
take l = n = 2ñ and m = k + p where ñ is the number of components and k, p the
number of voltage/current sources, respectively.
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4.1 Controllability

Before discussing the controllability of systems of the form (4.1), lets first take
a look at the controllability of linear ODE time-invariant control systems of
the form:

ẋ = Ax + Bu (4.2)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n and B ∈ Rn×m.

Remark 4.3. From now on ODE-systems will refer to systems of the form (4.2)
and DAE-systems will refer to systems of the form (4.1), including the dimensions,
unless stated otherwise.

4.1.1 Controllability of ODEs

For ODE-systems, one way of describing the controllability is as follows [11,
Ch. 3.2]:

Definition 4.4. An ODE-system is said to be controllable, if ∀x0, x1 ∈ Rn one
can find a solution (x(t), u(t)) and ∃t1 > 0 such that x(0) = x0 and x(t1) = x1
i.e. every state is reachable from every state.

When talking about the controllability of ODE-systems, a well known theo-
rem states that such systems are controllable if, and only if, Rank([B AB ...
An−1B]) = n. This is one of the many ways to check whether an ODE-system
is controllable or not. [11]

Another way of analyzing the controllability of an ODE-system is by using
Kalman Controllability Decomposition. We will discuss more about this in
chapter 4.2. For more information on ODE-systems and the controllability of
ODE-systems, see [11].

4.1.2 Controllability of DAEs

For DAE-systems a distinction can be made between two kinds of controlla-
bilities, namely complete controllability and behavioral controllability. Both
of these forms of controllability are defined in the following definition: [10,
Definition 2.1]

Definition 4.5. Let (E, A, B) ∈ ∑l×n
m and let B(E,A,B) = {(x, u) ∈ W 1

loc(R −→
Rn)×L 1

loc(R −→ Rm)|(x, u) satisfies (4.1) for almost all t ∈ R}, where L 1
loc

and W 1
loc denote the space of locally (lebesgue) integrable or weakly differen-

tiable functions with locally integrable derivatives, respectively, i.e. x and u
need to be sufficiently differentiable and integrable, respectively.

The system is called

(i) completely controllable if, and only if,

∀x0, x f ∈ Rn ∃t f > 0 ∃(x, u) ∈ B(E,A,B) : x(0) = x0 ∧ x(t f ) = x f
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i.e. it is possible to control the state x(·) from any given initial value x0
to any final value x f .

(ii) behaviorally controllable if, and only if,

∀(x1, u1), (x2, u2) ∈ B(E,A,B) ∃t f > 0 ∃(x, u) ∈ B(E,A,B) :

(x(t), u(t)) =

{
(x1(t), u1(t)), if t < 0
(x2(t), u2(t)), if t > t f

i.e. it is possible to connect any two feasible trajectories via a third
feasible trajectory.

Both of these forms of controllability are equivalent for ODE-systems (take
matrix E to be square non-singular), however this does not hold in general for
DAE-systems. For general DAE-systems, complete controllability is stronger
then behavioral controllability [10, Ch. 2]. This because, being able to find a
solution for any initial value, is not always possible when considering DAE-
systems. Most of the time algebraic constraints make this impossible. This
is in contrast to ODE-systems, where one can always find a solution for any
given initial value.

To better understand these concepts of controllability, let us take a look at the
following example:

Example 4.6. Consider the following 3 systems:

1. ẋ1(t) = u1(t)

2. ẋ2(t) = u2(t) and 0 = x2(t)

3. ẋ3(t) = x3(t)

System 1 is completely and behaviorally controllable. System 2 is behav-
iorally controllable, but not completely controllable. System 3 is neither com-
pletely nor behaviorally controllable.

Now that the definition of controllability of systems of the form (4.1) has been
established, let us next take a look at the Kalman Controllability Decomposi-
tion.

4.2 Kalman Controllability Decomposition

It has been almost 60 years since Kalman derived his famous decomposi-
tion of linear ODE control systems [12]. This decomposition has later been
generalized to regular DAEs by Verghese et al. [13]. Besides that, a Kalman
decomposition of general discrete-time DAE systems has been provided by
Banaszuk et al. [14] in a very nice way using the augmented Wong sequences
[15, Ch. 6 and 7]. However, before discussing the KCD with respect to DAE-
systems, let us first take a look at the KCD with respect to ODE-systems.
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4.2.1 KCD of ODE-systems

The Kalman Controllability Decomposition for ODE-systems states that by
doing some suitable coordination transformation on x, say x = Tz, the sys-
tem of the form (4.2) can be rewritten into the following form:

ż =

(
A11 A12
0 A22

)
z +

(
B1
0

)
u (4.3)

where the system constructed by (A11, B1) is controllable and the system con-
structed by (A22, 0) is uncontrollable. This implies that the system is decom-
posed into a controllable part and an uncontrollable part. [10, 11, 15]

4.2.2 KCD of DAE-systems

Just like ODE-systems, also for DAE-systems the Kalman Controllability De-
composition is available (even in the singular case), see [15, Theorem 7.1]
(which is based on a result for the discrete time case in [14]). The main dif-
ference is that one now has to take into account matrix E. Applying suitable
transformation matrices S and T to the DAE-system, one gets the following
KCD: [10, 15]:

(SET, SAT, SB) =
((

E11 E12
0 E22

)
,
(

A11 A12
0 A22

)
,
(

B1
0

))
(4.4)

where (E11, A11, B1) is controllable and (E22, A22, 0) is uncontrollable.

There is, however, a problem with (4.4). In the case of the trivial DAE 0 = x,
while this system is behaviorally controllability, the KCD will only consist of
the uncontrollable part. This is a rather displeasing situation and is due to
the fact that for certain DAE-systems, particular states can be inconsistent.
For these inconsistent states, it does not make sense to label those as either
controllable or uncontrollable. To solve this, one can use the following more
detailed form of the KCD. [10, Ch. 1]

(S̃ET̃, S̃AT̃, S̃B) =

E11 E12 E13
0 E22 E23
0 0 E33

 ,

A11 A12 A13
0 A22 A23
0 0 A33

 ,

B1
0
0

 (4.5)

In this form, the system (E11, A11, B1) ∈ ∑l1×n1
m is completely controllable.

Furthermore, E22 is invertible and the system (E33, A33, 0) ∈ ∑l3×n3
m is such

that it only has the trivial solution. Hence, the system is now decomposited
into a (completely) controllable part, a classical uncontrollable part (given
by the ODE) and an inconsistent part (which is behaviorally controllable but
contains no completely controllable part). Furthermore, if restricted to only
regular DAE-systems, the completely controllable part can be further decom-
posed into a classical controllable part (given by a controllable ODE) and an
instantaneously controllable part (corresponding to a controllable pure DAE)
[10, Ch. 1].
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Before delving into the particulars regarding the KCD of DAE-systems, let
us first give a formal definition of what it means for a DAE-system to be in
KCD. [10, Definition 3.1]

Definition 4.7 (Kalman Controllability Decomposition). A system of the
form (4.1) is said to be in Kalman Controllability Decomposition if, and only
if,

(E, A, B) =

E11 E12 E13
0 E22 E23
0 0 E33

 ,

A11 A12 A13
0 A22 A23
0 0 A33

 ,

B1
0
0

 (4.6)

where

(i) (E11, A11, B1) ∈ ∑l1×n1
m with l1 = rank[E11, B1] ≤ n1 + m is completely

controllable,

(ii) (E22, A22, 0) ∈ ∑l2×n2
m with l2 = n2 and E22 is invertible, i.e. (E22, A22, 0)

is uncontrollable

(iii) (E33, A33, 0) ∈ ∑l3×n3
m with l3 ≥ n3 satisfies RankC(λE33− A33) = n3 for

all λ ∈ C i.e. (E33, A33, 0) only has the zero solution and, consequently,
is behaviorally controllable

Let us now look into the particulars on finding the KCD when considering
both general and regular DAE-systems.

4.2.2.1 KCD general case

To be able to find the KCD of a general DAE-system, first the augmented
Wong sequences need to be introduced. These sequences are an important
tool in finding the KCD of general DAE-systems. [10, Ch. 2]

Definition 4.8. The augmented Wong sequences are defined, with regards to
(4.1), as follows:

V 0
(E,A,B) := Rn, V i+1

(E,A,B) := A−1(EV i
(E,A,B) + imB) ⊆ Rn

V ∗(E,A,B) :=
⋂

i∈N0
V i
(E,A,B),

W 0
(E,A,B) := {0}, W i+1

(E,A,B) := E−1(AW i
(E,A,B) + imB) ⊆ Rn

W ∗
(E,A,B) :=

⋃
i∈N0

W i
(E,A,B).

Remark 4.9. Recall that, for some matrix M ∈ Rl×n, MS = {Mx ∈ Rl|x ∈ S }
denotes the image of S ⊆ Rn under M and M−1S = {x ∈ Rn|Mx ∈ S }
denotes the preimage of S ⊆ Rl under M.

The sequences (V i
(E,A,B))i∈N and (W i

(E,A,B))i∈N are called augmented Wong
sequences, since they are based on the Wong sequences (B = 0) which have
their origin in Wong [16].
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Using these augmented Wong sequences, the following theorem with regards
to finding the KCD of general DAE-systems can be stated. [10, Theorem 3.3]

Theorem 4.10 (Kalman Controllability Decomposition). Consider the DAE sys-
tem of the form (4.1) and the limits V ∗(E,A,B) and W ∗

(E,A,B) of the augmented Wong
sequences. Choose any full rank matrices R1 ∈ Rn×n1 , P1 ∈ Rn×n2 , Q1 ∈ Rn×n3 ,
R2 ∈ Rl×l1 , P2 ∈ Rl×l2 , Q2 ∈ Rl×l3 such that

imR1 = V ∗(E,A,B)
⋂

W ∗
(E,A,B),

imR2 = (EV ∗(E,A,B) + imB)
⋂
(AW ∗

(E,A,B) + imB),

imR1
⊕

imP1 = V ∗(E,A,B), imR2
⊕

imP2 = EV ∗(E,A,B) + imB,

im[R1, P1]
⊕

imQ1 = Rn, im[R2, P2]
⊕

imQ2 = Rl.

Then T := [R1, P1, Q1] ∈ GLn, S := [R2, P2, Q2]
−1 ∈ GLl and (SET, SAT, SB)

is in KCD (4.6).

Remark 4.11. GLk denotes the space of invertible real-valued k× k matrices.

Using this theorem, one is now able to find the KCD of any general DAE-
system. This of course doesn’t imply that finding the KCD will be a simple
task. As can be seen from the theorem, multiple steps, which do not have to
be unique, need to be taken. In particular, the choose of matrices Ri, Pi, Qi do
not need to be unique, resulting in multiple possible KCDs. More on how to
find these matrices will be discussed in chapter 4.3 when considering some
examples of KCDs.

Both the proof and additional information, regarding theorem 4.10, can be
found in [10, Ch. 3]. We will end this section with the following theorem re-
garding the uniqueness of general KCDs [10, Theorem 3.5]. However, before
considering this theorem, take a look at the following remark.

Remark 4.12. Two DAE-systems (E, A, B) and (Ẽ, Ã, B̃) are called equivalent if,
and only if, ∃S ∈ GLl, T ∈ GLn : (SET, SAT, SB) = (Ẽ, Ã, B̃). A short-hand
notation of this is (E, A, B) ∼= (Ẽ, Ã, B̃). In case one wants to highlight the involved

transformation matrices, one uses
S,T∼= instead of ∼=.

Theorem 4.13 (Uniqueness of KCD). Consider the DAE system of the form (4.1)
and let S1, S2 ∈ GLl, T1, T2 ∈ GLn be such that for i = 1, 2

(E, A, B)
Si , Ti∼= (Ei, Ai, Bi)

=

E11,i E12,i E13,i
0 E22,i E23,i
0 0 E33,i

 ,

A11,i A12,i A13,i
0 A22,i A23,i
0 0 A33,i

 ,

B1,i
0
0


where (Ei, Ai, Bi) is in KCD (4.6) with corresponding block sizes given by l1,i, n1,i,
l2,i, n2,i, l3,i, n3,i.
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Then l1,1 = l1,2, l2,1 = l2,2, l3,1 = l3,2, n1,1 = n1,2, n2,1 = n2,2, n3,1 = n3,2
and, moreover, for some S11 ∈ GLl1,1 , S22 ∈ GLl2,1 , S33 ∈ GLl3,1 , T11 ∈ GLn1,1 ,
T22 ∈ GLn2,1 , T33 ∈ GLn3,1 and S12, S13, S23,T12, T13, T23 of appropriate sizes we
have that

S2S−1
1 =

S11 S12 S13
0 S22 S23
0 0 S33

 , T−1
1 T2 =

T11 T12 T13
0 T22 T23
0 0 T33


In particular,

(E11,1, A11,1, B1,1) ∼= (E11,2, A11,2, B1,2),

(E22,1, A22,1, 0) ∼= (E22,2, A22,2, 0),

(E33,1, A33,1, 0) ∼= (E33,2, A33,2, 0).

4.2.2.2 KCD Regular case

Regularity implies that equation (4.1) has a solution for any (sufficiently smo-
oth) input u and each such solution is uniquely determined by the initial
value x(0). Therefore, it is often assumed that DAE systems of the form (4.1)
are regular for the analysis and numerical simulations. [10, Ch. 4]

When considering DAE-systems which are known to be regular, one is able
to find KCDs which are more detailed then when using theorem 4.10. Fur-
thermore, there is no need to use the augmented Wong sequences. In this
case the original Wong sequences (B = 0) are enough to find the KCD. While
there is a relation between the original and the augmented Wong sequences,
in case of regularity, this paper will not go into details about this. For more
details about this relation, see [10, Theorem 4.4].

Using the original Wong sequences one can obtain the quasi-Weierstrass form
(QWF): [10, Proposition 4.1]

Proposition 4.14 (Quasi-Weierstrass Form). The DAE system (E, A, B) ∈ ∑n×n
m

is regular if, and only if,

(E, A, B)
S,T∼=
((

I 0
0 N

)
,
(

J 0
0 I

)
,
(

B1
B2

))
, (4.7)

where N ∈ Rn2×n2 , 0 ≤ n2 ≤ n is nilpotent and J ∈ Rn1×n1 , B1 ∈ Rn1×m, B2 ∈
Rn2×m, n1 := n− n2. Furthermore, the transformation matrices T = [T1, T2] ∈
GLn and S ∈ GLn achieve the QWF (4.7) if, and only if,

imT1 = V ∗(E,A), imT2 = W ∗
(E,A), S = [ET1, AT2]

−1,

where V ∗(E,A) = V ∗(E,A,0) and W ∗
(E,A) = W ∗

(E,A,0).

By proposition 4.14, the original Wong sequences yield a decoupling of the
DAE into an ODE and into a so-called pure DAE.
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The Wong sequences are coordinate free in the sense that the specific choice
of matrices T1 and T2 is not relevant. Once the QWF is obtained for a specific
choice of the coordinate transformation matrix T, it is not difficult to obtain
a KCD for each block separately: [10, Ch. 4 and Proposition 4.2]

Proposition 4.15. Consider the regular DAE system (E, A, B) ∈ ∑n×n
m . Then

(E, A, B)
S,T∼=




I 0 0 0
0 I 0 0
0 0 N11 N12
0 0 0 N22

 ,


J11 J12 0 0
0 J22 0 0
0 0 I 0
0 0 0 I

 ,


B11
0

B21
0


 , (4.8)

where
((

I 0
0 N11

)
,
(

J11 0
0 I

)
,
(

B11
B21

))
is completely controllable and N11 and

N22 are nilpotent.

Clearly the QWF-KCD (4.8) obtained via the QWF (4.7) matches the general
KCD (4.6) after rearrangement of the corresponding blocks. In particular

(E11, A11, B1) =

((
I 0
0 N11

)
,
(

J11 0
0 I

)
,
(

B11
B21

))
,

(E22, A22, 0) = (I, J22, 0), (E33, A33, 0) = (N22, I, 0).

However, the form (4.8) is not really satisfactory as its derivation needs two
separate coordinate transformations: first, one needs to transform the DAE
into QWF and then the separate ODE and pure DAE need to be transformed
again to get the KCD. In particular, the latter transformation depends on the
former (because J and N depend on T) and is therefore not coordinate free.
[10, Ch. 4]

Instead, using the following definition, one is able to define a way of finding
the KCD without being restricted by the choice of coordinate transformation.
[10, Definition 4.3]

Definition 4.16 (Consistency, Differential and Impulse Projector). With the
notation of Proposition 4.14 define the consistency projector

Π(E,A) := T
(

I 0
0 0

)
T−1,

the differential projector

Πdiff
(E,A) := T

(
I 0
0 0

)
S,

and the impulse projector

Πimp
(E,A)

:= T
(

0 0
0 I

)
S,
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where the block matrix sizes correspond to the block sizes in the QWF (4.7).
Furthermore, let

Adiff := ΠdiffA, Bdiff := ΠdiffB,

Eimp := ΠimpE, Bimp := ΠimpB.

It is easy to see that all projectors (and consequently Adiff, Bdiff, Eimp, Bimp)
do not depend on the specific choice of the transformation matrices T and S
(and only on the spaces V ∗(E,A) and W ∗

(E,A)).

Using definition 4.16, the KCD can directly be obtained in terms of the orig-
inal system’s matrices (and in the original coordinate system) using the fol-
lowing corollary: [10, Corollary 4.6]

Corollary 4.17 (Regular KCD). Choose full column rank matrices P1, P2, R, Q as
follows:

im P1 = im〈Adiff, Bdiff〉, im 〈Adiff, Bdiff〉⊕ im R = V∗(E,A),

im P2 = im〈Eimp, Bimp〉, im 〈Eimp, Bimp〉⊕ im Q = W∗(E,A),

where 〈A, B〉 = [B, AB, A2B, ..., AnB]. Then T = [[P1, P2], R, Q] ∈ GLn and
S = [[EP1, AP2], ER, AQ]−1 ∈ GLn transform the DAE system (E, A, B) ∈ ∑n×n

m
into KCD (4.6) with some additional zero blocks:

(E, A, B)
S,T∼= (4.9)


(

I 0
0 N11

) (
0
0

) (
0

N12

)
0 I 0
0 0 N22

 ,


(

J11 0
0 I

) (
J12
0

) (
0
0

)
0 J22 0
0 0 I

 ,


(

B11
B21

)
0
0


 ,

where
((

I 0
0 N11

)
,
(

J11 0
0 I

)
,
(

B11
B21

))
is completely controllable and N11 and

N22 are nilpotent.

Now that we know how to construct the KCD in case of both general and
regular DAE-systems, lets look at some examples of both the general and the
regular cases.

4.3 Examples of Kalman Controllability Decompo-
sition

In this section we will look at some examples of DAE-systems. In particular,
we will consider both the general and regular case of one DAE system.
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Example 4.18. Let (E, A, B) ∈ ∑3×3
2 be defined as follows:

(E, A, B) =

0 0 0
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1 0
0 0
0 1

 (4.10)

Clearly this system is regular as det(sE− A) = (1− s)(s− 1). Let us, how-
ever, first consider the general case by use of theorem 4.10. First the limits
of the augmented Wong sequences need to be calculated (see definition 4.8).
Using either pen and paper or matlab, the following limits are obtained:

V∗(E,A,B) =

1 0 0
0 1 0
0 0 1

 , W∗(E,A,B) =

1 0
0 0
0 1


Using these limits the matrices R1 and R2 are given by:

R1 =

1 0
0 0
0 1

 , R2 =

1 0
0 0
0 1


Using the limits and the matrices R1 and R2, the matrices P1 and P2 can be
found as follows. First calculate the ranks of P1 and P2. These are given by
n2 = Rank(V∗(E,A,B))−Rank(R1) and l2 = Rank(EV∗(E,A,B)+ imB)−Rank(R2),
respectively. Next construct a random n by n2 matrix out of the columns
of V∗(E,A,B). Because this newly constructed matrix is randomly constructed,
there is a good change that the image of this newly constructed matrix and
the image of the matrix R1 are disjoint1. If not, just construct a new random
matrix out of the columns of V∗(E,A,B). After checking that the images are in-
deed disjoint, it can be concluded that this newly constructed matrix can be
chosen as P1. For P2 the exact same is done only this time construct a random
l by l2 matrix out of the columns of EV∗(E,A,B) + imB. Also, instead of R1 use
R2. Using this method, the following matrices for P1 and P2 are obtained:

P1 =

0
1
0

 , P2 =

0
1
0


Using the matrices R1, R2, P1 and P2, the matrices Q1 and Q2 can be found
as follows. First calculate the rank of Q1 and Q2. These are given by n3 =
n− Rank([R1, P1]) and l3 = l − Rank([R2, P2]), respectively. Next construct
a random n by n3 matrix and check whether the image of this newly con-
structed matrix and the image of the matrix [R1, P1] are disjoint. If true, it can
be concluded that this newly created matrix can be chosen as Q1. If false, just
construct a new random matrix. For Q2 the exact same is done only this time
construct a random l by l3 matrix. Also, instead of [R1, P1] use [R2, P2]. Using
this method, the following matrices for Q1 and Q2 are obtained:

1Disjoint means that they only share the zero vector
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Q1 =

 , Q2 =


Here the matrices Q1 and Q2 are elements of R3×0 because n3 = l3 = 0.
Using all of these matrices the following transformation matrices T and S are
obtained:

T =

1 0 0
0 0 1
0 1 0

 , S =

1 0 0
0 0 1
0 1 0


Using the matrices S and T the following KCD is obtained:

(E, A, B)
S,T∼=

0 0 0
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1 0
0 1
0 0

 (4.11)

So, it can be concluded that the system

(E11, A11, B1) =

((
0 0
0 1

)
,
(

1 0
0 1

)
,
(

1 0
0 1

))
is completely controllable, that the system

(E22, A22, 0) = (1, 1, 0)

is uncontrollable and that there is no inconsistent part in this example.

Example 4.19. Consider again the same system (4.10) as in the previous ex-
ample, only now consider the regular case by use of corollary 4.17. While not
entirely the same, the steps that need to be taken are rather similar to those in
the previous example. Therefore, while the intermediate steps and matrices
will be given, the details themselves will be omitted.

First, the limits of the original Wong sequences need to be calculated. These
are given by:

V∗(E,A) =

0 0
1 0
0 1

 , W∗(E,A) =

1
0
0


Next the transformation matrices S̃ and T̃ of the QWF (4.7) need to be found.
Using the Wong limits they are as follows:

T̃ =

0 0 1
1 0 0
0 1 0

 , S̃ =

0 1 0
0 0 1
1 0 0


After finding the matrices S̃ and T̃, they need to be used to find the projectors
and in particular the differential and the impulse projector (see definition
4.16). These two projectors are as follows:
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Πdiff =

0 0 0
0 1 0
0 0 1

 , Πimp =

1 0 0
0 0 0
0 0 0


Using these projectors, the following matrices for Adiff, Bdiff, Bimp, Eimp can
be found:

Adiff =

0 0 0
0 1 0
0 0 1

 , Bdiff =

0 0
0 0
0 1

 ,

Bimp =

1 0
0 0
0 0

 , Eimp =

0 0 0
0 0 0
0 0 0


Finally, using these four matrices, the transformation matrices S and T re-
garding corollary 4.17 can be found. But first let us find the matrices P1, P2, R
and Q:

P1 =

0
0
1

 , P2 =

1
0
0

 , R =

0
1
0

 , Q =


Use these four matrices the following transformation matrices S and T are
obtained:

T =

0 1 0
0 0 1
1 0 0

 , S =

0 0 1
1 0 0
0 1 0


Using the matrices S and T the following regular KCD is obtained:

(E, A, B)
S,T∼=

1 0 0
0 0 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

0 1
1 0
0 0

 (4.12)

So it can be concluded that the system

(E11, A11, B1) =

((
1 0
0 0

)
,
(

1 0
0 1

)
,
(

0 1
1 0

))
is completely controllable, where N11 = [0] and J11 = [1], that the system

(E22, A22, 0) = (1, 1, 0)

is uncontrollable, where J22 = [1] and that there is no inconsistent part in this
example.

In the next chapter we will take a look at KCDs of electrical circuits and see
what we can conclude regarding the controllability of electrical circuits.
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Chapter 5

Controllability of RLC Electrical
Circuits

Now that the needed background information regarding RLC electrical cir-
cuits, modelling RLC electrical circuits and Kalman Controllability Decom-
position has been established, they can now be applied to investigate the
controllability of RLC electrical circuits.

In this chapter, we will consider multiple examples of electrical circuits. Re-
garding these examples, we will restrict ourselves to only KCDs of the form
(4.6). Of course, one could also use the form (4.9). However, this only works
if the DAE-system is regular, something which isn’t always the case. Of
course, when considering practical purposes, one can just assume that only
regular system occur, as singular systems correspond to electrical circuits
that have no particular physical meaning. Regardless, equation (4.6) already
gives us enough information to understand which part of the system is com-
pletely controllable, behaviourally controllable and uncontrollable.

In chapter 5.1, we will look at four basic electrical circuits. After finding
a KCD for each of these four basic examples, we are going to consider the
complete controllable part, the behavioral controllable part and the uncon-
trollable part of the systems. In chapter 5.2, we will consider some simple
examples regarding controllability and structure. Using these examples, we
will show how the structure of an electrical circuit can influence the dimen-
sions of the complete controllable part, the behavioral controllable part and
the uncontrollable part. We will conclude this chapter with some hypotheses
regarding controllability and the structure of electrical circuits.

5.1 Basic RLC electrical circuits

Let us take a look at the following four circuits described in figures 5.1 and
5.2. Without going into too much details and by use of theorem 4.10 and
Matlab, the general KCDs and transformation matrices of these four circuits
are described in appendix A.1.

Looking at the KCDs given in appendix A.1, it can be concluded that for all of
these circuits, there is a 3-dimensional subspace of R8 that describes the part
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FIGURE 5.2: The basic parallel electrical circuits

of the system that is completely controllable and a 5-dimensional subspace
of R8 that describes the part of the system that is behaviorally controllable.
No part of the systems is uncontrollable. This implies that, at least to a cer-
tain extent, it is possible to control the entire system and nothing within the
systems is completely out of our hands.

Why the dimension of the behavioral controllable part is higher than the di-
mension of the complete controllable part, this is probably because a large
part of the system consist of algebraic constraints, coming from Kirchhoff’s
laws, the input of the sources and Ohm’s law. More algebraic constraints re-
stricting the system, results in less initial values having a solution. Because
the number of initial values with solutions decreases, the dimension of the
complete controllable part will also decrease (see chapter 4.1.2). This in turn
leads to an increase in dimensions of the other parts.

As the three relations previously mentioned, make up more than 50% of the
equations in the examples, it isn’t strange that the dimension of the behav-
ioral controllable part is higher than the dimension of the complete control-
lable part, when also taking into account that the uncontrollable part has
dimension zero.

This also brings up the idea that, if one increases the number of algebraic con-
strains, by replacing inductors or capacitors with resistors for example, the
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dimension of the complete controllable part will decrease or stay the same,
while the combined dimensions of the behavioral controllable part and the
uncontrollable part will, respectively, increase or stay the same. Furthermore,
because at least 50% of the equations are algebraic constraints, one could
bring up the idea that the dimension of the complete controllable part can
never exceed the combined dimensions of the behavioral controllable part
and the uncontrollable part. Whether these ideas also hold true is still un-
known. More about this in chapter 5.3.

5.2 Controllability and structure

Now that the four basic examples have been discussed, let us look at some
other simple examples more focused on the relation between controllabil-
ity and the structure of circuits. For these examples no matrices are given.
Instead, the result will be given in terms of the dimensions of the different
kinds of controllabilities. But first, let us describe the examples using figures
5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.
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The results regarding the dimensions of the different kinds of controllabil-
ity are given in table 5.9. As can be seen from the table, circuits 5.3a, 5.3b,
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5.6a and 5.6b contain an uncontrollable part, which is in contrast to the other
circuits mentioned in this section. That these circuits contain an uncontrol-
lable part, implies that structure can indeed influence the controllability of
an electrical circuit.

Circuit Dim. complete Dim. uncontrollable Dim. behavioral
5.3a 2 1 3
5.3b 2 1 3
5.4a 2 0 4
5.4b 2 0 4
5.5a 2 0 4
5.5b 2 0 4
5.6a 2 1 3
5.6b 2 1 3
5.7a 1 0 5
5.7b 1 0 5
5.8a 1 0 5
5.8b 1 0 5

TABLE 5.9: The results

When considering the circuits described in figures 5.7 and 5.8, the difference
in dimensions between the complete controllable part and the sum of the
behavioral controllable part and the uncontrollable part is greater, then com-
pared to the other circuits mentioned in this section. This again confirms
the idea, that the number of algebraic constraints influences the ratio of the
dimensions of the complete controllable part and the sum of the behavioral
controllable part and the uncontrollable part. This can be seen from the fact
that the examples described in figures 5.7 and 5.8 consist mainly of resistors,
which implies that they contain more algebraic constraint compared to the
other examples mentioned in this section.

Using these results together with the results in chapter 5.1, in the next section
we will construct some hypotheses regarding electrical circuits and control-
lability.

5.3 Hypotheses

Considering the examples discussed in chapters 5.1 and 5.2, we can state the
following hypotheses.

Hypothesis 5.1. Any electrical circuit that contains either two or more capacitors
in series and/or two or more inductors in parallel will have an uncontrollable part.

Hypothesis 5.2. In an electrical circuit the dimension of the complete controllable
part can never exceed the combined dimensions of the behavioral controllable part
and the uncontrollable part.
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Hypothesis 5.3. If in an electrical circuit one increases the algebraic constraints,
by replacing inductors and/or capacitors with resistors and/or sources, the dimen-
sion of the complete controllable part will either decrease or stay the same, while the
combined dimensions of the behavioral controllable part and the uncontrollable part
will, respectively, increase or stay the same.

Regarding hypothesis 5.1, there is no real prove for this hypothesis except for
the fact that no counter example has been found after considering multiple
examples. Furthermore, intuitively it makes sense for this hypothesis to be
true, when considering the examples in chapter 5.2.

Regarding hypothesis 5.2, just from considering the examples that have been
analyzed in this paper, one could even state that the dimension of the com-
plete controllable part can never exceed the dimension of the behavioral con-
trollable part. However, for this no explanation has been found as of yet.
Meanwhile, for hypothesis 5.2 at least an explanation is given in chapter 5.1.
This is why hypothesis 5.2 also includes the uncontrollable part.

Regarding hypothesis 5.3, using this as a basis, one can go even further and
state the following hypothesis:

Hypothesis 5.4. If, by changing the electrical circuit, the ratio of the number of
algebraic constrains and the number of other equations shifts in the direction of the
other equations, it can be concluded that the ratio of dimensions of the complete
controllable part and the other parts will either stay the same or shifts in the direction
of the other parts.

And with these hypotheses, we will end this chapter. Whether the hypothe-
ses turn out to be true, still has to be investigated. During the writing of this
paper, multiple examples have been studied and analyzed, but none have
disputed any of these hypotheses. Therefore, these hypotheses would be
good subjects for later studies.
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Chapter 6

Conclusion

We have discussed RLC electrical circuits and in particular discussed the dif-
ferent kinds of relations between currents and voltages. We talked about how
to model these electrical circuits by using both the branch-oriented model
and DAE systems of the form Eẋ = Ax + Bu. We discussed controllability
for both ODE systems of the form ẋ = Ax + Bu and for DAE systems, where
we had to distinguish between complete and behavioral controllability. We
explained how to construct the Kalman Controllability Decomposition for
both ODE and DAE systems, where we distinguished between general DAE
systems and regular DAE systems. And finally we finished this paper with
some observations and hypotheses regarding electrical circuits and control-
lability.
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Appendix A

System equations and KCDs

A.1 KCDs of basic electrical circuits

The general KCDs and transformation matrices of the electrical circuits de-
scribed in chapter 5.1 in figures 5.1 and 5.2 are given by the following four
combinations of matrices:

T1 =



−1/R −1/R −1/R 1 −1 1 1 −1
−1/R −1/R −1/R 1 −1 0 −1 1
−1/R −1/R −1/R −1 −1 −1 0 −1
−1/R −1/R −1/R −1 0 0 0 0
−1 −1 −1 0 −1 1 −1 0
1 0 0 0 0 −1 0 0
0 1 0 0 1 −1 1 1
0 0 1 −1 0 1 1 1


(A.1)

S1 =



−2 −1 −1 0 −1 1 0 0
0 1 −3/2 0 1/2 0 1 0
1 0 3/2 0 1/2 0 0 1
1 1 1/2 −1 1/2 0 0 0
1 1 1/2 0 1/2 0 0 0
1 0 1 0 0 0 0 0
0 0 1/2 0 1/2 0 0 0
0 0 −1/2 0 1/2 0 0 0



A1 =



−1/R −1/R −1/R R− 1 2− R R− 1 R− 1 3− R
0 1 0 3− R/2 1/2 + R/2 −R/2 −3− R/2 6 + R/2
0 0 1 −2− R/2 −3/2 + R/2 1− R/2 3− R/2 −3 + R/2
0 0 0 2− R/2 −3/2 + R/2 −R/2 −2− R/2 −2 + R/2
0 0 0 1− R/2 −3/2 + R/2 −R/2 −1− R/2 R/2
0 0 0 0 −1 0 2 −3
0 0 0 −1− R/2 −1/2 + R/2 −R/2 −R/2 −1 + R/2
0 0 0 1− R/2 −1/2 + R/2 1− R/2 −1− R/2 1 + R/2



E1 =



C 0 0 0 0 −C 0 0
−L/R −L/R −L/R −L −L −L 0 −L

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, B1 =



0
0
−1
0
0
0
0
0


where l1 = 3, l2 = 0, l3 = 5, n1 = 3, n2 = 0 and n3 = 5.
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T2 =



−1/R −1/R −1/R 0 −1 0 1 −1
−1/R −1/R −1/R −1 −1 0 −1 −1
−1/R −1/R −1/R 1 −1 1 −1 0
−1/R −1/R −1/R 0 1 −1 0 0
−1 −1 −1 0 0 1 1 0
1 0 0 0 1 1 1 −1
0 1 0 0 0 −1 −1 −1
0 0 1 1 0 1 0 −1


(A.2)

S2 =



3 −1 −6 3 1 1 0 0
1 1 −2 1 1 0 1 0
2 −1 −7 4 2 0 0 1
0 0 −1 0 0 0 0 0
1 0 −2 1 1 0 0 0
−1 1 4 −2 −1 0 0 0
0 0 −2 1 1 0 0 0
−1 0 1 −1 0 0 0 0



A2 =



−1/R −1/R −1/R −9 R− 4 4 8− R R− 19
0 1 0 −4 R− 1 1 −R R− 7

−1/R −1/R −1/R −9 2R + 1 4 −2R + 10 2R− 21
0 0 0 −2 0 −1 0 −1
0 0 0 −3 R− 1 2 3− R R− 6
0 0 0 5 −R −2 R− 6 11− R
0 0 0 −3 R + 1 1 2− R R− 5
0 0 0 1 1 −2 −2 5



E2 =



C 0 0 0 C C C −C
−L/R −L/R −L/R L −L L −L 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, B2 =



0
0
−1
0
0
0
0
0


where l1 = 3, l2 = 0, l3 = 5, n1 = 3, n2 = 0 and n3 = 5.



Appendix A. System equations and KCDs 39

T3 =



0 0 −1/R −1 0 −1 −1 1
−1 1 1/R 1 −1 0 −1 −1
1 0 0 0 0 0 0 1
0 1 0 −1 0 1 −1 0
0 0 −1 1 0 1 −1 −1
0 0 −1 0 −1 1 0 1
0 0 −1 −1 −1 0 1 0
0 0 1 1 0 0 1 0


(A.3)

S3 =



−1 1/2 1 −1/2 −1/2 1 0 0
0 −1/2 −1/2 −1 0 0 1 0
0 −1/2 1/2 −1 0 0 0 1
−1 0 3/2 1/2 −1/2 0 0 0
−1 1/2 3/2 1 0 0 0 0
−1 0 1 0 0 0 0 0
1 −1/2 −1 −1/2 1/2 0 0 0
0 1/2 1/2 0 0 0 0 0



A3 =



−1 1 1/R −4− R/2 −3/2 −R/2 3− R/2 1 + R/2
0 0 −1 −3/2 0 −1/2 −1/2 −1/2
0 0 1 −3/2 0 −3/2 3/2 1/2
0 0 0 −7/2− R/2 −1/2 1/2− R/2 9/2− R/2 1/2 + R/2
0 0 0 −5/2 −1 3/2 9/2 1/2
0 0 0 −3 0 1 3 0
0 0 0 3 + R/2 1/2 R/2− 1 R/2− 4 −1− R/2
0 0 0 −3/2 −1 −1/2 3/2 3/2



E3 =



0 0 −C 0 −C C 0 C
L 0 0 0 0 0 0 L
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, B3 =



0
0
−1
0
0
0
0
0


where l1 = 3, l2 = 0, l3 = 5, n1 = 3, n2 = 0 and n3 = 5.
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T4 =



0 0 −1/R 0 −1 1 −1 1
−1 1 1/R 0 −1 0 0 −1
1 0 0 −1 0 0 −1 0
0 1 0 0 1 −1 −1 1
0 0 −1 −1 0 1 1 0
0 0 −1 −1 1 1 1 −1
0 0 −1 0 0 −1 1 −1
0 0 1 −1 0 0 1 1


(A.4)

S4 =



−1 −1 1 1 1 1 0 0
−1 −1 1 1 1 0 1 0
−1 1 1 2 −1 0 0 1
1 −1 0 −1 0 0 0 0
1 0 −1 −2 0 0 0 0
0 −1 0 −1 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0



A4 =



−1 1 1/R −1 1 + R −2− R 4 + R 1− R
0 0 −1 −1 2 + R −3− R 5 + R 1− R
0 1 0 −1 5− R R− 4 3− R 2 + R
0 0 0 1 −4 1 −3 −1
0 0 0 2 −3 2 −5 −2
0 0 0 1 R− 1 −R R− 1 −R
0 0 0 −2 0 1 2 1
0 0 0 −1 0 −1 2 0



E4 =



0 0 −C −C C C C −C
L 0 0 −L 0 0 −L 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, B4 =



0
0
−1
0
0
0
0
0


where l1 = 3, l2 = 0, l3 = 5, n1 = 3, n2 = 0 and n3 = 5.

Here matrices (A.1) correspond to figure 5.1a, matrices (A.2) correspond to
figure 5.1b, matrices (A.3) correspond to figure 5.2a and matrices (A.4) corre-
spond to figure 5.2b.
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