E:W university of faculty of science I
é@éﬁg / groningen / and engineering Z S o

visual intelligence

Face Verification for Poor Resolution

Images

Bachelor thesis

July 2019

Student: Julius van Dijk (s3212424)
Primary supervisor: dr. André Sobiecki

Secondary supervisor: dr. George Azzopardi



CONTENTS

INTRODUCTION
2 RELATED WORK
21 Eigenfaces . ... ... ....... .. ... .. ...
2.2 Fisherfaces . . . .. ... ... ... L.
2.3 Local Binary Patterns Histograms . . . . ... ... ..
24 DeeplD1 ... ... ... . .. o
25 Deepface . . ... ... ... .. ... .. L.
26 FaceNet. ... ... ... . ... ... ...
27 LightCNN ... ... ... ... ... ... .. .. ...,
2.8 Center Face/Loss . . ... ... ..... ... ......
2.9 SphereFace . .. .. ... ... ... ... .. .. ...,
2.10 NormFace . ... ... ... ........ ... .. ...
211 SUMMATY . . . . oottt e e
3 EXPERIMENTS
3.1 Selected Methods . . ... ... ... ... ... .....
3.1.1  Statistical Analysis . . . ... ... .. ...
3.1.2 Convolutional Neural Networks . . .. ... ..
4 RESULTS
4.1 Face Verification . . . . ... ... .. ... ... ..., .
4.1.1 Eigenface ... .. ... ... .. ... .. ...,
4.1.2 Fisherface . ... ... ... ... .. .......
4.1.3 Local Binary Patterns Histograms . . . . .. ..
4.1.4 Facenet. .. ... ... ... ... ... ...
415 LightCNN . ... ... . ... ...........
4.1.6 SphereFace ... ..................
417 Summary . ... ...
4.2 Face Verification after Face Restoration . ... ... ..
4.3 Face Verification after Downsampling . . . . ... ...
4.4 Robustness of Face Verification . . ... ... ... ...
5 CONCLUSION
5.1 Futurework . ... ......... ... ... . ...

O O O W

10
11
12
13
14
15
16
17
18
18
19
20
20
21
22
23
24
25
26
27
28
31
33
35



INTRODUCTION

Face detection, recognition (FDR) and verification of face images with
poor resolution without labels and ground truths is an important task
for forensic investigation. Terrorists and other criminals have posted
thousand of videos and images in the internet where the videos are
often of low quality. Everyday new illegal videos and images are
posted in the internet and many of these videos and images don’t
have the minimum required quality for methods of face verification. In
many cases it is not possible to watch each image and/or video for face
verification and/or recognition because the investigators already are
overwhelmed with the volume of digital data. Therefore is important
that face images with poor digital quality are restored and/or verified
and/or recognized.

Methods for FDR are becoming increasingly important in many
application areas such as healthcare, the gaming industry, user studies,
and homeland defense[30, 33]. Such methods are normally tested,
and trained, on good quality datasets and work well on these sets.
We define good quality datasets as (mostly) containing face images
with standardized (frontal) face positions, good spatial resolution, and
controlled lighting conditions. However, images are often acquired in
very different conditions, e.g., varying viewpoints, poor lighting, low
resolution, and motion blur.

Over the past decades many methods for image restoration have
been proposed. The most methods works on any images but there are
some methods made specifically for one type of image, face images, for
example. The evaluation of these methods are mostly qualitatively and
if quantitatively then there is just some PSNR metrics which requires
some ground truth image and doesn’t address to any application. Most
of the of proposed restoration methods are tested with images having
artificial noises (blur or salt and paper noises) and these artificial
noises are different than the real-world noises. It is unclear if all these
restoration methods are useful only for qualitatively purposes or are
they also useful for some applications such as face recognition? We
believe that the main goal of face restoration methods should be face
recognition, artistic puposes or just better visualization. According to
our knowledge the methods of face restoration have never been tested
in algorithms of face recognition.

The main goal is to know if face restoration add value for face
recognition. We perform several experiments to evaluate the methods
of face restoration and face recognition. We uses face images with
real poor resolution quality and we don’t apply any artificial noises.



INTRODUCTION

After the images have been restored we test the methods of face recog-
nition. We compare original low quality face images with restored
face images in algorithms of face recogntion. The basic principle of
our experiments are two tests: firstly we test face recognition using
originals and/or poor quality face images and secondly we test face
recognition using restored images. We want to know if a restored face
image could be easier recognized than an original and low quality res-
olution face image. In addition to that we benchmark the algorithms
against a large dataset where we have introduced artificial noise to
receive an indication how the algorithms behave when using good
and/or low quality images.

The structure of this thesis is as follows. Section 2 reviews related
work and presents the selected methods. Section 3 presents our
experiments and how we use these to evaluate the selected methods.
Section 4 present the results of the experiments for face restoration,
face recognition and face recognition after face restoration. Section 5
concludes the thesis and proposes questions for future work.



RELATED WORK

We are in the possession of a dataset with low quality images of terror-
ists extracted from online propaganda videos. We want to verify how
current methods for face verification perform on these low quality
images. The methods discussed in this chapter have been composed
by performing a literature study, and searching for open source imple-
mentations on Github. The methods are presented in chronological
order. The most important criteria for including a method in this chap-
ter is whether it significantly furthered the field of FDR or belongs to
a different class of algorithms than others.

The methods are scored on four criteria, listed below. In the next
chapter we will provide a summary of our findings and explore the
selected methods in better detail.

o Accuracy The method presents accuracy figures for one or more
public datasets such as Labeled Faces in the Wild (LFW) [9]
or YouTube Faces (YTF) [28]. We prefer methods that use the
aforementioned datasets as they are industry standards. Old
methods, invented prior to the construction of these sets, will not
report their accuracy on these sets and hence we will also have
to judge the complexity of the datasets used for bench-marking
the methods.

e Availability Is the method, including all the resources that it
needs to operate, publicly available? For methods using a neural
network, not only the network structure has to be available but
also the pre-trained model weights. It would be unfeasible to
retrain all networks of these methods in the scope of this thesis.
Some methods have many available implementations, this is
preferred over methods having only one public implementation.

e Complexity For this criteria we will look at the computational
complexity of running the method. For neural networks we
will take the training time into account as-well, if available. The
computational complexity is important as a complex method
might not work on our test computer.

e Usability When a method is publicly available we can make an
estimation if it will and can work without much fine tuning.
Many tunable parameters introduce a new problem. What pa-
rameters are the most optimal for our experiments and are they
optimal for all experiments.



2.1 EIGENFACES

2.1 Eigenfaces

In 1991 Turk and Pentland presented a paper describing a method for
detection and identification of faces in near real time conditions [23].
Before this approach the leading methods were based around the rela-
tionship between facial features such as the position of the eyes, nose
and mouth. However, research has shown that the direct relationships
between these features is not sufficient enough to achieve the same
level of face identification as humans [3]. Turk and Pentland took
a different approach and were inspired by information theory. The
algorithm works by constructing Eigenfaces, which “can be thought of
as a set of features which together characterize the variation between
face images”.

First the algorithm has to be trained, training the algorithm uses
known images of identities to construct the corresponding Eigenfaces.
When testing the identity of an unknown image it will try to approxi-
mate the image based on linear combinations of the Eigenfaces that
were generated at the training stage.

Accuracy The authors have not tested it against a public
database, presumably because none were available at
that time. However, six years later Belhumeur et al
[2] compared their face recognition method against
Eigenfaces. They report an accuracy of 75.6% on the
Yale face database’.

Availability  Since Eigenfaces are regarded as one of the first suc-
cessful face recognition methods a lot of implemen-
tation are available. The popular image processing
library OpenCV includes an implementation®.

Complexity In 1991 the authors were able to run the algorithm
in real time. The time complexity of the algorithm
should be low.

Usability It is easy to get started using this method, but there
are a few constraints. It mostly works on known iden-
tities, which are used during the training stage. It is
possible to construct new identities based on recog-
nizing patterns in the output. However, if you wish
to include these in the model it has to be retrained, it
can’t simply be added to the current model.

1 http://vision.ucsd.edu/content/yale-face-database
2 https://docs.opencv.org/3.4.6/dd/d7c/classcv_1_1face_1_1EigenFaceRecognizer.
html


http://vision.ucsd.edu/content/yale-face-database
https://docs.opencv.org/3.4.6/dd/d7c/classcv_1_1face_1_1EigenFaceRecognizer.html
https://docs.opencv.org/3.4.6/dd/d7c/classcv_1_1face_1_1EigenFaceRecognizer.html

2.2 FISHERFACES

2.2 Fisherfaces

Linear discriminant analysis (LDA) was invented by R. Fisher in 1936
[7]. He used it to solve a taxonomic problem, classifying flowers.
Belhumeur et al [2] proposed using LDA for face recognition. Accord-
ing to the authors their extensive testing showed that their method
produces a lower error rate than Eigenfaces. They tested both an
Eigenface implementation as their Fisherface implementation on a
dataset with a lot of variation in the lighting of faces as they assumed
that Eigenfaces would not behave well to such changes.

Accuracy

Availability

Complexity

Usability

The authors created a public dataset, the Yale face
database, which consists of images with a lot of light-
ing variation3.

They report an accuracy of 92.3% on this dataset.

There are many Fisherface implementation such as one
in the popular image processing library OpenCV4.

The computational complexity is similar to that of the
Eigenface method. Hence, the computational complex-
ity is low.

It is easy to get started using this method, but just
like Eigenfaces there are a few constraints. It mostly
works on known identities, which are used during the
training stage. It is possible to construct new identities
based on recognizing patterns in the output. However,
if you wish to include these in the model it has to
be retrained, it can’t simply be added to the current
model.

3 http://vision.ucsd.edu/content /yale-face-database
4 https://docs.opencv.org/3.4.6/d2/de9/classcv_1_1face_1_1FisherFaceRecognizer.

html


http://vision.ucsd.edu/content/yale-face-database
https://docs.opencv.org/3.4.6/d2/de9/classcv_1_1face_1_1FisherFaceRecognizer.html
https://docs.opencv.org/3.4.6/d2/de9/classcv_1_1face_1_1FisherFaceRecognizer.html

2.3 LOCAL BINARY PATTERNS HISTOGRAMS

2.3 Local Binary Patterns Histograms

Ahonen et al proposed an adaptation of local binary patterns (LBP)
[25], which was used to extract texture features, such that it could be
used for face recognition [1].

The local binary pattern operator works by taking a block of a certain
size Nx N, the kernel, and applying a threshold such that a binary
pattern is obtained. This improves upon methods like Eigenfaces and
Fisherfaces by extracting features on a smaller scale than the entire
face, such that many extracted features are the same for different face
representations of the same person.

Accuracy

The algorithm was tested against the FERET test sets
[15]. This dataset is split up into multiple categories.
For each identity 5 pictures were taken. The base
image fa, an image fb captured shortly after fa with a
different facial expression, fc a third image taken with
a different camera and different lighting conditions,
dup I taken within one year of fa and dup II taken
at-least one year after fa.

Method

fb fc | dupl | dup Il | lower | mean | upper

LBP, weighted 0.97 | 0.79 | 0.66 0.64 0.76 0.81 0.85

LBP, nonweighted | 0.93 | 0.51 | 0.61 0.50 0.71 0.76 0.81

Availability

Complexity

Usability

Many implementation of LBPH are available such as
the following in OpenCV 5.

The local binary patterns algorithm is very fast, and
using it for face verification purposes does not influ-
ence the execution time significantly.

It is easy to get started using this method, and it
has benefits compared to Eigenfaces and Fisherfaces
(excluding accuracy). It is not necessary for the model
to be retrained for new identities. A local binary
pattern histogram can be extracted from an unknown
image A and it can be compared with the histogram
of an unknown image B. Even if this identity is not in
our training set, we can still compare the histograms
and check whether they are, likely, the same.

5 https://docs.opencv.org/3.4.6/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.

html


https://docs.opencv.org/3.4.6/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://docs.opencv.org/3.4.6/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html

2.4 DEEPID 1

2.4 DeeplID 1

In 2014 Sun et al introduced the DeeplD 1 [19] convolutional neural
network. The latest version to date is DeepID 3 [20]. Since the DeepID
3 network is closed source we will discuss DeepID 1. The DeepID
network outputs a number of features which can then be used by
classifiers to compare them for a use case such as face verification.
Hence, DeeplD is not a complete solution by itself, a classifier must
also be used. This applies to all neural network based methods that
we have found. The main difference is that other networks often use a
simple distance metric.

The authors use the Joint Bayesian technique for face verification [5]
together with their DeepID network. They also train a neural network
for verification and compare it to the Joint Bayesian method.

The DeepID model was trained on 80% of the CelebFaces dataset,
the other 20% is used to train the verification method (Joint Bayesian/neu-
ral network). Afterwards they test the accuracy against the LFW
dataset [9].

Accuracy The Joint Bayesian method for verification is approx-
imately 1.8% better than the neural network verifica-
tion method. The methods were tested on the LFW
dataset.

Method LFW
Joint Bayesian | 97.20%

Availability  The authors did not release their model themselves.
There exists a Github repository® containing a DeepID
1 implementation. This implementation is trained on
the CASIA-WebFace dataset. The accuracies reported
there are far worse than those in the paper (64%).

Complexity = Neither the execution time or the training time of this
method have been mentioned by the authors.

Usability Since there isn’t a good implementation available the
usability is low.

6 https://github.com/joyhuang9473/deepid-implementation


https://github.com/joyhuang9473/deepid-implementation

2.5 DEEPFACE

2.5 Deepface

Taigman et al [22] published DeepFace in 2014, which was one of
the first convolutional neural networks that was successful at face
verification [26]. It was trained on the largest (private) facial database,
that was available at the time, which contained 4 million facial images.

Accuracy The models are tested on the LFW dataset [9]. Since
the model in the paper is not public, we will also list
the accuracy of the implementation mentioned in the
previous section.

Method LFW
DeepFace (paper) 97.35%
DeepFace (public implementation) | 97.30%

Availability  The authors did not release their model themselves but
there exist multiple implementations in most major
languages and frameworks. These implementations
often offer a pre-trained model such as this one using
Tensorflow?.

Complexity = The training complexity of this network is large but no
exact figures have been provided. Due to the model
size we can assume that this method is fairly slow for
a CNN.

Usability A separate face detector and feature extractor has to
be used, such as VGG-Face [14] or MTCNN [34]. The
model also has to be trained using different input data
as the authors used a private facial database.

7 https://github.com/ildoonet/deepface

10


https://github.com/ildoonet/deepface

2.6 FACENET

2.6 FaceNet

Schroff et al [16] introduce two different deep convolutional networks.
A Zeiler&Fergus style network [32], and an Inception based network
[21]. In the paper they describe a number of networks that can be used
on different types of hardware. An algorithm running on a mobile
phone has different constraints than one running in a data centre.

The same network can be used for face verification and face clus-
tering. This can be done because the network is trained such that the
euclidean length in the embedding space directly corresponds to face
similarity. The faces of the same person have small distances and faces
of distinct people have large distances.

Accuracy The paper only gives a single accuracy for the LFW
dataset and not for each network described in the
paper. Since the model is not released publicly we will
also state the accuracy of the available network®.

Method LFW Accuracy
FaceNet (paper, no extra alignment) 98.87%
FaceNet (paper, extra alignment) 99.63%
FaceNet (Github, trained on CASIA-WebFace) 99.05%
FaceNet (Github, trained on VGGFace2) 99.65%

Availability ~ As mentioned the model was not released by the au-
thors but open-source implementations exist. These
open-source implementations are available in multiple
languages and frameworks such as TensorFlow and
Keras including pre-trained models.

Complexity = The models are trained on a CPU cluster for 1000 to
2000 hours. Their Zeiler&Fergus network contains
140 million parameters and requires 1.6 billion FLOPS
per image. One of their GoogLeNet (Inception) based
network contains 6.6 to 7.5 million parameters and
requires 500 million to 1.6 billion FLOPS per image.
Another GoogLeNet based network contains 26 mil-
lion parameters but only requires 20 million FLOPS
per image.

Usability The model is not well suited to train by ourselves (see
complexity). Multiple open-source implementation
exist, including good documentation and pre-trained
models.

8 https://github.com/davidsandberg/facenet

11


https://github.com/davidsandberg/facenet

2.7 LIGHTCNN

2.7 LightCNN

Wau et al [29] introduce a framework for light convolutional neural net-
works for face recognition and face verification. Since it is a framework
multiple models are available that make use of this structure.

In the paper they define Light CNN-4, CNN-9 and CNN-29 where
the number indicates the number of convolution and max-pooling
layers. Light CNN-9 consists of 9 convolution layers and 9 max-pooling
layers. The models are trained on the MS-CELEB-1M dataset.

The authors also introduce the Max-Feature-Map (MFM) operation
which is an activation function that can be used in the convolutional
layers. This operation tries to reduce the amount of bias in the network
that occurs due to noisy signals. Since there are many different types of
noise in large scale datasets it is crucial that the network can separate
the noise from the informative signals.

Other goals of their framework is to be faster than other open-source
solutions and to provide a single model that can be used on various
face benchmarks, such as face recognition and verification, to get
state-of-the-art results.

Accuracy The models are tested on the LFW dataset [9] and the
YTF dataset [28].

Method LFW YTF
Light CNN-4 | 97.97% | 90.72%
Light CNN-9 | 98.80% | 93.40%
Light CNN-29 | 99.33% | 95.54%

Availability  Both the Caffe and Python version are available on
Github, complete with the model and weights.

Complexity = There is no explicit mention of the training speed or
the speed used when verifying a pair of faces. How-
ever, the models were invented to provide a faster, and
better way than previous models. They also provide
3 different models which differ mainly in complexity
which directly translates to execution speed.

Usability There are at-least two open-source implementations.
The original one, used by the paper, written in Caffe
and an updated version written by the same authors
in Python. They advise to use the Python version. The
Python version only requires PyTorch. The model can
be used by downloading the pre-trained weights but
they also offer tools and instructions to (re)train the
models using a Python script.

12



2.8 CENTER FACE/LOSS

2.8 Center Face/Loss

Center Face or Center Loss was introduced by Wen et al [27]. The
authors propose a new supervision signal, called center loss, which is
an alternative for the softmax function. Center loss is optimized for
face recognition tasks and hence should improve convolutional neural
network in accuracy and training speed.

When the model was released it achieved a record accuracy on
the MegaFace challenge dataset [10] under the evaluation protocol of
small training set.

The network is trained on CASIA-WebFace, CACD20ooo and
Celebrity+. The total set contains o.7 million images of 17,189
unique identities.

In the paper they use three models, a model using only softmax loss
(model A), a model using softmax loss and contrastive loss (model B)
and a model using softmax loss and center loss (model C).

Accuracy The models are tested on the LFW dataset [9], the YTF
dataset [28] and the MegaFace challenge.

Method LFW YTF | MegaFace

model A 97.37% | 91.1% | 41.297%

model B 99.10% | 93.8% | 69.987%
model C (proposed) | 99.28% | 94.9% | 76.516%

Availability = The authors released the source code, written in Caffe,
including the pre-trained models on Github®. There
are other implementations of the center loss function
but not of the same model as specified in the paper.

Complexity = The models were trained on two TitanX GPUs. The
training time ranged from 14 hours to 22 hours de-
pending on the model.

Usability The documentation is not complete. It only contains
instructions for training the model but not for using
the pre-trained models.

9 https://github.com/ydwen/caffe-face

13


https://github.com/ydwen/caffe-face

2.9 SPHEREFACE

2.9 SphereFace

Liu et al [13] address a specific face recognition problem. They argue
that, at the time of writing, there were few suitable loss functions
in models to specifically compare facial features. They introduce a
variation on the softmax loss function, a-softmax. This loss function
is able to make a better comparison between extracted facial features
than regular softmax.

The model was trained on the CASIA-WebFace dataset.

Accuracy

Availability

Complexity

Usability

The models are tested on the LFW dataset [9] and the
YTF dataset [28].

Method LFW | YTF
SphereFace | 99.42% | 95.0%

At the time this paper was released it performed bet-
ter on the LFW dataset than most methods such as
DeepFace, Deep FT, DeepID and Center Face. FaceNet
achieved a better accuracy of 99.65%.

There are at-least 13 open-source implementations
of SphereFace written in different languages, using
different frameworks such as PyTorch, Tensorflow,
Caffe or Keras. The original implementation is written
in Caffe. The model weights, and the training data is
publicly available.

There is no mention of the time it takes to validate a
single pair of faces or the amount of time it took to
train the networks.

A separate face detection algorithm has to be used,
such as MTCNN [34]. The SphereFace model uses
these features as input for verification.

14



2.10 NORMFACE

2.10 NormFace

Wang et al [24] propose a way to improve the performance of convo-
lutional neural network models. They propose two strategy changes
that can be applied during the training of the network.

The first being a modification to the softmax loss function such that
it is optimized for comparing facial features. This is related to the
changes proposed by SphereFace. The second strategy improves on
the complexity of metric learning. Metric learning, in this context,
usually compares either pairs or triplets as opposed to categorical
learning. For a certain amount of training samples N, the number of
suitable pairs or triplets is O(N?) and O(N?). This amount is often so
large that you can’t train every sample and hence a selection has to be
made. The authors propose two new loss functions, C-contrastive and
C-triplet loss, which are designed to replace contrastive (pair) loss,
and triplet loss.

It is important to note that these improvements can be used on
many different convolutional network models. In the paper they test
their improvements using Light CNN [29] and Center Face [27].

Accuracy The models are tested on the LFW dataset [9].

Baseline model | Original accuracy | NormFace
LightCNN 98.13% 98.78%
Center Face 99.03% 99.21%

Availability A complete implementation of these improvements
on both the Light CNN and Center Face model is
available on Github. This includes both the model as
the weights for the model.

Complexity  There is no mention of the time it takes to validate a
single pair of faces or the amount of time it took to
train the networks.

Usability There are some requirements before this model can
be used. A separate face and facial landmark detector
has to be used, such as MTCNN [34]. In addition to
that only an implementation using Caffe exists, which
according to the author should work on Windows and

Linux. Only a GPU with CUDA support, is supported.

15



2.11 SUMMARY

2.11  Summary

Algorithm
Eigenfaces

Accuracy | Availability | Complexity | Usability

Fisherfaces
LBPH
DeeplID 1
Deepface
FaceNet
LightCNN
Center Face/Loss

SphereFace
NormFace

Table 1: Comparison table of the 4 criteria per method.

We have scored the methods discussed in this chapter based on
four criteria: Accuracy, availability, complexity and usability. We have
summarized this in table 1. The scale used has five possible values:

e —: The lowest score possible.

e -: The method does not have optimal performance on the criteria.

+/-: The method performs at-best averagely on the criteria.

+: The method performs well on the criteria.

o ++: The method excels on the criteria.

16



EXPERIMENTS

For executing the different experiments we adopted the implemen-
tation of the methods such that they have a uniform application
programming interface (API). Prior to face verification, detection and
alignment of an image has to be performed for most of the methods.
We have created a single pipeline, depicted in figure 1, which can use
any method adhering to our APL

Stage 1 Stage 2
Detection Alignment
Stage 3 Apply threshold Result
Face Verification Same / Not
Stage 1 Stage 2
Detection Alignment

Figure 1: Pipeline used for all experiments

After finishing stage 3 of the pipeline a threshold is applied to give
an answer whether the two images are of the same person. For a
single test this results in four cases:

1. True positive (TP): The images are of the same identity and the
algorithm agrees.

2. False positive (FP): The images are not of the same identity but
the algorithm determines that it is the same person.

3. True negative (TN): The images are not of the same identity and
the algorithm agrees.

4. False negative (FN): The images are of the same identity but the
algorithm determines that they are not.

To show the performance of a method, independent of a certain
threshold, we use the receiver operating characteristic curve (ROC
curve). It plots the true positive rate (TPR) against the false positive
rate (FPR). All other statistics can be derived from these two.

e TNR =1—-FPR
e FNR =1—-TPR

Based on this we can determine the equal error rate (EER). The equal
error rate is defined as having an equal probability of miss identifying
a true or false sample, or having an equal FPR and TNR.

17



3.1 SELECTED METHODS

We use two different methods for determining what threshold
should be used for determining the accuracy. The first being the
threshold at the EER. The second being the best possible accuracy.
For the best possible accuracy many thresholds are tested and the
threshold resulting in the highest overall accuracy will be kept. The
latter is not always viable as not all of our tests have an equal amount
of match cases and no match cases.

We have used three different datasets for the four experiments
discussed in the following sections.

o Terrorists: 20 face images of 10 individuals. For each person
there are two images: (A) a very low quality image (approx-
imately 45x45 pixels) and (B) a better quality face image (ap-
proximately 200x200 pixels). All these images are resized to
128x128 such that they have a normalized size. Bi-cubic inter-
polation was used for the resizing process. These face images
come from videos of potential terrorist. The images have been
acquired by running facial detection algorithms proposed by
[34] on videos of potential members of the IS terrorist group that
were posted on YouTube. Most images suffer from low resolu-
tion, blur, and/or noise. In addition, face details are sometimes
obscured by cap covers and/or facial hair. Based on expertise
from a video surveillance company, we selected these images
to be typical of those that (a) are typical in surveillance tasks,
but (b) surveillance software have difficulty in analyzing and
recognizing.

e Terrorists restoration results: 8o images. We use the output
of eight restoration methods of a previous bachelor project [8].
Dataset (A) was used as the input for these algorithms.

e LFW database: Is one of the most used databases in other papers.
We created a low quality version of the dataset, as we will discuss
in section 4.3

3.1 Selected Methods

Based on the summary of the previous chapter we have chosen
six methods for further evaluation: Eigenfaces, Fisherfaces, LBPH,
Facenet, LightCNN, SphereFace.

These methods can be divided into two classes that captures the
major differences between the methods.

3.1.1 Statistical Analysis

Eigenfaces, Fisherfaces and LBPH fit into this class.
These methods are the oldest included in our summary. The al-
gorithms of Eigenfaces and Fisherfaces are extremely similar. The

18



3.1 SELECTED METHODS

difference being the statistical analysis method used for reducing the
dimensionality of the image, Principal Component Analysis (PCA) for
Eigenfaces and Linear Discriminant Analysis (LDA) for Fisherfaces.

Before we can use these methods for our experiments they have to be
trained. All three methods are best used in closed set face verification
environments and perform best when having multiple images per
identity during the training process. Our real world dataset and our
variation on the LFW dataset [9] does not satisfy the requirement and
hence our results will be sub-optimal.

Each method returns the distance from the verification image to
the best matching representation of a certain identity, o being the best
possible score. We negate the distance of each output such that a
higher score means represent a higher confidence in the match.

Face alignment is not explicitly required by these methods but we
will still provide aligned images.

We use the OpenCV library ' implementation of the methods for
our experiments.

3.1.2 Convolutional Neural Networks

The remaining three methods, Facenet, LightCNN and SphereFace are
included in this class.

Most networks require an input of a fixed size. These methods can
differ from their preferred size but this lowers the accuracy. Thus we
will provide each method with an aligned preprocessed image in the
preferred size of the network.

The methods return a high dimensional (eg 1024D) feature vector
representing the analysed image. For each method, and all experi-
ments we use the cosine similarity metric to determine the similarity
(tigure 2).

A-B
s]mllarlty = COS(G) = W

Figure 2: Definition of cosine similarity. A denotes the extracted feature
vector of the first image, B denotes the extracted feature vector of
the second image used for verification.

After applying a certain threshold to these scores we can determine
whether the method accepts two images as a match, or rejects it as a
match. There is not a uniform threshold for the best results, generally
a higher threshold yields less false positives but more false negatives
while a lower threshold yields more false positives but more true
negatives.

1 https://opencv.org/

19


https://opencv.org/

RESULTS

To answer the questions proposed in the introduction we have struc-
tured our results into four sections. In the first section, Face Veri-
fication, we test the six selected methods using an experiment that
uses our low resolution dataset. The second section, Face Verification
after Face Restoration, repeats this test but on the datasets that have
been constructed by applying image restoration techniques to the low
resolution dataset. The section Face Verification after Downsampling,
tests the influence of poor resolution images on face verification. The
last section, Robustness of Face Verification, tests the robustness of
face verification methods using multiple photos of the same individual
in different facial positions.

4.1 Face Verification

For this experiment we extracted a low resolution sample, combined
with a higher resolution sample of the same individual from videos.

The low resolution samples have all been up-scaled to 128x128 pixels
using bi-cubic interpolation. For each identity we compare a high
resolution image against a low resolution image of all 10 identities.

The output scores for each method are shown in a color coded table
(figure 3). Different cell colors represent whether the score will be
accepted as a match under a certain threshold. We have chosen to
use the threshold associated with the lowest equal error rate (EER) as
opposed to choosing the threshold associated with the best accuracy as
that would result in a minimal accuracy of 90% since the test contains
only 10 true samples and 9o false samples.

. No match D Match

|:| No match, close to threshold |:| Match, close to threshold

Figure 3: Color coding used in the results.

20



4.1 FACE VERIFICATION

4.1.1  Eigenface

The threshold used is —5219.595 which results in an EER of 30%.
Under this threshold the total accuracy is 73%.

An EER of 30% is better than just randomly guessing but it still
yields in a low accuracy of 73%. This is not unexpected as the method
performs better when it has multiple images per identity.

21



4.1 FACE VERIFICATION

4.1.2  Fisherface

-5,073.41 ‘ ‘

The threshold used is —5073.409 which results in an EER of 28%.

Under this threshold the total accuracy is 73%.

The EER is slightly lower than the EER of Eigenface but it still yields
the same accuracy. The experiment does not contain much lighting
variation, in which Fisherface outperforms Eigenface according to its
authors. Hence, a performance similar or equal to Eigenfaces was
expected.

22



4.1 FACE VERIFICATION

4.1.3 Local Binary Patterns Histograms

EEm
|

-169.98

-164.78

Based on the ROC curve we determined the equal error rate (EER),
with the accompanying threshold. The threshold used is —171.932
which results in an EER of 32%. Under this threshold the total accuracy
is 68%.

23



4.1 FACE VERIFICATION

4.1.4 Facenet

FEEEL

o
g
>

sk
.

|
Kk
o)

o
N
¥

S
Gr
N

The threshold used is 0.586 which results in an EER of 10%. Under
this threshold the total accuracy is 90%.

It is important to note that this is not the best accuracy possible.

The low similarity score of the third image resultsina a 1/10 = 10%
false positive rate. Hence, a threshold is chosen such that the EER
becomes 10%, even though a threshold can be chosen which results in
no false positives, 0.64.

24



4.1 FACE VERIFICATION

4.1.5 LightCNN

Based on the ROC curve we determined the equal error rate (EER),
with the accompanying threshold. The threshold used is 0.554 which
results in an EER of 0%. Under this threshold the total accuracy is
100%.

As the equal error rate is 0%, the accuracy of LightCNN on this
experiment is 100%. In addition to that, there is only one case where
the returned value is close to the threshold. This result, which is the
same as the threshold, is picture 3. Even if we would choose a non
optimal threshold of 0.50, it would only add 1 false accept case which
still results in a high accuracy.

25



4.1 FACE VERIFICATION

4.1.6  SphereFace

Based on the ROC curve we determined the equal error rate (EER),
with the accompanying threshold. The threshold used is 0.293 which
results in an EER of 10%. Under this threshold the total accuracy is
92%.

A possible explanation for the higher error rate than LightCNN
could be the crop size. The input images of dataset B (orig 128x128)
are square, while this network takes rectangular images (96x112) as
input.

26



4.1 FACE VERIFICATION

4.1.7 Summary

The area under the curve (AUC) of an ROC graph is a good measure of
the performance of the model. An AUC of 1.0 means perfect accuracy,
it has a false positive rate and false negative rate of 0%.

When the AUC is 0.5 it means that the method cannot distinguish
between the positive and negative class. The false positive rate and
false negative rate are 50%, hence you don’t have any certainty whether
something is true positive or false positive.

This statistic is irrelevant of a threshold as the true negative rate is
inversely proportional to the true positive rate.

104

0.6

TPR

0.4 1
—— Facenet
LightCNN
—— SphereFace
——— Eigenface
Fisherface
- LBPH

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.2

Figure 4: ROC Curves

The ROC curves (figure 4) clearly denote that the newer, CNN based,
methods perform better on this experiment.

When comparing the matrices of the different methods we observe
that Eigenface and Fisherface provide similar results. This is not
surprising as the methods work in a similar way. SphereFace and
FaceNet look a lot worse than LightCNN. This is mostly because of
choosing a threshold that results in an equal error rate. When choosing
a slightly higher threshold, the number of false positives will drop
dramatically increasing the overal accuracy.

27



4.2 FACE VERIFICATION AFTER FACE RESTORATION

4.2 Face Verification after Face Restoration

In this experiment we repeat the previous experiment but instead of
comparing the high resolution images with the low resolution images
we use the result of 6 super resolution methods.

We used the following methods for increasing the resolution of the
images:

1. DeblurGAN [11]
2. FSRNet [6]
3. NeuralEnhance [4]

4. Mixing: as of yet this method has not been published yet. It
consists of mixing the image generated by FSRNet with the
original image.

5. SmartDeblur [31]
6. Sobieckiio [17]

7. Sobieckit11 [18]

(a) (b) @ (d) (e) () (8) (h) [0]

Figure 5: (a) original, (b) bicubic interpolation, (c) Smart Deblur, (d) Neural
Enhance, (e) DeblurGAN, (f) FSRNet, (g) Sobiecki1o, (h) Sobiecki11
and (i) Mixing

For each method we recorded the output in the same manner as the
previous experiment. In the graph, we only record the value for the

28



4.2 FACE VERIFICATION AFTER FACE RESTORATION

true, or matching, cases. This value should be as high as possible as
that indicates that the algorithm has the most confidence of a match
between these two images.

We will also plot the accuracy of each method, again at the equal
error rate, as that takes all test cases into account.

The Area under curve (AUC) statistic is explained in section 4.1.7.

For all methods except LightCNN a discrepancy between the highest
scoring methods based on AUC and Accuracy is present. As explained
in the previous section the accuracy at the equal error rate is not
necessarily the best possible accuracy while the AUC is a performance
metric independent of a chosen threshold. Thus we can assume that in
the case of Facenet, not only DeblurGAN and FSRNet have a improved
accuracy but also the mixing method. The largest discrepancy is
present for SphereFace, at the equal error rate only the accuracy
improves with DeblurGAN but the AUC scores better for Sobiecki1o,
NeuralEnhance, DeblurGAN and Sobiecki11.

For Facenet the difference in accuracy between DeblurGAN and the
resized images is 3%.

Eigenface

LightCNN

1.0

AlakaNaREE
Fisherface
“HeRaNaREE

SphereFace

—2000

—4000

1.0
-6000

LBPH

=125 0.¢

2HaRaNaEET

DeblurGAN
FSRNet

resized
NeuralEnhance
Sobieckill
Mixing
SmartDeblur
SobieckilO

1-150

=175

0.0 e
“HaRaNaRES

Figure 6: Output score for each of the 10 match cases, reported per method.

29



4.2 FACE VERIFICATION AFTER FACE RESTORATION

DeblurGAN
FSRNet

resized
NeuralEnhance
Sobieckill
Mixing
SmartDeblur
Sobieckil0

Area under curve

Facenet LightCNN  SphereFace Eigenface  Fisherface

(@)

Accuracy

Accuracy (%)

Facenet LightCNN  SphereFace Eigenface  Fisherface

(b)

Figure 7: (a) denotes the AUC for each method, (b) reports the accuracy.

30



4.3 FACE VERIFICATION AFTER DOWNSAMPLING 31

4.3 Face Verification after Downsampling

In this experiment we have lowered the resolution, using bi-cubic
interpolation, of each image in the LFW dataset [9] to 50x50 pixels,
afterwards we increased the resolution back to 128x128 pixels such
that we could use it as input for each method. We will refer to this set
as the low quality dataset.

Figure 8: Image a is the original image taken from LFW, image b is our bad
quality variation of the image.

It is important to note that this will also have detrimental effects to
the face detection algorithm, which is used for aligning the images
before running face verification methods. We have opted to use the
original face detection and alighment landmarks such that we can run
the test in the same manner as the authors of the dataset recommend.

The LFW dataset contains guidelines for testing the accuracy of
methods. They include 10 test sets, which each contain 300 matches
and 300 non match cases. We will now refer to the 10 test sets as
a single test. This test has been run three times per method. Once
testing the original LFW dataset against the original dataset. Once
using the original LFW dataset against the low quality variation. Once
using the low quality dataset against the low quality set.

The OpenCV implementation of Fisherface failed for this experiment
and hence no results are included.



08,0 02

08,0 02

4.3 FACE VERIFICATION AFTER DOWNSAMPLING

Eigenface
P
_—
—
"
—~
Orig-Orig
LowRes-LowRes
Orig-LowRes
0.4 0.6 0.8 1.0
FPR
LBPH
Orig-Orig
LowRes-LowRes
Orig-LowRes
0.4 0.6 0.8 1.0

FPR

Facenet
1.0/ — —
/
0.8/
50.6
&
0.4
Orig-Orig
0.2 LowRes-LowRes
Orig-LowRes
%80 02 04 06 X 10
FPR
LightCNN
Lo —r
0.8
E0.6
=
0.4
—— Orig-Orig
0.2 LowRes-LowRes
Orig-LowRes
O'B.O 0.2 0.4 0.6 0.8 1.0
FPR
SphereFace
1.0 — = —
0.8
E0.6
=
0.4
—— Orig-Orig
0.2 LowRes-LowRes
Orig-LowRes
0'8.0 0.2 0.4 0.6 0.8 1.0

FPR

Figure 9: ROC curves per method. Each graph contains the result of the 3
tests that were executed.

Algorithm | O-O Acc @ EER (£0) | O-L Acc @ EER (£0) | L-L Acc @ EER (+0)
Eigenface 68.1% (+2.3%) 68.0% (£2.4%) 67.9% (+1.8%)
Fisherface - - -
LBPH 73.3% (£1.4%) 70.4% (£1.6%) 71.9% (£2.0%)
Facenet 97.5% (£0.8%) 92.8% (£0.9%) 90.7% (£0.9%)
LightCNN 99.4% (£0.5%) 97.15% (£+0.5%) 95.5% (£0.4%)
SphereFace 99.2% (£0.5%) 94.5% (£0.5%) 92.0% (£1.0%)

Table 2: Accuracies at the EER for each method and test executed. O-O
denotes the original dataset compared with the original dataset. O-L

denotes the original dataset compared with the low quality dataset.

L-L denotes the low quality dataset compared with the low quality
dataset.

32



4.4 ROBUSTNESS OF FACE VERIFICATION

4.4 Robustness of Face Verification

In the first and second test we only tested two images per identity.
In this test we aim to determine how the methods perform when
encountering a variation of face expressions and lighting conditions.
We plot the output score of each image, as verified with the reference
image, such that we can compare how the variations influence the
score.

Figure 10 depicts the reference image used for this experiment,
figure 11 shows the ten images of the same individual used in the
experiment and figure 12 shows the ten images that should not match
the reference image.

\

Figure 10: The reference image used in the experiment.

deddddaadd

Figure 11: 10 images that are of the same identity as our reference image.

Figure 12: 10 images, all of different identities that are not the same as our
reference image.

The threshold that results in the best accuracy has been plotted
using a black line. All the results above this line are accepted as a
match, while the results below are not. Surprisingly each method
achieved a 100% accuracy on this experiment.

33



4.4 ROBUSTNESS OF FACE VERIFICATION

Eigenface

Ve

Facenet

WA

Figure 13: Output scores per method.

34



CONCLUSION

Our main goal is to know if face restoration adds value for face
recognition. We tested the performance of six methods on a real
world dataset containing photos of terrorists, taken out of propaganda
videos, and on a larger artificial dataset to analyze the impact of low
quality images on the verification process.

The experiments showed that restoration methods do influence
the performance of verification methods, and they can improve the
accuracy. However, the influence of a restoration method is not the
same for all verification methods. One explanation is due to the fact
how CNNs operate. The networks try to reduce the dimensionality
of the input by extracting important features. Restoration methods
can either enhance or distort these features, making the method more
accurate or less accurate.

Qualitative analysis of the restoration methods showed that FS-
RNet the best restoration method. Hence, we expected the veri-
fication results to reflect that. The accuracy of Facenet was only
slightly raised by FSRNet, while it even lowered the accuracy of
LightCNN and SphereFace dramatically. The best restoration method
for LightCNN can not be determined as it achieved a perfect accuracy
on the non-improved images. The best restoration method for Facenet
and SphereFace is DeblurGAN, which is surprising as the qualitative
analysis classified this as one of the worst restoration methods. Again,
a possible explanation lies in the way how CNNs operate. The net-
works extract certain features from the input image and does this in a
different way than humans. What looks best to the human eye does
not necessarily look the best for a CNN.

The test on the Labeled Faces in the Wild (LFW) [9] has shown us
the importance of good quality input images. On average the accuracy
between the original images compared with the original image was
3.9% higher than the low quality images compared with the low
quality images. Eigenfaces are less susceptible to the difference in
quality. The CNNs are influenced in a large way by the lower quality
images. The largest difference was reached by SphereFace: 7.2%.

Our real world tests show promising results for using face restora-
tion to enhance face verification. The dataset that we used consists
mainly of unlabeled data, this makes running large tests impossible.
Our current test only contained 10 true/match cases, and 9o false/no
match cases. An argument can be made why this should be avoided.
However, testing an equal amount of match as no match cases is
also not representative of real world use cases [12]. An improvement

35



5.1 FUTURE WORK

can be made by running the test on more true matches, for instance
by including more images per identity or by labeling more unique
identities.

The experiments on the LFW dataset show a discrepancy between
the accuracy reported by the authors and our findings for several
methods. A possible explanation is the variation in the alignment
algorithm used. For each method we used the same detection and
alignment algorithm, while the original implementations of the tested
methods did not use the same detection and algorithm method or
implementation. Facenet, LightCNN and SphereFace all use the same
method for detection, but different implementations which result
in close (within 2-3px), but not matching output of the detection
algorithm.

5.1 Future work

When generating the low quality version of the LFW dataset the face
detection algorithm failed on more than 20% of the cases. Without a
working detection method, verification is impossible. We suspect that
face restoration methods might have a dramatic improvement on the
detection of faces in low quality photos.

36



BIBLIOGRAPHY

[1]

[6]

[10]

T. Ahonen, A. Hadid, and M. Pietikainen. “Face Description
with Local Binary Patterns: Application to Face Recognition”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
28.12 (Dec. 2006), pp. 2037-2041. I1SSN: 0162-8828, 2160-9292. DOI:
10.1109 / TPAMI . 2006 . 244. URL: http:/ /ieeexplore.ieee.org/
document /1717463/.

Peter N Belhumeur, Joao P Hespanha, and David ] Kriegman.
“Eigenfaces vs. Fisherfaces: Recognition Using Class Specific
Linear Projection”. In: IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE 19.7 (1997), p. 10.

S Carey and R Diamond. From Piecemeal to Configurational Rep-
resentation of Faces. - PubMed - NCBI. Jan. 21, 1977. URL: https:
//www.ncbi.nlm.nih.gov/pubmed/83128]1.

A.]. Champandard. Neural Enhance: Super Resolution for images
using deep learning. https:/ /github.com/alexjc/neural-enhance.
2016.

Dong Chen et al. “Bayesian Face Revisited: A Joint Formulation”.
In: Computer Vision — ECCV 2012. Ed. by Andrew Fitzgibbon et al.
Red. by David Hutchison et al. Vol. 7574. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 566—579. 1SBN: 978-3-642-
33711-6 978-3-642-33712-3. DOL: 10.1007/978-3-642-33712-3_41.
URL: http://link.springer.com/10.1007/978-3-642-33712-3_41.

Y. Chen et al. “FSRNet: End-to-End Learning Face Super-
Resolution with Facial Priors”. In: Proc. IEEE CVPR. 2018,
PP. 2492—2501.

R. A. Fisher. “THE USE OF MULTIPLE MEASUREMENTS IN
TAXONOMIC PROBLEMS”. In: Annals of Eugenics 7.2 (Sept.
1936), pp. 179-188. ISSN: 20501420. DOL: 10.1111/j.1469-1809.
1936.tb02137.x. URL: http://doi.wiley.com /10.1111/j.1469-
1809.1936.th02137.x.

Hidde Folkertsma. “Super-Pixel Resolution for Face Images”. In:
(2018).

Gary B Huang et al. “Labeled Faces in the Wild: A Database for
Studying Face Recognition in Unconstrained Environments”. In:
0, p- 11.

Ira Kemelmacher-Shlizerman et al. “The MegaFace Benchmark:
1 Million Faces for Recognition at Scale”. In: IEEE, June 2016,
Pp- 4873—4882. 1sBN: 978-1-4673-8851-1. po1: 10.1109 /CVPR.
2016.527. URL: http://iecexplore.ieee.org/document /7780896 /.

37


https://doi.org/10.1109/TPAMI.2006.244
http://ieeexplore.ieee.org/document/1717463/
http://ieeexplore.ieee.org/document/1717463/
https://www.ncbi.nlm.nih.gov/pubmed/831281
https://www.ncbi.nlm.nih.gov/pubmed/831281
https://doi.org/10.1007/978-3-642-33712-3_41
http://link.springer.com/10.1007/978-3-642-33712-3_41
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://doi.wiley.com/10.1111/j.1469-1809.1936.tb02137.x
http://doi.wiley.com/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1109/CVPR.2016.527
https://doi.org/10.1109/CVPR.2016.527
http://ieeexplore.ieee.org/document/7780896/

[17]

[20]

[21]

BIBLIOGRAPHY

O. Kupyn et al. “DeblurGAN: Blind Motion Deblurring Using
Conditional Adversarial Networks”. In: Proc. IEEE CVPR. 2018.

Shengcai Liao et al. “A Benchmark Study of Large-Scale Un-
constrained Face Recognition”. In: IEEE, Sept. 2014, pp. 1-8.
ISBN: 978-1-4799-3584-0. po1: 10.1109/BTAS.2014.6996301. URL:
http://ieeexplore.ieee.org/document /6996301/.

Weiyang Liu et al. “SphereFace: Deep Hypersphere Embedding
for Face Recognition”. In: IEEE, July 2017, pp. 6738-6746. ISBN:
978-1-5386-0457-1. por: 10.1109 /CVPR.2017.713. URL: http:
//ieeexplore.ieee.org/document,/8100196/.

Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman.
“Deep Face Recognition”. In: British Machine Vision Association,
2015, pp- 41.1-41.12. ISBN: 978-1-901725-53-7. DOL: 10.5244/C.29.
41. urL: http://www.bmva.org/bmvc /2015 /papers /paper041/
index.html.

Syed A Rizvi, P Jonathon Phillips, and Hyeonjoon Moon. “The
FERET Verifcation Testing Protocol for Face Recognition Algo-
rithms”. In: (Oct. 1998), p. 16.

Florian Schroff, Dmitry Kalenichenko, and James Philbin.
“FaceNet: A Unified Embedding for Face Recognition and
Clustering”. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2015), pp. 815-823. DOL
10.1109 /CVPR.2015.7298682. arXiv: 1503.03832. URL: http:
//arxiv.org/abs/1503.03832.

A. Sobiecki, L.A.P. Neves, and C.E. Thomaz. “To a Better Dig-
italization and Visualization of Frontal Face Photographs”. In:
IV European Conference on Computational Mechanics Paris, France
(2010).

A. Sobiecki et al. “Segmentacao e Restauracao Digital para
Eliminacao de Artefatos em Imagens Frontais de Face”. In: VII
Workshop de Visdo Computacional Curitiba, Brazil (2011).

Yi Sun, Xiaogang Wang, and Xiaoou Tang. “Deep Learning
Face Representation from Predicting 10,000 Classes”. In: IEEE,
June 2014, pp. 1891-1898. 1SBN: 978-1-4799-5118-5. por: 10.1109/
CVPR.2014.244. UrL: http://iecexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6909640.

Yi Sun et al. “DeeplD3: Face Recognition with Very Deep Neural
Networks”. In: (Feb. 3, 2015). arXiv: 1502.00873 [cs|. URL: http:
//arxiv.org/abs/1502.00873.

Christian Szegedy et al. “Going Deeper with Convolutions”. In:
IEEE, June 2015, pp. 1-9. ISBN: 978-1-4673-6964-0. DOI: 10.1109/
CVPR.2015.7298594. URL: http://ieeexplore.ieee.org/document/
7298594/.

38


https://doi.org/10.1109/BTAS.2014.6996301
http://ieeexplore.ieee.org/document/6996301/
https://doi.org/10.1109/CVPR.2017.713
http://ieeexplore.ieee.org/document/8100196/
http://ieeexplore.ieee.org/document/8100196/
https://doi.org/10.5244/C.29.41
https://doi.org/10.5244/C.29.41
http://www.bmva.org/bmvc/2015/papers/paper041/index.html
http://www.bmva.org/bmvc/2015/papers/paper041/index.html
https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://doi.org/10.1109/CVPR.2014.244
https://doi.org/10.1109/CVPR.2014.244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909640
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909640
https://arxiv.org/abs/1502.00873
http://arxiv.org/abs/1502.00873
http://arxiv.org/abs/1502.00873
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
http://ieeexplore.ieee.org/document/7298594/
http://ieeexplore.ieee.org/document/7298594/

[23]

[24]

BIBLIOGRAPHY

Yaniv Taigman et al. “DeepFace: Closing the Gap to Human-
Level Performance in Face Verification”. In: IEEE, June 2014,
pp- 1701-1708. ISBN: 978-1-4799-5118-5. por: 10.1109 /CVPR.
2014 .220. URL: http: / /ieeexplore . ieee . org / Ipdocs / epic03 /
wrapper.htm?arnumber=6909616.

M. Turk and A. Pentland. “Eigenfaces for Recognition”. In: Jour-
nal of Cognitive Neuroscience 3.1 (1991), pp. 71-86. ISSN: 0898-929X.
por: 10.1162/jocn.1991.3.1.71. pmid: 23964806.

Feng Wang et al. “NormFace: L , Hypersphere Embedding for
Face Verification”. In: ACM Press, 2017, pp. 1041-1049. ISBN:
978-1-4503-4906-2. poOL: 10.1145 /3123266 .3123359. URL: http:
//dl.acm.org/citation.cfm?doid=3123266.3123359.

Li Wang and Dong-Chen He. “Texture Classification Using Tex-
ture Spectrum”. In: Pattern Recognition 23.8 (Jan. 1990), pp. 905—
910. ISSN: 00313203. DOT: 10.1016/0031-3203(90)90135-8. URL:
https://linkinghub.elsevier.com /retrieve/pii/0031320390901358.

Mei Wang and Weihong Deng. “Deep Face Recognition: A Sur-
vey”. In: (Apr. 18, 2018). arXiv: 1804.06655 [cs|. URL: http://arxiv.
org/abs/1804.06655.

Yandong Wen et al. “A Discriminative Feature Learning Ap-
proach for Deep Face Recognition”. In: Computer Vision — ECCV
2016. Ed. by Bastian Leibe et al. Vol. g911. Cham: Springer Inter-
national Publishing, 2016, pp. 499-515. ISBN: 978-3-319-46477-0
978-3-319-46478-7. por: 10.1007 /978-3-319-46478-7_31. URL:
http://link.springer.com/10.1007/978-3-319-46478-7_31.

Lior Wolf, Tal Hassner, and Itay Maoz. “Face Recognition in
Unconstrained Videos with Matched Background Similarity”.
In: IEEE, June 2011, pp. 529-534. ISBN: 978-1-4577-0394-2. DOI:
10.1109/CVPR.2011.5995566. URL: http://ieeexplore.iece.org/
document /5995566 /.

Xiang Wu et al. “A Light CNN for Deep Face Representation
with Noisy Labels”. In: (Nov. 9, 2015). arXiv: 1511.02683 [cs].
URL: http://arxiv.org/abs/1511.02683.

Ming-Hsuan Yang, D.J. Kriegman, and N. Ahuja. “Detecting
faces in images: a survey”. In: IEEE TPAMI 24.1 (2002), pp. 34—
58.

V. Yuzhikov. SmartDeblur deconvolution software. 2015. URL: http:
//smartdeblur.net.

Matthew D. Zeiler and Rob Fergus. “Visualizing and Under-
standing Convolutional Networks”. In: Computer Vision — ECCV
2014. Ed. by David Fleet et al. Vol. 8689. Cham: Springer Inter-
national Publishing, 2014, pp. 818-833. 1SBN: 978-3-319-10589-5
978-3-319-10590-1. DOL: 10.1007 /978-3-319-10590- 1 _53. URL:
http://link.springer.com/10.1007/978-3-319-10590-1_53.

39


https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909616
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909616
https://doi.org/10.1162/jocn.1991.3.1.71
23964806
https://doi.org/10.1145/3123266.3123359
http://dl.acm.org/citation.cfm?doid=3123266.3123359
http://dl.acm.org/citation.cfm?doid=3123266.3123359
https://doi.org/10.1016/0031-3203(90)90135-8
https://linkinghub.elsevier.com/retrieve/pii/0031320390901358
https://arxiv.org/abs/1804.06655
http://arxiv.org/abs/1804.06655
http://arxiv.org/abs/1804.06655
https://doi.org/10.1007/978-3-319-46478-7_31
http://link.springer.com/10.1007/978-3-319-46478-7_31
https://doi.org/10.1109/CVPR.2011.5995566
http://ieeexplore.ieee.org/document/5995566/
http://ieeexplore.ieee.org/document/5995566/
https://arxiv.org/abs/1511.02683
http://arxiv.org/abs/1511.02683
http://smartdeblur.net
http://smartdeblur.net
https://doi.org/10.1007/978-3-319-10590-1_53
http://link.springer.com/10.1007/978-3-319-10590-1_53

[33]

[34]

BIBLIOGRAPHY

C. Zhang and Z. Y. Zhang. “A Survey of Recent Advances in
Face Detection”. In: Technical Report MSR-TR-2010-66. Microsoft
Research, 2010.

Kaipeng Zhang et al. “Joint Face Detection and Alignment Using
Multitask Cascaded Convolutional Networks”. In: IEEE Signal
Processing Letters 23.10 (Oct. 2016), pp. 1499—1503. ISSN: 1070-
9908, 1558-2361. po1: 10.1109 /LSP.2016.2603342. URL: http:
/ /ieeexplore.ieee.org/document /7553523 /.

40


https://doi.org/10.1109/LSP.2016.2603342
http://ieeexplore.ieee.org/document/7553523/
http://ieeexplore.ieee.org/document/7553523/

	Introduction
	Related Work
	Eigenfaces
	Fisherfaces
	Local Binary Patterns Histograms
	DeepID 1
	Deepface
	FaceNet
	LightCNN
	Center Face/Loss
	SphereFace
	NormFace
	Summary

	Experiments
	Selected Methods
	Statistical Analysis
	Convolutional Neural Networks


	Results
	Face Verification
	Eigenface
	Fisherface
	Local Binary Patterns Histograms
	Facenet
	LightCNN
	SphereFace
	Summary

	Face Verification after Face Restoration
	Face Verification after Downsampling
	Robustness of Face Verification

	Conclusion
	Future work


