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ABSTRACT

Cellular senescence is a state of permanent cell arrest which is accompanied by multi-
ple phenotypical changes including the secretion of pro-inflammatory mediators. These
alterations have both beneficial and deleterious effects on the environment, making the
occurrence of senescence important for various biological processes and pathologies. It is
only since recently that research started to look at senescence in the CNS and several links
with neurodegenerative diseases are already being established. Senescence in astrocytes and
microglia may play an important role as their neuroinflammatory properties are known to
contribute to neurodegenerative diseases like Parkinson’s Disease. In this review, we will try
to answer what the molecular basis is behind senescence and how senescence in astrocytes
and microglia may play a role in the pathology of Parkinson’s disease, emphasizing its
contribution to neuroinflammation.
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1 Introduction

The first evidence of cellular senescence came from the cultivation experiments of Hayflick and Moorhead
in 1961 and 1965 [1, 2]. In an academic world where cells were believed to be “immortal”, Hayflick and
Moorhead proved the opposite by showing that their human diploid fibroblast stopped dividing after
creating 50 sub-cultivations. Only after decades it was discovered that the shortening of the telomeres was
responsible for this “mortality” [3]. These unexpected discoveries led to the start of a whole new field in
molecular biology and has now come to the development of new therapeutics for age-related diseases.

Initially, cellular senescence was believed to be nothing more than a stop on the cell-cycle to prevent future
damage to the DNA. Interestingly, new evidence showed that senescent cells also change their metabolic
pathways, including a key alteration in which the senescent cells starts to secrete different molecules
including cytokines, chemokines and proteinases, known as the senescence associated secretory phenotype
(SASP) [4, 5]. The SASP is capable of influencing its micro-environment by affecting neighbouring cells and
is best known for its pro-inflammatory character. Because senescent cells accumulate with age, it is proposed
that the SASP may contribute to the low-level chronic inflammation seen during ageing and can contribute
to age-related pathologies [5, 6]. Cellular senescence can be induced by a large number of stimuli including
DNA damage, oxidative/oncogenic stress and chromatin disruption rather than only by telomere attrition
[7]. Every stimulus is responsible for a different senescent phenotype and every type of cell reacts differently
as well, making the overall phenotype very heterogeneous.
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However, despite their different stimuli and reaction, senescent cells show general pathways responsible for
their phenotype. Signalling molecules from these pathways are currently being used as markers to identify
senescent cells in addition to the typical changes found in senescent cells. The identification of senescent
cells, by using these markers, showed the presence of senescence in many different cell types including
glial cells and neurons [8, 9]. These discoveries started a new chapter in senescence research focused on
the involvement of senescence in age-related neurodegeneration and is recently starting to show promising
results.

Parkinson disease (PD) is the second most common neurodegenerative disease and is characterized by a
number of symptoms including: resting tremor, slowness of movement, rigidity, postural instability and
the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) [10]. The exact
cause of PD is still unknown but is very likely linked to the aggregation of α-synuclein in the dopaminergic
neurons in the SNpc [11]. Research from the last decade showed that chronic inflammation may play a key
role in PD. There is a large amount of evidence supporting the presence of a pro-inflammatory environment
including the identification of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin
(IL)-6 and IL-1β [12]. Astrocytes and microglia are capable of secreting these cytokines and, in addition,
α-synuclein is capable of inducing this secretion [13, 14].

With the evidence of senescence present in astrocytes and microglia, and their involvement in creating a
pro-inflammatory environment in PD, new senescence research is now starting to focus on a possible role for
senescence in PD. In this review we will provide an overview of the general pathways involved in creating
the phenotype of senescent cells and provide the current evidence for senescence in astrocytes and microglia.
Next, we will discuss the role of senescent astrocytes and microglia in the PD pathology, where astrocytes
may play a major role. With this information we will try to answer whether there is a role for astrocyte and
microglia senescence in the pathology of Parkinson’s Disease, emphasizing on the possible contribution to
neuroinflammation.

2 Neuroinflammation in Parkinson’s Disease

2.1 Astrocytes

Astrocytes are the most abundant glial cells present in the central nervous system (CNS) and are involved
in many different functions [15, 16]. They guide the migration of newly developing axons by making
boundaries [17], take part in the manipulation of the blood flow to adjust for energy demand [18, 19], are
responsible for the glucose, ion, pH and neurotransmitter homeostasis [16], regulate control of synaptic
transmission and plasticity [20] and help with the formation of the blood brain barrier and synapses [20, 21].

In response to injury or disease, astrocyte change in a molecular, cellular and functional manner, a process
called astrogliosis [22, 23]. It has been proposed that they transform to either the A1 state or the A2 state. A1
is pro-inflammatory and is harmful for neurons. In contrast, A2 is an anti-inflammatory state and provides
protection for the neurons. Depending on the trigger, astrocytes, when activated, will transform to either one
of the two phenotypes. During normal ageing, despite any injury or disease, astrocytes will become reactive.
Gene expression measured in aged astrocytes showed that the astrocytes take on the pro-inflammatory
phenotype A1, especially in the striatal and hippocampal area [24]. This new phenotype has shown to induce
neuronal cell death and prevention of it proved to be neuroprotective [25].

2.1.1 Microglia

Microglia cover 10% of all glial cells in the CNS and were first believed to function solely as a defence
mechanism against injury [22, 26]. However, new findings suggest their involvement in other processes as
well, such as synaptic remodelling and the survival of cortical neurons [27, 28]. When they do not contribute
to these processes, microglia are still metabolically active. They are always scanning their environment
searching for injury or other abnormalities and will respond to such a trigger by starting to migrate to the site
of injury and by the transformation of their morphology and function [29, 30]. This is termed microgliosis
and comes with many changes including the secretion of pro-inflammatory mediators. These mediators are
meant to prevent further infection but can be toxic to their environment as well [22]. Additionally, microglia
will produce and release toxic oxygen- and nitrogen-derived products, such as superoxide and nitric oxide,
which are toxic for their surrounding cells [31].

More microglia seem to take on this active phenotype during ageing and this could lead to the development
of an inflammatory environment. Indeed, an increase in the production of pro-inflammatory cytokines
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in astrocytes is seen during ageing and microglia showed increased expression of TNF-α, IL-1β, IL-6 and
IL-10 when they were repeatedly activated with LPS [32, 33]. Furthermore, Chao et al. (1992) showed that
microglia are capable of inducing neurotoxic effects in a NO-dependent manner after being exposed to LPS
and IFN-γ. Activated microglia are capable of activating astrocytes as well. IL-1α, TNF and C1q, secreted
by microglia, transformed astrocytes to their A1 phenotype and they lost the ability to promote neuronal
survival, outgrowth and synaptogenesis and they induced neuronal death [25].

2.2 Inflammation in Parkinson’s Disease

In the last two decades, a large amount of evidence is gathered supporting the pro-inflammatory environment
in PD. In PD patients, levels of pro-inflammatory mediators such as IL-1β, IL-6, epidermal growth factor
(EGF) and TNF-α are significantly elevated in the CSF and the dopaminergic and striatal regions of the brain
[35, 36, 37]. Moreover, the receptor for TNF-α is upregulated in dopaminergic neurons in the SN, making
them more susceptible for this pro-inflammatory cytokine, and therapy with anti-inflammatory drugs seems
to decrease the risk on PD [38].

It was McGeer et al. in 1988 who for the first time proved the involvement of microglia in PD. They
found, after analysing post-mortem PD brains, an increase in activation of microglia in the SN. Following
research confirmed these findings and showed an increased production of TNF-α, IL-1β, IL6 and NO in
the activated microglia [40, 41, 42]. In addition, several toxins, who mimic symptoms of PD, act through
the activation of microglia. Neuromelanin, after injection in SN, caused degeneration of the dopaminergic
neurons and was found to be releasing NO, IL-6 and TNF-α from the microglia [43]. 1-methyl-4-fenyl-1,2,3,6-
tetrahydropyridine (MPTP), a drug that is used as a model for studying PD because of its neurodegeneration
in dopaminergic regions of the SN, also acts through the activation of microglia [44]. Lastly, the orphan
nuclear receptor Nurr1 prevents the expression or pro-inflammatory mediators in astrocytes and microglia
and, therefore, protects against the loss of dopaminergic neurons in the SN [45].

In contrast to microglia, the phenotypical changes in astrocytes are less severe. However, there is enough
evidence to support an inflammatory reaction of astrocytes in PD. In a study where α-synuclein was
overexpressed in mice, Gu et al. (2010) found evidence of astrogliosis and saw that this activation led to
an inflammatory response, the activation of microglia and neurodegeneration. In addition, another study
found increased activation of microglia and astrocytes in the SNpc of chronic Parkinsonian macaques [47].
The expression of pro-inflammatory mediators in activated astrocytes is increased as well. The activated
astrocytes in PD increase their secretion of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α [48, 49].
Lee et al. (2010) surprisingly showed that α-synuclein is capable of aggregating in astrocytes which causes the
production of IL-1α, IL-1β and IL-6 and the upregulation of the genes for TNF-α, IL-1 and IL-6. Furthermore,
this secretion has shown to contribute to the neurodegeneration in the SN [49, 51].

3 Cellular senescence

Cellular senescence is a state of permanent cell arrest and can be induced by telomere shortening [55, 56, 57],
DNA damage [58], ROS [59], oncogenic stressors [60, 61, 62], chromatin disruptions [63] and by SASP
components of other senescent cells [64]. These triggers all create a different phenotype which makes
identification of senescent cells a complex process. Besides the detrimental effects of senescent cells on the
environment, cellular senescence also supports beneficial biological processes such as wound healing and
tumour suppression [65]. Currently, multiple markers are simultaneously used to identify senescent cells,
all based on the typical changes seen in senescent cells and the signalling molecules from general molecular
pathways underlying the cell-cycle arrest or the SASP. Common markers used to identify senescent cells
include p16INK4a (hereafter p16), p53, the senescence associated β-galactosidase (SA-βgal), a flattened and
enlarged cell morphology, decreased lamin B1 expression and senescence associated heterochromatin foci
(SAHF) [66]. Box 1 shows an overview of the main characteristics of senescent cells. However, because of the
large diversity in senescence, not every characteristic is seen in a senescent cell.

It is hard to provide a general composition and size of the SASP as every trigger and every different type of
cell creates a different senescent phenotype. However, of all the cytokines expressed in the SASPs, IL-6 and
IL-8 seem to be the most abundant [67]. In general, the SASP can be subdivided into 3 categories: soluble
factors, secreted proteases, and secreted insoluble proteins/extracellular matrix components [5]. The size
of the categories depends on the trigger and type of cell, however the soluble factors do seem to cover
most components [5]. Shelton et al. (1999) were the first to identify the SASP by microarray analysis on
dermal fibroblasts, retinal pigment epithelial cells and vascular endothelial cells after repeated replication.
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They found a clear increase in the mRNA expression of proteins involved in inflammatory processes and
following research showed the presence of many other molecules including cytokines, chemokines, growth
factors, and proteases, most of them part of the soluble factors [5, 67, 69]. All of these factors are capable of
influencing biological processes in a beneficial or deleterious way and the SASP is considered to be the most
influential component of the senescent phenotype [70].

3.1 DNA damage response

While there are many different triggers capable of inducing senescence, most of them act through the DNA
damage response (DDR). The shortening of telomeres is the best known trigger for senescence and it has
been proposed that it activates the DDR by two processes. First, when a telomere is too short, it is unable to
form a T-loop causing the activation of ATM and ATR, two downstream signalling molecules of the DDR
[72, 73]. Second, when a telomere shrinks, the telomeric binding proteins Telomeric repeat-binding factor
2 (TRF2) and Protection of telomeres (POT1) decrease in concentration [71]. These proteins are normally
bound to the telomeres and inhibit the activation of ATM and ATR. However, when the telomeres become
shorter, less TRF2 and POT1 will be bound, causing the activation of the DDR [71].

Oncogenic stressors also act through the activation of the DDR. These stressors either cause a hyper-
replication phase, in which there is a high rate of mistakes in the replication of the DNA [61, 74], or will
activate p19ARF from the DDR [7]. Double strand breaks (DSBs) and single strand DNAs (ssDNAs) arise
from the mistakes made in (hyper-)replication and will initiate the onset of the DDR. In addition, DSBs and
ssDNAs also arise when damage is done to the DNA by, for example, oxidative stress. Other stressors such
as chromatin disruptions and SASP molecules act either directly on the pathways described below or will
change the expression or chromatin formation of DNA to either upregulate genes related to senescence or to
downregulate genes related to cell-cycle progression [63, 64]. Figure 1 shows a overview of the main triggers
of the DDR.

DSBs are recognized by the DNA repair complex MRN consisting of the nuclease Mre11, and the two
proteins Rad50 and Nbs1 [75]. Besides the MRN complex, additional factors are recruited to the site of DNA
damage including BRCA1 [76], p53-binding protein 53BP1 [77] and mediator of DNA-damage checkpoint
protein 1 (MDC1) (figure 1) [78]. After binding, these factors will activate ataxia telangiectasia mutated
(ATM). ssDNAs are recognized by an interaction of Tipin and the replication protein A (RPA) who together
cause the activation of ataxia telangiectasia and RAD-3 related (ATR) (figure 1 & 2) [79, 80]. ATR is especially
activated by nucleotide depletion and when the replication of the DNA is blocked [81].
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Figure 1: Overview main triggers of DDR. Telomere attrition causes the activation of the DDR when the telomere
is unable to form a T-loop or by loss of the telomere binding proteins: Telomeric repeat-binding factor 2 (TRF2) and
Protection of telomeres (POT1) [71]. Oncogenic stressors activate either p19ARF or cause a hyper-replication phase which
produces DSBs and ssDNA [61]. Chromatin disruptions affect the transcription of senescence associated genes and are
in this way capable of activating the DDR as well [63]. Additional external stressors are capable of producing DSBs
or ssDNA or will act directly on DDR components [64]. There are many more ways to induce the DDR by chromatin
disruption and external stressors than those given in this figure.

3.1.1 Regulation cell cycle arrest

The first reaction of the DDR is to phosphorylate the histone H2AX to provide chromatin changes necessary
for the recovery of the DNA [86, 87]. The second reaction is to stop the cell-cycle, this is the first and most
prominent phenotypical change in the senescent cells. ATM and ATR initiate the arrest by phosphorylating
checkpoint kinase (CHK) 1, CHK2 and tumor protein p53 [88].

Once CHK1 is activated, it will act on its substrates important for the cell-cycle control such as CDC25s [88].
Activated CHK2 initiates many cell-cycle related processes including the phosphorylation of p53 [81, 89].
P53 will continue with downstream signaling to eventually initiate the senescent phenotype. Besides CHK2
and ATM/ATR from the DDR, the oncogene/p19ARF pathway is also capable of phosphorylating p53 [7, 90].
p19ARF is mainly activated by stressors such as oncogenes but DSBs are capable of doing this as well [91, 92].
When activated, p19ARF is capable of stabilizing and inhibiting the human double minute 2 homolog (HDM2)
[93]. Normally, HDM2 is responsible for the degradation and the inhibition of p53 [94, 95]. However, when
HDM2 is inhibited, more p53 will be activated and available. Subsequently, p53 is capable of binding to the
promoter of the cyclin-dependent kinase inhibitor 1 p21Cip1 (hereafter p21) [83, 96].

P21, the cyclin-dependent kinase inhibitor p16INK4a (hereafter p16) and CDC25s alter the activity of cyclin-
dependent kinases (CDKs). These kinases are important for the progression of the cell-cycle and inhibition
of them will stop cell proliferation [97]. P21 is capable of inhibiting the CDKs 2, 3, 4 and 6 but seems to
prefer inhibiting CDK2 [98, 99]. CDC25, normally activates CDKs, however, because of the inhibition of
CDC25 by p53, this is prevented [79]. The last activator, p16, is activated by several triggers like oncogenes
and DNA damage but in a more complex manner involving epigenetic control and transcription factors.
One important activation mechanism is by the inhibition of Polycomb group repressor complexes [100, 101].
In general, p16 is activated by the inactivation of its suppressors [102]. Unlike p21, p16 does not bind to
CDK2 & 3 but only binds to the CDKs 4 & 6 [103]. Additionally, the activation of p16 seems to appear later
in the onset of senescence probably through a regulatory mechanism involving the demethylation of H3K27
[103, 104].
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Figure 2: Molecular Pathway - from DNA damage response to cell-cycle arrest. Most triggers causing senescence can
be traced back to the activation of the DDR. The DDR is initiated by a response to a single strand DNA (ssDNA) or a
double strand break (DSB). After this, ATR or ATM is activated causing the activation of different pathways. Oncogenic
stressors cause ssDNA and DSB as well, by inducing hyper-replication, but are also capable of activating p19ARF [7].
After this, a cascade of reactions occur, all eventually leading to the inhibition of the hyperphosphorylation of pRB, p107
and p130 [82, 83]. The hypophosphorylated state of pRB prevents E2F transcription factors to start the transcription of
cell-cycle related genes [84]. p107 and p130, in their hypophosphorylated form, activate the DREAM complex which will
prevent transcription factors to bind to the promoter of E2F and CHR elements, both important for the progression of the
cell cycle [82]. In addition, activation of the DREAM complex also leads to modifications in the chromatin structure [85].
The lines towards p16INK4a are dotted to emphasize the underlying indirect complex activation which is not included in
this figure. Colours are used to provide contrast, not to highlight different functions or processes.

The inhibition of the CDKs prevents the hyperphosphorylation of the retino blastoma proteins (pRB),
retinoblastoma-like protein 1 (p107) and retinoblastoma-like protein 2 (p130) [82, 83]. The hypo-
phosphorylated pRB will bind to E2F and prevents its binding to the promoter of cell-cycle promoting
genes. P107 and p130, in their hypo-phosphorylated state, bind to the FOXM1-MMB complex to form
the DREAM complex [83, 84, 96]. This complex is capable of binding to the promoter of E2F and CHR
elements in the DNA and prevents expression of genes important for the cell proliferation by the blocking of
the promoter and the formation of heterochromatin structures [96, 105, 106]. This is one of the pathways
responsible for the formation of the SAHFs [85]. Figure 2 provides a summary of the initiation of cell-cycle
arrest by the DDR.

3.1.2 Regulation of the senescence associated secretory phenotype (SASP)

The regulation of the cell-cycle arrest is much better understood than the pathways underlying the SASP.
Most evidence points towards two major transcription regulators responsible for the expression of the SASP:
the CCAT/enhancer binding protein β (C/EBPβ) and NF-κB [107].

NF-κB regulates the expression of many, but not all, pro-inflammatory genes of the SASP [108, 109]. The
DDR is capable of regulating NF-κB mainly by ATM. Silencing of ATR only showed a small decrease in
the expression of the SASP whereas the effect of ATM was large [110]. ATM has been proposed to regulate
NF-κB in different ways. For example, ATM is capable of phosphorylating the protein NEMO, a regulatory
subunit of the IKK complex. As a results IKKα/β will inhibit the inhibiting subunit of NF-κB called IkB
[111]. ATM also showed to be an activator of p38 mitogen-activated protein kinases (P38MAPK) [112, 113].
P38MAPK has shown to activate NF-κB by causing p300, a coactivator of NF-κB, to acetylate the subunit
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p65 of NF-κB [108, 114]. In addition, P38MAPK was able to activate p16, p53 and pRB, and was directly
activated by telomere shortening and other cellular stressors [115]. Thus, p38MAPK seems to be more than
only the activator of the SASP in senescent cells.

The DDR can’t be the only regulator behind the development of the SASP. While the cell-cycle arrest occurs
directly after the onset of senescence, the SASP only reveals itself after a couple of days [67]. Therefore,
other pathways have to be involved. IL-1α is a mediator which appears to be important. IL-1α is part of the
SASP and is capable of activating NF-κB by acting on IL-6 and IL-8 [116]. Furthermore, IL-6 and IL-8 are
part of the SASP creating a positive feedback loop important for maintaining the expression of the SASP
[5, 67, 69]. IL-1α creates another positive feedback loop because its expression is elevated by mTOR [117]. In
many senescent cells the levels of mitochondria are increased as a result of the senescent phenotype [118],
causing an increase in the level of mTOR [119]. mTOR acts through IL-1α to induce senescence and therefore
increases the number of mitochondria as well. This positive feedback loop may play a part in maintaining
the senescent phenotype as well.

IL-1α, IL-6 and IL-8 also influence the activity of C/EBPβ [69, 116]. C/EBPβ is part of the basis leucine zipper
superfamily where only the β isoform is capable of inducing senescence [107]. Overexpression of C/EBPβ is
sufficient to induce senescence and it is very likely doing this by its influence on the IL-6 and IL-8 expression
[69]. Especially oncogenes seem to influence the SASP by C/EBPβ. Several studies have shown a strong
increase of C/EBPβ when senescence was induced by oncogenes [120, 121].

3.2 Chromatin modification

Chromatin modification also play an important part in the onset of senescence and the SASP. Shah et al.
(2013) showed that H3K27 demethylation affects 65.1% of the SASP related genes in IMR90 cells, a cell line
from the female foetal lung. Genes for Matrix metallopeptidases (MMPs), who are part of the SASP and
capable of degrading extracellular matrix proteins, were shown to be the most affected but other molecules
from the SASP were influenced as well [122]. They also showed that the lamin B1 down expression, often
seen in senescent cells, is probably the reason behind this demethylation and causes chromatin changes
which allows the transcription of the SASP genes. Aird et al. (2016) showed another mediator for chromatin
modification, high mobility group box 2 (HMGB2). HMGB2 regulates the expression of SASP genes such as
MMPs, chemokines and cytokines and is doing this by preventing SAHFs to spread into SASP gene loci.
During senescence, HMGB2 is upregulated and loss of the protein blunts the expression of SASP genes.
However, the cell-cycle arrest maintains indicating a specific role for this protein in the regulation of the
SASP [123]. In addition, the mediators of the DDR are capable of altering the chromatin structure as well by
activating chromatin-modifying proteins and by preventing the hyperphosphorylation of pRB [124, 125].

4 Senescence in astrocytes

It was Evans et al. (2003) who for the first time really showed proof of senescence in astrocytes. Their cultured
primary human astrocytes stopped proliferating and showed elevated levels of p21 and SA-βgal after 20
passages. They investigated whether the DDR was responsible for the initiation of senescence and found
that after abrogation of p53 and p16, the life-span increased, indicating an important role for both mediators
in inducing senescence [126]. Pertusa et al. (2007) showed that after 90 days, their cortical astrocytes isolated
from rats started to stain positive for SA-βgal and, more importantly, these astrocytes showed an inability
to maintain neuronal survival. They found an upregulation of glutamate uptake, decreased mitochondrial
activity, the production of ROS and elevated iNOS levels in the astrocytes [127]. Other research showed that
senescence is initiated in astrocytes by extracellular stressors as well. In a study looking at the effect of H2O2
and the proteasome inhibitor lactacytstin-2 on astrocytes, they discovered that 90% of all the exposed cells
showed an enlarged morphology and increased expression of SA-βgal. Furthermore, these changes were
accompanied by elevated expression of p21, p16, p53 and SAHF [128].

Research concerning astrocyte senescence only just started to look at their secreted phenotype but is already
showing evidence of its contribution to inflammation. The secretory phenotype of astrocytes from Wistar
rats was examined by exposing them to H2O2 and proteasome inhibitors in vitro. They found that mainly
the chemokines GROα, IP-10, MCP-1α, MIP-2 and RANTES were secreted by the senescent astrocytes.
These chemokines are capable of inducing the clearence of cells by activating the immune system [129].
Surprisingly, they found little expression of IL-6 and IL-8 compared to the SASP of fibroblasts. On the
contrary, the cytokine IL-1α, which is capable of activating IL-6 and IL-8, showed a higher expression [129].
Crowe et al. (2016) investigated changes in the transcriptome in, by oxidative stress induced, senescent
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Figure 3: The current evidence for senescence in astrocytes and microglia. Different senescence stressors are capable
of inducing senescence. Most evidence comes from cultured cells where cells are exposed to stressors such as repeated
replication, H2O2 and proteasome inhibitors.

astrocytes. Pro-inflammatory genes were found to be upregulated, including NF-κB, while genes involved
in neuronal development and differentiation were downregulated [130]. These studies indicate that when an
astrocyte becomes senescent, its phenotype becomes inflammatory. Indeed, the pro-inflammatory genes who
are expressed in active A1 aged-astrocytes show overlap with the genes expressed in the SASP of senescent
astrocytes [24].

P38MAPK seems to play an important role in initiating astrocyte senescence. In human post-mortem
Alzheimer’s Disease brains the senescent astrocytes showed a strong upregulation of P38MAPK [131].
Ginsenoside F1, an inhibitor of P38MAPK and NF-κB, caused the inhibition of the SASP, indicating an
important role for NF-κB as well [132]. Two other studies where ammonia was used to induce senescence
revealed a mechanism involving P38MAPK [133, 134]. In addition, one of them showed a depletion of
senescence when P38MAPK was inhibited [133]. Lastly, a logical model created of the most prominent
pathways known behind the SASP showed P38MAPK as the most important mediator in the onset of the
SASP [135].

5 Senescence in microglia

Current research on microglia senescence is far less extensive than the research focused on astrocyte senes-
cence. In their culture experiments, Flanary & Streit (2004) were the first to describe senescence in microglia.
After analyzing the telomeres in microglia and astrocytes, they found telomere shortening in microglia but,
surprisingly, not in astrocytes [136]. In contrast to the findings of Flanary & Streit, Stojiljkovic et al. (2019)
found no telomere shortening or other sign for senescence in the microglia of murine aged brains (24 months).
The only senescent marker increased in the microglia was p16 [137]. The low turnover rate of microglia
relative to the short life span of mice may be responsible for this discrepancy [138]. The in vitro experiments
performed by Stojiljkovic et al. (2019) showed, however, clear indications of senescence in microglia. In the
later passages of the experiments, the microglia cells showed a 9-fold increase of the expression of SA-βgal,
chemokines related to inflammation and mediators of the p53/p21 pathway [137]. In a study where BV2
microglia were repeatedly activated by LPS, cell-cycle arrest was induced at the G1 phase, typical for cellular
senescence [74, 139]. Additionally, the levels of the senescent markers p53, SA-βgal and SAHF were elevated
in the microglia [139]. In order to understand the role of senescence in the CNS, more research is required
on microglia senescence. The current evidence on senescence in microglia is minimal and not sufficient to
conclude their presence in the aged brain. However, their influence on neurodegenerative diseases may be
critical because of their normal functions and their potential to create an inflammatory environment [138].
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6 Astrocyte and microglia senescence in PD

Because of the detrimental effects of the senescent cells to their environment, senescence has been linked
to numerous pathologies, including age-related neurodegenerative diseases. One of the ideas is that the
pro-inflammatory component of the SASP enhances the chronic neuroinflammation, which is believed to be
deleterious in these disorders. Moreover, senescent cells accumulate over time making the effect of senescent
cells more profound in age-related disorders [6]. Indeed, astrocyte and microglia senescence has already been
identified in, respectively, Alzheimer’s disease and Amyotrophic lateral sclerosis and removal of senescent
cells attenuated the symptoms in both [131, 140]. These findings suggest a role for astrocyte and microglia
senescence in PD as well and research into this may lead to novel therapeutic options for PD.

The first signs of senescence in PD came from the identification of elevated levels of pRB in the SN [141]
and SA-βgal in the CSF [142]. However, in contrast to these findings, the meta-analysis performed by Forere
et al. (2016) showed no signs of telomere attrition in post-mortem PD brains, indicating the absence of
senescence. This does not have to imply anything as the onset of senescence is not triggered by the average
telomere length but by the presence of only a few shortened telomeres [73, 144]. Furthermore, as shown
before, senescence can be induced by numerous triggers and is not solely dependent on the shortening of
telomeres.

Additional evidence for senescence in PD came from studies exploring the mechanism behind external
triggers causing PD, such as 2,3,7,8 – tetrachlorodibenzodioxin (TCDD). TCDD is an environmental contami-
nant which is believed to be a cause for PD [145]. Nie et al. (2015) investigated the mechanism behind this
toxin and identified astrocyte senescence as a possible target. Astrocytes exposed to TCDD showed elevated
markers of SA-βgal, p16 and p21 [146]. In addition, they discovered cytoskeletal remodelling in the cells and
identified WNT/β-catenin and ROS signalling as underlying regulators [146]. Lee et al. (2010) investigated
the role of senescence by inhibiting glutathione (GSH) biosynthesis with d,l-buthionin-S,R-sufloximine
(BSO). The inhibition of GSH causes oxidative stress which is known as a contributor to the pathogenesis
of PD [147]. As a response to the inhibition, they found astrocytes and microglia who were triggered to
release TNF-α, IL-6 and nitrite ions. Moreover, the release of these molecules was related to the activation of
P38MAPK and NF-κB [50]. Although they did not use the conventional markers for senescence, the presence
of P38MAPK and NF-κB activation points towards a role of senescence in this process.

The first and only study to really focus on the role of senescence in PD in vivo was performed by Chinta
et al. (2018). They provided the first direct evidence of astrocyte senescence in PD. In the analysis of the
SNpc from post-mortem PD brains, they discovered elevated levels of p16, IL-6, IL-1α, IL-8 and MMP and
decreased levels of lamin B1, all indicators of senescence [148]. In addition, they looked at the effect of
Paraquat (PQ) on astrocytes, a neurotoxin associated with an increased risk on PD. They discovered a stop
on astrocyte proliferation after astrocytes were exposed PQ in vitro and found increased levels of p16, IL-6,
SA-βgal and 53BP1 [148]. The astrocytes who stopped proliferating also reduced the viability of the neurons
and suppressed the NPC proliferation and migration. Lastly, PQ was given to p16-3MR mice, an animal
model capable of selective depletion of senescent cells [149]. After the removal of the senescent cells the
neurogenesis went up, the number of dopaminergic neurons increased and the locomotor function of the
mice was improved [148]. Together, these data clearly indicate a detrimental effect of astrocyte senescence in
the PD pathology and create the suggestion for a possible new therapeutic intervention for PD by targeting
the senescent cells.

7 Conclusions & future perspectives

The current evidence on astrocyte and microglia senescence in PD is scarce but shows promising results. In
vitro research on senescence in astrocytes and microglia shows that both cell types are capable of becoming
senescent, however, the extent of their prevalence in vivo is still largely undiscovered. The conclusions drawn
from senescent research in vitro are hard to translate to in vivo as astrocytes and microglia are subjected
to multiple stressors simultaneously, in contrast to cultured cells who are only subjected to one or two.
Therefore, more in vivo evidence is definitely needed to confirm astrocyte and microglia senescence as a
component of ageing and disease.

Currently, most research on senescence in glial cells is performed on astrocytes as it is believed that this glial
cell will present the most profound effect of senescence because of its many homeostatic functions. However,
microglia, as stated before, play several homeostatic functions as well and are related to several pathologies,
including PD, making their senescence also of importance. More research is definitely required on both to
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discover their molecular mechanism behind senescence and to further examine their presence and influence.
When we understand the mechanisms underlying the senescent phenotype in these cells, we could possibly
target molecules from the pathways to reduce the pro-inflammatory component or other detrimental effects
of senescence. Additionally, an interesting notion proposed by Cohen and Torres is that many studies which
examined the role of reactive astrocytes in biological processes may actually have been looking at senescent
astrocytes instead [150]. The similarities between the phenotypes of reactive and senescent astrocytes, such
as the enlarged morphology and the secreted pro-inflammatory mediators, create the possibility that without
clear identification, the studies actually looked at senescence [24, 128]. Therefore, further elucidation of their
prevalence may be of importance for a better understanding of biological processes.

Whether the senescence of astrocytes and microglia plays a role in PD needs to be further investigated but
for now their contribution, especially from senescent astrocytes, seems to be there. The PD-inducing toxins,
contributing to the initiation of senescence in astrocytes and microglia, and the presence of elevated senescent
markers in PD patients shows evidence of a role of astrocyte and microglia senescence in PD. In addition,
senescent astrocytes and microglia investigated without the presence of a pathology show their capability
of producing pro-inflammatory molecules and could therefore contribute to the neuroinflammation in PD.
Chinta et al. (2018) were the first to produce in vivo evidence of astrocyte senescence in PD and, more
importantly, gave proof for a contribution of senescence to the pathology. It would be interesting to further
discover why exactly the senescent cells were detrimental in this model and whether senescent microglia
occur in PD as well.

Future research should aim to further clarify the specific role of astrocyte and microglia senescence in
PD. PQ is one of the many models to study PD and is not a perfect mimic of the disease [151]. To really
confirm the influence of astrocyte and microglia senescence in PD, other PD models have to be applied
to senescent animal models such as INK-ATTAC and p16-3MR. These transgenic models are capable of
removing senescent cells by targeting p16 promoting cells and are, therefore, very useful in studying the
role of senescence [149, 152]. However, p16 expression is not limited to senescent cells and not all senescent
cells promote p16 [137, 153]. In addition, they don’t provide specificity for types of cells. Novel methods
capable of removing specific senescent cell types would allow to identify which senescent types contribute
to the pathology, and to what extent. This discrimination between cell types could benefit the development
of senescence removal drugs (senolytics) as well, as they currently also remove the beneficial effects of
senescent cells such as tumour suppression.
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