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Abstract

As a result of the gas extraction in the northern part of the Nether-

lands many earthquakes have occurred. We argue that in order to get

a better understanding of the earthquake magnitudes intensities and

their occurrence rates, modelling techniques using Extreme Value The-

ory are required. We present estimates and confidence intervals for the

expected maximum magnitudes using various EVT based techniques.

Moreover, we compare the di↵erent results we obtain and argue which

is the most reliable one.
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1 Introduction

General model estimation in its simplest form requires a basic knowledge
of statistics. These models are helpful to gain insight in the data and the
process of which the data is generated from. Moreover, it helps us to ex-
trapolate to some extent and predict future events. However, the problem
with this approach is that the most important part of the data, the extremes,
also widely known as outliers, are either being neglected or left out of the
final analysis. These outliers could actually be considered the most impor-
tant part of the data. The questions one should ask, would be; Why do the
outliers not behave similarly to the rest of the data? What is the impact of
these extreme values? Can we predict these extreme values? In most cases,
luckily, extreme values do not have a significant e↵ect on the process they are
obtained from. They occur every so often and their e↵ects fade away without
much distress, leaving no mess behind. However, this cannot be said of every
process. When predicting the financial returns in, for example, insurance
companies, stock portfolios and other financial settings the extreme events
tend to get significantly more attention. The reason is that the consequences
of the risks may consist of going bankrupt, or even worse, as we saw in the
setting of 2008, invoking a financial crisis a↵ecting the whole economy and
thus every individual. Another field in which the extreme events occur and
have a non-negligible e↵ect is in the setting of natural catastrophes. Mother
nature has a tendency to not abide to our rules and be very unforgiving.
Having a major e↵ect on our surroundings and life in general, natural catas-
trophes have resulted in over 50.000 deaths annually on a global level since
the beginning of the millennium and over a few hundred thousand annu-
ally in the preceding century [1]. These natural catastrophes include storms,
floods, earthquakes, and droughts. The prediction of such extreme events
could therefore benefit our whole society.

In this research our goal is to compute a maximal expected magnitude

using the available earthquake data obtained from the Groningen

gas fields between 1986 and 2019 provided by the KNMI by applying
Extreme Value theory based techniques and comparing the outcomes with
old researches.
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2 Problem Formulation

2.1 Modelling of Natural Hazards

The modelling of natural phenomenona using EVT has received much at-
tention. To model hurricane speeds, Coles and Casson [6] have worked with
a re-parameterisation of the Generalized Pareto distribution. This allowed
them to compare models with di↵erent thresholds. Here they have used
the method of maximum likelihood to estimate the parameters. They state
that reasons to use this method of inference include its asymptotic e�ciency
and it allows them to specify the estimation uncertainty. However, since
the amount of data used is relatively small this would result in very large
confidence intervals for the parameters. Another important reason to use
the method of maximum likelihood is the possibility in developing a spatial
model of the variability of the hurricanes. This allows them to observe if any
regions are at more risk than others.

In ’Fighting the arch-enemy with mathematics’ [7] de Haan utilizes multiple
di↵erent techniques to estimate the necessary height of the dutch dikes to
lower the probability of a flood to approximately one in 10000. Among other
techniques, he makes use of the Block Maximum method and the Peaks Over
Threshold method. For both methods he uses the maximum likelihood as
a method of estimation and inference. The other techniques being used are
derivations from the EVT and are described in the paper, for even more de-
tailed derivations see de Haan and Ferreira [8]. He also mentions that using
the BM method information is lost, however an advantage is that no selection
procedure is necessary.

2.2 Modelling of Earthquake Magnitudes

The biggest natural gas reserve of Europe is located in the most northern
part of the Netherlands. The extraction of this gas began in 1963 and most of
it has been extracted since then. A consequence of the extraction of this huge
gas reserve are induced earthquakes [10]. These earthquakes occur frequently
with mostly low magnitudes. However, from the presented data it follows
that the number of occurrences of earthquakes have increased. Moreover, a
number of earthquakes have occurred with a magnitude of approximately 3.5
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on the Richter scale. Even though these magnitudes are not catastrophic,
damage is done to surrounding civilian owned properties, damage that has
to be compensated. In order to quantify the risks that are paired with the
gas extraction we need a reliable model to estimate the expected intensity
and frequency of these induced earthquakes.

Methods on modelling of earthquakes can usually be divided into two dif-
ferent main categories. These two methods consist either of a deterministic
basis or a probabilistic basis. The deterministic approach most often applied
is based on empirical relationships between the magnitude and multiple ge-
ological parameters. Fault parameters which are important to earthquake
hazard analysis include; rupture length, downdip rupture width and rupture
area [15]. These methods are developed for di↵erent seismic areas and di↵er-
ent faults, dependent on the geological structures and positions of the regions.
However, many more parameters are being used in the prediction procedure.
In a significant amount of cases, it is therefore true that the result of any
deterministic procedure is very uncertain. Kijko and Graham [12] claim that
this uncertainty can even reach a value of up to one unit on the Richter scale.

The value of the maximum regional earthquake magnitude, can also be es-
timated based on historical seismological data of a certain area by the use
of appropriate statistical estimation procedures. Many studies have been
dedicated to the estimation of this parameter (Kijko and Graham [12]; Pis-
arenko et al. [12]; Raschke [13]; Beirlant et al. [3]). In order to estimate this
maximummagnitude we will have to estimate the tails of a fitted distribution.

In our research we will focus on probabilistic methods. In particular, methods
using main ideas from Extreme Value Theory will be applied and evaluated.
The methods being used in previous researches are not always using EVT
based analysis. However, in this research we have the aim to determine which
EVT method is the most reliable method. This will allow us to make a com-
parison between our results and the results of previous researches based on
EVT.
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3 Tail Modelling Theory

Outliers in data modelling become important if the risks are of an extreme
type, resulting in extreme e↵ects. The extreme events occur with very low
probability and are located in the most right, or respectively left, part of the
tail of the probability distribution. Often, the extreme events in the right tail
are the events of interest. These risks have led to the extensive research on
the prediction of non-negligible extreme events or catastrophes, also called
black swan events by the writer Nassim N. Taleb [14]. Through extensive
research, many methods have been developed to estimate these events, with
the main focus on the estimation of the tails. The general consensus re-
garding these tails, also called fat-tails due to their properties, is that they
follow a di↵erent distribution and are thus modeled wrong initially. One of
the popular methods to evaluate the tails of a distribution is by means of
Extreme Value Theory (EVT). This has been developed as early as in the
1950’s, but has had a huge development recently due to the introduction of
fast computers, allowing for advanced numerical methods and computations.

The classical EVT in its general form focuses on the statistical behaviour
of

Mn = max{X1, X2, . . . , Xn},

assuming that X1, X2, . . . , Xn consists of a sequence of independent random
variables having a common distribution function F [5]. Here the Xi, 1 
i  n, usually represent the monthly, yearly or other time based values of a
certain process in which we are interested. The value Mn is the maximum
value of the sequence, subject to the time interval chosen. Now, assuming
the distribution function F is unknown, a distribution function F

n that fits
the maximum values needs to be found. This follows the same analogy as
the central limit theory, but then for extreme values. However, a degenerate
limit is encountered in the asymptotic behaviour of the density function.
This di�culty is avoided by a linear re-normalization of the variable Mn,
given by

M
⇤
n =

Mn � bn

an
,

for sequences of constants {an > 0} and {bn}. This stabilizes the location and
the scale of M⇤

n as n increases. Therefore, instead of the limiting distribution
of Mn, the EVT needs to find the limit distributions of M⇤

n with the corre-
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sponding values of {an > 0} and {bn} [5]. If the appropriate sequences for
{an > 0} and {bn} can be determined such that Mn stabilizes then the limit
distributions to which M

⇤
n can belong must be one of the Gumbel, Fréchet

or Weibull families, each with di↵erent parameters. Given by the Extremal
Types theorem [5].

Theorem 1. If there exist sequences of constants {an > 0} and {bn} such
that

Pr{(Mn � bn)/an  z} ! G(z) as n ! 1,

where G is a non-degenerate distribution function, then G belongs to one of
the following families:

I(Gumbel) : G(z) = exp

⇢
� exp


�
✓
z � b

a

◆��
, �1 < z < 1

II(Fréchet) : G(z) =

(
0, z  b,

exp
�
�
�
z�b
a

��↵ 
, z > b

III(Weibull) : G(z) =

(
exp

�
�
⇥
�
�
z�b
a

�↵⇤ 
, z < b

1, z � b,

for parameters a > 0, b and, in the case of families II and III, ↵ > 0.

3.1 Generalized Extreme Value distribution (GEVD)

Determining which one of these families has the best fit is a tedious job with
each of them having di↵erent properties and tail behaviour causing problems
if the wrong one is chosen. Combining these three families into one gives rise
to the Generalized Extreme Value family of distributions (GEVD). This
distribution is given by theorem 3.1.1 in [5].

Theorem 2. If there exist sequences of constants {an > 0} and {bn} such
that

Pr{(Mn � bn)/an  z} ! G(z) as n ! 1

for a non-degenerate distribution function G, then G is a member of the
GEVD family

G(z) = exp

⇢
�

1 + ⇠

✓
z � µ

�

◆��1/⇠�
,
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which has three parameters, namely: a location parameter µ, a scale pa-
rameter � and a shape parameter ⇠. The shape parameter ⇠ is also widely
known as the tail index [5]. This combination makes fitting of the data eas-
ier. Instead of analyzing the data and making a choice on which of the three
distributions should be chosen, the data can be fitted immediately using the
GEVD. It should be noted that if the shape parameter ⇠ < 0 the distribution
is bounded and a computable maximum value exists. This is not true for
all other values of the shape parameter, resulting in unbounded distributions.

The GEVD makes use of a model for the distribution of block maxima. The
method of block maxima cuts the data in blocks of equal length. Each block
delivers its maximum value and the set of these maxima is then used in the
prediction of the distribution of the extreme values. However, the size of
each block is important. Small blocks may not give a good representation
because of seasonality or trends in time series data resulting in high bias.
Large blocks require much data and leave us with only a few block maxima
and hence more variance. Therefore, the size of the blocks is a trade-o↵
between bias and variance and one has to choose the size carefully keeping
the data structures in mind.

3.2 Generalized Pareto distribution (GPD)

As discussed, the method of block maxima uses the highest value from each
block. However, in the case of some blocks having multiple high values while
others do not have any, important values might not be used in the analysis.
This is a waste of useful information in determining the distribution of these
high values. In order to circumvent this problem, one could set a certain
high value and regard all of the observations exceeding this threshold as
extreme values. This will make sure that all of the extremes will be used
in the analysis. This gives rise to the Peaks over Thresholds method, which
estimates the parameters of the tail distribution using all of the exceedances
over a set threshold. Again, there is a trade-o↵ between variance and bias
in setting the threshold. Setting it too low, will result in observations being
evaluated which are not at all extreme. Setting it too high, will leave us with
not a su�cient amount of observations to make proper inferences about the
parent distribution. The distribution of these exceedances is related to the
GEV distribution, its main result is captured in the next theorem.
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Theorem 3. Let X1, X2, . . . be a sequence of independent random variables
with common distribution function F , and let

Mn = max{X1, . . . , Xn}.

Denote an arbitrary term in the Xi sequence by X, and suppose that F sat-
isfies theorem 3.1.1 (or Theorem 1 as stated previously), so that for
large n,

Pr{Mn  z} ⇡ G(z)

where

G(z) = exp

⇢
�

1 + ⇠

✓
z � µ

�

◆��1/⇠�

for some µ, � > 0 and ⇠. Then, for large enough u, the distribution function
of (X � u), conditional on X > u, is approximately

H(y) = 1�
✓
1 +

⇠y

�̃

◆�1/⇠

defined on {y : y > 0 and (1 + ⇠y/�̃) > 0}, where

�̃ = � + ⇠(u� µ).

The family of distributions defined by H is called the Generalized Pareto

Family. For more details on the derivation and properties of this distribution
the reader is referred to the literature [5]. It follows again that only if the
shape parameter ⇠ < 0, the distribution is bounded and thus a maximum
expected value can be computed.
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4 Parameter Estimation Theory

There exist multiple methods to estimate the parameters in the extreme value
models. Common procedures include; estimation of the parameters through
order statistics, moment-based techniques and likelihood based methods.
However, the likelihood based techniques are very attractive [5]. Due to
its adaptability and statistical properties.

The second method that will be used during this research is the L-moments
method. The L-moments method uses linear combinations of order statis-
tics in order to estimate the parameters. The theoretical background of this
method is researched by Hosking [11]. This method has not yet been used
to estimate the parameters of the GEVD and the GPD in the Groningen
case. It is even claimed that estimates obtained through L-moments from
small samples are sometimes more accurate than those obtained through
MLE [11]. Therefore, it is of interest to compare the obtained estimates with
those obtained through Maximum likelihood estimation.

4.1 Maximum Likelihood estimation: GEVD

The MLE method assumes that the observations are independent and come
from the same GEVD distribution. In order to estimate the three parameters
of the GEVD from theorem 2, the log-likelihood of the distribution distin-
guishes between the cases with shape parameter ⇠ = 0 and ⇠ 6= 0. In the
first case the GEVD has the Gumbel limit which leads to the log-likelihood

`(µ, �) = �m log � �
mX

i=1

⇣
zi � µ

�

⌘
�

mX

i=1

exp
n
�
⇣
zi � µ

�

⌘o
.

For shape ⇠ 6= 0 the following log-likelihood is obtained:

`(µ, �, ⇠) = �m log ��(1+1/⇠)
mX

i=1

log
h
1+⇠

⇣
zi � µ

�

⌘i
�

mX

i=1

h
1+⇠

⇣
zi � µ

�

⌘i�1/⇠

,

if

1 + ⇠
�zi � µ

�

�
> 0, for i = 1, . . . ,m.
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Maximizing these functions in each case with respect to the parameters yields
the estimators of the GEVD. Moreover, during this process the information
matrix is easily obtained. Taking the inverse of the information matrix and
evaluating it at the obtained estimates yields the variance co-variance matrix.

4.2 Maximum Likelihood estimation: GPD

Before it is possible to estimate the parameters of the GPD, a suitable thresh-
old has to be set. Assume a suitable threshold has been determined and
denote it by u. Denote by y1, . . . , yk the k excesses over this threshold u.
Then for ⇠ 6= 0 the log-likelihood function of the GPD from theorem 3, is
given by

`(�, ⇠) = �k log � � (1 + 1/⇠)
kX

i=1

log(1 + ⇠yi/�), (1)

if,

(1 + ⇠yi/�) > 0 for i = 1, . . . , k. Otherwise `(�, ⇠) = �1.

If our shape parameter takes on the value ⇠ = 0, then the distribution is
unbounded. The log-likelihood of the GPD function for ⇠ = 0 is then given
by

`(�) = �k log � � �
�1

kX

i=1

yi. (2)

Maximizing these functions again yield the estimates of the parameters.
Moreover, the mean and variance of these estimators are obtained through
the same method as before.

4.3 L-moments method: GEVD

If X is a real-valued random variable then for a sample of size n drawn from
the distribution of X the L-moments of X are given by

�r = r
�1

r�1X

k=0

(�1)k
✓
r � 1

k

◆
EXr�k,r, r = 1, 2, . . . (3)

Where Xr�k, r are the order statistics X1,n  X2,n  . . .  Xn,n and EXr�k,r

is the expected value of Xr�k,r.
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The values of the di↵erent �r are obtained through the R package Lmoments.
The moments relate to the parameters of the GEVD through the following
equations

�1 = µ� �

⇠
(1� �(1� ⇠)), (4)

�2 =
��

⇠
(1� 2⇠)�(1� ⇠), (5)

⌧3 =
�3

�2
= 2

1� 3⇠

1� 2⇠
� 3. (6)

Where � is the Gamma function. Note that (6) is not numerically solvable,
therefore using the R package RootSolve a Newton method is required to
obtain the solution for the shape parameter ⇠. Substituting the obtained
results in (5) and subsequently in (4) yields all of the parameter estimates.
Again the mean of the parameters is equal to their estimated value. However,
in order to obtain the variance co-variance matrix a transformation has to
be made with respect to the relations above. First, each parameter has to
be written in terms of �i for 1  i  3. Thereafter, using the delta method,
the error of the estimated shape parameter is obtained by

Var(⇠̂) ⇡ r⇠
T
Vr⇠ (7)

where,

r⇠
T =


@⇠

@�1
,
@⇠

@�2
,
@⇠

@�3

�
(8)

and V the variance co-variance matrix of �i for 1  i  3, which is obtained
through the R package Lmoments. Going through the same steps for the loca-
tion and scale parameters, the error estimates for the respective parameters
are obtained. For a more detailed look into the theory behind the L-moments
and its derivations the reader is referred to the literature [11].
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4.4 L-moments method: GPD

The moments relate to the parameters of the GPD through the following
equations:

�2 =
�

(1� ⇠)(2� ⇠)
, (9)

⌧3 =
�3

�2
=

1 + ⇠

3� ⇠
. (10)

Since the values of �r and its variance co-variance matrix are obtained by the
R package Lmoments, (10) is numerically solvable. Substituting the obtained
estimate in (9) yields the required parameter estimates. Writing the param-
eters as functions of the L-moment values allows us to calculate the errors
using the Delta Method, using the same reasoning as in the previous section.
Note that the variance co-variance matrix for the L-moment estimators is
readily obtained through the Lmoments package in R. Moreover, the R pack-
age RootSolve is used to calculate the required gradients for each parameter
as in (8).
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5 Data Exploration

The data set contains 1606 observations as of may 2019. The events are
collected by the KNMI since 1986 [2]. However, between 1986 and 1992 only
a few observations are available. These observations are mostly of earth-
quakes with magnitude above 2.0 on the Richter scale. This is in line with
the literature, suggesting that many lower magnitudes are missing from older
catalogues [12]. The data set contains the date of the events, the magnitude
of the earthquakes and the latitude and longitude of the epicenter of the
earthquakes.

Plotting the data in frequencies, figure 1 is obtained. This figure gives much
insight into the distribution of the data. The first observation, is that the data
does not follow a symmetric distribution. Particularly, the data is heavily
left skewed indicating that it is mathematically incorrect to make inferences
using the normal distribution. Thus, a di↵erent distribution is indeed needed
to model the tail correctly.

Figure 1: Histogram of the Data. Shows a left skewed distribution. Most of the

magnitudes are below 2.0. However, a significant amount of occurrences remain

above this level.
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5.1 Stationarity of Data

The data has mean µ = 1.2 and a standard deviation of � = 0.6. This tells us
that less than 5% of the earthquakes have magnitude above 2.5. Moreover,
the maximum occurred earthquake had a magnitude of 3.6 which occurred
on the sixteenth of august 2012. The observations with a high magnitude
which occur rarely are the part of the data we are most interested in during
this research. Therefore, its behaviour throughout the years needs to be
examined. More particularly, it is of interest to check if the data has become
more extreme and therefore if its distributional features have changed. This
requires us to test for stationarity of the data. Plotting the magnitudes of
the observations against the time figure 2 is obtained. This figure does not
indicate any strong form of violation of stationarity of the data, nor are there
any signs of trends or seasonality. The only remarkable observation is the
vast increase of yearly earthquakes throughout the years as is seen by the
increased density in the right. However, it does not seem that the underlying
distribution has changed significantly.

Figure 2: Every earthquake its magnitude is plotted against its time of occur-

rence. There are no signs of trends or seasonality. It is clear that the number of

earthquakes have increased in the last 15 years.

In order to check if the data has remained similar throughout the years, the
following figures are obtained. Figure 3a shows the mean and variance for
each individual year. It is noticed that the variance estimates remain rel-
atively constant. However, it seems as if the means of the subsets of data
decrease constantly throughout the years. As stated earlier, in the first few
years only data on earthquake magnitudes above 2.0 is available. More-
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over, the equipment to detect earthquakes of lower magnitude has improved
throughout the years , resulting in more observations for earthquakes of lower
magnitude. Correcting for these factors, figure 3b is obtained. This figure
shows all of the earthquakes with magnitude above the threshold of 1.5. From
this figure it is clear that the means and variances of the larger observations
have remained relatively constant, showing no significant signs of violation
of stationarity of the data.

(a) Yearly means and variance

of magnitudes

(b) Same as (a) for magnitudes above 1.5

Figure 3: Figure (a) shows the mean and standard errors for all of the data.

Figure (b) shows the same for all of the data above a magnitude of 1.5. Both

show a small downward sloping relationship, however figure (b) remains somewhat

linear.

Applying an Augmented Dickey–Fuller (ADF) t-statistic test for unit root in
R using the package tseries will tell if the data has remained stationary. If
the series has a trend line, it will result in a large p-value. The test is done on
the data set containing all observations and the data set containing only the
observations with magnitude higher than 1.5. Both tests result in significant
p-values well below 0.01. Therefore, it is safe to conclude that our data is
indeed stationary and thus the underlying distribution has not changed over
time. Note that the choice of setting the lower bound for the magnitudes at
1.5 is because of the many lower magnitudes occurring in the last 15 years.
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(a) ACF with full data. (b) ACF with select data.

Figure 4: Figure (a) shows the ACF for all of the data. Figure (b) shows the ACF

for the data above a magnitude of 1.5. Both include a 95% significance region.

Figure (a) shows some exceedances outside the confidence interval. Figure (b)

shows that the spikes are just white noise.

By looking at the autocorrelation functions (ACF) of each signal, we can
check for correlation. For a stationary signal, because we expect no depen-
dence with time, we would expect the ACF to go to 0 for each time lag. This
is done for all of the observations and the data set containing only the obser-
vations with magnitude higher than 1.5. Figure 4a shows small exceedances
for the first part of the data. Note that the data set does not seem to con-
tain all of the lower earthquake magnitudes for this model, therefore these
exceedances are expected. From figure 4b it is clear that there are no auto-
correlations for the magnitudes above 1.5 and the deviations are just due to
white noise.
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6 Parameter estimation of the GPD

The parameters of the Generalized Pareto distribution can be estimated in
multiple ways. The methods used in this research are the maximum like-
lihood method and the L-moments method. Historically the MLE method
performs very well and is the preferred choice in many works [4][5] [7]. For
comparison the L-moments method will be applied as well. Its asymptotic
standard errors are in comparison with the maximum likelihood estimators
reasonably e�cient [11]. In this chapter both of the methods will be applied
to the Groningen earthquake data and the results will be displayed.

The process of estimating the maximum possible earthquakes in Groningen
requires to find a distribution that fits the available data well. In this part
the peaks over threshold method will be applied to the data from the KNMI
containing 1606 earthquake observations. This method follows the General-
ized Pareto Distribution and has two parameters to be estimated see. These
parameters are the shape and scale parameters, which will be denoted re-
spectively as ⇠ and �. The main di�culty that is encountered in the process
of finding these parameters is that a su�ciently large threshold has to be set
for the data. As discussed earlier, this threshold is a trade-o↵ between bias
and variance.

One way to find a suitable threshold is by calculating the mean excesses
for each threshold, also known as the mean residual life spans. It follows
that if the exceedances after a certain threshold are linear to some extent,
then the data can be considered to be of GPD type. The exceedances are
calculated by

ME =
1

nu

nuX

i=1

(x(i)� u).

Where the x(i) are the observations that exceed a threshold u for 1  i  nu.
Figure 5 is generated using the KNMI data set and the R package evd. The
graph shows the mean excesses for each threshold, together with a 95% confi-
dence interval. The data is of GPD type if the exceedances become somewhat
linear after a certain threshold. Examining figure 5, this would suggest to
take the threshold around T = 2.7, defining T as the threshold. However, if
the threshold of T = 2.7 is taken, we are left with a mere 31 observations.
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Figure 5: The Mean Excesses of the thresholds. Showing an approximately linear

relationship after u = 1.8. Indicating that a proper threshold level should be close

to u = 1.8.

This would result in a high bias in the generated results. Taking the con-
fidence interval into account, there is evidence for linearity above T = 1.5.
Accordingly, it is better to take the threshold somewhere between T = 1.5
and T = 2.0.

6.1 Parameter Estimation of the GPD using the MLE

Another way to find a suiting threshold is by fitting the GPD at di↵erent
threshold levels. Using the R package evd, the parameters are estimated at
di↵erent thresholds. This yields a range of shape and scale parameters for
each threshold. The estimates of these parameters are shown in figure 6
plotted against the di↵erent threshold levels.

Figure 6 shows that the error estimates increase as the thresholds increase.
If we find that the excesses of a threshold u follow a GPD, then it is should
be true that the exceedances over higher threshold models follow a GPD
as well. Moreover, the GPD parameters of these higher threshold models
should be similar to the estimated parameters of the GPD with the original
threshold u. Verifying if this is true for the parameters, it is observed from

19



(a) Scale �̂ at di↵erent threshold levels (b) Shape ⇠̂ at di↵erent threshold levels

Figure 6: The estimates of the parameters using MLE including error estimates at

di↵erent threshold levels. Figure b shows an approximately constant relationship

between the thresholds u = 1.8 and u = 2.5.

figure 6b that the estimates of the shape parameter are somewhat constant
between u = 1.8 and u = 2.5, if the 95% confidence intervals are taken into
account. It is important to note that after the threshold of u = 2.5 hardly
any observations remain, resulting in a significantly higher variance for the
estimates. Therefore, estimates for these thresholds have been left out of the
analysis.

In order to make assertions on the scale parameter it has to be noted that the
parameter changes with the threshold u during the estimation. Therefore,
it follows that a reparameterization of the scale parameter � is required in
the following way �̃ = � � ⇠u [5]. The confidence intervals for �̃ are then
calculated by the Delta Method:

Var(�̃) ⇡ r�̃
T
Vr�̃,

where

r�̃
T =

h
@�̃

@�
,
@�̃

@⇠

i
= [1,�u].

Note that V is the variance-covariance matrix for the shape and scale pa-
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rameters, calculated by the evd package in R.

Applying these transformations yields figure 7. Inspecting figure 7 on the
same interval as the estimated shape parameter ⇠̂, we can conclude that the
reparameterized scale parameter �̃ remains approximately constant between
u = 1.8 and u = 2.5. This is especially true if the 95% confidence intervals
are taken into account.

(a) scale �̃

Figure 7: Reparametrized scale �̃ with error estimates. An approximately con-

stant relationship is seen between the thresholds u = 1.8 and u = 2.5.

Therefore, taking the lowest of these thresholds would yield the most reliable
results as this would minimize the variance and maximize the observations.
That is, in the next part of the research the threshold will be set at the level
u = 1.8. In order to light some contrast on this threshold the results for the
thresholds between u = 1.4 and u = 2.2 will also be treated. This is in con-
trast with previous researches done on this topic, where always a threshold
of u = 1.5 is assumed [9][4]. One reason might be that at the time of the
previous researches the data set was smaller and not enough observations
remained to make proper inferences. However, at the threshold of u = 1.8
there remain 241 observations as of June 2019.
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6.2 Parameter Estimation of the GPD using L-moments

Another way to estimate the parameters of the GPD is using the L-moments
method as described by Hosking [11].

�1 = µ+
�

1� ⇠
,

�2 =
�

(1� ⇠)(2� ⇠)
,

⌧3 =
�3

�2
=

1 + ⇠

3� ⇠
.

These equations have analytical solutions given by:

⇠ =
3⌧3 � 1

⌧3 + 1
,

� = �2(1� ⇠)(2� ⇠),

µ = �1 �
�

1� ⇠
.

Using the R package Lmoments we obtain solutions for the first set of equa-
tions, evaluated at each threshold between u = 0 and u = 2.7. This includes
the variance co-variance matrix for the first three moments. Using the rela-
tions in the second set of equations, estimates for the parameters evaluated
at each threshold are obtained. Moreover, using the Delta method error esti-
mates are obtained for the shape parameter ⇠ and scale parameter �. This is
possible due to the fact that the L-moment estimators follow an asymptotic
multivariate normal distribution [11].

It is again important to find a threshold such that the parameters take on
constant values for each higher threshold. Similar to the MLE method, these
results have been plotted and yield figure 8.

Evaluating figure 8, the estimates do not seem to get stable after any thresh-
old. However, within the interval of thresholds u = 1.7 and u = 2.3 the
same parameter estimates are possible if the error estimates are taken into
account. In order to check the behaviour of the estimated scale parameters,
the same reparameterization as was used previously on the scale parameter
using the MLE is required.
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(a) Scale �̂ at di↵erent thresholds. (b) Shape ⇠̂ at di↵erent thresholds.

Figure 8: The estimates of the parameters using L-moments including error es-

timates at di↵erent threshold levels. From figure (b) a constant relationship is

possible between the thresholds u = 1.7 and u = 2.3.

(a) Reparametrized scale �̃.

Figure 9: Reparametrized scale �̃ with error estimates obtained through L-

moments. Indicating a possible constant relationship between u = 1.7 and u = 2.3.
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The reparameterized scale values are plotted against the di↵erent thresholds
in figure 9. Evaluating the figure, it is possible for the value of �̃ to remain
constant between the threshold values of 1.8 and 2.5. Therefore, this method
complies with what was found using the MLE method. Thus, this validates
the choice of setting the threshold at u = 1.8 even further.
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7 Parameter estimation of the GEVD

An other extreme value method is by using the method of Block Maxima
instead of the Peaks over Threshold. This method follows the Generalized
Extreme Value Distribution. The distribution takes on three parameters.
In order to estimate these three parameters the observations are split in to
blocks of even length. Each block then delivers the maximum value from
within the block. Subsequently, the parameters of the GEVD are estimated
using the subset consisting of all of the maxima generated by each individual
block.

7.1 Parameter Estimation of the GEVD using MLE

In this section the MLE method is used in order to estimate the values of
the parameters of the Generalized Extreme Value distribution. To do so, the
dataset is subsetted in to blocks of the same size. This is done for blocks of
size 5 up to 50 by increments of 5. Taking blocks of bigger size would leave
us with too small of a data set to get any significant results.

Since the data is generated over a span of over 30 years it would make sense
to subset the data in to smaller blocks dependent on time. However, as most
of the data is from recent years this would cause biased results. This is seen
from the fact that more than 75% of the earthquake data is collected during
the last 15 years. Therefore, the blocks have been subsetted without regard
to the time interval. Since the blocks di↵er in size with the smallest consist-
ing out of 5 data points and the largest consisting out of 50 data points a
total of 10 estimates are obtained for each of the three parameters. Using the
R package evd the parameters of the GEVD are estimated using a Maximum
Likelihood method. Moreover, the standard errors for these estimates are
obtained through the variance covariance matrix of the parameters. The re-
sults obtained from this analysis are plotted against the di↵erent block sizes
in figure 10.

Examining figure 10 it is clear that the shape parameter ⇠ is estimated to
be somewhere between �0.5 and 0. Therefore, it follows that the maximum
likelihood estimators are regular and they have the usual asymptotic prop-
erties [5]. Using the asymptotic normality of these parameters, the standard
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(a) ML estimates of Scale � for GEVD. (b) ML estimates of Shape ⇠ for GEVD.

(c) ML estimates of Location µ for GEVD.

Figure 10: Parameter estimates and std. errors for di↵erent block sizes of the

GEVD. Estimated using Maximum Likelihood estimation.

errors are calculated. This is done with a function from the evd package in
R. Moreover, focusing on the scale parameter � its estimates remain signif-
icantly constant throughout the calculations using di↵erent block sizes. In
contrast to the estimates of the shape ⇠ and location µ parameters, which
seem to decrease and increase respectively.
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7.2 Parameter Estimation of the GEVD using L-moments

In this section the same methodology of the previous section is used to obtain
di↵erent blocks of data. However, the L-moments methodology is used in the
parameter estimation process. The moments relate to the parameters of the
GEVD through the following equations:

�1 = µ� �

⇠
(1� �(1� ⇠)), (11)

�2 =
��

⇠
(1� 2⇠)�(1� ⇠), (12)

⌧3 =
�3

�2
= 2

1� 3⇠

1� 2⇠
� 3. (13)

In order to solve these equations, first (13) has to be solved for the shape
parameter ⇠. This is done by using a Newton method in R from the package
rootSolve. Afterwards, the scale and location parameters � and µ respec-
tively, are solved by substitution of the values. Using the relations between
the parameters, estimates for the parameters for each block size are obtained.
These results are plotted in figure 11. It is noteworthy how constant the es-
timates of the scale parameter � remain for each block size. Moreover, it
is noticeable how similar the parameter estimates are in comparison to the
estimates using the MLE in the previous section. Which further strengthens
the validity of the estimated parameters.
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(a) L-mom estimates of Scale � for GEVD (b) L-mom estimates of Shape ⇠ for GEVD

(c) L-mom estimates of Location µ for GEVD

Figure 11: Parameter estimates for di↵erent block sizes of the GEVD. Estimated

through the method of L-moments. Figure (a) shows how constant the scale pa-

rameter remains using di↵erent blocksizes.

28



8 Results

Using the parameters obtained from the di↵erent estimation procedures the
return levels have been calculated. The return levels are the expected max-
imum earthquake magnitudes for di↵erent numbers of earthquakes. Table 1
found below summarizes the results from the sections of this chapter. Every
procedure and how its values have been determined will be discussed in this
chapter, except for the GEVD model with blocksize 20. The results of the
GEVD for blocksize 20 have been added as a tool for comparison. These
estimates had a significantly higher variance compared to those of blocksize
35. However, their parameter estimates had a much lower variance compared
to those estimated with a blocksize of 35. Note that for the estimates of the
GEVD using the L-moments method, the error estimates are missing.

Furthermore, we conclude that the GPD estimates work better than those
generated by the GEVD. Comparing our data, consisting of 1606 observa-
tions, the estimates generated by the GPD have a much better fit. This is
seen through the fact that our data set has 21 observations with magnitude
3.0 or higher, and only three observations with magnitude 3.5 or higher.
These would be modelled correctly only for the GPD models. While the
GEVD estimates tend to overestimate the maximum expected earthquake
magnitude for any verifiable time interval.

Expected Earthquake Magnitudes and 95%-cf upper bound for each method
Return level: 100 1000 10000 Lim ! 1
GPD: MLE 3.06 (3.20) 3.48 (3.62) 3.65 (3.83) 3.75 (4.01)
GPD: L-mom 2.99 (3.16) 3.48 (3.74) 3.70 (4.12) 3.90 (4.59)
GEVD (35): MLE 3.59 (3.73) 3.66 (3.86) 3.68 (3.88) 3.69 (3.89)
GEVD (35): L-mom 3.67 3.78 3.82 3.84
GEVD (20): MLE 3.60 (4.01) 3.80 (4.21) 3.90 (4.30) 4.04 (4.57)
GEVD (20): L-mom 3.74 4.02 4.17 4.33

Table 1: Table with estimates for GPD and GEVD methods. For the GPD the

threshold is set at u = 1.8. For the GEVD method the blocksize is between

parenthesis.
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8.1 Return levels and Estimates: GPD

In the previous sections of this research di↵erent estimators for the parame-
ters of the GPD and GEVD have been obtained. However, these parameters
do not tell us much about the probabilities of the extreme events itself. There-
fore, it is more convenient to calculate the probabilities of certain earthquake
magnitudes in order to get a better understanding on what can be expected.
For the GPD it follows by the literature [5] that for an event X,

Pr{X > x} = ⇣u

h
1 + ⇠

⇣
x� u

�

⌘i�1/⇠

, (14)

where ⇣u = Pr{X > u} and u a set threshold. Rewriting (14) assigns a
probability to how often an earthquake with magnitude bigger than xm is
exceeded on average once every m observations, given by

1

m
= ⇣u

h
1 + ⇠

⇣
xm � u

�

⌘i�1/⇠

. (15)

Moreover, rewriting (15) gives the possibility to calculate the maximum ex-
pected magnitude xm given a certain number of earthquakes. Since it is
known how many earthquakes occur on average it gives the possibility to
calculate what magnitude could be expected in a certain time interval. For
any xm > u,

xm = u+
�

⇠

⇥
(m⇣u)

⇠ � 1
⇤
. (16)

In figure 12 the expected maximum magnitudes of 1:10000 events have been
plotted using di↵erent thresholds. The choice of 1:10000 is based on the
data set provided. The data set shows approximately between 80 and 120
earthquakes annually for the last 10 years. Therefore, 10000 earthquakes is
approximately equal to an event with an expected probability of occurring
of 10% in 10-years, or a probability of 1% in 1-year. For the estimation of
xm from (16) the obtained parameter estimates for � and ⇠ need to be used.
In figure 12a the estimators of the parameters obtained through MLE have
been used. In figure 12b the estimators of the parameters obtained through
L-moment method have been used. The estimated probability of exceedance
denoted by ⇣ is simply the proportion of exceedances of a threshold to the
total number of observations, that is

⇣u =
k

n
, (17)
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(a) MLE estimates at di↵erent thresholds. (b) L-mom estimates at di↵erent thresholds.

Figure 12: Figure (a) shows the expected magnitude of a 1:10000 earthquake

using ML estimators with di↵erent thresholds for a fitted GPD model. Figure (b)

shows the same using L-moment estimators.

where k the number of exceedances over a threshold u and n is the total
number of available observations.

Both figures 12a and 12b have a 95%-confidence interval. These are obtained
through the calculation of the variance of the return parameter assuming
approximate normality. The variance is calculated by applying the Delta
method to the variance covariance matrix of the parameters used in (16). The
variance covariance matrix of the shape and scale parameters are obtained
earlier during the calculation of the estimates from figures 6 and 8. Using
the fact that ⇣ is binomial distributed and independent of the other variables
[5], the variance co-variance matrix is given by:

V =

2

4
⇣̂u(1� ⇣̂u)/n 0 0

0 var(�̂) cov(�̂, ⇠̂)
0 cov(⇠̂, �̂) var(⇠̂)

3

5 . (18)

Therefore, by the Delta Method, the variance of x̂m is given by

var(x̂m) ⇡ rx
T
mVrxm (19)
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where,

rx
T
m =


@xm

@⇣u
,
@xm

@�
,
@xm

@⇠

�
, (20)

which is evaluated at (⇣u, �, ⇠) = (⇣̂u, �̂, ⇠̂) for xm as in (16). From figure
12a it is clear that the expected maximum magnitude has a value of approx-
imately xm = 3.5 with varying 95%-confidence intervals. Note that at the
threshold of u = 1.8 the errors seems to stabilize. This is in accordance with
the earlier determined optimum threshold of u = 1.8 in section 5. For fig-
ure 12b the expected maximum magnitude changes significantly with every
threshold. Setting the threshold at u = 1.8 and analyzing the return levels
at this specific level for both the MLE and the L-moments method yields
figure 13.

Figure 13 shows the expected maximum earthquake magnitudes for occur-
rences of earthquakes between 50 and 125.000. The highest value on the
x-axis could be interpreted as the maximum expected earthquake magnitude
with an approximate 1%-probability of occurring within 10 years, using the
same reasoning as before. The number of earthquakes is depicted on the
x-axis on a logarithmic scale. The main di↵erence between the two methods
of estimation lies in how they behave for long return levels. The estimates
using the MLE method remain somewhat stable in figure 13a, even for high
return levels. While the estimates using the L-moments method in figure 13b
have a higher error. Having an error of more than 1.0 on the scale of Richter
for high return levels, resulting in much uncertainty. We therefore conclude
that the MLE method is the preferred choice in estimating the parameters
of the GPD, since estimates with more certainty are preferred.
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(a) ML estimates of magnitudes. (b) L-mom estimates of magnitudes.

Figure 13: Both figures show the expected maximum magnitudes for a di↵erent

number of earthquakes. The x-axis follows a logarithmic scale. It is clear that the

estimates obtained through the L-moments method result in higher variance and

uncertainty.

8.2 Return levels and Estimates: GEVD

For the GEVD it follows that,

xm = µ� �

⇠

h
1� {�log(1� p)}�⇠

i
. (21)

For ⇠ 6= 0 and p the probability of occurrence is equal to 1/m for a certain
number of earthquakes m. For more details see Coles pg. 49 [5]. In order
to obtain the estimated x̂m the estimates for the location, shape and scale
parameters are plugged in to (21). In figure 14 the estimates of xm are shown
for all the di↵erent block-sizes and their respective parameter estimations.
From these plots we conclude that the blocks of size 35 have the preferred
choice, due to its low error estimates. The errors of x̂m are obtained through
the Delta method,

Var(x̂m) ⇡ rx
T
mVrxm (22)
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where V is the variance co-variance matrix of (µ̂, �̂, ⇠̂) and,

rx
T
m =


@xm

@µ
,
@xm

@�
,
@xm

@⇠

�
(23)

which is evaluated at (µ, �, ⇠) = (µ̂, �̂, ⇠̂) for xm as in (21).

(a) MLE estimates at di↵erent thresholds (b) GEVD estimates at di↵erent thresholds

Figure 14: Figure (a) shows the expected magnitude of a 1:10000 earthquake

using ML estimators with di↵erent thresholds for a fitted GEVD model. Figure

(b) shows the same using L-moment estimators.

It is clear from figure 14a that the lowest variance occurs at a blocksize of
35. For figure 14b the errors could not be estimated. Setting the block
size at 35 and computing the maximum expected earthquake magnitudes
using the MLE and L-moments methods yields figure 15. The x-axis follows
a logarithmic scale of the number of earthquakes. The estimates seem to
stabilize early in the predictions. However, this is very logical upon inspection
of (21) for xm. Since our shape parameter estimate is negative it follows
from (21) that as p �! 0, or similarly m �! 1, xm = µ � �/⇠. Hence we
have a bounded distribution. The di↵erence in the estimated xm is due to
the di↵erent estimates of the parameters obtained through the MLE and L-
moments methods. Where the first one has a maximum value of xm = 3.7
and the latter has a maximum value of xm = 3.8, rounded of to decimals.
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(a) ML estimates of magnitudes. (b) L-mom estimates of magnitudes.

Figure 15: Both figures show the expected maximum magnitudes for a di↵erent

number of earthquakes. The x-axis follows a logarithmic scale. It is clear that

the expected maximum magnitude of figure (b) is higher than that of figure (a).

Moreover, the error estimates of figure figure (b) are missing.

8.3 Model fit GPD: MLE

In order to assess the quality of the estimated model we will make use of the
probability and quantile plots. It is expected that both will show a diagonal
line if the model is any good. Moreover, the probability plot should have a
line approximately on the unit diagonal. For a threshold set at u and excesses
the y(1)  . . .  y(k) the probability plot consists of the pairs

{(i/(k + 1), Ĥ(y(i))); i = 1, . . . , k} (24)

where Ĥ is the estimated model evaluated at (�, ⇠) = (�̂, ⇠̂). Given for ⇠ 6= 0
by,

Ĥ(y) = 1�
⇣
1 +

⇠̂y

�̂

⌘�1/⇠̂

. (25)

The quantile plot consists of the pairs

{(H�1(i/(k + 1)), y(i)); i = 1, . . . , k} (26)

where,

H
�1(y) = u+

�̂

⇠̂

⇥
y
�⇠̂
⇤
. (27)
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Both of these plots should be approximately diagonal if the GPD is a rea-
sonable model to plot the excesses over the threshold u. The probability
plot and quantile plot are depicted in figure 16 for the GPD model using
maximum likelihood as a method of estimation. The probability plot is close
to the unit diagonal as required. The quantile plot shows a good linear
relationship. Both plots do not give any reason to suspect model failure.

(a) Probability plot of MLE for GPD. (b) Quantile plot of MLE for GPD.

Figure 16: Probability and quantile plot of the GPD using MLE as an estimation

method. It is clear that both plots are diagonal and figure (a) is on the unit

diagonal indicating no signs of model failure.

8.4 Model fit GPD: L-moments

The probability plot and quantile plots are constructed in the same way using
L-moments estimation as it is using MLE. The plots are shown in figure 17.
Both of them have the similar desirable form as the plots obtained using
MLE in the previous section. Using the same reasoning as before there are
therefore no indications of model failure.
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(a) Probability plot of L-moments for GPD. (b) Quantile plot of L-moments for GPD.

Figure 17: Probability and quantile plot of the GPD using L-moments as an

estimation method. It is clear that both plots are diagonal and figure (a) is on the

unit diagonal. Indicating no signs of model failure.

8.5 Model fit GEVD: MLE

In order to check the model fit of the GEVD model using MLE and L-
moments the probability and quantile plots have to be assessed [5]. The
probability plot compares the empirical distribution to the fitted distribution
function. The empirical distribution function evaluated at y(i) is given by

F̂ (y(i) = i/(m+ 1), (28)

where y(1)  . . .  y(m) are the ordered block maxima.
The model estimates are given by substituting the obtained parameters in
the GEVD. These are given by

Ĝ(y(i)) = exp

(
�

1 + ⇠̂

✓
y(i) � µ̂

�̂

◆��1/⇠̂
)
. (29)

If the estimated model is working well, it should follow that

F̂ (y(i)) ⇡ Ĝ(y(i)), (30)
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for each 1  i  m.

Hence, the probability plot consists of the points
⇢✓

F̂ (y(i)), Ĝ(y(i))

◆
, i = 1, . . . ,m

�
. (31)

The quantile plot assesses the accuracy of large values of y(i) in a better

way than the probability plot. Since both F̂ (y(i)) and Ĝ(y(i)) approach 1 for
higher values of y(i). The quantile plot is given by the points,

⇢✓
Ĝ

�1(i/(m+ 1), y(i)

◆
, i = 1, . . . ,m

�
(32)

where we have,

Ĝ
�1

✓
i

m+ 1

◆
= µ̂� �̂

⇠̂

"
1�

(
� log

✓
i

m+ 1

◆)�⇠#
. (33)

The two plots should be approximately diagonal, with the points of the prob-
ability plot located approximately on the unit diagonal. The resulting plots
are shown in figure 18. Both plots seem to fit well and give no indications of
model failure.

38



(a) Probability plot of MLE for GEVD. (b) Quantile plot of MLE for GEVD.

Figure 18: Probability and quantile plot of the GEVD using MLE as an estimation

method. It is clear that both plots are diagonal and figure (a) is on the unit

diagonal, with no significant deviations. Indicating no signs of model failure.

8.6 Model fit GEVD: L-moments

The probability plot and quantile plots are constructed in the same way as
in the previous section, using the parameters obtained through L-moments.
The plots are shown in figure 19. Both of them have the similar desirable
form as the plots obtained using MLE. Using the same reasoning as before,
we conclude that there are therefore no indications of model failure.
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(a) Probability plot L-moments for GEVD. (b) Quantile plot L-moments for GEVD.

Figure 19: Probability and quantile plot of the GEVD using L-moments as an

estimation method. It is clear that both plots are diagonal and figure (a) is on the

unit diagonal. Figure (b) seems to show some deviations but nothing worrying.

There are no indications of model failure.

9 Discussion and Conclusion

In this chapter the results obtained in the previous chapter will be compared
to results obtained in other works. Next to the results, the di↵erences in
research methodology will be discussed. Furthermore, we will discuss how
our results should be interpreted and which assumptions have been made.

9.1 Comparison with older works

Comparing the results of this research with the research done by Beirlant et
al. [4] there are some di↵erences. First of all, it is important to note that
in their research a modified form of the GPD was used. Another important
di↵erence in the setup of research is that a threshold level of u = 1.5 was
used, while we found a threshold level of 1.8 to be more appropriate. The
choice of setting the threshold at u = 1.5 is justified by the fact that an older
research [9] used the same threshold. However, this choice should have been
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reevaluated as the number of observations has grown significantly for the
last 10 years. Our results indicated that at a threshold of u = 1.5, the esti-
mations have to high of a bias and do not reflect the behaviour of the tail well.

Another di↵erence is that our shape parameter ⇠ never has the value of
zero, this is even true for the lower bounds of the 95%-confidence intervals.
In the research done by Beirlant et al. [4] they find that the shape param-
eter ⇠ is equal to zero. Therefore they need to use a truncated GPD, as for
⇠ = 0 the distribution would be unbounded and unreasonable high estimates
would be obtained. Since our research does not show any signs of the shape
parameter being zero (seen from the 95%-confidence intervals), the approach
to truncate the GPD did not turn out to be useful. On the contrary, we find
that the distributions are bounded and the endpoints are readily obtained.

However, the obtained results using the GPD with ML estimation ended
up being very similar to the results obtained using the truncated EVT based
techniques in the aforementioned research [4]. As is seen in table 1 in the
results section, the 95%-confidence intervals are very similar if compared to
table 2 in Beirlant et al. on page 18 [4]. Furthermore, the results are also in
line with another research done by the NAM [9] in 2013.

The results are only based on data from the gas extraction in Groningen.
In order to gain more insight into the underlying distributions, data col-
lected from other induced earthquakes can be examined. These could include
earthquakes induced by water extraction, oil extraction or other gas extrac-
tion sites. Comparing these data and the distributional features could give
more insight in to how well our estimation procedure works.

9.2 Conclusions

In our research we computed and compared the expected magnitudes of the
earthquakes in Groningen induced by gas extraction. To this end the accu-
mulated data by the KNMI was analyzed, consisting out of 1606 observations
collected between december 1986 and may 2019. Our analysis compared the
predictions of the expected earthquakes for di↵erent return levels estimated
by the GEVD and GPD distributions. Both the GEVD and GPD param-
eters are estimated using Maximum Likelihood estimation and L-moments
estimation. The four estimates and their confidence intervals are compared
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and explained. Based on these estimates table 1 is constructed containing all
of the estimates for di↵erent return levels. The last estimates are too be in-
terpreted as the maximum possible expected earthquake magnitudes. These
maximum expected magnitudes lay in the range of 3.7-4.3 and the upper
95%-confidence intervals have values between 3.9-4.6. The lower endpoints
are estimated by the GEVD model with blocksize 35, having high errors.
This model tends to overestimate the magnitudes for small return levels and
underestimate for high return levels. The results generated by the GEVD
should therefore be interpreted carefully. Moreover, as the block sizes have
been set at 35 the calculations are based on a mere 45 observations. The
obtained estimates are therefore not reliable.

Furthermore, the error estimates of the GPD using MLE as a method of pa-
rameter estimation resulted in smaller variances compared to the L-moments
method. Therefore, we conclude that the preferred model in our research,
which yields the most reliable results is the GPD model using maximum
likelihood estimation for the parameters, setting the threshold at u = 1.8.
This results in a maximum expected earthquake magnitude of 3.75 with a
maximum value of 4.01 by the upper 95%-confidence interval.

These estimates are purely based on the structure of the data. Therefore, the
biggest assumption made is that all other variables remain constant in our
model. However, it should not be forgotten that nature is very unforgiving
and surprising. Therefore, if the underlying distribution changes significantly,
it would result in new unpredictable events. This could be possible due to
the change in the deterministic variables of which the earthquake magnitudes
are dependent.
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R Code Estimating GPD Parameters using MLE

1 getwd()
2 setwd("/Users/aras/Desktop")
3 myData <- read.csv("all_induced.csv", header = T, sep = ",")
4

5 ##############################################################################
6 ############ Calculating the GPD: MLE parameters ##############################
7 ##############################################################################
8 rm(list=ls())
9 library("evd")

10 library("rootSolve")
11 library("Lmoments")
12 myData <- read.csv("all_induced.csv", header = T, sep = ",")
13

14 r <- myData$MAG
15 mle_estimates <- matrix (0,28,7)
16 colnames(mle_estimates) <- c("Thresh", "Shape xi", "Scale sig", "Shape se", "Scale

se",
17 "new -sig se", "varcov sig/xi")
18 for(k in 0:27){
19

20 # mle -method
21 fpot_k <- fpot(r, threshold = k/10, model = c("gpd", "pp"), npp = length(r))
22 mle_estimates[k+1,1] <- k/10 #threshold
23 mle_estimates[k+1,2] <- fpot_k$estimate [2] #shape ksi
24 mle_estimates[k+1,3] <- fpot_k$estimate [1] #scale sigma
25 mle_estimates[k+1,4] <- fpot_k$std.err [2] # shape se
26 mle_estimates[k+1,5] <- fpot_k$std.err [1] # scale se
27 mle_estimates[k+1,6] <- (c(1,-k/10)%*%fpot_k$var.cov%*%c(1,-k/10))^0.5 # error

new -sig
28 mle_estimates[k+1,7] <- fpot_k$var.cov[2,1]
29 }
30

31 #standard errors for shape -ksi MLE - method
32 matplot(mle_estimates [,1],
33 mle_estimates [,2] + outer(mle_estimates [,4], c(0,1,-1)),
34 type="l", lty=c(1,2,2), col=c(1,2,2),
35 xlab="Threshold", ylab="Shape Ksi",
36 main = ’Estimates of Shape Ksi for GPD: MLE’
37 )
38 #standard errors for scale -sigma MLE - method
39 matplot( mle_estimates [,1],
40 mle_estimates [,3] + outer(mle_estimates [,5], c(0,1,-1)),
41 type="l", lty=c(1,2,2), col=c(1,2,2),
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42 xlab="Threshold", ylab="Scale Sigma",
43 main = ’Estimates of Scale Sigma for GPD: MLE’
44 )
45 #reparametrized sigma + errors for mle
46 sigma_MLEnew <- mle_estimates [,3] - mle_estimates [,2]* mle_estimates [,1]
47 matplot( mle_estimates [,1],
48 sigma_MLEnew + outer(mle_estimates [,6],c(0 ,1.96 , -1.96)),
49 type="l",lty=c(1,2,2), col=c(1,2,2),
50 xlab="Threshold", ylab="Reparametrized Sigma",
51 main = ’Estimates Rep. Scale Sigma for GPD: MLE’
52 )
53

54

55

56 #############################################################################
57 ### Calculating the return levels , the level x_m that is exceeded on avg ####
58 ### once every m observations for GPD - MlE :##################################
59 #############################################################################
60 x_m <- numeric (0)
61 var_x <- numeric (0)
62 covar <- matrix (0,3,3)
63 m <- 10000
64 for(u in 15:22){
65 sig <- mle_estimates[u,3]
66 xi <- mle_estimates[u,2]
67 zeta <- length(myData$MAG[myData$MAG >(u/9.9 -0.1)])/length(myData$MAG)
68 x_m[u-14] <- (u-1)/10 + sig/xi * ((m*zeta)^(xi)- 1)
69

70 var_zeta <- zeta*(1-zeta)/length(myData$MAG[myData$MAG >(u/9.9 -0.1)])
71 covar [1,1] <- var_zeta
72 covar [2,2] <- mle_estimates[u ,5]^2
73 covar [3,3] <- mle_estimates[u ,4]^2
74 covar [3,2] <- mle_estimates[u,7]
75 covar [2,3] <- covar [3,2]
76

77 delta_x <- c(sig*m^(xi)*zeta^(xi -1),
78 xi^(-1)*((m*zeta)^(xi) -1),
79 -sig*xi^(-2)*((m*zeta)^(xi) -1) + sig*xi^(-1)*(m*zeta)^(xi)*log(m*

zeta))
80

81 var_x[u-14] <- (delta_x%*%covar%*%(delta_x))^0.5
82

83 }
84

85 matplot(seq (1.4 ,2.1 ,0.1),
86 x_m + outer(var_x, c(0 ,1.96 , -1.96)),
87 type=’l’, lty=c(1,2,2), col=c(1,2,2),
88 xlab="Threshold MLE", ylab="Return Magnitude",
89 main = "1:10000 Earthquake Magnitude GPD: MLE"
90 )
91

92

93 #############################################################################
94 ################### Model Validation GPD: MLE ###############################
95 #############################################################################
96

97 #Probability plots GPD - MLE at threshold u= 1.8 so everything higher
98 rm(list=ls())
99 myData <- read.csv("all_induced.csv", header = T, sep = ",")
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100 u=1.8
101 y <- sort(myData$MAG[myData$MAG >u] -u)
102 xi <- -0.413570646 #for u =1.8
103 sig <- 0.806181891 #for u=1.8
104 h <- 1 - (1 + xi*y/sig)^(-1/xi)
105 r <- 1: length(y)/(length(y)+1)
106

107 plot(r,h, main= "Probability Plot GPD: MLE",
108 xlab = "Empirical", ylab= "Model")
109 abline(lm(h~ r), col = "red")
110

111 #Quantile plots GPD - MLE: Using inverse h(y)
112 r <- 1: length(y)/(length(y)+1)
113 h_1 = sort((u + (sig/xi)*(r^(-xi) -1)))
114 plot(h_1, y, main = "Quantile Plot GPD: MLE", xlab = "Model", ylab= "Empirical")
115 abline(lm( y~h_1), col = "red")
116

117 #Return level plots (m,x_m), x_m= estimated m-obs return level:
118 m <- numeric (0)
119 m[1:21] <- ceiling (50^( seq(1,3 ,0.1)))
120 zeta <- length(myData$MAG[myData$MAG >1.8])/length(myData$MAG)
121 x_m <- u + sig/xi*((m*zeta)^xi -1 )
122

123 covar <- matrix (0,3,3)
124 covar [1,1] <- zeta2*(1-zeta2)/length(myData$MAG)
125 covar [2,2] <- 0.004809707
126 covar [3,3] <- 0.003150140
127 covar [3,2] <- -0.003541867
128 covar [2,3] <- covar [3,2]
129

130 delta_x <- numeric (0)
131 err_mx <- numeric (0)
132 for(i in 1:21){
133 delta_x <- c(sig*m[i]^(xi)*zeta^(xi -1),
134 xi^(-1)*((m[i]*zeta)^(xi) -1),
135 -sig*xi^(-2)*((m[i]*zeta)^(xi) -1) +
136 sig*xi^(-1)*(m[i]*zeta)^(xi)*log(m[i]*zeta))
137

138 err_mx[i] <- (delta_x%*%covar%*%(delta_x))^0.5
139 }
140

141 matplot(log(m), x_m + outer(err_mx , c(0 ,1.96 , -1.96)),
142 type=’l’, lty=c(1,2,2), col=c(1,2,2),
143 xlab="Log number of earthquakes", ylab="Return Magnitude",
144 main= "Return Level Plot GPD: MLE", ylim = c(2.5 ,4.5)
145 )

R-code 1: R-code GPD-MLE
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R Code Estimating GPD Parameters using L-moments

1 getwd()
2 setwd("/Users/aras/Desktop")
3 myData <- read.csv("all_induced.csv", header = T, sep = ",")
4

5 rm(list=ls())
6 library("evd")
7 library("rootSolve")
8 library("Lmoments")
9 myData <- read.csv("all_induced.csv", header = T, sep = ",")

10

11 r <- myData$MAG
12 lmom_estimates <- matrix (0,28,8)
13 colnames(lmom_estimates) <- c("Thresh", "Shape xi", "Scale sig", "loc mu", "Shape

se",
14 "scale se", "new -sig se", "varcov sig/xi")
15 var.cov_lmom <- matrix (0,2,2)
16 cov_ksi_sig <- numeric (0)
17 for(k in 0:27){
18 # L-moments method
19 Lcoefs <- Lcoefs(data = r[r>k/10], rmax = 3, na.rm = FALSE , trim = c(0, 0))
20 shape_ksi <- (Lcoefs [1,3]*3 - 1)/(Lcoefs [1,3] +1)
21 scale_s <- Lcoefs [1,2]*(1- shape_ksi)*(2-shape_ksi)
22 loc_m <- Lcoefs [1,1] - scale_s/(1- shape_ksi)
23

24 lmom_estimates[k+1,1] <- k/10
25 lmom_estimates[k+1,2] <- shape_ksi
26 lmom_estimates[k+1,3] <- scale_s
27 lmom_estimates[k+1,4] <- loc_m
28

29 #calculating standard error in shape ksi - Lmom
30 vcov <- Lmomcov(r[r>k/10] ,3)
31

32 myfunc <- function(lst){
33 (3*lst [3] -lst [2])/(lst [3] +lst [2])
34 }
35 grad <- gradient(myfunc , c(Lcoefs [1,1], Lcoefs [1,2], Lcoefs [1,3]*Lcoefs [1 ,2]))
36 lmom_estimates[k+1,5] <- (grad%*%vcov%*%t(grad))^0.5
37

38 #calculating standard error in scale sigma - Lmom
39 myfunc2 <- function(lst){
40 lst[2]* (1-(3*lst [3] -lst [2])/(lst [3] +lst [2]))*(2-(3*lst [3] -lst [2])/(lst [3]

+lst [2]))
41 }
42 grad2 <- gradient(myfunc2 , c(Lcoefs [1,1], Lcoefs [1,2], Lcoefs [1,3]*Lcoefs [1,2]))
43 lmom_estimates[k+1,6] <- (grad2%*%vcov%*%t(grad2))^0.5
44

45 #covariance reparametrized scale sigma (building the var.cov matrx)
46 cov_ksi_sig[k+1] <- (grad%*%vcov%*%t(grad2))
47 var.cov_lmom [1,1] <- lmom_estimates[k+1 ,6]^2
48 var.cov_lmom [2,2] <- lmom_estimates[k+1 ,5]^2
49 var.cov_lmom [1,2] <- cov_ksi_sig[k+1]
50 var.cov_lmom [2,1] <- var.cov_lmom [1,2]
51

52 lmom_estimates[k+1,7] <- (c(1,-k/10)%*%var.cov_lmom%*%c(1,-k/10))^0.5 # error
new -sig

53 lmom_estimates[k+1,8] <- cov_ksi_sig[k+1]
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54

55 }
56

57 #standard errors for shape -ksi lmom - method
58 matplot(lmom_estimates [,1],
59 lmom_estimates [,2] + outer(lmom_estimates [,5], c(0 ,1.96 , -1.96)),
60 type="l", lty=c(1,2,2), col=c(1,2,2),
61 xlab="Threshold", ylab="Shape Ksi Lmom",
62 main = ’Estimates of Shape Ksi GPD: L-moments.’
63 )
64

65 #standard errors for scale -sigma lmom - method
66 matplot(lmom_estimates [,1],
67 lmom_estimates [,3] + outer(lmom_estimates [,6], c(0 ,1.96 , -1.96)),
68 type="l", lty=c(1,2,2), col=c(1,2,2),
69 xlab="Threshold", ylab="Scale Sigma Lmom",
70 main = ’Estimates of Scale Sigma GPD: L-moments.’
71 )
72

73 #reparametrized sigma + errors for lmom
74 sigma_LMOMnew <- lmom_estimates [,3] - lmom_estimates [,2]* lmom_estimates [,1]
75 matplot( lmom_estimates [,1],
76 sigma_LMOMnew + outer(lmom_estimates [,7],c(0 ,1.96 , -1.96)),
77 type="l",lty=c(1,2,2), col=c(1,2,2),
78 xlab="Threshold", ylab="Reparametrized Sigma Lmom",
79 main = ’Estimates Rep. Scale Sigma GPD: L-moments.’
80 )
81

82 # Calculating the return levels , the level x_m that is exceeded on avg
83 # once every m observations for GPD - L-moms:
84 y_m <- numeric (0)
85 var_y <- numeric (0)
86 covar2 <- matrix (0,3,3)
87 m <- 10000
88 for(u in 15:22){
89 sigma <- lmom_estimates[u,3]
90 xi <- lmom_estimates[u,2]
91 zeta2 <- length(myData$MAG[myData$MAG >(u/9.99 -0.1)])/length(myData$MAG)
92 y_m[u-14] <- (u-1)/10 + sigma/xi * ((m*zeta2)^(xi)- 1)
93

94 var_zeta2 <- zeta2*(1-zeta2)/length(myData$MAG[myData$MAG >(u/9.99 -0.1)])
95 covar2 [1,1] <- var_zeta2
96 covar2 [2,2] <- lmom_estimates[u,6]^2
97 covar2 [3,3] <- lmom_estimates[u,5]^2
98 covar2 [3,2] <- lmom_estimates[u,8]
99 covar2 [2,3] <- covar2 [3,2]

100

101 delta_y <- c(sigma*m^(xi)*zeta2^(xi -1),
102 xi^(-1)*((m*zeta2)^(xi) -1),
103 -sigma*xi^(-2)*((m*zeta2)^(xi) -1) +
104 sigma*xi^(-1)*(m*zeta2)^(xi)*log(m*zeta2))
105

106 var_y[u-14] <- (delta_y%*%covar2%*%(delta_y))^0.5
107

108 }
109 matplot(seq (1.4 ,2.1 ,0.1),
110 y_m + outer(var_y, c(0 ,1.96 , -1.96)),
111 type=’l’, lty=c(1,2,2), col=c(1,2,2),
112 xlab="Threshold L-moments", ylab="Return Magnitude",
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113 main = "1:10000 Earthquake Magnitude GPD: L-mom"
114

115 )
116

117 #Probability plots GPD - Lmom at threshold u= 1.8 so everything higher
118 rm(list=ls())
119 myData <- read.csv("all_induced.csv", header = T, sep = ",")
120 u=1.8
121 y <- sort(myData$MAG[myData$MAG >u] -u)
122 xi <- -0.335629022 #for u =1.8
123 sig <- 0.704043262 #for u=1.8
124 h <- 1 - (1 + xi*y/sig)^(-1/xi)
125 r <- 1: length(y)/(length(y)+1)
126

127 plot(r,h, main= "Probability Plot GPD: L-mom",
128 xlab = "Empirical", ylab= "Model")
129 abline(lm(h~ r), col = "red")
130

131

132 #Quantile plots GPD - MLE: Using inverse h(y)
133 r <- 1: length(y)/(length(y)+1)
134 h_1 = sort(u + (sig/xi)*(r^(-xi) -1))
135 plot(h_1, y, main = "Quantile Plot GPD: L-mom", xlab = "Model", ylab= "Empirical")
136 abline(lm(y~h_1), col = "red")
137

138

139 #Return level plots (m,x_m), x_m= estimated m-obs return level:
140 m <- numeric (0)
141 m[1:21] <- ceiling (50^( seq(1,3 ,0.1)))
142 zeta2 <- length(myData$MAG[myData$MAG >1.8])/length(myData$MAG)
143

144 y_m <- u + sig/xi*((m*zeta2)^xi -1 )
145 covar <- matrix (0,3,3)
146 covar [1,1] <- zeta2*(1-zeta2)/length(myData$MAG)
147 covar [2,2] <- 0.005547118
148 covar [3,3] <- 0.007152318
149 covar [3,2] <- -0.005477988
150 covar [2,3] <- covar [3,2]
151

152 delta_y <- numeric (0)
153 err_my <- numeric (0)
154 for(i in 1:21){
155 delta_y <- c(sig*m[i]^(xi)*zeta2^(xi -1),
156 xi^(-1)*((m[i]*zeta2)^(xi) -1),
157 -sig*xi^(-2)*((m[i]*zeta2)^(xi) -1) +
158 sig*xi^(-1)*(m[i]*zeta2)^(xi)*log(m[i]*zeta2))
159

160 err_my[i] <- (delta_y%*%covar%*%(delta_y))^0.5
161 }
162

163 matplot(log(m), y_m + outer(err_my , c(0 ,1.96 , -1.96)),
164 type=’l’, lty=c(1,2,2), col=c(1,2,2),
165 xlab="Log number of earthquakes", ylab="Return Magnitude",
166 main= "Return Level Plot GPD: L-mom", ylim = c(2.5 ,4.5)
167 )

R-code 2: R-code GPD-Lmoments
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R Code Estimating GEVD Parameters using MLE

1

2 getwd()
3 setwd("/Users/aras/Desktop")
4 myData <- read.csv("all_induced.csv", header = T, sep = ",")
5

6 #################################################
7 ### check all block sizes for MLE and plot ###
8 #################################################
9 rm(list=ls())

10 myData <- read.csv("all_induced.csv", header = T, sep = ",")
11 mag <- myData$MAG
12

13 mle_est <- matrix (0,10,8)
14 colnames(mle_est) <- c(’bl size’, ’location ’, ’error loc’,
15 ’ shape ’, ’err shape ’, ’scale ’, ’err scale ’, ’return err’)
16 for(i in seq(5,50,5)){
17 x <- vector(’numeric ’)
18 for(n in 0: floor(length(mag)/i)){
19 k <- i*n
20 s <- i*(n+1)
21 x[n+1] <- max(mag[k:s])
22 }
23

24 gevd_mle <- fgev(x, nsloc = NULL , prob = NULL , std.err = TRUE ,
25 corr = FALSE , method = "BFGS", warn.inf = TRUE)
26 mle_est[i/5,1] <- i
27 mle_est[i/5,2] <- round(gevd_mle$estimate [1] ,3) #location
28 mle_est[i/5,3] <- gevd_mle$std.err [1] #std error location
29 mle_est[i/5,4] <- gevd_mle$estimate [3] #shape xi
30 mle_est[i/5,5] <- gevd_mle$std.err [3] #std error x
31 mle_est[i/5,6] <- gevd_mle$estimate [2] #scale sigma
32 mle_est[i/5,7] <- gevd_mle$std.err [2] #std error sigma
33

34 #calculating the error of the return level z which is 1/p; coles page 56
35 varcov <- gevd_mle$var.cov
36 p <- 0.001 #m=1000
37 y <- -1*(log(1-p))
38 delta_z <- c(1, -(mle_est[i/5 ,4]^(-1)*(1-y^(-mle_est[i/5,4]))),
39 mle_est[i/5,6]*mle_est[i/5,4]^( -2)*(1-y^(-mle_est[i/5,4]))
40 -mle_est[i/5,6]*mle_est[i/5,4]^( -1)*y^(-mle_est[i/5,4])*log(y))
41 mle_est[i/5,8] <- (delta_z%*%varcov%*%(delta_z))^0.5
42

43 }
44

45

46 # 95% confidence interval plots for location
47 matplot(mle_est[,1],
48 mle_est[,2] + outer(mle_est[,3], c(0 ,1.96 , -1.96)),
49 type=’l’, lty=c(1,2,2), col=c(1,2,2),
50 xlab="Block Size", ylab="Location Mu - MLE",
51 main = ’Estimates of Location Mu, GEVD: MLE’
52 )
53

54 # 95% confidence interval plots for shape
55 matplot(mle_est[,1],
56 mle_est[,4] + outer(mle_est[,5], c(0 ,1.96 , -1.96)),
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57 type="l", lty=c(1,2,2), col=c(1,2,2),
58 xlab="Block Size", ylab="Shape Ksi - MLE",
59 main = ’Estimates of Shape Ksi , GEVD: MLE’
60 )
61 # 95% confidence interval plots for scale
62 matplot(mle_est[,1],
63 mle_est[,6] + outer(mle_est[,7], c(0 ,1.96 , -1.96)),
64 type="l", lty=c(1,2,2), col=c(1,2,2),
65 xlab="Block Size", ylab="Scale Sigma - MLE",
66 main = ’Estimates of Scale Sigma , GEVD: MLE’
67 )
68 ################################################################
69 ################################################################
70 # Calculating the retun levels , the level x_m that is exceeded on avg
71 # once every m observations for GEVD - MlE:
72

73 r_m <- numeric (0)
74 for(u in 1:10){
75 sigma <- mle_est[u,6]
76 xi <- mle_est[u,4]
77 loc <- mle_est[u,2]
78 m <- 10000
79 y <- -1*log(1-1/m)
80 r_m[u] <- loc - sigma/xi * (1 - y^(-xi) )
81

82 }
83 matplot(mle_est[,1],
84 r_m + outer(mle_est[,8], c(0 ,1.96 , -1.96)),
85 type=’l’, lty=c(1,2,2), col=c(1,2,2),
86 xlab="Block Size", ylab="Expected magnitude",
87 main = "1:10000 Earthquake Magnitude GEVD: MLE"
88 )
89

90 ################################################################
91 ################################################################
92 #Probability plots GEVD - MLE at Block size = 35
93 rm(list=ls())
94 yData <- read.csv("all_induced.csv", header = T, sep = ",")
95 data_x <- c(1.4, 1.6, 1.7, 1.9, 2.0, 2.0, 2.2, 2.2, 2.2, 2.3, 2.4, 2.4, 2.4, 2.5,
96 2.5, 2.5, 2.5, 2.5, 2.6, 2.6, 2.6, 2.6, 2.8, 2.8, 2.8, 2.8, 2.9, 2.9,
97 3.0, 3.0, 3.0, 3.0, 3.1, 3.1, 3.2, 3.2, 3.2, 3.2, 3.2, 3.3, 3.4, 3.4,
98 3.5, 3.5, 3.6)
99 xi <- -0.50899645

100 sig <- 0.57022056
101 loc <- 2.57400000
102

103 z <- (1: length(data_x))/(length(data_x)+1)
104 h <- exp(- (1 + xi*((data_x-loc)/sig))^(-1/xi))
105

106 plot(z,h, main= "Probability Plot GEVD: MLE",
107 xlab = "Empirical", ylab= "Model")
108 abline(lm(h~ z), col = "red")
109

110 #Quantile plot
111 g <- loc - (sig/xi)*(1 - (-log(z))^(-xi))
112 plot(g, data_x, main = "Quantile Plot GEVD: MLE", xlab = "Model", ylab= "Empirical

")
113 abline(lm(data_x~g), col = "red")
114
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115 #Return level plots (m,x_m), x_m= estimated m-obs return level:
116 m <- numeric (0)
117 m[1:21] <- ceiling (50^( seq(1,3 ,0.1)))
118 p <- 1/m #m=1000
119 y <- -1*(log(1-p))
120 x_m <- loc - (sig/xi)*(1- (y^(-xi)))
121

122 varcov <- matrix(c(0.008658555 , -0.001619208 , -0.003958419 ,
123 -0.001619208 , 0.005261144 , -0.005217842 ,
124 -0.003958419 , -0.005217842 ,0.011447961) ,
125 nrow=3, ncol =3)
126

127 delta_z <- numeric (0)
128 err_rm <- numeric (0)
129 for(i in 1:21 ){
130 delta_z <- c(1, -((xi^(-1))*(1-y[i]^(-xi))),
131 (sig*xi^(-2))*(1-y[i]^(-xi))-(sig*xi^(-1))*y[i]^(-xi)*log(y[i]))
132

133 err_rm[i] <- (delta_z%*%varcov%*%(delta_z))^0.5
134 }
135

136 matplot(log(m), x_m + outer(err_rm , c(0 ,1.96 , -1.96)),
137 type=’l’, lty=c(1,2,2), col=c(1,2,2),
138 xlab="Log number of earthquakes", ylab="Return Magnitude",
139 main= "Return Level Plot GEVD: MLE", ylim = c(3.3 ,4)
140 )

R-code 3: R-code GEVD-MLE
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R Code Estimating GEVD Parameters using L-moments

1

2 getwd()
3 setwd("/Users/aras/Desktop")
4 myData <- read.csv("all_induced.csv", header = T, sep = ",")
5

6 ################################################################
7 ### check all block sizes for L-moments and plot ###
8 ################################################################
9 # L-moments estimation of GEVD parameters

10 rm(list=ls())
11 myData <- read.csv("all_induced.csv", header = T, sep = ",")
12 mag <- myData$MAG
13

14 lmom_est <- matrix (0,10,7)
15 colnames(lmom_est) <- c(’bl size’, ’location ’, ’error loc’,
16 ’ shape ’, ’err shape ’, ’scale ’, ’err scale ’)
17 for(i in seq(5,50,5)){
18 x <- vector(’numeric ’)
19 for(n in 0: floor(length(mag)/i)){
20 k <- i*n
21 s <- i*(n+1)
22 x[n+1] <- max(mag[k:s])
23 x <- x[!is.na(x)]
24 }
25 Lcoefs <- Lcoefs(data = x, rmax = 3, na.rm = F, trim = c(0, 0))
26 func_ksi <- function(b){
27 2*(1-3^b)/(1-2^b) - 3 - Lcoefs [1,3]
28 }
29 shape_ksi <- uniroot(func_ksi ,c(-4,4))$root
30

31 scale_s <- -1*(Lcoefs [1,2]*shape_ksi)/(gamma(1-shape_ksi)*(1-2^( shape_ksi)))
32 loc_m <- Lcoefs [1,1] + scale_s/shape_ksi*(1- gamma(1-shape_ksi))
33

34 lmom_est[i/5,1] <- i
35 lmom_est[i/5,2] <- loc_m
36 lmom_est[i/5,4] <- shape_ksi
37 lmom_est[i/5,6] <- scale_s
38

39 }
40

41 #######################################################################
42 #plotting the parameters of GEVD estimated by L-moments including 95% cfi
43 #######################################################################
44 plot(lmom_est[,1], lmom_est[,4], type = ’b’, ylim = c(-0.8,0),
45 ylab = ’Shape ksi - lmom’, xlab = ’Block size’,
46 main = ’Estimates Shape ksi , GEVD: L-moments ’)
47

48 plot(lmom_est[,1], lmom_est[,6], type = ’b’,ylim = c(0.35 ,0.75) ,
49 ylab = ’Scale Sigma - lmom’, xlab = ’Block Size’,
50 main = ’Estimates Scale Sigma , GEVD: L-moments ’)
51

52 plot(lmom_est[,1], lmom_est[,2], type = ’b’,
53 ylab = ’Location mu - lmom’, xlab = ’Block Size’,
54 main = ’Estimates Location Mu, GEVD: L-moments ’)
55

56 #######################################################################
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57 #######################################################################
58 # Calculating the retun levels , the level x_m that is exceeded on avg
59 # once every m observations for GEVD - L-moms:
60 s_m <- numeric (0)
61 for(u in 1:10){
62 sigma <- lmom_est[u,6]
63 xi <- lmom_est[u,4]
64 loc <- lmom_est[u,2]
65 m <- 10000
66 y <- -1*log(1-1/m)
67

68 s_m[u] <- loc - sigma/xi * (1 - y^(-xi) )
69

70 }
71

72 plot(x= lmom_est[,1], y= s_m, type = "b", xlab="Block Size",
73 ylab="Expected Magnitude", ylim = c(3.6 ,5),
74 main = "1:10000 Earthquake Magnitude GEVD: L-mom")
75

76

77

78 #######################################################################
79 #######################################################################
80

81 rm(list=ls())
82 yData <- read.csv("all_induced.csv", header = T, sep = ",")
83 data_x <- c(1.4, 1.6, 1.7, 1.9, 2.0, 2.0, 2.2, 2.2, 2.2, 2.3, 2.4, 2.4, 2.4, 2.5,
84 2.5, 2.5, 2.5, 2.5, 2.6, 2.6, 2.6, 2.6, 2.8, 2.8, 2.8, 2.8, 2.9, 2.9,
85 3.0, 3.0, 3.0, 3.0, 3.1, 3.1, 3.2, 3.2, 3.2, 3.2, 3.2, 3.3, 3.4, 3.4,
86 3.5, 3.5, 3.6)
87 xi <- -0.4483400 #for u =1.8
88 sig <- 0.5752321 #for u=1.8
89 loc <- 2.5533234
90

91 z <- (1: length(data_x))/(length(data_x)+1)
92 h <- exp(- (1 + xi*((data_x-loc)/sig))^(-1/xi))
93

94 plot(z,h, main= "Probability Plot GEVD: L-mom",
95 xlab = "Empirical", ylab= "Model")
96 abline(lm(h~ z), col = "red")
97

98 #however prob plot gives least info in region of most interest , that is
99 #at the endpoints. Since both estimates are to approach 1 as y increases

100 #therefore we will use the quantile plots.
101

102 #Quantile plot
103 g <- loc - (sig/xi)*(1 - (-log(z))^(-xi))
104 plot(g, data_x, main = "Quantile Plot GEVD: L-mom", xlab = "Model", ylab= "

Empirical")
105 abline(lm(data_x~g), col = "red")
106

107 #Return level plots (m,x_m), x_m= estimated m-obs return level:
108 m <- numeric (0)
109 m[1:21] <- ceiling (50^( seq(1,3 ,0.1)))
110 p <- 1/m #m=1000
111 y <- -1*(log(1-p))
112 x_m <- loc - (sig/xi)*(1- (y^(-xi)))
113

114 varcov <- matrix(c(0.008658555 , -0.001619208 , -0.003958419 ,
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115 -0.001619208 , 0.005261144 , -0.005217842 ,
116 -0.003958419 , -0.005217842 ,0.011447961) ,
117 nrow=3, ncol =3)
118

119 delta_z <- numeric (0)
120 err_rm <- numeric (0)
121 for(i in 1:21 ){
122 delta_z <- c(1, -((xi^(-1))*(1-y[i]^(-xi))),
123 (sig*xi^(-2))*(1-y[i]^(-xi))-(sig*xi^(-1))*y[i]^(-xi)*log(y[i]))
124

125 err_rm[i] <- (delta_z%*%varcov%*%(delta_z))^0.5
126 }
127

128 plot(x = log(m), y = x_m, type="l",
129 xlab="Log number of earthquakes", ylab="Return Magnitude",
130 main= "Return Level Plot GEVD: L-mom", ylim = c(3.3 ,4)
131 )

R-code 4: R-code GEVD-Lmoments
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R Code Data Exploration chapter 5

1

2 rm(lis=ls())
3 myData <- read.csv("all_induced.csv", header = T, sep = ",")
4 View(myData)
5 #install.packages(
6 c("ggfortify", "changepoint",
7 "strucchange", "ggpmisc")
8 #)
9

10 #\install.packages (" lubridate ")
11 library("lubridate")
12

13 #changing the dates so R can interpret it as dates
14 myData$YYMMDD <- ymd(myData$YYMMDD)
15 View(myData)
16

17 newdata <- myData[which(myData$MAG >0), ]
18 plot(newdata$YYMMDD ,newdata$MAG)
19

20 r <- table(newdata$MAG)
21 plot(r,type = ’h’, ylab = ’Magnitude Frequency ’, xlab = ’Magnitude ’, main = ’

Histogram of Earthquake data’)
22 lines(density(newdata$MAG), col = ’red’)
23

24 #plotting the means and variance for each year
25 library(ggplot2)
26 p<- ggplot(newdata , aes(YYMMDD , MAG)) + geom_line() + xlab("Date") + ylab("

Magnitude")
27 p+ ggtitle(’Plot of every magnitude against time of occurence ’)
28

29 library(’changepoint ’)
30 library("ggfortify")
31 library("fractal")
32 Box.test(newdata$MAG[newdata$MAG >1.5], lag=25, type="Ljung -Box") # test stationary

signal
33 #Another test we can conduct is the Augmented D i c k e y Fuller (ADF) t-statistic

test to find
34 #if the series has a unit root (a series with a trend line will have a unit root

and result
35 # in a large p-value).
36 adf.test(newdata$MAG[newdata$MAG >1.5])
37 adf.test(newdata$MAG)
38

39 t <- newdata$YYMMDD#[newdata$MAG >1.5]
40 y_stationary <- newdata$MAG#[newdata$MAG >1.5]
41 plot(t,y_stationary ,
42 type=’l’,col=’red’,
43 xlab = "time (t)",
44 ylab = "Y(t)",
45 main = "Stationary signal")
46 acf(y_stationary ,lag.max = length(y_stationary),
47 xlab = "lag #", ylab = ’ACF’,main=’ACF for magnitudes above 1.5’)

R-code 5: R-code Data Exploration
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