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Abstract

Topology identification is an important tool to facilitate analyzing,
predicting and controlling network behaviour. In the following thesis,
we study topology identification for networks with general time-invariant
linear node dynamics, and we propose an identification approach based
on subspace identification methods.

The approach is derived in two steps. First, the network dynamics
are determined based on input/output (I/O) data, using a subspace iden-
tification algorithm. Then, under suitable identifiability conditions, the
network topology can be obtained by solving a system of linear equations.

The resulting method has been coded in MatLab and validated by
means of an example network. We conclude that a network’s topology
can be identified based on measured input/output data using a subspace
identification method, assuming that the local node dynamics are known.
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1 Introduction

Nowadays, complex networks exist in every corner of the world, from commu-
nication networks to social networks, from cellular networks to metabolic net-
works, from Internet to World Wide Web [1]. Networks have two main aspects:

• Nodes: these represent subsystems that each have their own dynamics.

• Edges: these represent communication or information exchange between
nodes.

Analysis and control of the behaviours of complex networks consisting of
a large number of dynamical nodes have attracted wide attention in the past
decade. In particular, special attention has been given to the control and syn-
chronization of large scale complex dynamical networks with certain types of
topology [2].

However, in the real world, the exact topology of a complex dynamical net-
work is often unknown or uncertain [3]. The procedure of finding a network’s
topology is called topology identification. Much research has already been con-
ducted to investigate new approaches to this topic. However, many of these
methods exist under the assumption of relatively simple node dynamics. For
example, M. Nabi-Abdolyousefi and M. Mesbahi developed a network identifica-
tion technique assuming single integrator node dynamics [4]. Then, in [5], this
technique was extended for networks of systems that are not necessarily single
integrators, however are still assumed to be SISO and identical.

We refer to a network with identical subsystems as a homogeneous network.
The more general setting in which the node dynamics are not necessarily the
same is referred to as a heterogeneous network. In the following thesis, we
study topology identification of heterogeneous networks with general linear node
dynamics; the systems are not necessarily SISO.

2 Problem analysis

2.1 Problem context

Consider a network of neurons in the brain. While each neuron has its own
internal dynamics, the dynamics of the network as a whole are what makes the
brain function as it is [6]. Additionally, large power grids rely on stability and
controllability of the interconnections within the grid to reduce the probability
of power outages [7].

These examples illustrate the importance of topology identification; under-
standing and mapping the interrelation of subsystems will provide necessary
information about how the network functions as a whole. While many more
examples can be discussed, in the following thesis a network will be approached
in a general way: as a collection of N linear subsystems, which input/output
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(I/O) behaviour can be expressed in a state space representation:

xi(t + 1) = Aixi(t) + Bivi(t),

wi(t) = Cixi(t).
(1)

Here, xi(t) ∈ Rni is the state of the i-th subsystem, vi(t) ∈ Rmi is its input
and wi(t) ∈ Rpi its output. The contribution of each node’s output wi(t) to the
external network output y(t) ∈ Rp is determined by the real p × pi matrix Si.
The external network output is then defined as

y(t) =

N∑
i=1

Siw(t). (2)

Due to influences between nodes, the node input vi(t) is composed of internal
and external influences, and is defined as

vi(t) =

N∑
j=1

Qijwj(t) + Riu(t), (3)

where u(t) ∈ Rm is the external network input and Qij and Ri are real matrices
of appropriate dimensions.

The matrix Q is the interconnection matrix of a network. The entry on the
i-th row and j-th column, Qij , then describes the connection of node j with
node i. More specifically, a nonzero value of Qij expresses an influence of the
output of node j on the input of node i.

We continue by defining topology. Consider a directed graph G(Q) = (V, E),
where the set of nodes V = 1, 2, . . . , N corresponds to the nodes in the network.
Then, a nonzero value of Qij corresponds to an edge from node j to node i,
i.e. (j, i) ∈ E if and only if Qij 6= 0. The graph G(Q) is then referred to as the
topology of a network. Then, the problem of topology identification concerns
finding G(Q) (equivalently, interconnection matrix Q), using measurements of
external network input u(t) and output y(t).

2.2 Problem owners and stakeholders

The main problem owner is PhD student Henk J. van Waarde, who is currently
conducting research in the field of network identification for the University of
Groningen. Furthermore, prof. Claudio de Persis is a stakeholder since he is one
of the leading professors in the field of control engineering for the University of
Groningen and the first supervisor of this thesis.

2.3 System and scope

2.3.1 System description

In the following section, a description of the system on which the research is
focused will be given. First, the dynamics within a node will be analysed.
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Then, a system description of a network will be provided. Finally, the process
of topology identification will be depicted in the last system.

Let us first consider the dynamics within a single node i, which are expressed
in (1). Since the node is part of a network of systems, the input vi(t) is composed
of internal and external influences, as expressed in (3). Then, the dynamics of
a single node can be depicted in a block diagram, as can be seen in Figure 1.

Figure 1: Block diagram of single node dynamics.

Note that the inputs of this system are both the external input u(t) and the in-

ternal input
∑N

j=1 Qijwj(t), and the system output is the node output wi(t). In
terms of efficacy, the previously introduced Si matrix describes the contribution
of the system to the higher system, which is the network.

We now consider a network of N nodes. The system is depicted in Figure 2.

Figure 2: Diagram of network dynamics.

In the network system, the system input is solely the external input u(t) and
the system output is the external output y(t).

Finally, we consider the process of topology identification. First of all, we
measure input/output (I/O) data from the network. Then we use this data
as inputs to the topology identification algorithm. Finally, the output of the
algorithm is the topology of the network. This process is depicted in Figure 3.
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Figure 3: The process of topology identification.

2.3.2 Scope

In the following thesis, the network dynamics will be assumed to be linear and
time-invariant. Other assumptions are:

• The network is considered to be heterogeneous, i.e. the Ai, Bi and Ci-
matrices of all subsystems are not necessarily equal.

• The Ai, Bi and Ci-matrices of all subsystems are known.

• The network dynamics are in discrete-time.

• The in- and outputs of the network are measurable and there is no mea-
surement noise.

2.4 Research goal

Consider the network dynamics as introduced in Section 2.1. The research goal
of the following thesis is then to construct an algorithm that identifies the
network topology based on measured input/output data, by using a
subspace identification method.

2.5 Tools and methods

In this thesis, several tools and methods have been used. These are discussed
below.

2.5.1 Literature research

Literature research has been conducted to investigate current knowledge on
topology identification in order to construct the algorithm. Some preliminary
literature results are discussed below:

• Control Theory for Linear Systems [8]. This book provides a clear overview
of the background of control theory, and hence an early insight in the
possibilities current theories may provide.

• On- and off-line identification of linear state space models [9]. This paper
already provides an algorithm for identification of a single linear time-
invariant system. This algorithm can be applicable to an entire network
if the network dynamics are expressed in an applicable format.

6



2.5.2 MatLab

The constructed algorithm has been coded in MatLab, a programming language
in which the input/output data can be generated and be used as inputs to the
algorithm. MatLab hence serves as a tool for simulation and validation of the
algorithm.

2.5.3 Cycle choice

In order to analyze the design process in the following thesis, the design cycle
approach formulated in [10] has been used. This theory makes a distinction
between three cycles: the relevance cycle, the design cycle and the rigor cycle.
These are depicted in Figure 4.

Figure 4: The design cycles as defined by Hevner.

In this thesis, the main focus will lie on the rigor cycle, since the construction
of the algorithm will be based primarily on scientific theories and methods. In
the literature research, already existing algorithms for topology identification
(Meta-Artifacts) will be assessed and, if possible, used in the construction pro-
cess. Furthermore, the final design goal is an addition to the current knowledge
base. The final algorithm will be applicable in many different areas; topol-
ogy identification in networks of linear systems is relevant in many fields, as
explained in the introduction.

Since there is no direct application of the algorithm in for example a com-
pany, the relevance cycle is less applicable: defining clear requirements and
conducting field experiments are not incorporated in the scope of this thesis.

Finally, the design cycle will have a minor influence on the process, since the
final algorithm will serve as a new artifact that forms the output of the design
cycle.

3 Results

In the next section, the found topology identification method is explained. First
of all, in Section 3.1, a method is proposed to write the dynamics of a network
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of systems in a single state space representation. Secondly, in Section 3.2, the
theory behind subspace identification is introduced as a method to determine
the network dynamics based on this expression. Finally, in Section 3.3, a system
of linear equations is derived, for which the results from subspace identification
are used to solve the system to find the network topology.

3.1 Compact formulation of network dynamics

Consider a network of N linear time-invariate systems, where each system’s
dynamics are as expressed in (1). Let the node input vi(t), node output wi(t),
node state xi(t), external input u(t) and external output y(t) be as defined in
Section 2.1. Then, by introducing the block diagonal matrices

A =


A1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 AN

 , B =


B1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 BN

 ,

C =


C1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 CN

 ,

and the block matrices

Q =

Q11 . . . Q1N

...
. . .

...
QN1 . . . QNN

 , R =

R1

...
RN

 , S> =

S>1
...

S>N

 ,

we can represent the entire network dynamics as

x(t + 1) = (A + BQC)x(t) + BRu(t),

y(t) = SCx(t),
(4)

where the vector x(t) ∈ Rn is the concatenation of the states of all network

nodes and n =
∑N

i=1 ni.
We introduce new matrices E, F, G, where E = (A + BQC), F = BR and

G = SC. The system can then be expressed compactly as

x(t + 1) = Ex(t) + Fu(t),

y(t) = Gx(t),
(5)

which corresponds to a general state space form.
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3.2 Subspace identification

In the following section, the theory behind subspace identification is explained.
Throughout this section, let A, B, C and D be general matrices defining the
state-space system

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(6)

Here, u(t) ∈ Rm denotes the system input, where m is the number of inputs,
and y(t) ∈ Rp denotes the system output, where p is the number of outputs.
Furthermore, x(t) ∈ Rn denotes the system state, where n denotes the number
of states. Subspace identification involves finding matrices (A,B,C,D) based
on I/O data.

3.2.1 Rewriting the model

The first step is to rewrite the model into an extended state space expression.
Consider a sequence of inputs and outputs, (u(t), y(t), t = 0, 1, . . . , j + i− 2),
and a sequence of states, (x(t), t = 0, 1, . . . , j−1), that satisfy (6). The sequence
then satisfies [9]:

Yh = ΓiX + HtUh, (7)

where Yh is a block Hankel matrix containing consecutive outputs,

Yh =


y(0) y(1) . . . y(j − 1)
y(1) y(2) . . . y(j)

...
...

. . .
...

y(i− 1) y(i) . . . y(j + i− 2)

 .

Similarly, Uh is a block Hankel matrix with the same block dimensions as Yh.
This matrix contains consecutive inputs,

Uh =


u(0) u(1) . . . u(j − 1)
u(1) u(2) . . . u(j)

...
...

. . .
...

u(i− 1) u(i) . . . u(j + i− 2)

 .

Furthermore, X contains consecutive state vectors,

X =
(
x(0) x(1) x(2) . . . x(j − 1)

)
,

Γi is an extended observability matrix defined as

Γi =


C
CA
CA2

...
CAi−1

 ,
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and Ht is a lower triangular block Toeplitz matrix,

Ht =



D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAi−2 CAi−3B CAi−4 . . . D


.

The expression in (7) is called the extended state space model. In this model, i
and j are arbitrary integers. Let s denote the available amount of data samples.
Guidelines for the values of i and j are then to have j typically equal to s−2i+1,
which implies that all s available data samples are used, and i as at least the
upper bound of the expected order of the system [11].

3.2.2 Matrix identification methods

Among all subspace identification techniques, a distinction is made between
two different approaches to identify matrices (A,B,C,D): through the state
vector sequence or the extended observability matrix [12]. The first one involves
determining a vector state sequence

X =
(
x(0) x(1) x(2) . . . x(j − 1)

)
.

Once this is obtained, the matrices can be identified up to a similarity matrix
T by solving the following system of linear equations:(

x(1) x(2) . . . x(j − 1)
y(0) y(1) . . . y(j − 2)

)
=

(
A B
C D

)
·
(
x(0) x(1) . . . x(j − 2)
u(0) u(1) . . . u(j − 2)

)
.

In order to find a state vector sequence, several methods have been constructed.
One of these will be elaborated on in section 3.2.3.

The second one first determines the extended observability matrix Γi. Then,
the C matrix can be read directly from

Γi =


C
CA

...
CAi−1

 .

Let Γ̄i be the extended observability matrix with the last block row removed,
and let

¯
Γi be the extended observability matrix with the first block row removed:

Γ̄i =


C
CA

...
CAi−2

 ,
¯
Γi =


CA
CA2

...
CAi−1

 .
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This implies

Γ̄iA =
¯
Γi,

which is linear in A and can be solved to find this matrix.
While this method provides an efficient way of determining A and C, de-

termining B and D using this method is more complex than through the state
vector sequence. It has been found that identification of the B-matrix is re-
quired for topology identification. Therefore, subspace identification through
the extended observability matrix will not be considered. In the next section, a
technique to find the state vector sequence is proposed.

3.2.3 State vector sequence approximation

In order to construct the state vector sequence, a theory is proposed in [9].
First, the extended state space expression in (7) is divided into two expressions:
one for the “past” and one for the “future”. We make a distinction between Yh1

(“past” output values) and Yh2 (“future” output values), where

Yh1 =


y(0) y(1) . . . y(j − 1)
y(1) y(2) . . . y(j)

...
...

. . .
...

y(i− 1) y(i) . . . y(j + i− 2)


and

Yh2 =


y(i) y(i + 1) . . . y(i + j − 1)

y(i + 1) y(i + 2) . . . y(i + j)
...

...
. . .

...
y(2i− 1) y(2i) . . . y(j + 2i− 2)

 .

The “past” and “future” input matrices, respectively Uh1 and Uh2, are con-
structed similarly. Finally, the “past’ and “future” state vector sequences, re-
spectively X1 and X2, are defined as

X1 =
(
x(0) x(1) x(2) . . . x(j − 1)

)
,

X2 =
(
x(i) x(i + 1) x(i + 2) . . . x(i + j − 1)

)
.

This then yields the two I/O equations that satisfy (6):

Yh1 = ΓiX1 + HtUh1, (8)

Yh2 = ΓiX2 + HtUh2. (9)

Now, before the state vector sequence can be determined, we introduce three
conditions. Let Yh, Uh and X be defined as in section 3.2.1, and let H denote
the concatenation of Yh and Uh:

H =

(
Yh

Uh

)
.

11



Furthermore, let the row space of a matrix A be denoted as rs(A). We then
consider the conditions:

1. rank(X) = n, i.e. all modes are sufficiently excited.

2. rs(X) ∩ rs(Uh) = {0}.

3. rank(Uh) = mi = number of rows in Uh.

These conditions are necessary to estimate the system order n based on the I/O
data, which is proven and further explained in [9]. Alternatively, it has been
shown in [13] that a sufficient condition for system order estimation is that the
input is persistently exciting of sufficiently high order. Now, let H1 and H2 be
the concatenation of (Yh1, Uh1) and (Yh2, Uh2) respectively:

H1 =

(
Yh1

Uh1

)
, H2 =

(
Yh2

Uh2

)
. (10)

Then, if both (H1, X1) and (H2, X2) satisfy the conditions defined before, the
row space of the state vector sequence X2 can be determined by

rs(X2) = rs(H1) ∩ rs(H2). (11)

In order to determine this intersection, various methods exist. A first way,
presented in [9], is by making use of a singular value decomposition of the con-
catenated Hankel matrix H. Alternatively, another method, presented in [14],
involves taking as a basis for the intersection the principal directions between
the row space of the past inputs and outputs and the row space of the future
inputs and outputs.

The first method was coded into MatLab and then used to validate the final
algorithm. This will be further elaborated on in the validation section.

3.2.4 Similarity transformation

Let (A,B,C,D) be the real matrices of a system. The solution of a subspace
identification problem are then matrices (Ā, B̄, C̄, D̄), where

Ā = T−1AT, B̄ = T−1B, C̄ = CT, D̄ = D,

for an unique invertible transformation matrix T . This is because a similar
system has the same I/O behaviour, which can be seen by comparing the transfer
function H̄(z) of (Ā, B̄, C̄, D̄) with the real transfer function H(z):

H̄(z) = CT (zI − T−1AT )−1T−1B + D = C(zI −A)−1B + D = H(z).

3.3 Implementation in topology identification

In the following section, the previously described theory on subspace identifi-
cation will be applied on network dynamics. First, the application of subspace
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identification on the network state space model in (5) is discussed. Then, the
applications in topology identification will be evaluated.

By using subspace identification, the real system matrices (E,F,G) de-
fined in Section 3.1 can be estimated up to a similarity transformation T . Let
(Ē, F̄, Ḡ) be the results of subspace identification algorithm. We then have that

Ē = T−1ET, F̄ = T−1F, Ḡ = GT,

for some unique invertible transformation matrix T . We assume that the indi-
vidual dynamics of each subsystem are known (and hence matrices A, B, C, R, S
are known), where S = R = I. We then get

Ē = T−1ET = T−1(A + BQC)T, (12)

F̄ = T−1F = T−1B, (13)

Ḡ = GT = CT. (14)

Then, by substituting (14) into (12) , we get

Ē = T−1AT + T−1BQḠ.

Finally, pre-multiplying the resulting equation with T yields

TĒ = AT + BQḠ. (15)

As a result, we have a system of linear equations in the unknowns T and Q:

TĒ −AT = BQḠ,

CT = Ḡ,

T F̄ = B.

(16)

In order to convert this system into a form that can be solved using standard
techniques, we use the Kronecker product. Let the Kronecker product between
m× n matrix X and p× q matrix Y , denoted as X ⊗ Y , be the mp× nq block
matrix:

X ⊗ Y =

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 .

Furthermore, let the vectorization of an arbitrary n ×m matrix Z be denoted
as vec(Z), where vec(Z) ∈ Rmn. We then use that the vectorization of the
product of three arbitrary matrices K, L, M , of appropriate dimensions, can be
rewritten as

vec(KLM) = (M> ⊗K) vec(L). (17)
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Then, vectorizing the equations in (16) and using the new expression obtained
in (17) yields

(Ē> ⊗ I) vec(T )− (I ⊗A) vec(T ) = (Ḡ> ⊗B) vec(Q),

(I ⊗ C) vec(T ) = vec(Ḡ),

(F̄> ⊗ I) vec(T ) = vec(B),

which can be expressed as
Ē> ⊗ I − I ⊗A −(Ḡ> ⊗B)

I ⊗ C 0

F̄> ⊗ I 0


vec(T )

vec(Q)

 =


0

vec(Ḡ)

vec(B)

 . (18)

This system of linear equations can be solved using standard methods, for ex-
ample using the “backslash” command in Matlab. It can be shown that the
solution to (18) is unique if so-called identifiability conditions on Q are satis-
fied. Such conditions are rather involved, and hence considered out of the scope
of this thesis.

4 Validation

In order to validate the method discussed in this thesis, the topology identifica-
tion procedure was coded into MatLab. The code can be found in appendices
A.1 and A.2. In the following section, a description of the MatLab code is
provided together with the validation procedure.

Consider a network of 5 nodes, and let the associated graph G be as depicted
in Figure 5. From the graph, the network’s topology can immediately be seen
by looking at the edges between the nodes.

Figure 5: A graph of a network of 5 nodes and their interconnections.
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We let the interconnection matrix Q of the network be equal tot he Laplacian
matrix L of G:

Q = L =


2 0 −1 0 −1
0 2 −1 −1 0
−1 −1 3 −1 0
0 −1 −1 2 0
−1 0 0 0 1

 .

Furthermore, individual node dynamics, i.e. the (Ai, Bi, Ci) matrices, are de-
fined for the network. For illustration purposes, we let ni = 2 and mi = pi = 1
for all nodes. The matrices are given by:

A1 =

(
0.1 0.3
0.1 0.4

)
, A2 =

(
0.2 0.4
0.2 0.1

)
, A3 =

(
0.4 0.1
0.2 0.1

)
, A4 =

(
0.5 0.1
0 0.1

)
,

A5 =

(
0 0.1

0.1 0.5

)
,

B1 =

(
2
1

)
, B2 =

(
1
1

)
, B3 =

(
0
1

)
, B4 =

(
0

1.0

)
, B5 =

(
2
1

)
,

C1 =
(
0.1 0

)
, C2 =

(
0 0.1

)
, C3 =

(
0.2 0.1

)
, C4 =

(
0.3 0

)
,

C5 =
(
0.1 0.1

)
.

Based on these, matrices A, B and C are constructed using the “blkdiag” com-
mand in MatLab. Then, in order to run the method, I/O data is generated for
the network based on the network dynamics. This can be seen in Appendix A.1.

Then, in the code in Appendix A.2, matrices Ē, F̄ , Ḡ are determined by
running the algorithm proposed in [9]. We highlight matrices F̄ and Ḡ resulting
from the algorithm:

F̄ =



−0.17 0.00 0.06 0.00 0.28
−0.18 −0.04 0.03 0.00 −0.15
−0.06 0.04 −0.12 0.00 0.05
0.03 −0.11 −0.03 0.00 0.07
−0.02 −0.01 0.00 0.03 −0.02
0.00 0.00 0.00 0.02 0.00
0.00 0.00 0.00 −0.01 −0.02
−0.01 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00


,

Ḡ =


−0.29 −0.63 −0.34 0.09 −0.09 0.08 0.21 −0.67 0.03 −0.07
0.04 −0.22 0.15 −0.79 −0.03 0.00 −0.06 0.00 0.55 0.12
0.19 −0.02 −0.67 −0.27 0.04 −0.02 −0.01 0.19 −0.34 0.55
0.01 −0.07 −0.02 −0.06 0.56 −0.81 0.10 −0.07 −0.04 −0.12
0.62 −0.58 0.10 0.26 −0.09 −0.11 −0.57 0.19 0.00 −0.02

 .
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As expected, the matrices B and C are not equal to F and G, respectively, since
the subspace identification method identifies the matrices up to a transformation
matrix T .

Finally, the analytical tools proposed in Section 3.3 were implemented to
find the resulting matrices T ∗ and Q∗, the code of which is in Appendix A.1.
The resulting matrix Q∗ is then

Q∗ =


2 0 −1 0 −1
0 2 −1 −1 0
−1 −1 3 −1 0
0 −1 −1 2 0
−1 0 0 0 1

 ,

which is equal to the matrix Q. Based on this matrix, we can reconstruct the
graph depicted in Figure 5. We conclude that the method is successful.

5 Conclusion

We conclude with the words of E.O. Wilson [15]: “The greatest challenge today,
not just in cell biology and ecology but in all of science, is the accurate and
complete description of complex systems. Scientists have broken down many
kinds of systems. They think they know most of the elements and forces. The
next task is to reassemble them, at least in mathematical models that capture
the key properties of the entire ensembles.”

In this thesis, it has been found that an existing method of subspace identifi-
cation can be applied to identify the dynamics of a network. Furthermore, these
results can then be used to solve a system of linear equations for the intercon-
nection matrix Q, from which the network’s topology can be derived. Finally,
the method has been coded in Matlab and it was validated based on a network
of 5 nodes.

It can be concluded that, under suitable identifiability conditions, the ap-
proach proposed in this thesis can successfully identify a network’s topology,
using a subspace identification method. Due to the general network approach,
it could be applicable in many disciplines. However, in order to convert the
method into an applicable format for real life situations, much future research
should be conducted.

6 Discussion and further research

In the following section, several topics left for discussion and/or future research
are mentioned:

• In this thesis, several restricting assumptions have been made. For fu-
ture research, the influence of relaxations of these assumptions has to be
assessed in order to make the model more applicable in the real world.
These assumptions are:
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– Linearity of the subsystems. In real life complex networks, linear-
ity often is not a realistic assumption. Therefore, for future research,
linearization methods for nonlinear systems can be looked into. Sub-
space identification of non-linear systems has already been researched
in current literature, such as identification of Wiener systems [16] or
Hammerstein systems [17].

– Time-invariance of the network. Similar to linearity, the as-
sumption of time-invariance is a strong one when trying to approach
real-life behaviour. Not only node dynamics can change over time;
the topology can be time-varying as well. A simple solution would be
to repeatedly run the algorithm to re-determine the network topology.
Alternatively, synchronization-based topology identification methods
have been constructed for networks with time-variant behaviour [18].

– No feedthrough. The expression proposed in section 3.2.1 can be
adjusted to incorporate the feedthrough matrices for each system.
Furthermore, the feedthrough matrix can be obtained by means of
the subspace identification algorithm. This inclusion will be left to
further research.

– No measurement noise. When measurement noise occurs, there
is likely not an exact solution to the linear equations in sections 3.2.2
and 3.3. Therefore, a least-squares method can be used to solve the
equations and hence find an approximation for the network topology.

– Discrete-time network dynamics. Although we focus on discrete-
time systems, our results can be stated for continuous-time systems
as well. By introducing a subspace identification algorithm that func-
tions in continuous time, e.g. the method proposed in [19], the ma-
trices Ē, F̄, Ḡ can be determined similarly and hence be used to de-
termine a network’s topology.

• The system of linear equations in (18) is computationally demanding,
especially when large networks are considered. Alternatively, the equation
in (15) can be treated as a generalized Sylvester equation. By introducing
matrix W = QḠ, we get an equation of the form AV − EV F = BW
in the unknowns V and W . In [20], a method is discussed to solve this
equation for V and W up to an arbitrary parameter matrix Z, under
suitable conditions on matrices E, A and B. By using this alternative
method, it could be that the computational load of solving the system of
linear equations is reduced. This will be left to future research.
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Appendices

A Matlab codes

A.1 MatLab code of topology identification

clear all

%% Determine matrices

%Determine matrices of each subsystem

A1 = [0.1 0.3;0.1 0.4];

A2 = [0.2 0.4;0.2 0.1];

A3 = [0.4 0.1;0.2 0.1];

A4 = [0.5 0.1;0 0.1];

A5 = [0 0.1;0.1 0.5];

B1 = [2;1];

B2 = [1;1];

B3 = [0;1];
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B4 = [0;1];

B5 = [2;1];

C1 = [0.1 0];

C2 = [0 0.1];

C3 = [0.2 0.1];

C4 = [0.3 0];

C5 = [0.1 0.1];

%Determine the Q-matrix

Q = [2 0 -1 0 -1;0 2 -1 -1 0;-1 -1 3 -1 0;0 -1 -1 2

0;-1 0 0 0 1];

%Construct the A,B,C matrices for network notation

A = blkdiag(A1,A2,A3,A4,A5);

B = blkdiag(B1,B2,B3,B4,B5);

C = blkdiag(C1,C2,C3,C4,C5);

%% Generate data

%Determine number of states , inputs and outputs

[n,~] = size(A);

[~,m] = size(B);

[p,~] = size(C);

%Generate random input data and initial state

T = 1000;

x = rand(n,1);

U = rand(m,T);

Y = zeros(p,T);

for i = 1:T

Y(:,i) = C*x;

x = (A+B*Q*C)*x + B*U(:,i);

end

%% Topology identification

%Run the subspace identification algorithm

[E,F,G,H] = subspace_id_p(n,U,Y);

%Prepare matrices to set up the system of linear

equations

I=eye(n);

E_kron_I = kron(E',I);
I_kron_A = kron(I,A);
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G_kron_B = kron(G',B);
I_kron_C = kron(I,C);

F_kron_I = kron(F',I);
vec_G= G(:);

vec_B= B(:);

z_left=zeros(n*p,p*m);

z_right=zeros(n^2,1);

Y_11=E_kron_I -I_kron_A;

Y=[Y_11 -G_kron_B; I_kron_C z_left; F_kron_I z_left ];

Z=[ z_right; vec_G; vec_B ];

%Solve the system of linear equations to find the T-

and Q-matrix

X=Y\Z;

T_vec=X(1:n^2,1);

Q_vec=X(n^2+1:n^2+p*m);

T_ans=reshape(T_vec ,n,n);

Q_ans=reshape(Q_vec ,m,p);
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A.2 MatLab code of subspace identification algorithm

function [E,F,G,H] = subspace_id_p(n,u,y)

%%Choosing i and j and determining the number of in-

and outputs

%settings

[~,s]=size(u);

i=n;

j=s-2*i+1;

%number of inputs

sz_m=size(u);

m=sz_m (1);

%number of outputs

sz_l=size(y);

p=sz_l (1);

%% Determining the H matrix based on the input and

output

%Preparation

H_1=zeros((m*i+p*i),j);

H_2=zeros(i,j);

%Assiging data to H_1 matrix

for k = 1:i

H_1 ((1+(k-1)*(m+p)):(1+(k-1)*(m+p)+m-1) ,1:j)=u(1:m

,k:k+j-1);

H_1((m+1+(k-1)*(m+p)):(k*(m+p)) ,1:j) = y(1:p,k:k+j

-1);

end

%Assigning data to H_2 matrix

for k = 1:i

H_2 ((1+(k-1)*(m+p)):(1+(k-1)*(m+p)+m-1) ,1:j)=u(1:m

,k+i:k+i+j-1);

H_2((m+1+(k-1)*(m+p)):(k*(m+p)) ,1:j) = y(1:p,k+i:k

+i+j-1);

end

%Finally the H matrix is given by

H=[H_1;H_2];

%% Starting the algorithm

%Computing SVD of H

[U,S,V]=svd(H);
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%Separating the relevant matrices U_11 , U_12 and S_11

U_11=U(1:(m*i+p*i) ,1:(2*m*i+n));

U_12=U(1:(m*i+p*i) ,(2*m*i+n+1) :(2*m*i+2*p*i));

S_11=S(1:(2*m*i+n) ,1:(2*m*i+n));

%find the second SVD

U_12t=transpose(U_12);

K=U_12t*U_11*S_11;

[U2,S2,V2]=svd(K);

%find the finally required matrices

U_q=U2 (1:(2*p*i-n) ,1:n);

U_qt=transpose(U_q);

M_1=U_qt*U_12t*U(m+p+1:(i+1)*(m+p) ,:)*S;

M_2=U(m*i+p*i+m+1:(m+p)*(i+1) ,:)*S;

M_3=U_qt*U_12t*U(1:m*i+p*i,:)*S;

M_4=U(m*i+p*i+1:m*i+p*i+m,:)*S;

M_l=[M_1;M_2];

M_r=[M_3;M_4];

size(M_l);

size(M_r);

%% solve the set of equations

X = M_r '\M_l ';
X = X';
E = X(1:n,1:n);

F = X(1:n,n+1:n+m);

G = X(n+1:n+p,1:n);

H = X(n+1:n+p,n+1:n+m);
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