faculty of science
and engineering

university of
groningen

FOREST FIRE CONTROL WITH CONNECTIONIST
REINFORCEMENT LEARNING

Bachelor’s Thesis

Travis Hammond, dashdeckers@gmail.com
Dirk Jelle Schaap, d.j.schaap@student.rug.nl
Supervised by dr. Marco A. Wiering, m.a.wiering@rug.nl

Abstract: With global temperatures on the rise, forest fires are becoming more frequent
and forest fires, in turn, contribute to global warming by releasing large amounts of CO4
into the atmosphere and eliminating the trees that would be able to process the COs.
Finding a way to effectively control and contain these fires is therefore becoming more
and more of a priority. In this paper, we propose a connectionist reinforcement learning
system that can learn to contain the spread of a simulated fire. It can do this by cutting
fire lines around the fire, removing the fuel needed for it to spread further. We show
the performance of a connectionist Q)-Learning algorithm with a target network and ex-
perience replay, and compare it to three other algorithms. One that uses the on-policy
algorithm SARSA, one with the addition of a dueling network architecture and one with
both modifications. To accelerate learning, we use a state representation in which the
system receives as input three versions of the full map size each showing only a single
feature such as agent location and fire locations. We also provide the algorithm with
different amounts of demonstration data. The results show the ability of each proposed
system to successfully contain the fire within a reasonable number of training episodes.
Both modifications have their advantages and disadvantages with regard to reliance on
demonstration data and learning stability. Dueling SARSA, combining both modifica-

tions, shows the best performance.

1 Introduction

1.1 Forest Fires

The ever increasing temperature around the
globe due to global warming brings many con-
sequences. One of which is the increased risk
of forest fires. Warmer climates are plagued by
forest fires not only more frequent, but also
more intense. In most cases, beginning wildfires
are extinguished before they get out of hand.
Sadly, some wildfires escalate into nearly un-
controllable infernos.

Fighting these forest fires is a challenging
task. To extinguish a fire one or more of the
three required elements has to be eliminated:
fuel, heat or oxygen. The ordinary tactic is to
remove the heat and oxygen by spraying water

or foam from hoses, but large forest fires require
more effort to be contained. Possible options in-
clude dropping water bombs via aircraft, burn-
ing down specific areas in a controlled fashion,
or using a bulldozer to cut fire lines. The use of
these techniques need to be carefully planned
by the fire-fighters when constructing a plan.
To create the perfect plan is a near impossible
job and it is not uncommon for plans to fail and
cause the loss of more forest.

Not only can forest fires result in the tragic
loss of lives and houses, the ecological effect
has to be taken into account as well. Trees and
plants are a key factor in the carbon cycle (Ka-
sischke, Christensen Jr, and Stocks, 1995). Us-
ing photosynthesis massive amounts of CO5 are
filtered from the atmosphere and stored. When
fires destroy large forests, all this stored CO2

is released back into the atmosphere, which is
inconsistent with the carbon cycle. Since this
COg, is considered a greenhouse gas (Houghton,
Jenkins, and Ephraums, 1991) which boosts the
already increasing global warming, this will in-
creases the likelihood and risk of forest fires.
The just described relationship has the poten-
tial to result in a dangerous cycle with grave
consequences for the ecosystem as well as for
the habitability of the planet for humans.

In light of the seriousness of the problem
there is still not much research being done in
the field of artificial intelligence to optimize
the coordination of fire fighting efforts. Pre-
vious research mostly focussed on the detec-
tion and prediction of forest fires, but excep-
tions include investigations into how to con-
struct a simulator for forest fires and how re-
inforcement learning algorithms could optimise
policies by interacting with such a simulation
(Wiering and Doringo, 1998), research explor-
ing how enforced sub-populations (ESP) could
be used to evolve neural network controllers ca-
pable of solving the forest fire problem (Wier-
ing, Mignogna, and Maassen, 2005), and a
model of multi-agent coordination in fire fight-
ing scenarios (Moura and Oliveira, 2007).

In this paper we explore how connectionist
reinforcement learning (RL) can be used to al-
low an agent to learn how to contain forest
fires in a simulated environment by using a
bulldozer to cut fire lines. We make use of ex-
isting algorithms: Q-Learning (Watkins, 1989),
SARSA (Rummery and Niranjan, 1994) and
Dueling @Q-Networks (Wang, de Freitas, and
Lanctot, 2015). We show that using a sim-
ple baseline algorithm to generate demonstra-
tion data to be used in experience replay can
greatly increase the algorithm’s performance.
We show that these algorithms are able to com-
plete this task successfully in small simulations.
We also introduce a new RL algorithm, Duel-
ing SARSA, which combines the latter two and
outperforms all, especially in simulations of a
larger size where others fail.

Our research question is: Which connec-
tionist reinforcement learning algorithm, Q-
learning, SARSA, Dueling Q-learning or Du-
eling SARSA, performs best for containing the

spread of simulated forest fires by cutting fire
lines?

1.2 Reinforcement Learning

Reinforcement learning (Sutton and Barto,
2018) is a machine learning paradigm typi-
cally consisting of two elements. The first is
the agent, which represents the reinforcement
learning algorithm, and the second is the envi-
ronment, which represents what the algorithm
is trying to solve. This is typically a game or in
this case, a simulated forest fire that should be
contained.

At each discrete time step t € {1,2,3...,T},
the environment provides the agent with an ob-
servation s; € S. Then, the agent interacts with
the environment by choosing an action a; from
a limited set of possible actions A = {1,..., K},
and observes the result of that action in state
s¢+1 and the obtained reward r;. This inter-
action can be modelled by a Markov Decision
Process, or MDP, as long as the Markov prop-
erty holds: The probability of state s;41 only re-
lies on the previous state s; and the performed
action a;. This property indeed holds, as the
simulation only requires the current state and
agent action to produce the next state.

The goal of the agent is to select actions in a
way that maximizes the cumulative future re-
ward from the current time step ¢, which is de-
fined as:

T
2 : t'—t
Rt = Y Tty

t'=t

(1.1)

where T is the time-step at which the game
terminates and v € [0,1] is a discount factor
that determines the trade-off between the im-
portance of immediate and delayed rewards.

A policy 7 is a mapping of states to actions
(or distribution over actions). To determine the
optimal policy 7*, that leads to the highest re-
ward as defined in Equation (1.1), we define
the optimal action-value function (also known
as @*) to be:

Q*(s,a) = maxE[R|s; = s,ar = a,m] (1.2)

We can compute this Q-function using dy-
namic programming methods through iterative

updates to the Bellman equation:

Qi-i-l(sﬂ a) = Zs’ P(5,|37 a)[R(S7 a, SI)+
ymaxy Qi(s',a’)],

(1.3)
where P(s'|s,a) is the probability of observing
state s’ after executing action a in state s, and
R(s,a,s’) is the reward obtained after execut-
ing action a in state s and ending up in state
s'. Such a value iteration algorithm will even-
tually converge to the optimal @-function Q*
as ¢ — o0o. From this function, the optimal pol-
icy can easily be derived by simple taking the
highest-valued action in each state. In practice,
the transition function is not known and there
can be a huge number of states, and therefore
dynamic programming cannot be used. In this
case, connectionist reinforcement learning can
be used. In connectionist reinforcement learn-
ing, it is common to approximate this function
using a neural network:

Q(s,a;0) = Q(s,a),

where 6 are the parameters, or weights, of the
@Q-Network.

(1.4)

2 Methods

2.1 Environment

The forest fire is simulated using a grid of cells,
each of which has a number of attributes. The
main ones are heat potential, temperature, ig-
nition threshold and fuel. Heat potential is the
amount of heat, once ignited, the cell radiates
to its neighbours to increase their temperature.
As soon as the temperature of a cell reaches the
ignition threshold, the cell ignites and burns. A
burning cell consumes one fuel per iteration,
and stops burning and radiating heat when the
fuel is empty, becoming a dead cell. The heat
from a burning cell reaches the cells directly
north, south, east and west of it. If that cell
is flammable its temperature is increased by
the heat potential of the burning cell, otherwise
nothing happens.

For a visual representation please see Figure
2.1. The shape of the grid is always square and
has a size of either 10-by-10 or 14-by-14 cells.

Figure 2.1: A visual representation of the
environment. The agent is shown in white,
leaving behind a trail of inflammable dug
cells (shown in brown). The trees (green)
can ignite to become burning cells (red),
which heat up the neighbouring cells (yel-
low). When a burning cell runs out of fuel it
dies (black)

The green cells represent trees that can be ig-
nited. The agent (or bulldozer) is represented
by the white tile. Wherever it moves it destroys
the trees and an empty, inflammable (brown)
cell is formed. A line of these dug cells forms a
fire line over which the fire cannot spread. Dead
cells are represented in black. The agent has to
move each time step, it is not allowed to idle on
the same cell, and it can only die if it moves into
an actively burning (red) cell. The only possi-
ble actions for the agent to take are the 4 valid
movements (north, south, east, west), and the
agent is always digging as it moves. The envi-
ronment reaches a terminal state and restarts if
the agent dies, or if there are no more burning
cells.

2.1.1 The Reward Function

Any reinforcement learning algorithm will rely
on the two things that constitute the input
to the agent. The quality of the state repre-
sentation, or in other words how much of and
how well the agent can perceive the environ-
ment, and the quality of the reward function,

which defines how well the agent’s notion of
success corresponds with the desired behaviour.
Because of this, the performance of the agent
may depend heavily on the design of the reward
function.

The reward function also determines the
speed at which the agent will be able to learn
the optimal policy. To take the gradient descent
analogy of a problem landscape, if the reward
function produces a smooth gradient to the op-
timal solution, the agent will be able to find a
path to that solution more easily than if the
reward resembles a flat landscape with sparse
spikes in which the value jumps from almost
always 0 or negative to a positive reward (Sut-
ton and Barto, 2018). In other words, the agent
should be provided gradual feedback instead of
sparse and delayed rewards in order to facilitate
fast and efficient learning.

We defined the reward function as

1000, Fire is contained

R — 1000 = (p), Fire burns out
t7) —1000, Agent dies ’

-1, Otherwise

(2.1)
where p is the percent of the map undamaged
by either fire or digging. Note that this reward
function does not produce a smooth gradient,
and the performance of the agent will likely suf-
fer as a result.

Containment of the fire is defined as

Z Zastar(f, b) =0,

feFbeB

(2.2)

where f is a burning cell from the set of cur-
rently burning cells F and b is a cell on the
border of the map from the fixed set of border
cells B. The function astar is defined as

(2.3)
where a path is a sequence of directly connect-
ing cells starting with cell f and ending with
cell b, determined using the A* path-finding al-
gorithm and not allowing diagonal steps. The
intuition is that if there exists a path between
any burning cell and any cell on the border of
the map, then there exists a way for the fire

[1, if A* path exists
astar(f,b) = { 0, Otherwise

to spread beyond control and so it is not con-
tained.

2.1.2 The State Representation

The state of the environment, as it is visible to
the agent, consists of 3 matrices of size N? with
a boolean domain resulting in, after flattening,
an array of 3 * N2 boolean inputs where N is
the size of the square map. The environment
is thus represented three times: One layer con-
tains only the agent position, translating to a
matrix of zeros except for a single one repre-
senting the position of the agent. The second
layer consists of the positions of the fire. Cells
that are on fire are represented by a 1, the rest
are set to 0. The third layer represents the fire
lines cut by the agent in a similar boolean fash-
ion, resulting in a total of 300 inputs to the
agent when N = 10. This is shown graphically
in Figure 2.2.

= .

Figure 2.2: An example of the state repre-
sentation. Each layer shows an important as-
pect of the world: The location of the fire,
inflammable cells and the agent itself.

This state representation can speed up the
learning process as well as increase performance
(Knegt, Drugan, and Wiering, 2018). Indeed
it had a noticeable effect on the performance
and learning speed of our implementation com-
pared to a single matrix representing the gray-
scaled map as input, likely because the agent
can more easily differentiate between impor-
tant attributes due to the boolean domain, and

because only the relevant information is pre-
sented. Furthermore, the agent can now see
whether the cell it is occupying is already dug
or not.

2.2 RL Algorithm

2.2.1 Known Problems with Connec-
tionist RL

The combination of function approximation
(the neural network), bootstrapping (TD meth-
ods that update @Q-values using estimated re-
turn values) and off-policy training (the Q-
Learning algorithm) make up the deadly triad
(Sutton and Barto, 2018), which is known to
cause instabilities and even divergence in the
learning process. This is at least partly due
to correlations in the sequence of consecutive
observations, the fact that even small updates
to @ can change the policy and therefore the
data distribution, and the correlations between
the Q-values Q(s¢,ar;60;) and the target val-
ues Y; = rip1 + ymax, Q(St41,a;6;) (Mnih,
Kavukcuoglu, Silver, Rusu, Veness, G. Belle-
mare, Graves, Riedmiller, K. Fidjeland, Os-
trovski, Petersen, Beattie, Sadik, Antonoglou,
King, Kumaran, Wierstra, Legg, and Hassabis,
2015).

As will be clear by the end of this section, all
three of these elements of the deadly triad are
present in some of the algorithms. There are,
however, two well known strategies to reduce
this effect and stabilise learning: Using experi-
ence replay and a target network.

2.2.2 Network Architecture

First we define the neural network architecture*
that will approximate @, or the action-value
function. We use only a shallow network with
one hidden layer of 50 units using a sigmoidal
activation function, and a simple output layer
with a linear activation. The network takes as
an input a state s, consisting of an array of size

*The source code is available at
https://github.com/dashdeckers/Wildfire-Control-
Python and can be accessed and used for non-
commercial uses only.

3 * N2, and outputs an array of size 4 corre-
sponding to the Q-values of taking any of the
4 possible actions a in that state. We used the
Adam optimizer to train this network.

2.2.3 Experience Replay

[Environment]—b[(S.A.R.S) Memory Buffer Random Sample

Figure 2.3: Schematic structure of the expe-
rience replay process

Instead of training the network on incom-
ing experiences e; = (s¢,a¢,re, S¢+1) at each
time step t directly, the experiences can be
stored in a memory buffer B; = {eq,...e;} and
the network can be trained on a mini-batch of
memories randomly sampled from this buffer
(s,a,r,8") ~ U(B) (see Figure 2.3). The buffer
B allows for M experiences to be stored until it
is full, at which point the oldest memories will
be discarded to make room for new ones.

This helps because neural networks assume
that each training sample is identically and in-
dependently distributed from the population,
which is in this case the set of -values that the
network is set up to approximate, and training
directly on incoming experiences violates this
assumption in two regards.

For one, consecutive incoming experiences
are obviously highly correlated because the en-
vironment does not radically change after any
action (unless it is a terminal state). This
means that any experience differs from the pre-
vious experience only to the extent to which
the environment can change in one update step
from a single action from the agent.

Secondly, the distribution of incoming expe-
riences is also dependent on the agent’s current
policy. If the current policy determines that the
agent should head east, then the next expe-
riences recorded by the agent will involve the
agent headed east. Apart from the obvious cor-
relation, this can also lead to feedback loops
and the network parameters could get stuck
in local optima or even diverge (Tsitsiklis and
Van Roy, 1997; Mnih et al., 2015).

In addition to stabilising the learning pro-
cess, this approach also increases sample ef-
ficiency by allowing memories to be re-used
multiple times until they are discarded when
they reach the end of the queue. We can also
pre-initialize this buffer with memories before
learning to provide the agent with demonstra-
tion data, as will be explained in Section 2.2.8.

2.2.4 Target Network

Another source of instability arises when we use
the predictions of the network to generate the
target values which directly update the weights
of that same network, as in the standard Q-
learning update

Ori1 =0+ a(Ye — Q(s¢,a¢56:)) Vo, Q(8¢, ar;),
(2.4)
where « is the learning rate and the target Y;
is defined as
Y,=nr +7m§xXQ(st+1,a;9t). (2.5)
The update rule in Equation (2.4) resembles
stochastic gradient descent, updating the value
Q(st, at; 0;) towards the target value Y;. Using
the same network can lead to unwanted feed-
back loops. A delay to the loop can be added to
reduce these effects by using a periodically up-
dated, frozen copy of the network with weights
0~ to generate the target values instead (as
shown schematically in Figure 2.4)

YtTaTget =7+ 7 max Q(st+1,a;0;), (2.6)

where every C' time steps, the weights of the
network are copied into the target network
0, = 0.. This modification was also used by
Mnih et al. (2015) alongside experience replay
to make the algorithm more stable and dramat-
ically increase its performance.

2.2.5 Q-Learning versus SARSA

We implemented both @Q-Learning (Watkins,
1989) and SARSA (Rummery and Niranjan,
1994) to investigate the difference in perfor-
mance when using an off-policy versus on-
policy algorithm.

Affects

Sy

Target
Network

Figure 2.4: Using a target network to add a
delay to the feedback loop. The main net-
work affects (copies itself into) the target
network only every C iterations.

Affects

There are two commonly used policies, the
greedy and the e-greedy policy, and both de-
pend on . The greedy policy simply always
chooses the best action to take in the current
state at any given time step: argmax, Q(s¢, a).

The e-greedy policy is similar, but it reg-
ulates the exploration/exploitation trade-off
with the parameter ¢ € [0,1]. With a proba-
bility of €, this policy chooses a random action
and otherwise chooses the best action. By an-
nealing this probability towards 0 over time, we
can ensure a high exploration rate in the begin-
ning and then slowly decrease it to switch focus
to the exploitation stage.

In Q-learning the agent follows the e-greedy
policy while optimizing the greedy policy, mak-
ing it an off-policy algorithm. Putting together
everything so far, we end up with the following
loss function for the base Q-Network algorithm:

Z [(YTarget - Q(sv a, 91))2]

(s,a,r,8")~U(B)

L;(0;) =

(2.7)
Where Y779¢t is the target value defined in
Equation (2.6).

In SARSA however, as the acronym suggests,
we also save the next action to the memory
buffer with the tuple (s,a,r,s’,a’). This way
the agent can both follow and optimize for the
same e-greedy policy, making this an on-policy
algorithm with the loss function:

Li6) = Y [(YII_Q(s,a,6,))%).
(s,a,r,s’,a’)~U(B)
(2.8)
with
VORI = py)+ 9Q(se41, arr13 07). (2.9)

This should lead to an increase in learning sta-
bility due to one less element of the deadly triad
present in the system. Because SARSA updates
Q in a way that takes into account the random
actions the agent sometimes takes it is expected
to find a safer, but less optimal policy (Sutton
and Barto, 2018) and report a higher average
performance during learning.

2.2.6 Dueling Networks

One limitation of the @Q-Network approach
is that it is not able to estimate the value
of a state and the action separately (Wang
et al., 2015). This ability can be very useful,
since often in states an action has no relevant
consequence. The dueling network architecture
achieves this by having two streams each pre-
dicting different things, instead of one stream
predicting both. It is implemented by configur-
ing two hidden layers in parallel, replacing the
single hidden layer that is standard in the Q-
Network. One of these two layers will estimate
the state value V', while the other layer will es-
timate the action advantages A for all possible
actions. The two are merged together according
to Equation (2.10). This equation differs from
the original paper, since here we do not use any
convolutional layers.

Q(s,a;a,8) =V (s; B)+

(Als.0:0) - LS A(s.atia)) (210)

Here, a and 8 denote the weights of the two
fully connected layers and ¢ the number of ac-
tions. This equation automatically prevents the
layer for the state value from estimating any-
thing related to the action advantages, since the
sum of the advantages is kept at zero. The equa-
tion results in the Q-values which can be used in
the same way as the single stream Q-values. All
learning techniques and code can be recycled,
and the target network and experience replay
is also used. Given the results from the original
paper, this modification is expected to boost
the maximum performance and especially the
speed of learning.

2.2.7 Dueling SARSA

As well as combining dueling networks with Q-
Learning, we also combine on-policy SARSA
with the dueling network architecture to intro-
duce a new RL algorithm, Dueling SARSA. We
expect this algorithm to benefit from both mod-
ifications for a twice improved performance and
both increased learning speed and learning sta-
bility. Just as the other three algorithms, Du-
eling SARSA also uses the target network and
experience replay.

2.2.8 Demonstration Data

Because the reward function defined in Section
2.1.1 provides only sparse and delayed rewards,
the agent might require additional guidance to
learn to contain the fire in a reasonable training
time. To point it in the right direction, we can
fill the memory buffer with demonstration data
before learning as mentioned in Section 2.2.3.
The agent can then use these memories during
the learning process to its advantage.

The demonstration data only needs to show
the agent how it might be able to collect the
containment reward, to this effect we developed
a simple algorithm that moves the agent around
the fire in a clockwise direction. It does this by
choosing randomly from one of two possible ac-
tions, unless one of the actions would lead to
the death of the agent in which case it chooses
the safe action. The two possible actions de-
pend on the position of the agent relative to
the fire (This is shown schematically in Figure
2.5).

The environment is reset upon containment
as defined in Equation (2.2). Only memories
(transitions) leading to successful containments
are stored. This results in an average of 35
memories per episode, or containments of the
fire, on the 10x10 map, and around 48 memo-
ries per episode on the 14x14 map. The number
of episodes of demonstration data required can
be specified.

Possible Actions: 1
N,E)

Possible Actions:
=8

Fire Qrigin

Possible Actions: Possible Actions:
W) (5. W)
— 2 -5

Figure 2.5: The possible actions for the agent
to take, based on the position (quadrant) of
the agent relative to the origin of the fire

2.3 Experimental Setup
2.3.1 Baseline Algorithm

To be able to reliably compare the performance
of the different algorithms, we need a stable
baseline. We build on the ideas discussed in
Section 2.2.8 to define the algorithm shown in
Algorithm 2.1. This algorithm is identical to
the demonstration data generation except that
it continues until the fire has burnt out, so it
does not stop as soon as the fire is contained.

Algorithm 2.1 Baseline algorithm to contain
the fire

1: procedure RUNBASELINE

2 totalreward = 0

3 while not done do
4 action = random(possible actions)
5 if action is dangerous then
6: action = other possible action
7
8
9

end if
reward, done = execute(action)
totalreward = totalreward + reward
10: end while
11: return totalreward
12: end procedure

2.3.2 Collection of Results

We investigate the performance of both Q-
Learning and SARSA, both with and without
the dueling network architecture modification,
for a total of 4 different algorithms. The hyper-
parameters we used throughout all experiments
are shown in Table 2.1.

Each algorithm and parameter combination
was run 10 times for 10,000 episodes per run.
We compared the baseline performance to 2
map sizes (N = 10 and N = 14), 3 differ-
ent amounts of demonstration data (0, 100 and
1000 episodes) and 4 algorithms for a total of
240 runs (260 including the baselines). At the
start of each run, the environment is initialized
with trees and a single cell at the center of the
map is ignited. The agent starts at a random lo-
cation on a circle centered around the fire with
a radius of either 1, 2 or 3 (also randomly se-
lected). Since each run took approximately 4.5
hours on average, they were calculated on the
Peregrine computing cluster provided by the
University of Groningen.

Memory size 20000
Batch size 32
Target update (C') | 20
Gamma (7) 0.999
Alpha () 0.005
Epsilon decay (¢) | 0.01
Epsilon maximum | 1
Epsilon minimum | 0.005

Table 2.1: All relevant hyper-parameters
used in the training process. These values
were selected by performing an informal
search using the Q-Learning algorithm with-
out dueling networks. The target is updated
every C episodes. The epsilon value is de-
cayed after every episode.

3 Results

It should be noted that all four algorithms are
color-coded consistently throughout the plots.
The lines represent averages of 10 training runs.
The error bars are based on the standard error
at that point in time. All tables are based on

the final 2500 episodes of these 10-run averages.

3.1 10-by-10 simulations

Total reward over time (no memories)

2000

1500

1000

Total reward

—— Baseline

—— Q-Network
SARSA

—— Dueling Q-Net

—— Dueling SARSA

=500 -

—1000 1

4000 6000 8000 10000

Episode

0 2000

Figure 3.1: 10-run averages given 0 episodes
of demonstration data.

Total reward over time (+3500 memories)

2000

1500

1000

500

Total reward

—— Baseline

—— Q-Network
SARSA

—— Dueling Q-Net

—— Dueling SARSA

—500 -

—1000

4000 6000 8000 10000

Episode

0 2000

Figure 3.2: 10-run averages given 100

episodes of demonstration data.

Total reward over time (+35000 memories)

2000

1500

1000

500 4

Total reward

—— Baseline

—— Q-Network
SARSA

—— Dueling Q-Net

—— Dueling SARSA

=500 -

—1000 1

4000 6000 8000 10000

Episode

0 2000

Figure 3.3: 10-run averages given 1000
episodes of demonstration data.

. Average | Std. Best
Algorithm Reward | Error | Reward
Baseline 1129 80 1387
Q-Network | 221 283 715
SARSA 132 240 563
Dueling
O-Network 956 352 1335
];K?ilsnf 241 296 582

Table 3.1: Averages of the last 2500 episodes
given 0 episodes of demonstration data. The
numbers in bold indicate the highest average
and best rewards.

. Average | Std. Best
Algorithm Reward | Error | Reward
Baseline 1129 80 1387
@Q-Network | 878 357 1758
SARSA 776 237 1292
Dueling
O-Network 521 378 1535
Dueling
SARSA 1031 162 1312

Table 3.2: Averages of the last 2500 episodes
given 100 episodes of demonstration data.

. Average | Std. Best
Algorithm Reward | Error | Reward
Baseline 1129 80 1387
Q-Network | 907 343 1696
SARSA 1607* 108 1748
Dueling %

O-Network 1369 276 1826
Dueling "
SARSA 1745 83 1860

Table 3.3: Averages of the last 2500 episodes
given 1000 episodes of demonstration data.
The asterisk (*) indicates the average re-
ward is greater than the average reward of
the baseline.

In Figures 3.1, 3.2 and 3.3 we see the three cases
where the simulation consists of a grid of 10-
by-10 cells and the algorithms are given 0, 100
or 1000 episodes of demonstration data respec-
tively.

Firstly, in Figure 3.1 we see that all algo-
rithms struggle to beat the baseline algorithm.
Only the Dueling Q-Networks is able to come
near. It offers a greatly increased learning speed
and is able to sustain a higher maximum per-
formance level. The other three algorithms per-
form similarly to each other, but noticeable
worse than Dueling @Q-Networks.

Secondly, in Figure 3.2 we see the perfor-
mance of all algorithms come together. The
Dueling @-Networks which performed better
than the others before, has now lost its edge
and is now the worst performer. The perfor-
mance of @Q-Networks greatly increases when
given £3500 memories compared to none. It
surpasses the baseline algorithm temporarily.
SARSA and Dueling SARSA do not stand out,
but also increased their performances given
more memories than before.

Lastly, in Figure 3.3 we see each algorithm
performing differently. The @Q-Network loses
performance compared to the previous configu-
ration, but still performs better than when no
memories were given. The Dueling Q-Network
did not improve its performance with £35000
memories and shows a peculiar peak near the
1000th episode. SARSA has increased its per-
formance once again and now beats the baseline

algorithm. The same holds for Dueling SARSA
which outperforms SARSA. Dueling SARSA
shows the same, yet smaller, peak like Dueling
Q-Networks. The two algorithms incorporating
SARSA offer a noticeably lower standard error.

The results show that all algorithms perform
at least reasonably well and respond very dif-
ferently and sometimes uniquely to the demon-
stration data given at the start of the training
process. Q-Networks performed best with 100
episodes of memories while the performance
of Dueling Q-Networks was less dependent on
the memories. The latter also showed to have
a large spike in performance near the 1000th
episode. This is probably due to the large
amount of memories it was given. In this way,
the algorithm has very few chances to make
mistakes and learn from those transitions dur-
ing its exploration phase. It focuses too much
on the demonstrated behaviour and is hindered
in trying out actions to explore consequences.
This explanation can also hold for why the Q-
Network performs worse with 1000 episodes of
memories.

SARSA showed to be one of the most con-
sistent and trustworthy algorithms in terms
of its response to the memories. In essence,
more memories meant a higher sustained per-
formance level. However, the speed at which it
learned was decreased. This may also be due
to the same reason mentioned; large amounts
of memories hinder the algorithm’s exploration
abilities. More memories also showed to have
another positive effect on SARSA, namely its
standard error. Higher performance levels came
with lower standard errors. The general stabil-
ity of SARSA compared to Q-Learning can be
explained, as mentioned in Section 2.2.5, by the
fact that, because it is an on-policy algorithm,
we effectively remove one of the three elements
of the deadly triad.

We found that combining Dueling Q-
Networks and SARSA into Dueling SARSA re-
sulted in the overall best performer, especially
in high memory scenarios. It inherits the best
of both worlds; the learning speed from the for-
mer, and the performance and consistency from
the latter. The algorithm also inherited the per-
formance peak from the Dueling Q-Networks,

10

albeit not as high and slightly earlier. We esti-
mate the maximum possible reward for an algo-
rithm to achieve to be +1850, since it varies due
to the random starting position of the agent. In
Table 3.3, we see the algorithm has no problem
achieving that maximum reward and having a
average reward close to it. Moreover, its stan-
dard error there is similar to the baseline algo-
rithm, which is impressive since the baseline is
a hard-coded solution.

Tables 3.1 through 3.3 show us that out of the
12 scenarios, only three times an algorithm was
able to achieve an average reward higher than
the baseline. All three occurred in the setting
where 1000 episodes of memories were given.
The @Q-Network stands out as being the only
one with an average reward lower than the base-
line.

3.2 14-by-14 simulations

Total reward over time (No memories)

2000

—— Baseline

—— Q-Network
SARSA

—— Dueling Q-Net P
el
10001 -

1500

500

Total reward

—500 -

—1000 q

4000 6000 8000 10000

Episode

0 2000

Figure 3.4: 10-run averages given 0 episodes
of demonstration data.

Total reward over time (£4800 memories)

2000

—— Baseline

—— Q-Network
SARSA

—— Dueling Q-Net

—— Dueling SARSA

10004 - -

1500

500 4

Total reward

—500 -

—1000 1

4000 6000 8000 10000

Episode

0 2000

Figure 3.5: 10-run averages given 100

episodes of demonstration data.

Total reward over time (48000 memories)

2000

—— Baseline

—— Q-Network
SARSA

—— Dueling Q-Net

—— Dueling SARSA

10004 r-

1500

500 4

Total reward

—500 -

-10001 #

4000 6000 8000 10000

Episode

0 2000

Figure 3.6: 10-run averages given 1000
episodes of demonstration data.

. Average | Std. Best
Algorithm Reward | Error | Reward
Baseline 1152 125 1513
@Q-Network | -550 144 -139
SARSA -398 116 -92
Dueling
O-Network -40 335 349
Dueling
SARSA -455 134 -44

Table 3.4: Averages of the last 2500 episodes
given 0 episodes of demonstation data.

11

. Average | Std. Best
Algorithm Reward | Error | Reward
Baseline 1152 125 1513
Q-Network | 652 418 169
SARSA 670 257 1275
gfﬁ?ﬁork 667 404 1748
]S)Xiignjf 836 924 1249

Table 3.5: Averages of the last 2500 episodes
given 100 episodes of demonstation data.

. Average | Std. Best
Algorithm Reward | Error | Reward
Baseline 1152 125 1513
Q-Network | -459 253 411
SARSA 1057 316 1626
Dueling
O-Network 522 406 1534
Dueling %

SARSA 1713 108 1846

Table 3.6: Averages of the last 2500 episodes
given 1000 episodes of demonstation data.

In Figure 3.4, 3.5 and 3.6 we see the three cases
where the simulation has a grid size of 14-by-
14 and the algorithms are given 0, 100 or 1000
episodes of demonstation data.

Firstly, in Figure 3.4 we see results compa-
rable to Figure 3.1, however the performance
difference of Dueling Q-Networks compared to
the rest has decreased. The best performing al-
gorithm here does not come close to the perfor-
mance of the baseline.

Secondly, in Figure 3.5 we see results similar
to Figure 3.2, but no algorithm is able to beat
the baseline like (Q-Networks was able to before.

Lastly, in Figure 3.6 we once again see re-
sults comparable to Figure 3.3, however only
Dueling SARSA is now able to beat the base-
line algorithm. SARSA is able to perform at
the same level as the baseline in the end. The
(Dueling) @-Networks do not offer good per-
formance, but Dueling @Q-Networks does out-
perform @Q-Networks.

When switching to a simulation consisting of

a square grid of size 14 instead of 10, we see
the algorithms struggle a lot more in general.
Since we use a layered state representation, this
nearly doubles the amount of inputs from 300
to 588. The relatively small hidden layer used
seems to struggle to properly learn and process
all information. The number of episodes that
the algorithm was allowed to learn for was also
kept constant which could explain the low over-
all performances.

When the algorithms are not given any mem-
ories the Dueling @-Networks is still able to
perform better than the rest, but it achieves
similar scores to the worst performers in the
10-by-10 simulation. Q-Networks, SARSA and
Dueling SARSA seem to barely improve at all.
When given 100 or 1000 episodes of memories
the Dueling Q-Network improves in both cases,
but does not achieve the same levels of per-
formance. The Q-Network shows the same be-
haviour as before as it performs best with the
medium amount of memories given and drops
that advantage when given a high amount. This
algorithm is also not able to solve the problem.
Both @-Network and Dueling @-Networks fail
to solve the problem and beat the baseline in
all cases.

SARSA is still very receptive to memories
with its best performance being the scenario
where +£48000 memories were given. Here it is
the only algorithm so far that is able to match
the baseline algorithm. The only algorithm that
is able to consistently beat it is Dueling SARSA
in the high memory scenario. It shows perfor-
mance very similar to the 10-by-10 simulation.
The only difference is that it tops out later and
suffers from a slightly higher standard error.

One other interesting thing to mention is
that in the 14-by-14 simulation both Dueling
@-Networks and Dueling SARSA show a peak
in performance at the start of the learning pro-
cess as well. While the peak is now not as high,
both algorithms have a peak of roughly the
same size. The peaks are more spread out and
Dueling SARSA’s peak still happens earlier. In
the 10-by-10 simulation both algorithms man-
aged to quickly regain performance and con-
tinue learning after this peak, while in the 14-
by-14 simulation only Dueling SARSA is able

12

to continue learning properly.

To conclude this section, we can look at
the figures with an asterisk (*) in Tables 3.1
through 3.6. These are the cases where the av-
erage score of the last 2500 episodes of an al-
gorithm was greater than the same average of
the baseline. In the 24 algorithm/memory /size
combinations, this happened only four times.
Two of which were obtained by the Dueling
SARSA algorithm. With the highest amount
of memories it was the only algorithm to solve
the task successfully on both the 10-by-10 and
14-by-14 simulations. When looking at just the
scenario where the algorithms were given the
maximum amount of memories on a 10-by-
10 simulation, two other algorithms were able
to succeed: Dueling @Q-Networks and SARSA.
This rhymes nicely with the expectation that
combining these two algorithms into Dueling
SARSA makes it inherit the best of both
worlds.

4 Conclusion

The simulation environment was very simpli-
fied. We have the functionality to determine
the wind speed and direction but did not have
the time to explore those options. There is also
support for more cell types such as grass versus
trees or rivers, each with different properties
for a more complex and realistic environment.
We believe this should be investigated in subse-
quent research, because the system should ul-
timately prove itself reliable in more complex
environments (that is real life).

The reward function is, in its current form,
very hard for an agent to learn with. It pro-
vides very sparse and delayed rewards, this
might be improved to provide a more smooth
gradient and allowing for faster and more sta-
ble learning, and less reliance on demonstra-
tion data. There are also methods of introduc-
ing additional rewards while keeping the opti-
mal policy identical (and in the case of multi-
agent control, also keeping the Nash equilib-
ria equal) (Ng, Harada, and Russell, 1999). A
more general framework that can learn effi-
cient reward shaping without the need for ex-

pert knowledge has also been proposed (Zou,
Ren, Yan, Su, and Zhu, 2019). Hindsight ex-
perience replay (Andrychowicz, Wolski, Ray,
Schneider, Fong, Welinder, McGrew, Tobin,
Abbeel, and Zaremba, 2017) might be an in-
teresting way to deal with the sparse rewards,
it allows the agent to learn from unsuccessful
episodes (which there are a lot of) by imagin-
ing the negative outcome, in hindsight, to have
been the goal all along.

Since all algorithms are based on connec-
tionist reinforcement learning, they are likely
to benefit from other improvements proven to
be useful. Some we think would perform well
include Deep @-Networks (Mnih et al., 2015);
Using a deep network with convolutional lay-
ers might extract some meaningful spatial in-
formation that it cannot otherwise, like shape
of the circle and position of the agent rela-
tive to it for example. Prioritized experience
replay (Schaul, Quan, Antonoglou, and Silver,
2015) might increase learning speed and per-
formance due to a more efficient sampling of
memories, and noisy nets (Fortunato, Azar,
Piot, Menick, Osband, Graves, Mnih, Munos,
Hassabis, Pietquin, Blundell, and Legg, 2017)
have been shown to increase performance by re-
placing the e-greedy policy with parameterized
noise in the network for a better exploration
heuristic. For effective combinations of these
improvements, see (Hessel, Modayil, van Has-
selt, Schaul, Ostrovski, Dabney, Horgan, Piot,
Azar, and Silver, 2017). Furthermore, Deep
QV-Learning (Sabatelli, Louppe, Geurts, and
Wiering, 2018) has shown an increased learning
speed as well as performance on several Atari
2600 games compared to Deep @-Networks,
suggesting that keeping track of both the Q-
and the V-functions might be beneficial in con-
nectionist RL.

The results may have shown more interest-
ing patterns for longer runs (more than 10,000
episodes). We might have seen the same pat-
terns in performance for the 14-by-14 maps as
for the 10-by-10 ones, just on a larger scale. It
is also likely that some patterns are not visi-
ble even on the smaller map size with 10000
episodes, such as the drop in performance for
@Q-Learning without Dueling networks.

13

Acknowledgements

We would like to thank the Center for Informa-
tion Technology of the University of Gronin-
gen for their support and for providing ac-
cess to the Peregrine high performance com-
puting cluster. Furthermore, we want to thank
dr. Marco Wiering for his guidance throughout
the project.

References

M. Andrychowicz, F. Wolski, A. Ray, J. Schnei-
der, R. Fong, P. Welinder, B. McGrew, J. To-
bin, P. Abbeel, and W. Zaremba. Hindsight
experience replay. In Advances in Neural In-

formation Processing Systems, pages 5048—
5058, 2017.

Meire Fortunato, Mohammad Gheshlaghi Azar,
Bilal Piot, Jacob Menick, Tan Osband, Alex
Graves, Vlad Mnih, Rémi Munos, Demis
Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for ex-
ploration. arXiv preprint arXiv:1706.10295,
2017.

Matteo Hessel, Joseph Modayil, Hado van
Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Daniel Horgan, Bilal Piot,
Mohammad Gheshlaghi Azar, and David

Silver. Rainbow: Combining improve-
ments in deep reinforcement learning.
CoRR, abs/1710.02298, 2017. URL

http://arxiv.org/abs/1710.02298.

J. Houghton, T. Jenkins, and G. Ephraums.
Climate change. Cambridge University
Press, Cambridge (UK), 3 edition, 1991.

E. Kasischke, N. Christensen Jr, and B. Stocks.
Fire, global warming, and the carbon balance
of boreal forests. FEcological applications, 5:
437-451, 1995.

S.J.L. Knegt, M.M. Drugan, and M.A. Wiering.
Opponent modelling in the game of Tron us-
ing reinforcement learning. In ICAART 2018
- Proceedings of the 10th International Con-
ference on Agents and Artificial Intelligence,
volume 2, pages 29-40, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Andrei Rusu, Joel Veness, Marc
G. Bellemare, Alex Graves, Martin Ried-
miller, Andreas K. Fidjeland, Georg Ostro-
vski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning.
Nature, 518(7540):529, 2015.

Daniel Moura and Eugénio Oliveira. Fighting
fire with agents: an agent coordination model
for simulated firefighting. In Proceedings of
the 2007 spring simulation multiconference-
Volume 2, pages 7T1-78. Society for Computer
Simulation International, 2007.

Andrew Y Ng, Daishi Harada, and Stuart Rus-
sell. Policy invariance under reward transfor-
mations: Theory and application to reward
shaping. In International Conference on Ma-
chine Learning, volume 99, pages 278-287,
1999.

G. Rummery and M. Niranjan. On-line Q-
learning using connectionist systems. Techni-
cal report, University of Cambridge, Depart-
ment of Engineering Cambridge, England,
1994.

M. Sabatelli, G. Louppe, P. Geurts, and M.A.
Wiering. Deep Quality-Value (DQV) Learn-
ing. arXiw preprint arXiv:1810.00368, 2018.

T. Schaul, J. Quan, I. Antonoglou, and D. Sil-
ver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

R. Sutton and A. Barto. Reinforcement Learn-
ing: an Introduction. The MIT Press, 2 edi-
tion, 2018.

J. Tsitsiklis and B. Van Roy. Analysis of
temporal-diffference learning with function
approximation. In Advances in neural infor-
mation processing systems, pages 1075-1081,
1997.

Ziyu Wang, Nando de Freitas, and Marc
Lanctot. Dueling network architec-
tures for deep reinforcement learning.

14

CoRR, abs/1511.06581, 2015. URL
http://arxiv.org/abs/1511.06581.

C. Watkins. Learning from delayed rewards.
PhD thesis, University of Cambridge, 1989.

M.A. Wiering and M. Doringo. Learning
to control forest fires. In H. Haasis and
K. Ranze, editors, Proceedings of the 12th
international Symposium on 'Computer Sci-
ence for Environmental Protection’, pages
378-388, 1998.

M.A. Wiering, F. Mignogna, and B. Maassen.
Evolving neural networks for forest fire con-
trol. In M. van Otterlo, M. Poel, and A. Ni-
jholt, editors, Benelearn ’05: Proceedings of
the 14th Belgian-Dutch Conference on Ma-
chine Learning, pages 113-120, 2005.

Haosheng Zou, Tongzheng Ren, Dong Yan,
Hang Su, and Jun Zhu. Reward shap-
ing via meta-learning. arXiv preprint
arXi:1901.09350, 2019.

15

Appendix

Division of Work

In the first three months, when we built the
simulation with the five of us, the work was ac-
tually pretty well divided and everybody did
their part. At this time, Travis worked on
the code for fire propagation while Dirk Jelle
hunted bugs and tested the simulator. When
the group split up and Travis and Dirk Jelle
decided to work together, Travis had already
ported the simulation from Java to Python. In
the next few weeks, Travis did the main part of
the work of exploring the OpenAl Gym envi-
ronments and implementing a basic DQN algo-
rithm. Dirk Jelle kept up with Travis’ progres-
sion, but was focussed on his last exams at that
time.

When the algorithm was able to learn, both
of us explored what it could and could not do
by running tests and tweaking parameters. We
each implemented our own modification solo:
Travis did SARSA and Dirk Jelle did Dueling
Networks. Once we had an idea of what tests we
wanted and needed to run, Dirk Jelle spent the
most time learning how to use Peregrine. The
work regarding the generating and processing
of the results was mainly done by Dirk Jelle.

The work required for the presentation at
the Bachelor’s Symposium was divided equally.
However, since Travis focussed more on the the-
ory and the algorithms, he presented that part.
Also Dirk Jelle presented what he was most fa-
miliar with, which were the simulation and the
results. This also holds for the writing of the
thesis. Travis mainly wrote the Methods and
Conclusion, while Dirk Jelle mainly wrote the
Introduction and Results. We both made sure
that no section was written solely by one per-
son.

An important note is that the neither of us
excluded the other when doing some part of
the project. We kept in touch at least every
few days and always had the opportunity to
ask questions to each other. While Travis wrote
the bulk of the code for the learning algorithm,
we both discussed how it should work and why.
When Dirk Jelle processed the data to create

results, we both spoke about what data goes
into which type of plots/tables and why.

In conclusion, this project proved to be a lot
of work. While we tried our best to do every
task together, we did not always succeed. In the
end, neither of us feel like the total workload
was divided unfairly. Both of us worked hard,
but not always at the same time. We hope this
small summary is able to give some insight into
who did what for the last six months.

16

