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Chapter 1

Introduction

1.1 RG-Flow & Irreversibility

The renormalization group is a mathematical apparatus that allows to systematize
the investigation of the effects of scale transformations on the observables of a phys-
ical system.

Our main focus in this thesis will be its application to the study of quantum field
theories at the scale of particle physics and smaller, but applications are plentiful in
every physical system in which these concepts are relevant (e.g. condensed matter
systems, chaos theory) and also outside of physics (e.g. neural networks).

charge renormalization

scale
(A) Renormalization of

electric charge
(B) Spin blocks

FIGURE 1.1: Two physical systems whose dynamics can be described
at different scales: (A) when we look at the electron from afar the
degrees of freedom of the virtual particles get absorbed in the redef-
inition of the electric charge [1] (B) the block spin picture devised by
Leo P. Kadanoff in which we describe a system of spins through block
variables of increasing sizes [2]; the block variables describing a block
of a particular size are obtained by averaging the behaviour of the

blocks it contains.

The main idea behind the renormalization group is that a system described by
many degrees of freedom at a certain microscopic scale can be described in general
by less degrees of freedom at a larger scale.

We will see that we can describe the theories at different scales with an effective
action Sµ appropriate for the particular scale. The action is composed by the fields
of interest for the physical theory we want to describe and a set of operators coupled
through a set of couplings {gi} which can be thought of as coordinates in theory space.
The renormalization group flow then connects theories at different scales (see Fig.
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1.2). This process can be formalized, as we will see in section 2.1.2, as an integration
over the high-energy modes.

Theory Space

FIGURE 1.2: Flow between theories

1.2 a-theorem

The process of integration over high-energy modes can be intuitively understood to
be irreversible. We will see in chapter 3 that this idea can be formalized thanks to the
c- and a-theorems, respectively valid in 2 and 4 dimensions. These theorems show
that there exists a quantity specific to a particular renormalization group flow that
is monotonic during the flow and stationary only at the fixed points where it counts
the true degrees of freedom of the system.

1.3 Fixed Points of SQCD & QCD

The study of the fixed points of the renormalization group flow of a theory is very
important because it gives the information on the high and low energy behaviour
of said theory (see chapter 2.1.4) and can help us understanding which flows may
or may not be realized. Unfortunately, in most practical cases we are limited to
computations within perturbation theory, i.e. near the free limit of the theory, being
it in the ultraviolet or the infrared.

In this thesis, we will show how the a-theorem can be used to infer non-perturbative
constraints on the fixed point structure of a theory in a case in which the symmetries
are calculable enough to allow the exact calculation of the a-function. In particular
we will explore the case of SQCD for which we will show some non perturbative
results valid in the conformal window and above it.

In QCD a recently proposed beta function for the massless Veneziano limit of
large-N gives hope that similar constraints may be extended giving new non-perturbative
information on the theory (see chapter 4.1.1).
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Chapter 2

RG-Flow

2.1 Renormalization Group Flow1

2.1.1 Introduction to RG-flows

In theoretical physics the renormalization group flow (RG-flow) is a mathematical ap-
paratus that allows to connect the behaviour of a theory at different energy scales.
The necessity of a renormalization group picture emerges naturally after the prob-
lem of infinities has been taken care with renormalization.

In particle physics, whenever ultraviolet divergences occurs, their cancellation is
necessary to yield physical predictions. In renormalization this is taken care by ab-
sorbing the infinite quantities in the coupling constants and masses and introducing
a cutoff scale Λ—which can eventually taken to be infinite. The dependence of the
physical quantities on the scale Λ is hidden, traded for the large scales at which the
quantities are to be measured and as a result this quantities end up being finite even
for an infinite Λ.

One of the fundamental features of QFT is locality, that, in this framework, con-
straints different space-time points to have independent quantum fluctuations and
degrees of freedom. High-momentum quanta appear in the calculations as vir-
tual particles arising from quantum fluctuations at arbitrary short distances. In ev-
ery renormalizable theory this short distances (high energy) quantum fluctuation
are dominated in the loop integrals by the contributions due to the finite external
particle momenta. However, at an intuitive level is perhaps not clear why high-
momentum quanta can have so little physical effect on a theory.

In the first part of this chapter we will introduce a physical picture, due to Ken-
neth Wilson that will shed some light on this phenomenon. This picture, of difficult
practical implementation, is however effective in giving a physical understanding of
the underlying phenomena in the emerging of scale dependent physical quantities.

We will subsequently introduce a different, and more practical, description of
the scaling of renormalized quantities through the use differential equations called
Callan-Symanzik equations; we will also introduce the beta function an important
instrument that encloses the information on the scaling properties of the couplings
of the theory.

We will then discuss the important topic of the fixed points of the renormaliza-
tion group flow and see how they can be used in model building. We will end the
chapter by discussing some of the scaling properties of the couplings and the Green’s
functions and how they relate to anomalous dimensions.

1This section is partially adapted from [3] and [4]
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2.1.2 Wilson’s Picture

Wilson’s approach to renormalization is based on the path integral approach to field
theory. With this method, ultraviolet divergences can be studied isolating the con-
tributions of the high-frequency degrees of freedom of the field.

The modern view of renormalization is that our quantum field theories should
be regarded only as effective field theories, valid up to some energy scale Λ2. We
will then insist on a hard cutoff Λ in our path integral. We will analyze how the
integration of the high-energy modes close to Λ affects the generating functional
and see how this operation can be interpreted as a flow in the space of the possible
Lagrangians.

Our analysis wil be specialized to a scalar field theory and subsequently to a φ4

theory but the idea is similar, modulo technical nuances, for any field theory.
Let’s then consider the generating functional Z[J] in which the integration vari-

ables are the Fourier components of the field φ(k)

Z[J] =
∫

Dφei
∫
[L+Jφ] =

(
∏

k

∫
dφ(k)

)
ei
∫
[L+Jφ] (2.1)

To impose the sharp cutoff we integrate only over φ(k) with |k| ≤ Λ, and set
φ(k) = 0 for |k| > Λ. However, in Minkowski space this kind of cutoff is not com-
pletely effective in controlling large momenta, as in lightlike directions the compo-
nents of k can be vary large while k2 remains small. We will therefore impose the
cutoff to the Wick rotated (Euclidean) version of the functional integral: k from now
on will be Euclidean and the cutoff will be imposed to in the same way as before.

We will specialize furthermore to a φ4 theory, with J = 0 for simplicity. The path
integral with the cutoff is written as

Z =
∫
[Dφ]Λ exp

(
−
∫

ddx
[

1
2
(
∂µφ

)2
+

1
2

m2φ2 +
λ

4!
φ4
])

(2.2)

with

[Dφ]Λ = ∏
|k|<Λ

dφ(k) (2.3)

Note that we are carrying this analysis in d spacetime dimensions and both m
and λ are still the bare parameters of the theory.

One way to perform the integration on the high momentum shell is to divide
the integration variables in two groups. The one pertaining to the shell and the rest.
Choose a fraction b < 1. The variables φ(k) in the high-momentum shell bΛ ≤ |k| <
Λ are the ones to be integrated over. We can label these variables φ, defined as

φ̂(k) =
{

φ(k) for bΛ ≤ |k| < Λ
0 otherwise

(2.4)

We can replace the old φ in the Lagrangian by φ + φ̂ where this new φ is identical
to the old one for |k| < bΛ and zero otherwise. With this substitution eq. (2.2)

2An alternative approach, called dimensional regularization, is to analytically continue the spacetime
dimensions. The idea is that, just like the cutoff Λ, the regularizator should disappear from all physical
quantities.
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becomes

Z =
∫

Dφ
∫

Dφ̂ exp
(
−
∫

ddx
[

1
2
(
∂µφ + ∂µφ̂

)2
+

1
2

m2(φ + φ̂)2 +
λ

4!
(φ + φ̂)4

])
=
∫

Dφe−
∫
L(φ)

∫
Dφ̂ exp

(
−
∫

ddx
[

1
2
(
∂µφ̂

)2
+

1
2

m2φ̂2

+ λ

(
1
6

φ3φ̂ +
1
4

φ2φ̂2 +
1
6

φφ̂3 +
1
4!

φ̂4
)
])

.

(2.5)
(mettere a posto parentesi e allineamento)

We have isolated all the terms independent from φ̂ in L(φ). Note also that terms
of the form φφ̂ automatically vanish, since Fourier components of different wave-
lengths are orthogonal.

The objective is to perform the integral over φ̂. What we want to obtain from this
integration is an expression of the form

Z =
∫
[Dφ]bΛ exp

(
−
∫

ddxLeff

)
, (2.6)

where Leff(φ) is an effective Lagrangian containing only the low momentum
Fourier components φ(k). It can be shown [3] that this Lagrangian is of the form

Leff =
1
2
(
∂µφ

)2
+

1
2

m2φ2 +
1
4!

λφ4 + (corrections proportional to λ) (2.7)

The corrections can be shown to be a sum of connected diagrams that contains
corrections to m2 and λ, as well as all possible higher-dimension operators.

Since we only included renormalizable interaction in our starting Lagrangian
one could be worried by the appearance of higher-dimensional nonrenormalizable
interactions when we integrate out φ̂. However, we will now show that this proce-
dure keeps this contributions under control. In fact we will see that the presence of
a very large cutoff in the original Lagrangian already implies that the presence of
nonrenormalizable interactions has negligible effect at scales far below Λ.

Let us now rewrite (2.6) in a form closer to the one we started with (2.2). To do
this we can rescale the distances and momenta in (2.6) in such a way that the cutoff
can be written as |k′| < Λ, meaning

k′ = k/b, x′ = xb. (2.8)

If we write (2.7) with the correction to λ and m and the higher-dimensional op-
erators as ∫

ddxLeff =
∫

ddx
[

1
2
(1 + ∆Z)

(
∂µφ

)2
+

1
2
(
m2 + ∆m2) φ2

+
1
4
(λ + ∆λ)φ4 + ∆C

(
∂µφ

)4
+ ∆Dφ6 + · · · ]

(2.9)

the substitution leads to

∫
ddxLeff =

∫
ddx′b−d

[
1
2 (1 + ∆Z)b2

(
∂′µφ

)2
+ 1

2

(
m2 + ∆m2) φ2

+ 1
4 (λ + ∆λ)φ4 + ∆Cb4

(
∂′µφ

)4
+ ∆Dφ6 + · · · ]

(2.10)
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To complete the rewriting lets define

φ′ =
[
b2−d(1 + ∆Z)

]1/2
φ, (2.11)

and the new parameters of the Lagrangian

m′2 =
(
m2 + ∆m2) (1 + ∆Z)−1b−2,

λ′ = (λ + ∆λ)(1 + ∆Z)−2bd−4,

C′ = (C + ∆C)(1 + ∆Z)−2bd,

D′ = (D + ∆D)(1 + ∆Z)−3b2d−6

, (2.12)

which brings the Lagrangian in its initial form, with the added appearance of the
higher-dimensional operators:∫

ddxLeff =
∫

ddx′
[

1
2

(
∂′µφ′

)2
+

1
2

m′2φ′2

+
1
4

λ′φ′4 + C′
(

∂′µφ′
)4

+ D′φ′6 + · · · ].
(2.13)

Note that, in the original Lagrangian, the coefficient C and D where set to be
equal to 0, but we could very well have had them to be nonzero and the same equa-
tion would apply. It is also important to notice that throughout the previous deriva-
tions terms such as ∆m2 and ∆λ are to be considered as small with respect to the
leading terms as they arise from perturbation theory.

Observing Eq. (2.13) we can see that the combined effect of the integration on
the high-momentum shell and rescaling has resulted in a transformation of the La-
grangian. Iterating this procedure 3 we can obtain entire families of Lagrangians. If
we set the b parameter close to 1, so that the shells are infinitesimally thin, the trans-
formation becomes a continuous one. We can then describe it as a trajectory, or flow,
in the space of all possible Lagrangians.

For historical reasons, this operation takes the name of renormalization group flow
or only renormalization group. However, we must remembre that the flow through
the space of Lagrangians is not a group operation in the mathematical sense, since
the operation of integrating out degrees of freedom is not invertible.

Now imagine we want to calculate some observable at some momentum scale
such that all external momenta pi are much smaller than Λ. We could compute the
value of this observable using the original Lagrangian L and perturbation theory, or
the effective Lagrangian obtained after a renormalization group flow down to the
the scale of the external momenta pi. Both procedures must yield the same results.
In the first one however, the effects of high-momentum fluctuations do no show up
until we calculate loop diagrams. In the second case, this effects are absorbed in
the redefinition of the coupling constants (λ′, m′) arising from the renormalization
group flow. In the first procedure, divergences appear suddenly in one-loop dia-
grams, and seem to invalidate the use of perturbation theory. In the second case the
effect of divergences is slowly absorbed in the corrections to the coupling constants
and provided these effective couplings remain small the perturbative treatment is
valid every step of the way.

3We can do this by changing b or by integrating on a different momentum shell, in practice the
two operations are equivalent. Furthermore, the operation is transitive: if we call bΛ ≡ Λ′ and we
repeat the procedure by integrating on a shell Λ

′′ ≤ |k′| < Λ′ we would obtain the same Lagrangian
we would have obtained by integrating directly on the shell Λ

′′ ≤ |k| < Λ.
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In general, there is no guarantee that from the values of the bare couplings of
a Lagrangian the renormalization group flow will bring us to useful or even finite
values of the new renormalized parameters. Let shed light on this point by continu-
ing our analysis of the φ4 theory with particular focus on how the Lagrangian varies
when subjected to a renormalization group transformation.

A point to start is the free Lagrangian where the values of all the bare parameters
are set to 0, which is simply the kinetic term

L0 =
1
2
(
∂µφ

)2 . (2.14)

Looking at the iterations equations (2.12) that define the transformation we see
that this Lagrangian is left unchanged; we say that it is a fixed point of the renormal-
ization group flow.

Continuing in the vicinity of the free-field Lagrangian L0, we can keep only the
linear terms in the transformations and obtain:

m′2 = m2b−2, λ′ = λbd−4, C′ = Cbd, D′ = Db2d−6, etc. (2.15)

We can observe that, since b < 1 during the flow–which is an iteration of this
transformation–the terms that are multiplied by positive powers of b decay, while
those which are multiplied by negative powers grow. Eventually the growing coef-
ficients, if present in the Lagrangian, will carry it away from L0.

In renormalized perturbation theory [3] is conventional to call the operators whose
coefficients grow during the flow relevant, those whose coefficients die irrelevant and
those whose coefficient is multiplied by b0 in the transformation are called marginal;
to find out if these last ones grow or die during the flow we must include higher-
order corrections.

More generally an operator with N powers of the scalar field, M derivatives in d
dimensions transforms as

C′
N,M = bN(d/2−1)+M−dCN,M.4 (2.16)

Thus we have shown that, at least in the vicinity of the free-field fixed point, a La-
grangian with an arbitrary number of interactions at the scale of the cutoff reduces
to a Lagrangian containing only a finite number of renormalizable terms. We can
compare this to the interpretation of renormalized perturbation theory and see how
this way of seeing things is much more satisfying. In renormalized perturbation the-
ory we see the cutoff Λ as an artifice to be disposed of by taking the limit Λ → ∞
as quickly as possible. The theory then gives sensible predictions only if the La-
grangian contains no non-renormalizable parameters. In this interpretation, it can
seem just a fortuitous circumstance that the theories which make up the Standard
Model, such as QED or QCD, contain no such parameters.

The renormalization group offers a different point of view on this issue. That is
that every quantum field theory is fundamentally defined with a UV cutoff Λ that
has some physical significance perhaps not already discovered 5. If we consider
field theories associated with solid state systems this is quite obvious: the cutoff is
the inverse atomic spacing. However, even if the precise nature of the cutoff in field

4The reader already knowledgeable in renormalized perturbation theory will recognize N(d/2 −
1) + M as the mass dimension operator, which means that the definitions of relevant, marginal and
irrelevant operators correspond precisely to the definitions of super-renormalizable, renormalizable
and non-renormalizable interactions.

5Obviously, already finite or scale invariant theories are an exception.
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theories regarding fundamental interactions still eludes us—be it a consequence of
some fundamental graininess of spacetime or else—it makes a lot of sense to con-
sider our theories as effective low energies Lagrangians of some more fundamental
theory defined at energies not yet accessible.

However, when we move far from the free fixed point strong field interactions
can alter this simple picture beyond the validity of perturbation theory. The cor-
rections containing higher powers of the coupling constants arising from (2.12) can
change drastically the flow, generate new fixed points which in turn can create new
types of asymptotic behaviours as Λ → ∞.

Let us look at how interactions change the renormalization group flow by spe-
cializing to the d = 4 case. This will provide a reason to introduce the concept of beta
function which will simplify the discussion of fixed points and their charaterization.

For the scalar theory two operator are of interest in 4 dimensions: the mass
operator–which is relevant in any number of dimensions–and the φ4 interaction–
which is marginal.

Starting with the mass operator we can see that close to the fixed point, after n
iterations of the linear transformation, the mass parameter becomes m′2 = m2b−2n.
As b < 1 this means that the mass operator gets larger and larger during the flow
and eventually becomes comparable to the cutoff. However, we must remember
that until now we have discussed the φ4 theory in the limit in which the mass pa-
rameter is small compared to the cutoff. To mantain this criterion intact we must
impose that the mass parameter m′2 ∼ Λ only after a large number of iterations of
the transformation. This condition is met every time the initial conditions for the
renormalization group flow are adjusted in such a way that the trajectory eventually
passes near a fixed point. One can even imagine to construct a complicated nonlin-
ear Lagrangian in d = 4 and, as long as the initial value of m2 is adjusted in such a
way that the trajectory comes close to a fixed point, the effective theory at low en-
ergy compared to the cutoff would be extremely simple: basically a free field theory
with negligible nonlinear interactions. But what if the coupling associated to φ4 does
not die down, you may ask. We will show in a moment that it does–but in a more
general theory–it may not. It can happen in fact, and will become important further
on, that for some theories the renormalization group flow does lead to interacting
fixed points. Let’s for now conclude our example, we will pause for a moment at the
end of it to discuss this point a little further.

In d = 4 the operator associated to the φ4 interaction is marginal. For marginal
operators the linear transformation doesn’t give enough information on whether
the interaction gets larger or dies out at large distances; one has to go back to the
complete transformations (2.12). The leading contribution to ∆λ is − 3λ2

16π2 log(1/b)
[3]. The leading contribution to ∆Z is of order λ2 and gets grouped with the higher
orders. We find the transformation

λ′ = λ − 3λ2

16π2 log(1/b) +O(λ2). (2.17)

This, as promised, shows that λ slowly dies down when we integrate out high-
momentum degrees of freedom. Near the fixed point L0 the renormalization group
flow has the structure shown in Fig. 2.1 with one slowly decaying direction.

With a bit of work we can put the informations of eq.(2.17) in differential form.
Let us define Λ′ ≡ bΛ. We can think of λ′ and λ as functions respectively of Λ′ and
Λ in the specific sense that λ is the coupling for the effective Lagrangian defined
with cutoff Λ whereas λ′ is the coupling for the effective Lagrangian defined with
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FIGURE 2.1: Renormalization group flow near the free-fixed point in
d=4. The arrows denote the direction of decreasing momentum (IR).

cutoff Λ′ obtained after having integrated out high momentum degrees of freedom
through the transformations (2.12). Now (2.17) can be rewritten as follows

λ′(Λ′) = λ(Λ) +
3λ(Λ)2

16π2 log(
Λ′

Λ
) +O(λ(Λ)2), (2.18)

it is then a simple exercises to show that this satisfies the differential flow equation

Λ
dλ

dΛ
=

3λ(Λ)2

16π2 +O(λ(Λ)2). (2.19)

This is an example of a beta function. The beta function β(g) describes the depen-
dence of a coupling parameter g on an energy scale, Λ, through a relationship of the
type

Λ
∂g
∂Λ

= β(g). (2.20)

Knowing the full beta function for a particular coupling would provide in principle
complete information on the flow of the particular coupling hence give access to
the full scale dependence of the theory. In practice we are almost never that lucky
and, unless strong symmetries are present in the theory, beta functions are usually
calculated order by order through perturbation theory.

Unfortunately the problem of using perturbation theory to compute the orders
of a beta function is that this procedure is strictly accurate only close to the free La-
grangian. In principle, fixed points of the beta function which are strongly coupled
can exist, but obviously this type of renormalization group flow cannot be under-
stood through the traditional use of Feynman diagrams within perturbation theory.
Luckily a lot of quantum field theory that are known to be important for physical
applications have been found to contain only free-field fixed points or interacting
fixed points that can however be controlled by some limit and be brought to be ar-
bitrarily close to a free-field fixed point. This will be in fact the case for the theories
we will work with.
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2.1.3 The Callan-Symanzik equation

Wilson’s picture, although intuitive in it’s approach, is in most practical cases of
difficult implementation. Performing the integrations required to obtain Wilson’s
effective function is, if not impossible, almost always awkward in that the integrals
are on finite domains and they involve a parameter that has to cancel in the final
results.

We will introduce here an approach to the Renormalization Group that, although
more abstract and formal, will prove to be much more systematic and useful in its
implementation.

Let’s consider a renormalizable theory with a massless scalar field φ and one self-
coupling g . Let’s call the bare field φ0 and the renormalized one φ defined at some
renormalization scale µ with:

φ = Z−1/2φ0. (2.21)

where Z is the field strength renormalization. Obviously the renormalization scale
µ is arbitrary. It makes no appearance in the bare Green’s functions,

G(n)
0 (x1, ..., xn) = 〈Ω |Tφ0 (x1) φ0 (x2) · · · φ0 (xn)|Ω〉 . (2.22)

The µ dependence enters only when we rescale the fields with Z so that the relation
between the bare and renormalized n-point Green’s function is:

〈Ω |Tφ (x1) φ (x2) · · · φ (xn)|Ω〉 = Z−n/2 〈Ω |Tφ0 (x1) φ0 (x2) · · · φ0 (xn)|Ω〉 (2.23)

This n-point function depends on the scale µ and the renormalized coupling g. But
we could very well have chosen a different scale µ′; in that case we would have a
different rescaling factor Z′ and coupling g′.
Which means that

Z(µ)−n/2G(n)(x; µ, g(µ)) = Z(µ′)−n/2G(n)(x; µ′, g(µ′)) (2.24)

Let’s analyze the effect of this shift more explicitly. Suppose we apply a shift of
δµ. We will have a corresponding coupling constant and field renormalization shift
such that the bare Green’s function stays the same:

µ → µ + δµ

g → g + δg
φ → (1 + δη)φ

. (2.25)

The shift in the renormalized Green’s functions is the product of the ones induced
by the the field rescaling,

G(n) → (1 + nδη)G(n) (2.26)

Then writing the differential change in Gn thought as a function of µ and g and
setting it equal to the one we found out in the previous equation

dG(n) =
∂G(n)

∂µ
δµ +

∂G(n)

∂g
δg = nδηG(n) (2.27)

It is conventional to rewrite this differential equation in terms of the dimensionless
parameters

β ≡ µ

δµ
δg & γφ ≡ − µ

δµ
δη, (2.28)
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This β can be intuitively understood to be equivalent to the beta function previ-
ously introduced but we will expand on this point in a little bit. The second param-
eter γφ is called anomalous dimension of the field φ.

After having substituted these definitions in Eq. (2.28) and multiplying by µ/δµ
we can be rewrite it as[

µ
∂

∂µ
+ β

∂

∂g
+ nγφ

]
G(n) (x1, · · · , xn; µ, g) = 0. (2.29)

Looking at their definition we see that the parameters β and µ are the same for every
n and independent of the xi. Moreover, since the Gn are renormalized, β and µ do
not depend on the cut-off, and hence, by dimensional analysis, they do not depend
on µ. They therefore depend only on g. The relation[

µ
∂

∂µ
+ β(g)

∂

∂g
+ nγφ(g)

]
G(n) ({xi} ; µ, g) = 0 (2.30)

valid for every massless scalar theory is called Callan-Symanzik equation.
These arguments generalize nicely to more complicated massless theories. In

theories with multiple fields and couplings, there is a γ term for each field and a
beta function for each coupling. For example, the a version of QED with massless
electron, provided with adequate renormalization conditions, satisfies the Callan-
Symanzik equation[

µ
∂

∂µ
+ β(e)

∂

∂e
+ nγ2(e) + mγ3(e)

]
G(n,m) ({xi} ; µ, e) = 0 (2.31)

where n and m are the number of electron and photon fields in the Green’s function
G(n,m) and γ2 and γ3 are the rescaling functions of the electron and photon fields.

Let us spend some words on the meaning of γ and β. Always referring to the
massless scalar theory, we can find a more useful way of expressing them in terms
of the parameters of bare perturbation theory: Z, g0 and Λ.

Recalling that Z is a function of µ and using the relationship between bare and
renormalized fields expressed in Eq. (2.21), we can express the shift in the renormal-
ized field when µ is shifted by δµ as

δη =
Z(µ + δµ)−1/2

Z(µ)−1/2 − 1. (2.32)

Hence, using our original definition of γ, Eq. (2.27), we can immediately write

γφ(g) = −1
2

µ

Z
∂

∂µ
Z. (2.33)

This expression clarifies the relation between γ and the field strength rescaling.
We can find a similarly useful expression for β again using the parameters of

bare perturbation theory. In our definition of beta we used the quantity δg which is
the shift in the renormalized coupling g necessary to keep the bare Green’s functions
constant after the renormalization scale µ is shifted infinitesimally. So this definition
can be rewritten as

β(g) = µ
∂

∂µ
g|g0,Λ (2.34)

calculated at g0, Λ since the bare Green’s functions depend on the bare variables. As
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before, if there is more than one coupling there will be a βgi for each coupling and
each of this can in general depend on each of the other couplings.

In both these two formulas we just proved, the independence from the cut-off
Λ which was apparent in their original form, is somewhat hidden. To understand
this fact we have to go back to their definitions in terms of the renormalized Green’s
functions, whose cut-off independence follows from the renormalizability of the the-
ory.

Focusing again on Eq. (2.34) we see that, as promised, this is just the beta function
we introduced in chapter 2.1.2. The difference is only in the substitution µ in Eq.
(2.34) with Λ. In one formula the derivative is taken with respect to the cutoff, in
the other with respect to the renormalization scale at which we want to calculate the
physical quantities. But this is little more than a matter of interpretation. There is
no reason why we cannot take the physical cutoff Λ = µ. In fact this is an optimal
choice since it involves in the effective theory only modes with energies ≤ µ which
are the ones involved in the physical process. Furthermore, as it should be Eq. (2.19)
can be reproduced using the Callan Symanzik equation for the φ4 theory [3].

2.1.4 Running of couplings and asymptotic safety

Let us discuss now in some generality the type of behaviours and fixed points that
can occur in beta functions of the type we will encounter. We will then give a brief
introduction to the phenomenon of asymptotic safety and to its relevance in BSM
(Beyond Standard Model) models.

One of the chief interests when looking at the renormalization group flow of a
theory is its asymptotic behaviour. As we emphasized before, a theory can have an
ill-defined behaviour when looking at high momenta particles in loop calculations—
this very fact motivated the introduction of a UV cut off in the first place—or could
have IR divergences too, which are usually a less serious problem since experiments
take place in limited regions of spacetime. Now that we have built a systematic way
to approach this problems–the renormalization group flow–we are still interested in
taking the UV and IR limits of our theory. Roughly speaking, we would like the
particular trajectory our theory lives on to have finite limits in both directions.

Having this issue in mind, we can well understand how important the fixed
points of the renormalization group flow are. Having an UV (IR) fixed point i.e. a
collection of g∗i for which, in the limit of µ → ∞ (µ → 0), all of the beta function
vanish, ensures us that the theory is complete in that direction.

Looking at the beta functions at the fixed point

µ
dgi

dµ

∣∣∣∣
gj

= 0 (2.35)

we can see that a theory arbitrarily close to it becomes scale invariant. It happens
usually that to scale invariance corresponds also conformal-invariance so that the
theories at fixed points theories are also conformal field theories (CFTs)6. We will dis-
cuss the scaling close to fixed points more thoroughly in chapter 2.1.5.

Let’s go back for now to fixed points. The first, and historically more important,
type of fixed point we want to introduce is the one that gives rise to the phenomenon
of asymptotic freedom. A complete treatment of asymptotic freedom is beyond the

6It is possible, although rare, for a theory at the fixed point to be scale invariant without being
conformally-invariant [5][6]. Usually in QFT the two terms are used almost interchangeably.
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scope of the present text but, as we will use often the term in the following, it seems
only right that we introduce it.

We have already seen how free fixed points can arise when not only β(g) = 0
but g itself is equal to zero e.g the φ4 theory in d=4. In the case of the scalar theory
the first coefficient in the perturbative expansion of the beta function was positive
(see Eq. (2.19)). This means that the beta function close to g = 0 is positive and
approaches 0 when µ → 0 (see Fig. 2.2). This type of fixed point is called an IR free
fixed point.

FIGURE 2.2: IR free fixed point. The arrows denote the direction of
increasing momentum (UV).

It reproduces the normal physical intuition that a force should vanish asymptot-
ically when the interaction distance gets infinite. This is for example the low energy
behaviour of QED in d = 4 since to one-loop its beta function is

β(e) =
e3

12π2 (2.36)

or often, in terms of the fine structure constant α = e2/4π

β(α) =
2α2

3π
. (2.37)

However, in the late 60s experimentalists studying the deep inelastic scattering
of electrons on protons were puzzled in finding out that building blocks of nucle-
ons followed a different behaviour. Their data indicated that the quarks inside the
protons, when hit by an highly energetic electron, were propagating freely without
interacting with the other quarks. This behaviour, as the three quarks composing
the protons are otherwise strongly bound, implies that the force holding them to-
gether, instead of getting stronger with a decreasing distance of interaction as in
QED, someway gets instead asymptotically weak at smaller distances. This implies
a negative beta function to lowest non trivial order, however, no theory known at
the time exhibited such feature.

This puzzle was solved in 1973 by David Gross and Frank Wilczek, and inde-
pendently by David Politzer in the same year, when they discovered that a large
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family of gauge theories were capable of reproduce this asymptotic freedom be-
haviour7. The main feature of this gauge theories is that, in contrast to QED, their
gauge group is not abelian. The discovery of asymptotic freedom in QCD i.e. a
non-abelian gauge theory with gauge group SU(3) garnered the three theorists the
Nobel Prize in Physics in 2004.

To lowest nontrivial order in perturbation theory, the beta function of a theory
with gauge group SU(N) and n f number of interacting fermions in the fundamental
(or anti-fundamental) representation is

β(g)1loop = − g3

16π2

(
11
3

N − 2
3

N f

)
. (2.38)

If this function is negative than the theory is asymptotically free i.e. when µ → ∞
the coupling g → 0, as in Fig. 2.3.

FIGURE 2.3: Beta function of an asymptotically free theory with one
coupling near g = 0.

For the case of SU(3) (QCD), to have this function negative, the number of
flavours of quarks must respect n f ≤ 33

2 , so that one could accommodate up to
16 triplets in this theory.8

A part from the experimental evidence of deep inelastic scattering of electrons
on protons there is a more obvious reason why asymptotic freedom is a nice feature
to have in a QFT. In both QED and the φ4 theory the renormalized coupling grows
with the energy. The formula for the renormalized (in this case is useful to think of
it as observable) electric charge is [3]

e2
R =

e2
0

1 + (e2
0/12π2) ln Λ2/m2

. (2.39)

7A big stepping stone in this direction was the formulation in 1954 of the first non-abelian gauge
theory by Chen Ning Yang and Robert Mills to try and explain strong interactions.

8For n f = 0 we obtain a pure Yang-Mills theory and asymptotic freedom is still present. We can
see from this that asymptotic freedom is really a property of the Yang-Mills part of the theory.
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If we invert it for e2
0 we obtain

e2
0 =

e2
R

1 − (e2
R/12π2) ln Λ2/m2

(2.40)

from which we can see that if we keep the observable charge fixed and increase the
energy scale Λ we eventually hit a pole at the finite energy of

Λ2 = m2 exp (12π/e2
R) (2.41)

and e0 diverges. This type of divergence at finite energy is called a Landau pole.
This particular evidence of a Landau pole is easily disproved since Eq. (2.39) is
obtained under the hypothesis of the validity of perturbation theory and the growth
of g0 invalidates perturbation theory altogether. Furthermore, if one computes the
scale at which the Landau should appear we find out that it is approximately Λ =
10286eV so much larger than the Plank scale 1028eV—the scale at which quantum
gravity should become important—and makes questionable the use of a quantum
field theory altogether.9

One could anyway wonder if there are ways for theories that are free in the IR to
obtain a UV completion that avoids the issue of Landau poles altogether. One way to
do this is the approach originally suggested by Weinberg [8] in 1976 to avoid the UV
divergences arising when we try to quantize in the standard perturbative way the
Einstein-Hilbert action for classic general relativity.10 The idea of asymptotic safety
is that a non-trivial UV fixed point can be used to limit unphysical divergences as in
the UV all the couplings flow to their asymptotic values, see 2.4.

FIGURE 2.4: An example of a theory with one coupling which is free
in the IR and asymptotically safe in the UV. The coupling flows to g∗

for µ → ∞.

An asymptotically safe theory can be well defined at all scales even while being
perturbatively non-renormalizable.

9Lattice QED calculations suggest that a Landau pole is indeed present but in phase space region
not accessible because of spontaneous chiral symmetry breaking [7].

10In 2 dimensions Newton’s constant G is dimensionless and gravity can be perturbatively
renormalized. In 4 dimensions the mass dimension of G is −2 and thus is perturbatively non-
renormalizable.
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Actually, fixed points like the asymptotic safe one can tell us much more. From
the Wilson point of view one can consider the basic input of their model i.e. the
quantum fields of the theory and the symmetries they respect. These two inputs de-
termine the theory space where the renormalization group flow occurs. Each point
in this space is one possible action composed by linear combinations of the mono-
mials of fields selected and respecting the symmetry principles. The coefficients of
these linear combinations are the coupling constants gi.

The set of points (theories) which are pulled towards the fixed point under the
renormalization group flow in the µ → ∞ direction is referred to as UV critical
surface. The hypothesis underling the asymptotic safety program is that a trajectory
can be realized in nature only if it’s contained in the UV critical surface and thus
has a well-behaved high-energy limit (black trajectories in Fig. 2.5). Trajectories
outside this surface are unacceptable since they develop divergences in the UV (red
trajectory in fig. 2.5).

FIGURE 2.5

Let’s assume that a given UV fixed point has n attractive directions, then the
UV critical surface will be of dimension n. One way to go and analyze it can be to
linearize the couplings near the fixed point and studying the directions where the
couplings flow towards the UV fixed point (relevant directions) and the ones where
the couplings flow away from the fixed point (irrelevant directions). The irrelevant
directions will be infinite in number corresponding to all the irrelevant couplings
that can be added to the Lagrangian. The relevant directions will pin down the
couplings of the theory univocally.

Or at least this is true at high energies. Unfortunately when one moves towards
lower energies the critical surface deviates from its tangent space, nonlinear effects
kick in and everything becomes much more complicated.

Obviously one has to somehow bypass the problem of not having always access
to perturbation theory for this kind of calculations. Even if the tools at our disposal
outside perturbation theory—such as Functional Renormalization and lattice gauge
theory—are limited and have their own drawbacks, the research in these fields is
still flourishing.

The program for an asymptotic safe gravity is unfortunately still far from being
completely successful in its original aim but there have been many advancement
in asymptotic safety since the idea was originally proposed. For example it has
been shown that the non-linear sigma model [9] and a variant of the Gross-Neveu
model [10] exhibit non-trivial UV fixed points and are renormalizable even if they
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are perturbatively non-renormalizable. This confirms that asymptotic safety as was
originally proposed is indeed possible.

Applications of functional renormalization methods suggest that the existence
of a highly predictive asymptotically safe gravity-Standard-Model-fixed point is in-
deed possible. Lastly, another approach used has been to try and analyze non-trivial
fixed points in the limit of small coupling so that perturbation theory is still accessi-
ble. With this approach, based on limits such as the large-N Veneziano limit, it has
been shown that 4 dimensional QFTs involving gauge fields, fermions and scalars
exhibiting asymptotic safety could be built [11].

2.1.5 The scaling close to critical points

Let us now study the behaviour of the beta function close to fixed points.
To this aim it is useful first to introduce the dimensionless couplings defined as

αi = µ−di gi (2.42)

where di is the canonical energy dimension of the coupling gi.
From dimensional analysis, β(gj, k) = kdi βQ

i (αj) where βQ
i (αj) = βi(αj, 1). The

beta functions of the dimensionless variables will then be given by

β̃i
(
αj
)
= µ

dαi

dµ
= −diαi + βQ

i

(
αj
)

. (2.43)

They depend on k only implicitly through αj. The Q in βQ
i stands for quantum.

We can in fact think about the first term as the classical scaling and the second as the
non-trivial quantum fluctuation integrated along the RG flow. Indeed in the classical
limit the second term would vanish.

Now, suppose α∗
i is a critical point of the flow. We can find the tangent space

to the UV critical surface at the fixed point by linearizing the flow. Let’s write the
coupling near the fixed point as αi = α∗

i + δαi, then the linearized RG equations are:

µ
dαi

dµ

∣∣∣∣
α∗j +δαj

= Aijδαj +O
(

δα2
j

)
(2.44)

Finding a diagonal basis {yi} for {αi} we can write

µ
dyi

dµ
= (∆i − d) yi +O

(
y2) (2.45)

The quantity ∆i is called the scaling (or conformal) dimension of the operator associ-
ated to yi. In a general interacting QFT, it will not be given by the classical scaling
dimension of the operator and the difference γi = ∆i − di is known as the anomalous
dimension of the operator. Then to linear order the RG flow is

yi(µ) =

(
µ

µ′

)∆i−d

yi
(
µ′) . (2.46)

Let’s now see how the correlation functions scale in the vicinity of the fixed point.
As an example, let’s consider the 2-point correlation function G(2)(x) = 〈φ(x)φ(0)〉.
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This satisfies the RG equation (2.24)

Z(µ)−1G(2) (x; µ, gi(µ)) = Z
(
µ′)−1 G(2) (x; µ′, gi

(
µ′)) (2.47)

At the fixed point gi(µ) = gi (µ
′) = g∗i . Moreover, since γφ(g∗i ) is a constant we can

solve Eq. (2.33) to obtain
Z(µ) =

(
µ′/µ

)2γ∗
φ Z
(
µ′) (2.48)

. Then using dimensional analysis we can isolate a dimensional part which takes
dimension from the field φ and an adimensional part G likewise

G(2) (x; µ, g∗i ) = µ2dφG(xµ). (2.49)

Where G can depend only on the adimensional combination xµ and dφ is the classical
dimension of φ. Substituting back into Eq.(2.47) allows us to write

G(xµ′)

G(xµ)
= (

µ

µ′ )
2dφ+2γ∗

φ (2.50)

which means that up to a constant c

G(xµ) = c(xµ)dφ+2γ∗
φ . (2.51)

We can then write
G(2) (x; µ, g∗i ) =

c

µ2γ∗
φ x2dφ+2γ∗

φ
∝

1
x2∆φ

(2.52)

which displays the typical power-law behaviour of correlation functions in a
CFT.

2.2 QCD and SQCD

Let’s discuss now in some more details the properties of the functions of QCD and
SQCD.

2.2.1 The beta function of QCD

In chapter 2.1.4 we have written the perturbative beta function of a non-abelian
gauge theory with gauge group SU(N), and N f fermions in the fundamental N-
dimensional representation of SU(N) at first loop order as

µ
dg
dµ

= − g3

16π2

(
11
3

N − 2
3

N f

)
. (2.53)

Let’s write it as µdg/dµ = −β1g3/(4π)2 with

β1 =
11
3

N − 2
3

N f . (2.54)

We had previously noted the remarkable fact that, since the contribution in the one
loop coefficient from the gauge part and from the matter field have opposite signs,
we could change the sign of β1—hence turn on/off asymptotic freedom by changing
the matter content and/or the dimension of the gauge group of the theory.

Before discussing the theory beyond one-loop let’s shortly expand on the previ-
ous point.
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If we solve (2.53) we obtain

g2(µ) =
8π2

C + β1 log µ
=

8π2

β1 log(µ/Λ)
(2.55)

where the integration constant Λ is a parameter with unit mass dimension. When
the matter content is sufficient so that β1 < 0 we will have the same behaviour of
QED. There will be an IR fixed point at g = 0, while for µ → Λ there is a Landau
pole and the coupling diverges.

Instead, if β1 > 0 (as in QCD with N f = 3) we have a UV fixed point for g = 0
and asymptotic freedom is realized. In this case, Λ signals the scale at which the
coupling becomes large and perturbation theory breaks down. This is the scale at
which, in QCD, the phenomenon of confinement sets in.11 In a theory like QCD this
scale can be actually measured.12

Let’s go now beyond the one-loop order. We can write the general form for the
QCD beta function at 2 loop as

µ
dg
dµ

= − β1

(4π)2 g3 − β2

(4π)4 g5 (2.56)

Then the second coefficient for an SU(N) gauge theory with N f flavours of quarks in
the N representation can be written as

β2 =
34N2

3
−

10NN f

3
−

N f
(

N2 − 1
)

N
. (2.57)

and β1 is the same as before.
One very important property of these two coefficients is that differently from the

subsequent ones they are universal i.e. they do not depend on the renormalization
scheme used. Because of this universality the properties we are going discuss do not
depend on the renormalization scheme employed and are physical features of the
theory.

In particular, we observe that there are three behaviours when we vary N f for a
fixed N.

The first two are completely analogous to the one discussed before. When

N f <
34N3

13N2 − 3
(2.58)

the theory is asymptotically free in the UV and the coupling runs to large values in
the IR. This theory confines. If instead

N f >
11N

2
(2.59)

11Confinement is the phenomenon for which two color charges cannot be observed isolated. It
doesn’t exist yet a proof of color confinement from first principles even in the simplest cases but it can
be intuitively understood as follows. When two color charges get separated the interaction between
them can be depicted as a narrow flux tube of gluons. The energy density of the flux tube and its radius
are constant regardless of separation, so the force associated will be weak at low distances and strong
at large distances. At some point as the two charges get separated it becomes energetically favorable
for a pair of quark anti-quark to appear rather than extend the tube even further. The scale at which
this happens is called ΛQCD [3], which is the only scale present in the theory. It is important to notice
also that this scale is generated in the UV, as it is clear from the derivation, so it is present in the theory
at every energy.

12Or more precisely, since it is renormalization scheme dependent, its value in a particular renor-
malization scheme can be deduced from experiments.
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the theory is free in the IR and in the UV there will be a perturbative Landau pole.
The third case is more interesting. Whenever

34N3

13N2 − 3
< N f <

11N
2

(2.60)

the theory is still asymptotically free in the UV but now there seems to appear a
new IR interacting fixed point. This is exactly what we had in the 1-loop case as this
bound depends only by the behaviour of β1. This fixed point is called Banks-Zaks
fixed point [12][13]. The region of N f where this new fixed point actually exists is
called the conformal window.

Now the question is, given the limit of applicability of perturbation theory, is the
new fixed point really present? And if so, in what region? The fixed point value
obtained solving β(g) = 0, with β(g) given by Eq. (2.56) is

g2
∗ = (4π)2 11N2 − 2NN f

34N3 − 13NN f + 3N f
(2.61)

If we look at the top of the conformal window for QCD i.e. N = 3 and N f = 16.5,
then close to the upper edge, e.g. N f = 16 one has g2

∗ ∼ 0.52. For larger N and
still close to N f = 11N/2, g2

∗(N) scales like N−1 and the Banks Saks fixed point can
be brought arbitrarily close to the free fixed point in the Veneziano limit (N → ∞,
N f → ∞ N f /N = const). On the contrary, near the lower edge of the conformal
window, let’s say again for QCD (which perturbatively at the second order has the
lower edge located at N f = 8.05) then g2

∗ ∼ 11.96 and perturbation theory is clearly
not applicable. The exact location of the bottom of the conformal window even in the
large-N limit is still an open question but new lattice QCD results have determined
it to be bound between 6 < Nc

f < 8 [14].

2.2.2 The beta function of SQCD

The presence of the additional symmetry between fermions and bosons makes QFTs
with supersymmetry particularly interesting to analyze from the point of view of
the renormalization group.

An example particularly pertinent for our interests is the one of supersymmetric
Yang-Mills theories in d = 4. For N = 1, 2, 413 it has been known for a while that a
beta function, called NSVZ (Novikov-Shifman-Vainshtein-Zakharov) beta function,
which links the coupling to the anomalous dimension of the matter fields, can be
derived exactly to all orders [15] [16]. For N = 1 this result can be used to show the
presence of a conformal window in the framework of Seiberg duality [17].

The NSVZ beta function for an SQCD theory with dimension of the gauge group
Nc and N f flavour of fermions is

β(g) = − g3

16π2

3Nc − N f + N f γm(g)
1 − Ncg2/ (8π2)

(2.62)

with

γm(g) = − g2

8π2
N2

c − 1
Nc

+ O
(

g4
)

(2.63)

13N refers to supersymmetric theories where the generators of the supersymmetry Qα
i carry not

only a spinor index α but also an integer index i = 1, 2 . . .N . It is also called extended supersymmetry.
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being the anomalous mass dimension in perturbation theory.
The observation by Seiberg about the existence a dual description in terms of

magnetic variables of this theory (vs. the fundamental theory which is described
in terms of electric variables), can be used to determine the edges of the conformal
window14 yielding:

3Nc/2 < N f < 3Nc. (2.64)

In this range there exist both the electric and the magnetic description. The the-
ory is asymptotically free in the UV and an additional interacting fixed point is
present in the IR.

An additional useful property is that in SQCD the R symmetry15 and the ex-
act beta function can be used to determine exactly the mass anomalous dimension
γ∗

m(N f ) along the IR fixed points line g∗(N f ) in the conformal window. The relation-
ship between the scale dimension DQ̃Q and the R-charge RQ̃Q for the meson operator
M = Q̃Q, is [17]

DQ̃Q =
3
2

RQ̃Q = 3R = 3
N f − Nc

N f
(2.65)

then using DQ̃Q = 2 + γ∗
m we can obtain the following expression for γ∗

m

γ∗
m
(

N f
)
= 1 − 3Nc

N f
. (2.66)

By substituting this into the NSVZ beta function we can indeed check that it
vanishes, provided the pole in the denominator of Eq. (2.62) is not hit, that is for
Ng2

∗/
(
8π2) < 1.

14In Seiberg’s analysis the lower edge is determined with a physical condition i.e. the saturation of
the unitarity bound. Such condition is independent of the beta function.

15The R symmetry is a symmetry transforming different supercharges into each others in a theory
with supersymmetry [18].
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Chapter 3

a-theorem

3.1 Introduction

In our explanation of the renormalization group we had briefly touched upon the
fact that this type of fluxes do not form a group in the mathematical sense because
they are generally not invertible. This is a commonly accepted phenomenon because
from an intuitive point of view, an high-energy theory contains more degrees of
freedom than a low energy theory and so whenever one flows from the UV to the IR
information is lost; this is one way to interpret the lesson of Wilson’s approach.

A proof of this however was, till not so long ago, available only for QFTs in
2 dimensions. This theorem, known as the c-theorem, was proved by Alexander
Zamolodchikov in 1986 [19]. The usefulness of the theorem however goes far be-
yond the intuition. It establishes the existence of a monotonically decreasing func-
tion interpolating between the central charges of the CFTs at the UV and the IR, and
that this function is stationary only at the fixed points. This can be used to prove
constraints on RG-flows in a fundamentally non-perturbative way. It also provides
an effective measure of the degrees of freedom of the theory and it shows that they
indeed decrease when we integrate out high-energy modes.

The naive generalization of Zamolodchikov’s theorem to four dimensions how-
ever doesn’t work and even if a proposal for an equivalent quantity to the c-function
was know as far back as 1988 [20], only recently (2011) a non-perturbative proof that
this quantity has in fact the required properties has garnered acceptance [21][22].
This proof, by Zohar Komargodski and Adam Schwimmer, establishes what is known
as the a-theorem.

In the next chapters we will discuss Zamolodchikov’s c-theorem. After, we will
introduce the a-theorem and discuss the a-function of SQCD.

3.2 The c-theorem

The c-theorem is a theorem valid for 2 spacetime dimensions which establishes the
existence of a function c(gi, µ) > 0 such that

• µ d
dµ c = βi(g) ∂

∂gi c(g) > 0 and it is stationary only at the fixed points where

βi(g∗) = 0.

• At the fixed points the theory is conformal [23] and the value of the c-function
equals the value of the central charge c̃ associated to the CFT at the fixed point
c(g∗) = c̃(g∗).

Let’s analyze in more detail the structure and properties of the c-function. Let’s
rewrite the local symmetric energy momentum tensor in complex coordinates (z, z) =(

x1 + ix2, x1 − ix2) and define T = Tzz. Let’s also define Φi(g, x) = ∂
∂gi L(g, x, µ).
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Than the c-function is defined as the combination

c(g) = C(g) + 4βi Hi(g)− 6βiβjGij(g) (3.1)

where
C(g) = 2z4 〈T(x)T(0)〉|x2=x2

0

Hi(g) = z2x2 〈T(x)Φi(0)〉|x2=x2
0

Gij(g) = x4 〈Φi(x)Φj(0)
〉
|x2=x2

0

(3.2)

and x2
0 is an arbitrary scale above such that x2

0 � µ−1.
The central charge is an important characteristic of a conformal field theory.

In the case of 2 dimensions the generators of the conformal symmetry Ln, n =
0,+1,±2, . . . form a Visaroro algebra

[Ln′ , Lm] = (n − m)Ln+m +
c̃

12
(
n3 − n

)
δn+m,0. (3.3)

It can be shown that the central charge equals the number of degrees of freedom of
the theory. So for example c̃ = 1 for a single free boson and c̃ = 1/2 for a single free
fermion. This observation connects the c-theorem to the interpretation that says that
along the renormalization group flow the degrees of freedom of the theory decrease.

In d = 2 the central charge can be also connected to the value of the trace anomaly
i.e the nonvanishing trace of the energy momentum tensor; for a conformal field
theory on a curved background [24]:

〈
Tµ

µ

〉
= − c̃

12
R (3.4)

This observation gives a direction for a possible generalization of the c-theorem in
d 6= 2. Cardy [20] in 1988 suggested to utilize the generalization of this quantity in
even d dimensions (there is no anomaly in odd dimensions) as

a ∼
∫

Sd
〈Tµ

µ 〉 (3.5)

The general form of the external trace anomaly contains multiple local terms formed
from the metric but restricting to a space of constant curvature we can reduce it to a
single number.

For example in d = 4
Tµ

µ = aE4 − cW2
µνρσ (3.6)

written in terms of the Euler density E4 and the Weyl tensor Wµνρσ
1. The integral (3.5)

performed for a theory at a fixed point isolates the a anomaly. Cardy’s conjecture
then was that

aIR < aUV . (3.7)

3.3 The a-theorem

3.3.1 The statement of the theorem

Although Cardy’s conjecture was tested in a number of cases a proof for the a-
theorem in d = 4 had to wait until 2011.

1In general there are additional terms but these do not contribute in the proof as they vanish at the
integration boundaries.
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Komargodski and Schwimmer proved a strong version of the a-theorem in d = 4.
They showed that Eq. (3.7) holds for all unitary RG-flows and provided also with
an expression for the interpolating a function [21]. The proof of the theorem makes
use of a dilaton spectator field with decay constant f in order to reinterpret every
RG-flow as the result of spontaneously broken conformal symmetry. This dilaton
field is weakly interacting through powers of 1/ f with the matter field in the UV
and eventually decouples completely in the IR.

The expression for the difference between the anomalies in the UV and the IR is
given by

aUV − aIR =
f 4

π

∫
s′>0

ds′
σ (s′)

s′2
(3.8)

where σ(s) is the cross section for the scattering of two dilatons (always positive def-
inite). Since σ(s) goes as 1/ f 4 if the mass parameters respect Mi � f the expression
(3.3.1) is finite for every value of f .

A natural interpolating function a(µ) that is monotonic can then be obtained by
cutting off (3.3.1) at some intermediate energy µ

a(µ) ≡ aUV − f 4

π

∫
s′>µ

ds′
σ (s′)

s′2
. (3.9)

This function decreases monotonically from the UV to the IR and it is stationary at
the fixed points analogously to the c function for 2 dimensions.

From an operative point of view calculating these quantities in a realistic the-
ory is often prohibitive. Just comparing the expressions for the c function and the
a function we see that the first one which contains information from the 2-point
correlation function of the trace of the energy momentum tensor

〈
Tµ

µ Tµ
µ

〉
is less com-

plicated than the second one, which contains information from the 4-point correlator〈
Tµ

µ Tµ
µ Tµ

µ Tµ
µ

〉
. Usually then, exact expressions for the a function are known only in

the presence of enough constraining symmetries such as in the case of SQCD.

3.3.2 The a-function of SQCD

In SQCD the additional symmetries present can be used to connect the value of the a
anomaly to the U(1)RF2, U(1)R and U(1)3

R chiral anomalies by using the formalism
of the anomaly free R current [25]. The expression for the Euler anomaly at the IR
fixed point in terms of the R charge is [25]

aIR =
3
32
(
2
(

N2 − 1
)
+ 2N f N(1 − R)

(
1 − 3(1 − R)2)) . (3.10)

We can rewrite this in terms of the anomalous dimension of the matter fields through
R = (2 + γ∗

m) /3. Now similarly to Eq.(3.9) we let γ∗
m → γm(g(µ)) in order to obtain

the natural interpolating function a(g(µ)) with expression

a(g(µ)) =
3
16

(N2 − 1) +
1
16

NN f (
2 − 3γ2

m − γ3
m

3
). (3.11)

With this information in our possession we can now proceed to infer some con-
straints to the RG-flow of SQCD.
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Chapter 4

Applications to SQCD and the
large-N Veneziano limit of QCD

4.1 Constraints on the RG-flow of SQCD

In this chapter we will show how to use the NSVZ beta function, the exact expres-
sion of the interpolating a function and the a-theorem to infer non-perturbative con-
straints to the RG-flow of the beta function of SQCD and the anomalous dimension
of the matter fields. This part is adapted from [26].

The a-theorem says that away from the fixed points a(g(µ)) satisfies

da
d log µ

=
∂a
∂g

β(g) > 0 (4.1)

So away from the fixed points ∂a
∂g has the same sign of β(g). Furthermore, using the

expression (3.11) for a(g(µ)) in SQCD we can derive

∂a
∂g

= −
NN f

16
γm (2 − γm)

∂γm

∂g
6= 0 (4.2)

away from the fixed points. This shows that γm is monotonic away from fixed points.
Furthermore, we can see that for γm < 0 and γm > 2 the derivative ∂γm

∂g has the same

sign of ∂a
∂g (hence of β(g)), while in the interval 0 < γm < 2 it has the opposite. Now

we will see how to use this information to derive constraints to the RG-flow of the
beta function.

The first result we will prove shows that if there is an interacting fixed point (UV
or IR) at some coupling g∗ 6= 0 there cannot be another interacting fixed point at
some higher coupling. Let’s first rewrite the NSVZ beta function from Eq. (2.62) in
terms of the coupling α ≡ Ng2 and β(α) ≡ 2Ngβ(g) and with the decomposition

β(α) = f (α)h(α)

f (α) =
α2

8π2
(
1 − α

8π2

)
h(α) = −3N + N f − N f γm(α)

. (4.3)

Let’s say we want to rule out with the a-theorem the case of a two fixed interacting
fixed points such that 0 < αIR < αUV as in figure 4.1.

We can see from the decomposition (4.3) that if the beta function is continuous,
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FIGURE 4.1

so when 1 1 − α/
(
8π2) > 0, than f (α) 6= 0 in the interval [αIR, αUV ] and the zeroes

of β(α) are the zeroes of h(α). So because the β(α) is continuous and vanishes at the
extremes of [αIR, αUV ] it has a maximum ᾱ in the interval (αIR, αUV) which means
that h(α) has a maximum ¯̄α in the interval (αIR, αUV). But the γm would have an
extremum at ¯̄α away from the fixed points, thus contradicting the a-theorem.

The second case, with an inverted order for the fixed points and shown in Fig.
4.2 can be ruled out with a completely analogous reasoning.

We have thus seen how the a-theorem implies that the SQCD beta function can-
not develop more than one fixed point at nonzero coupling.

FIGURE 4.2

If the one of the two fixed points occurs instead at zero coupling, we have again
two cases but this time one of the two can satisfy the a-theorem whereas the other
cannot. Let’s first see the one that can be ruled out by the a-theorem.

1Note that the cusp singularity in Eq.(2.62) at Ng2/(8π2) = 1 is non physical as it is a renormal-
ization scheme dependent condition.



4.1. Constraints on the RG-flow of SQCD 29

If we consider the SQCD above the conformal window (so for N f > 3N)—where
it loses asymptotic freedom and develops instead an IR free fixed point—we can
consider the case of Fig. 4.3 in which we have also an additional interacting UV
fixed point.

FIGURE 4.3

Again, we have the condition that γm(α) must be strictly monotonic in (0, αUV).
Furthermore, Eq. (4.1) and β(α) > 0 implies ∂a

∂α > 0 in the same interval. Conse-
quently through Eq. (4.2) we can derive two conditions in two intervals:

i. ∂γm
∂g > 0 for γm < 0 and γm > 2.

ii. ∂γm
∂g < 0 for 0 < γm < 2.

However, if we consider γm in the vicinity of α = 0 we clearly see neither of this
two conditions can be satisfied. In fact, for α = 0 we have γm(0) = 0 for the theory
is free (see also Eq. (2.54)). Then if we move from α = 0, ∂γm

∂g must be positive if γm

becomes positive, contradicting (i).

FIGURE 4.4



30 Chapter 4. Applications to SQCD and the large-N Veneziano limit of QCD

If, on the contrary, γm becomes negative then ∂γm
∂g would be negative, contra-

dicting (ii). Hence, the a-theorem rules out a nontrivial UV fixed point above the
conformal window of SQCD.

The last case, shown in Fig.4.4 does not contradict the a-theorem and it is realized
inside the conformal window. The coherence with the a-theorem can be easily seen
with a very similar proof to the previous one. β(α) < 0 in the interval (αUV , αIR)
now, which implies ∂a

∂α < 0. This means that the conditions (i) and (ii) are inverted.
For example (i) is ∂γm

∂g < 0 for γm < 0 and γm > 2. Following the same reasoning as
before we can see that these new conditions can be satisfied by γm(α) near α = 0

4.1.1 The Large-N Veneziano Limit of QCD

An interesting question would be to investigate if this kind of constraints extend
to the massless Veneziano limit of large-N QCD (defined by N f , N → ∞, N f /N =
const ). This question is motivated by a recently proposed beta function for the
Veneziano limit [27]. This beta function is derived with homology methods and
making use of some particular Wilson’s loops. Its most striking characteristic, other
than having passed a good number of consistency checks2, is the evident analogy
with the NSVZ beta function of SQCD. Its expression is given by

β(g) =
∂g

∂ log µ
= − g3

16π2

(4π)2β0 − N(∂ log Z/∂ log µ) + N f γm(g)
1 − N (g2/4π2)

(4.4)

where β1 is the 1-loop universal coefficient in Eq. (2.63) and

∂ log Z
∂ log µ

= 2γ0
(

Ng2 + . . .
)

; γ0 =
5

3(4π)2

(
1 −

2N f

5N

)
(4.5)

with the fermion anomalous mass dimension being

γm(g) = − 9
3(4π)2

N2 − 1
N

g2 + . . . (4.6)

We can see from this that the only difference with the NSVZ beta function is the
appearance of the anomalous dimension term ∂ log Z/∂ log µ while the rest is com-
pletely identical to (2.62).

Another nice feature of this expression is the possibility of the determination of
the lower edge of the conformal window as N f /N = 5/2. For this value in fact γ0

changes sign and as γ0 enters the glueball kinetic term Tr
(
G2) ≡ Ga

µνGaµν its change
of sign signals the onset of a phase with

〈
Tr
(
G2)〉 = 0. Because of the known

relationship between the trace anomaly and the scalar glueball operator

Tµ
µ =

β(g)
2g

Tr
(
G2) (4.7)

the condition
〈
Tr
(
G2)〉 = 0 implies the tracelessness of the energy momentum ten-

sor hence the onset of a conformal phase [24]. This agrees nicely with recently ob-
tained bound 6 < Nc

f < 8 on the lower edge of the conformal window of SU(3)
QCD based on lattice calculations [14].

2For example one can verify that it reproduces the universal 2-loop perturbative beta function of
QCD in the Veneziano limit.
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Returning to the main question of this section, the analogies between the large-N
Veneziano limit and SQCD motivate to question of whether it is possible to use the
a-theorem to again infer constraints on the RG flow of the beta function (4.4) or not.
The a-theorem as proved in [21] applies to all unitary theories in 4 dimensions so it
covers QCD too. Unfortunately, as it was said before, an exact a function is known
only in a very limited set of examples.

For QCD some results are known. It has been shown [20] that QCD satisfies
aUV − aIR > 0 in the confined and chirally broken phase of QCD when in the IR the
massless degrees of freedom consist of N2

f − 1 Goldstone bosons. Furthermore, the
same relationship (aUV − aIR > 0) is shown to hold in perturbation theory in the
large-N limit and with ε = 11/2 − N f /N � 1 at two loop order [28].

This is unfortunately non enough to establish the type of non-perturbative con-
straints we would like. The main hurdle is clearly the lack of a non-perturbative
expression for the a-function of the massless large-N Veneziano limit of QCD. In
comparison with the supersymmetric case, what we clearly lack is a thorough com-
prehension and control of the symmetries of the large-N Veneziano limit. If this
would be achieved it is possible that a link between the a-function and some com-
putable quantities could be made as it happens in the SQCD case.





33

Chapter 5

Conclusions

5.1 Review

In the first part of this thesis we have given an exposition of the main ideas of behind
the renormalization group flow and its utility in research and model building.

In our exposition we have been guided by the connection with the a-theorem,
so we have emphasized the ideas of the integration over high momentum modes
and the connection between fixed points and conformal field theories. The first idea
is crucial in partially understanding the mechanism that causes the irreversibility
of the RG-flow and the second is central in the discourse and mathematical back-
ground behind the a-theorem. We have seen also how difficult to control is the
renormalization group flow in cases of physical interest and far from the regimes
where perturbation theory is applicable. In this prospective we have reviewed some
know results in renormalization group theory such as the perturbative beta function
of QCD and the exact NSVZ beta function of SQCD.

We have seen how the c- and a-theorem formalize the idea respectively in 2 and
4 dimensions that the renormalization group flow is irreversible and how they can
be connected to physical intuition of the loss of degrees of freedom in the flow from
the UV to the IR. In particular, we have seen that the c- and a-anomalies calculated
at the fixed point provide a measure of the degrees of freedom for all scrutinized
theories until now. We have seen how these theorems provide monotonic functions
that interpolates between the anomalies at the fixed points.

In the last chapter we have seen how the a-theorem can be used in a case in
which enough symmetries are known to be able to compute the a-function exactly
to infer non-perturbative constraints on the RG-flow of a theory. Our testing ground
has been SQCD where the symmetries present allow to compute both an exact beta
function in terms of the anomalous dimension and an exact expression for the inter-
polating a-function in terms of the chiral anomalies (and re-express it then in terms of
the anomalous dimension). With this ingredients we have shown that the a-theorem
constraints the RG-flow in such a way that the beta function cannot have two in-
teracting fixed point in sequence. We have shown that there cannot be, above the
conformal window, an interacting UV fixed point after an IR free one (the so called
asymptotic safety). Lastly, we have seen how the case of the Banks-Zaks fixed point,
i.e. an interacting IR fixed point in an asymptotically free theory, does not contradict
the a-theorem and can be realized in nature by adding a sufficient amount of matter
(fermionic) degrees of freedom.
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5.2 Final Remarks

The recently proposed beta function for the massless Veneziano large-N limit of
QCD exhibits striking similarity to the one for SQCD. It is not clear at this time if
the differences between the two are enough to justify a difference in behaviour, but
the similarities provide hope that the approach to the a-theorem tested in SQCD
could also be applied to this second theory. This is obviously very important as non-
perturbative results are sorely lacking in QCD and non-Abelian gauge theories in
general. In particular, the interests of large-N type expansions stand in the fact that
they fit the experimental observations surprisingly well, even for the physical case
N = 3 [29].

The objective now remains to find a way to write the a-function in a closed form.
This is obviously much more complicated than in the SQCD case. SQCD is a the-
ory of which we know the symmetries and conserved quantities very well. This
is not the case for the Veneziano limit of QCD, for which we don’t even know an
expression for the action in terms of the fundamental quark and gluon degrees of
freedom that produce the beta function (4.4) not to mention its symmetries or con-
served quantities.

If this last difficulty was to be overcome we will be able to obtain by means of the
a-theorem new breakthroughs in the understanding of the RG flows of non-Abelian
gauge theories without supersymmetry and the realization of conformality, or the
loss thereof.
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