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Abstract

We call a triangle rational if its side lengths are rational and we call a rhombus 6-rational
if both its side length is rational and the sine and cosine of its smallest angle are rational.
In this thesis we prove that there do not exist a rational isosceles triangle and a f-rational
rhombus with the same area and the same perimeter. This is already shown in an article
by Zhang and Peng, but this thesis contains a fully explicit proof using the underlying
theory. To that end, (hyper)elliptic curves, algebraic number theory and p-adic numbers
were studied.
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1 Introduction

As many mathematics students know, ideas in algebra and geometry can get very abstract very
quickly. It is for this reason that some mathematicians find satisfaction and joy in collecting
concrete problems in which the theory can be applied. In this thesis we will solve a particularly
nice example of such a problem, as well as outline the theory required in its solution. The
problem (and a solution) first appeared in a paper by the Chinese mathematicians Yong Zhang
and Junyao Peng, see [26]. In order to understand the theory used in the solution various books
and lecture notes were studied. In particular, to name the most important ones, notes from a
course at the University of Bayreuth, written by Michael Stoll [21] and a textbook on number
theory by Kenneth Ireland and Michael Rosen [13] were consulted.

The central problem of this thesis falls into a certain class of geometric problems that have
gained popularity over the past few decades. In a nutshell, these problems have the following
form: Given two rational polygons', can they be chosen such that they have both the same
area and the same perimeter? If so, in how many ways (up to scaling of course)? Due to
its simplicity, it is not unthinkable that the ancient Greeks already considered problems of
this kind. Mathematicians such as Diophantus (210-290 AD), for instance, have extensively
studied similar problems (for an engaging account, see [11]). The first appearance in the
literature, however, seems to be in [10] from 1995, when Richard Guy introduced a problem
from fellow mathematician Bill Sands, asking for examples of a rational right triangle and a
rational rectangle with equal area and equal perimeter. It turns out that there is no such pair.
In the same paper, he showed the surprising fact that if we replace right triangle by isosceles
triangle in Bill Sands’ request, then all of a sudden there are infinitely many ways to do it. In
the decades to follow, many more problems of this kind were proposed and solved. For a short
summary, see the introduction of [26]. We highlight the following, because a similar surprising
contrast shows up as in the case of Sands and Guy earlier. Namely, Shane Chern, a colleague
of Zhang and Peng, showed in 2016 that there are infinitely many rational right triangle and
O-rational rhombus pairs with equal area and equal perimeter [5], where a #-rational rhombus
is a rational rhombus satisfying the additional condition that the sine and cosine of its smallest
angle are rational numbers. That brings us to the year 2017, in which Zhang and Peng proved
what will be the main topic of this bachelor’s thesis:

Theorem 1.1. There do not exist a rational isosceles triangle and a 0-rational rhombus with
the same area and the same perimeter.

In their paper, Zhang and Peng reduce the problem to one regarding hyperelliptic curves by
showing that any such triangle-rhombus pair would yield a rational point on a certain curve.
Using the computer algebra system Magma, they find all these rational points and show that
none of them can possibly come from a triangle-rhombus pair. The goal of this thesis is to
find the points by hand, using the underlying theory, and thus to have a complete “pen and
paper”-solution to the problem.

LA polygon having the property that the length of each of its sides is a rational number.



The full strategy of the solution is as follows. First, we deduce that any triangle-rhombus pair
as above will induce a rational solution to a certain equation. Then, we will show that the
rational solutions to the equation cannot possibly come from a triangle-rhombus pair. To that
end, suppose that we have a triangle-rhombus pair as above. Since the area of the #-rational
rhombus is rational, the area of the isosceles triangle is also rational, so its height must be
rational. Therefore, the rational isosceles triangle is simply two rational right triangles glued
together. By the Pythagorean Theorem, and by rescaling if necessary, we may label the sides
of the shapes as in the picture.

2(u?-v?)

Figure 1: A rational isosceles triangle and an f-rational rhombus

If we equate the areas and perimeters, we obtain the following system of equations.
{2uv(u2 —v?) = p?sinb,
4u? = 4p
Setting sin § = 2t/(t* + 1) and substituting the second equation into the first yields
v(u? — v?) 2 —ut +o(u? —v?) =0, (1)

so we find that any triangle-rhombus pair gives rise to rational numbers u,v,t > 0 satisfying
equation (1). We will show that such numbers do not exist. To that end, note that we may
view equation (1) as a quadratic equation in ¢, so if there is a rational solution ¢, the quadratic
formula implies that the discriminant must the square of some rational number w, that is,

u® — dutv® + S8utvt — 4’ = w?’. (2)

If we now substitute z = u/v and y = w/v3, then we find that any triangle-rhombus pair
induces an affine rational point on the curve

C: y?=ab— 4z +82° — 4,

where, for now, an affine rational point is simply a pair of rational numbers (z,y) satisfying
the equation above.



In chapter 6, we will find all rational points of C', and we will show that each of them implies
that either u =0 or t = 0. A quick look at Figure 1 above shows that this solves the problem,
because in that case at least one of the shapes has one of its sides equal to zero. Alternatively,
we could say that, therefore, there exist no positive rational numbers w, v, ¢ satisfying (1), in
which case we are also done.

Finding all rational points on C', however, requires quite a bit of theory. In particular, C' is a
so-called hyperelliptic curve. We will therefore start in chapter 2 with some introductory theory
on hyperelliptic curves. There we will also study elliptic curves, because it will turn out that we
will be able to restrict to an elliptic curve in chapter 6. In order to study (hyper)elliptic curves,
the fields of algebraic number theory and p-adic numbers are useful. We will introduce these
fields and some concepts and results from them in chapters 3 and 4, respectively. Finally, the
computation of the 2-Selmer group will be paramount in finding all rational points on C', and
we will introduce this group in chapter 5. In chapter 6 we will put all this of theory together
to solve the problem.



2 Elliptic and hyperelliptic curves

In this chapter we will introduce elliptic and hyperelliptic curves. The study of these curves,
and in particular the points on them, is the domain of arithmetic geometry. It is customary
for introductory texts in this field to first treat elliptic curves separately (see for instance [18]
or chapters 18 and 19 in [13]), before (if at all) moving on to the more general theory of
hyperelliptic curves. However, it is interesting to see the similarities between them right from
the start, to emphasise how the former are really a simpler case of the latter. In fact, the
main text upon which this chapter is based is a collection of lecture notes on the arithmetic of
hyperelliptic curves [21]. The present author studied these and in this chapter the introductory
theory will be outlined, along with its simplifications to the theory of elliptic curves.

2.1 The basics

Before we can give the precise definitions of the curves we will be studying, we define a suitable
space in which they live.

Definition 2.1. Let g be a nonnegative integer. We define the weighted projective plane ]P;
to be the geometric object for which the points over a field k are equivalence classes of triples
(&,m,¢) € kK*\{(0,0,0)}. Here, two triples (¢,n,(), (&, 1,¢’) are equivalent if (¢/,7/,(') =
(A&, N9Tn, XC) for some nonzero A € k. The corresponding point over k is written (£ : 5 : ().
The set of points over k is called the k-rational points and is denoted by P2(k).

Definition 2.2. The coordinate ring of IPE over k is k[x,y, z|, where the grading is as follows.
x and z are assigned to have degree 1 and y degree g + 1. A polynomial f € k[z,y, 2] is homo-
geneous of total degree d if all its terms have total degree d with respect to the aforementioned
grading.

As for the normal projective plane (which we get for g = 0), there is a bijection between the
points (£ : 7 : ¢) € P with ¢ # 0 and the points of the affine plane A*(k):

§ m
¢’ ¢ott

Similarly, there is a bijection between the points with £ # 0 and A%(k). This gives rise to the
following definition.

(&:n:()— ( ) with inverse (£,n) — (£ :n: 1).

Definition 2.3. The two subsets of ]PZ determined by ¢ # 0 and £ # 0 are called the standard
affine patches of IPE.

The union of the standard affine patches covers all of ]Pf] except the point (0 : 1 :0), but as
it turns out we will never need it. We can now define (hyper)elliptic curves. In the following
definition and afterwards, the field &k is understood to be of characteristic different from 2,
unless otherwise specified. For a treatment of the characteristic 2 case, see section 14.5 of [6].



Definition 2.4. Let g > 1. A hyperelliptic curve of genus g over a field k is the solution set
over IP? of an equation of the form y* = F(z, z), where F' € k[z, 2] is homogeneous of degree
2g + 2 and is squarefree. If we denote the hyperelliptic curve by C, then its set of k-rational
points is given by

C(k) ={(&:n:¢) e Py’ = F(& O}

In case g = 1, the similarly defined curve is an elliptic curve, usually denoted by E.

Note that C'(k) is well-defined, for suppose that (£, 7/, () is another representative for the point
(€:n: () € C(k). Then, there exists nonzero A € k such that (¢,7,¢’) = (A, N, (). We
hence have

%= (\H)? = NP, () = F(M ) = F(E, (),
because F' is homogeneous of degree 2g + 2. In the sense of Definition 2.2, the polynomial
y*> — F(x,z) € k[z,vy, 2] is homogeneous of total degree 2g + 2.

The intersections between C' and the standard affine patches are called the standard affine
patches of C. They are the given by y> = F(z,1) and y? = F(1,z). We write f(z) = F(z,1)
and we will usually define a curve C as

but we keep in the back of our mind that this represents the projective curve defined by
y?> = F(x,z). In order to recover F from f, we need that f has degree 2g + 1 or 2g + 2. Under
certain mild conditions, elliptic curves can be defined by an equation of the form y? = 23+ax+0,
called the Weierstrass form. For a detailed account of the conditions under which this can be
done and a method of how to do it, we refer to section 1.3 of [18].

Now consider the curve C' defined by y? = F(z, z), where
F($, Z) = f29+2$29+2 + f29+1.1'29+12 S R fleQ‘qul + foZ.

The points on the first standard affine patch of C' have the form (£ : n : 1); we will usu-
ally denote such points by (£,7). We do this because (£,7) is a solution to the equation
y> = f(z) :== F(x,1). The remaining points on C are called the points at infinity. They can
be found by solving y* = F(1,0) = faga. If fogra = 0, there is one point at infinity, written
as 0o = (1:0:0). If foyr0 = s?, for some s € k*, there are two points at infinity, written as
001 = (1: +£s:0). Otherwise, there are no k-rational points at infinity. Here we also see why

we never need the point (0: 1 :0), because it is never a k-rational point on C'.

Remark. In introductory texts, points on elliptic curves are usually defined over the standard
projective plane P? instead of the weighted projective plane P2, Namely, for an elliptic curve
over @ defined in Weierstrass form E : y? = 2% + ax + b, the homogenisation of the defining
equation with respect to the grading of the coordinate ring of IP? is given by vz = a®+ax2?+bz3.
Then, we find the point (0 : 1:0) € E(Q); it is not singular, because the partial derivative with
respect to z does not vanish. For curves defined by an equation of higher total degree, this does
not work, because then the point (0 : 1 : 0) is in fact singular. This is solved by considering
the weighted projective plane, as described above.
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Example 2.5. Consider the curve C' : y? = 25 — 42* + 822 — 4 over the field Q. The degree
of the defining polynomial is 6, so the genus g = 2, and the projective form of the equation
is y? = a8 — 4212? 4+ 8222* — 425, Hence there are two points at infinity, coy; = (1 : £1 : 0).
Moreover, we can find the affine points (1,1),(1,—1),(—1,1) and (—1,—1). In this thesis we
will show that these are all the Q-rational points on the curve C'.

We end this section with the following definition.

Definition 2.6. Let C' : y?> = F(x,z) be a (hyper)elliptic curve of genus g over the field .
We define the coordinate ring of C' over k to be the quotient k[C] = k[z,y, z]/(y* — F(z, 2)).
Since y* — F(z, z) is irreducible and homogeneous, k[C] is an integral domain which inherits
the grading defined in Definition 2.2. Moreover, we define k(C') to be the subfield of the field
of fractions of k[C] consisting of elements of degree zero. We call k(C') the function field of C
over k. Its elements are called rational functions on C over k.



2.2 Divisors and the Picard group

In this section we will see why elliptic curves are such a simplification compared to hyperelliptic
curves, (other than the fact that they have smaller genus and are hence ‘simpler’ curves in this
literal sense). We will do so by introducing divisors and the Picard group, which will lead us
to the so-called Jacobian variety J. For a hyperelliptic curve C defined over Q, we can embed
the rational points C(Q) into J(Q), which carries a group structure, and there we can do com-
putations. For an elliptic curve E, however, this embedding is surjective, so in some sense we
can directly do computations with the points. As we will see, this induced group structure on
E(Q) has an elegant geometric interpretation.

We start by defining the divisor group. In the following definition, k*® is the separable closure
of a field k, that is, the subfield of the algebraic closure k consisting of the separable elements.

Definition 2.7. Let C be a (hyper)elliptic curve over a field k. The divisor group of C, Divg,
is the free abelian group with the set of k%P-points on C' as basis. The elements of Divy are
called divisors. We write a divisor D as D = ) ,np - P, where the sum is over P € C(k*P)
and the np € Z with at most finitely many np # 0. The degree of a divisor D is defined by
deg(D) = > pnp. The set of divisors of degree zero forms a subgroup Divy, of Dive.

Now consider a nonzero rational function ¢ € k%P(C'). Since it can be represented by a quotient
of polynomials, ¢ has finitely many zeros and poles on C'. Thus, we can define the following.

Definition 2.8. Let ¢ € k%P(C)*. Then, we define the divisor of ¢ by

div(¢) = > np(¢)- P,

where np(¢) is defined by taking a representative quotient of polynomials; if P is a zero of
this representative then np(¢) is the multiplicity (in the usual sense), if P is a pole of the
representative then np(¢) is minus the order, and it is zero otherwise. A divisor which can
be written as the divisor of a rational function is called a principal divisor. The subgroup
consisting of all principal divisors is denoted by Prince. Since Dive is abelian, we can define
the group

Pice = Dive / Princg,

called the Picard group of C.
Lemma 2.9. Let ¢ € k°P(C)*. Then, deg div(¢) = 0.
Proof. This is lemma 4.7 in [21] and we refer to the proof given there. O

From the previous lemma, it follows that Princc C Divy. By the homomorphism theorem for
groups, deg induces a homomorphism Picc — Z. We denote the kernel of this homomorphism
by Picl.. The following important theorem will be stated without proof.

Theorem 2.10. Let C be a (hyper)elliptic curve of genus g over a field k. Then, there exists
an abelian variety J of dimension g over k such that J(k) = Pic%(k).

Definition 2.11. The abelian variety J is called the Jacobian of C.
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For Py € C, the map i : C — J given by P +— [P — Py, where [P — P] is the class of the
divisor P — Py modulo principal divisors, turns out (see chapter 4 of [21]) to be injective for
g > 1. Note that we take Py € C(k) because then i(C(k)) C J(k). Without getting into the
theory of abelian varieties, we thus see that the points C'(k) can be embedded into J(k), which
carries a group structure (induced from the Picard group). Finding the set of k-rational points
on C hence comes down to finding J(k) N ¢(C), which is an improvement since we can make
use of the group structure of J(k). There is a deep theorem which tells us even more about
J(k). Tts general form, as proved by André Weil, see [25], is as follows.

Theorem 2.12. Let k be a number field? and let J be the Jacobian of a curve over k. Then,
J(k) is a finitely generated abelian group.

For elliptic curves, the situation is even better. In proposition 3.4 of chapter III in [17], it
is shown that the map i above is in fact a bijection. That is, instead of working with J(k),
Theorem 2.10 implies that Pic% (k) induces a group structure on the points E(k) themselves!
Then, in particular, we have

Theorem 2.13. Let E be an elliptic curve over Q. Then, E(Q) is a finitely generated abelian
group.

This is the version of Theorem 2.12 that Louis Mordell proved already in 1922, see [14]. The
group law on F(Q) has a beautiful geometric interpretation, which is described in many un-
dergraduate textbooks such as [18] and [13]. For two points P,Q € E(Q), we obtain their sum
P + @ by first considering the line L through P,Q (for P = @, take L to be tangent to E at
P) and noting that there will be a third point®> R € L N E. We define P + Q to be the image
of R when mirrored in the x-axis, see the figure below.

P+Q}
Figure 2: Group law on an elliptic curve

It is rather remarkable that the abstract algebraic group law on E(Q) induced by Pic%(Q)
corresponds to the elegant geometric definition above. The fact that they are equal is also
part of proposition 3.4 of chapter III in [17] mentioned above. This group law on the points
is the reason that working with elliptic curves is much more convenient than working with
hyperelliptic curves, where we have to embed the points into the Jacobian and work with the
abstract group law there.

2A finite extension of Q; more on these in the next chapter.

3Counting multiplicities, that is. This is a special case of Bézout’s theorem. It is not strictly necessary to
impose this general theorem. For instance, explicit formula’s for the third intersection point are given in section
3.1 of [13].
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3 Algebraic number theory

Many problems in mathematics, including the central one in this thesis, may be phrased as a
problem of finding rational or integer solutions to some equation in several variables. A famous
example is Fermat’s last theorem, stating that for £ > 2 the only rational solutions x,y to the
equation z* +y* = 1 satisfy zy = 0. Such problems make up the field of Diophantine equations.
Another example is Lagrange’s four-square theorem, which states that for any natural number
n, there are integer solutions to the equation n = a?+b?+4c?+d?. In the context of Diophantine
equations, a field known as algebraic number theory arises naturally. For instance, in this thesis
we are mostly concerned with finding rational solutions to an equation of the form y? = f(x) for
some polynomial f. We will see that in this case it is beneficial to consider the ring Q[z]/(f). If
f splits completely over the rationals, then there is not much to it, for then Q[z]|/(f) is simply
isomorphic to copies of Q. If, on the other hand, f has irreducible factors of higher degree than
one, it gets more interesting. Consider for example the case where f is an irreducible cubic
polynomial. Then, Q[z]/(f) is a cubic extension of  and a so-called number field. The study
of number fields and their subrings is the domain of algebraic number theory. This chapter
will serve as a reference for the next chapters, containing concepts and results from algebraic
number theory that will be used later. In this chapter we will mostly follow chapter 12 of the
book by Ireland and Rosen [13]. Their treatment is special in the sense that they build up the
theory differently from other books, in order to prove big results as quickly as possible. A more
standard treatment of algebraic number theory can be found, for instance, in the lecture notes
by Stevenhagen [19].

3.1 Norm, trace and discriminant

A field K is called a number field if it is a finite extension of @, in which case we usually denote
[K : Q] by n. The theory in this section holds more generally for any finite extension of fields,
but since we will only be concerned with number fields we only consider the extension K/Q.

For a basis ay,...a, of K/Q and a € K, we have aa; = Zj a;ja; for some a;; € Q. There are
of course many possibilities for a basis of a field extension, but as we will see some bases are
‘better’ than others, or at least more natural. These are known as integral bases; the following
concepts will be useful in the study of these bases.

Definition 3.1. In the notation above, we define the norm of a, N(a), to be det(a;;). We
define the trace of a, t(«), to be a;; + -+ + app.

By our knowledge from linear algebra, we see that the definition above is independent of the
chosen basis, that the norm is multiplicative and that the trace is additive. Let o4, ..., 0, be the
distinct embeddings of K into some algebraic closure of @ which fix Q and write o) = o;(«a)
for « € K, where o) = a. Using linear algebra, we see that t(a) = o™ + .- + a( and
N(a) = aW...aM, If o satisfies a monic polynomial with integer coefficients, then so do the
a. We will see in section 3 that this implies that ¢(a) and N(«) are integers.

Definition 3.2. If ay,...,qa, € K, then we define the discriminant A(aq, -+, ) to be
det(t(a;a;)).

11



When something is called a discriminant, usually something special is the case when it is (not)
equal to zero. Indeed, it is not hard to verify, see for instance proposition 12.1.1 of [13], that
elements s, ..., q, € K form a basis for K/Q if and only if A(aq,...,a,) # 0. Another useful
property is the following.

Proposition 3.3. Let ay,...,q, and fy,..., [, be bases for K/Q. If a; = Zj a;;3; for some
a; € Q, then A(ay, ..., a,) = det(ay)*A(By, .. ., Bn).

Proof. We have the identity ;o = Zj > aijapBi 8. If we take the trace on both sides and
define the matrices A = (t(c;a;)), B = (t(8;8),C = (aij), then we have A = CTBT. Taking
determinants in this expression yields the desired result. O

12



3.2 Ring of integers

Definition 3.4. An algebraic integer is a root of a monic polynomial with integer coefficients.
For a number field K, we define its ring of integers Ok as the set of algebraic integers in K.

Before we verify that Ok is indeed a ring, we do a sanity check.
Proposition 3.5. The ring of integers of Q is Z..

Proof. We have that Z C Ogq, because any r € Z satisfies the polynomial  — r. In order to
show that Oq C Z, take r € Oq. Then r is the root of a polynomial 2™ + byz" ' + --- + b,
where b; € Z. Assume without loss of generality that r» = ¢/d, where ged(c,d) = 1. Then,

"4+ 4 b,d" = 0.

Reducing this equation modulo d yields that d|c¢". Since ¢ and d are relatively prime we have
d|c and hence r = ¢/d € Z. O

Now we will show that the ring of integers Ok of a number field K is indeed a ring. We will
do this by showing that the set of all algebraic integers €2 C C is a ring, from which it follows
that O = K N2 is a ring. First we state the following lemma.

Lemma 3.6. Suppose that a nonempty subset W C C satisfies the following properties:
(i) For any 1,7, € W, we have v, £y, € W.
(ii) There exist v1, ..., € W such that every v € W can be written as Zizl biy; with b; € Z.

That is, W is a finitely generated Z-module. If w € C is such that wy € W for all v € W,
then w € ).

Proof. Let w € C be such that wy € W for all v € W. We show that w € 2. We have that
wy; € Wfor i = 1,...,1, that is, for the elements of which the existence is guaranteed in (ii).
For each i, we thus have wvy; = 2;:1 a;;7j, with a;; € Z. Therefore, Zé.:l(aij — d;;w)y; = 0,
where 6;; = 0if ¢ # j and §;; = 1 if i = j. It follows that det(a;; — 0;;w) = 0. By writing out
the determinant we see that w satisfies (possibly up to a sign) a monic polynomial with integer
coefficients and hence w € €. O

Proposition 3.7. The ring of integers Ok of a number field K is a ring.

Proof. As mentioned, it suffices to show that €2 is a ring. We will show that €2 is a subring of
C. It is clear that 1 € €. Let wy,wy € €. To see that w; — ws and wyws are in €, suppose that
W+ bw ™+ -+ b, =0 and Wi + i 4o+ ¢, = 0 for by, ¢; € Z. Let W be the set
of all Z-linear combinations of wiw%, where 0 <7 <n and 0 < 7 < m. Clearly, W is a finitely
generated Z-module. If v € W then w;y € W for ¢+ = 1,2 using the polynomial w; satisfies.
Therefore (w; — we)y € W and wiwey € W. By Lemma 3.6, w; — wq, wiws € Q. O
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3.3 Factorisation

For the rational numbers QQ, we have learned already in elementary school the method for
‘division with remainder’ in the ring of integers Z of Q. Given nonzero a,b € 7., the teacher
taught us how to find ¢, r € Z, with |r| < |b|, such that a = ¢b+r. This simple procedure makes
Oq = Z into a Euclidean domain. In standard algebra texts such as [23] it is shown that this
implies that Oq = Z is a principal ideal domain, which in turn implies one of the properties of
Oq = Z we hold most dearly: it is a unique factorisation domain. That is, we can factor any
nonzero n € 7 uniquely (up to sign) as a product of prime numbers (the irreducible elements
of 7). This fact is also taught in elementary school, and it has become so familiar to us that
(in my personal experience) many people feel that any proof of this fact is unnecessary or even
pedantic. However, what these critics probably do not know (and you should tell them when
you encounter them!) is that it is not obvious at all; in fact, there are fields K which are in
some sense very similar to @ (read: number fields) for which it fails completely. For example,
the ring of integers of the number field K = Q(v/—5) is Ox = Z[\/—5], see proposition 13.1.1

n [13], but
2-3=(1++v=5)(1—-+-5).

It is easy to verify that the elements in the factorisation above are irreducible and that the
elements on the left cannot be obtained from the ones on the right by multiplying by a unit.
This implies that Ok is not a unique factorisation domain and hence not a principal ideal
domain.

Luckily, the situation is not as bad as it seems. Although it does not hold in general that O
is a unique factorisation domain, it is a so-called Dedekind domain, meaning that each nonzero
ideal can be written uniquely as a product of prime ideals. In this section, we will show that
Ok is a Dedekind domain using a method due to Adolf Hurwitz, as outlined in section 12.2
of [13]. Along the way we will encounter the class number hy, which measures ‘how far’ O
is from being a principal ideal domain. We end the section with a theorem by Kummer and
Dedekind, which shows how to explicitly factorise certain ideals.

We should not be fooled by the earlier example in thinking that it is always the case that the
ring of integers of a field of the form K = Q(«) is given by O = Z[a] = Z+Za+ - - -+ Za™ ™,
see for example 13.1.1 in [13]. Moreover, there are even extensions K /Q for which there does
not exist any element « such that Ok = Z[a], see [19, chapter 3]. However, for any ideal A of
Ok (and so of Oy itself), we can always find an integral basis: a basis o, ..., a, € A for K/Q
such that A = Zay + - - - + Za,. This is the case precisely when |A(ay, ..., a,)| is minimal. To
show this we first need the following.

Lemma 3.8. Let A be an ideal in Ok. Then, A contains a basis for K/Q.
Proof. See proposition 12.2.1 of [13]. O
Lemma 3.9. For a € Ok, we have t(a), N(a) € Z.

Proof. By the discussion following Definition 3.1 and the fact that the ring of integers is indeed
a ring, we see that ¢(«) and N(«) are in the ring of integers of Q. Since they are also in Q, it
follows from Proposition 3.5 that they are integers. O]

14



Proposition 3.10. Let A be an ideal in Og and suppose that oy, ..., o, € A is a basis for
K/Q with |A(aq, ..., an)| minimal. Then, A = Zay + -+ - + Z,.

Proof. By the preceding lemma and the definition of the discriminant, |A(aq, ..., a,)| is positive
integer, so there is a basis such that it is minimal. Let oo € A. Since ay,...,q, € A is a basis
for K/Q, we can write o = y101 + - - - + Y, for v € Q. We will show that 7; € Z, proving the
desired result. Suppose for contradiction that there is some ~; ¢ Z and assume without loss of
generality that v, ¢ Z. We can write v; = m + 6 for some m € Z and 0 < # < 1. Define a
basis f1,...,0, € A by 1 = o —may and ; = «; for i > 1. The transition matrix is given by

0 v 7 Tn
o1 0 --- 0
0o o 1 --- 0
0 0 O 1

By Proposition 3.3, we have |[A(By, ..., 8.)| = 0*|A(ay, ..., a,)] < |Alay, ..., ay,)|, which con-
tradicts the facts that |A(aq,. .., a,)| is minimal. Therefore, all v; € Z, as desired. H

The discriminant of two integral bases is equal by Proposition 3.3, and we call this common
value the discriminant of A, denoted by A(A). We use this to define the discriminant of K/Q

In addition, there is a way to quantify ‘how large’ an ideal A of Ok is. This is usually done
by defining the norm of an ideal A by the size of O /A. Of course, this only makes sense if
O /A is finite; this is what we will show next, using a small auxiliary result.

Lemma 3.11. Let A be an ideal in Or. We have that ANZ # {0}.
Proof. See lemma 2 of section 12.2 of [13]. O
Proposition 3.12. Let A be an ideal in Ok. Then, O /A is finite.

Proof. Using the lemma, we can take a nonzero a € ANZ. Let (a) be the ideal generated by
a in Ok. Since (a) C A, it suffices to show that Og/(a) is finite. By Proposition 3.10, we
may write Ox = Zwy + -+ - + Zw,. We claim that S = {d_ yw; |0 < v; < a} is a set of coset
representatives for Ok /(a). To see this, let w = > mw; € Ok. Writing m; = ¢;a + ; with
0 < ~; < ayields that w is congruent to > v;w; € S modulo (a), so every coset contains at least
one element of S. To that it is exactly one, suppose that > vw;, Y vw; € S are congruent
modulo (a). Since the w; form a basis, they are linearly independent and it follows that ~; — ~/
is divisible by a. Since 0 < v;,7/ < a, we have ; = /. Therefore, S is a set of representatives
for Ok /(a). Since S contains a” elements, it follows that Ok /(a) does too and hence O /A is
finite. 0

Now we want to define the class number hg of a number field K as the amount of equivalence
classes under a certain equivalence relation. We want the class number to measure, in some
sense, how close Ok is to being a principal ideal domain. Consider the following relation ~ on
the ideals of Og*. For two ideals A, B of Ok we have A ~ B if and only if there exist nonzero

4Most texts define ~ on fractional ideals, which are Ok-submodules A satisfying uA C Oy for some u € 0.
Clearly, this includes ideals of Ok (take u = 1).
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a,f € Ok such that (a)A = (B)B. It is straightforward to check that this is an equivalence
relation. We define the following.

Definition 3.13. The equivalence classes under ~ are called ideal classes. The number of ideal
classes, hg, is called the class number of K.

The following result tells us that hx indeed measures how close Ok is to being a principal ideal
domain.

Proposition 3.14. hx = 1 if and only if Ok is a principal ideal domain.

Proof. Suppose that hxg = 1 and let A C Ok be an ideal. We have that A ~ O, so there exist
nonzero «, 5 € Ok such that (a)A = () and hence A = (5/«) is principal. Conversely, if Ok
is a principal ideal domain and A, B C O are ideals, then A = () and B = (). Therefore,
(B)A = («)B and hence A ~ B. O

One of the main results in algebraic number theory is that hx is finite. A quick way, due
to Adolf Hurwitz, to show this is outlined in section 12.2 of [13]. It uses a lemma which
is a generalisation of the euclidean algorithm (‘division with remainder’) mentioned in the
introduction of this section above.

Lemma 3.15. There exists a positive integer M depending only on K such that the following
holds. If a, 8 € Ok and (B is nonzero, then there is an integer t, 1 <t < M and an element
w € Ok such that |N(ta — wp)| < |N(B)|.

Proof. See lemma 5 of section 12.2 of [13]. O
Theorem 3.16. The class number of K is finite.

Proof. Let A C Ok be an ideal. By Lemma 3.9, the absolute value of the norm of a nonzero
element of A is a positive integer. Take 5 € A such that |[N(5)| is minimal. By Lemma 3.15,
for any a € A we can find t between 1 and M (recall that M only depends on K), such that
|N(ta —wp)| < |N(B)] for some w € Ok. Since ta —wf € A, the minimality of |[N(3)| implies
that ta = wf and hence Mla = 2w 3 € (B). Therefore, B = (1/8)M!A C Ok is an ideal and
MI!A = (B)B. Since 8 € A we have M5 € (5)B, so M! € B. By Proposition 3.12, O /(M!)
is finite, so there are only finitely many ideals B containing M!. Thus A ~ B for one of finitely
many ideals B, showing that hg is finite. ]

For our purposes, we would also like to be able to find the class number in a concrete example.
A useful tool for this is the Minkowski bound. We state it here without proof. If the reader is
interested in a proof, chapter 5 of [19] contains a proof of Minkowski’s theorem regarding the
existence of lattice points in symmetric convex bodies and shows how it implies the following
result.

Theorem 3.17. Let K/Q be an extension of degree n and let s be half the amount of complex
embeddings. Then, every ideal class in K contains an ideal A such that the norm of A does not
exceed the Minkowski bound given by

™) n®
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In particular, for some number fields the Minkowski bound provides an easy way to show that
it has class number 1: if My < 2, then every ideal class contains O and hence there is only
one ideal class.

Before we continue to show that Ok is a Dedekind domain, we remark that the set of ideal
classes is usually called the ideal class group, and we will show how to turn it into a group using
the following result.

Proposition 3.18. Let A be an ideal in O. There exists an integer k with 1 < k < hyi such
that A* is principal.

In the proof of this proposition, the following result is used:
Proposition 3.19. Let A, B be ideals in Ok. If w € D is such that (w)A = BA, then (w) = B.
Its proof can be found under proposition 12.2.4 in [13]. Now we prove Proposition 3.18.

Proof. Consider the set of ideals {A*|1 < i < hg + 1}. By the pigeonhole principle, at least
two of them must be equivalent, so A* ~ A7 for some i < j. There exist nonzero o, 3 € O such
that (o) A" = (8)A7. We will show that B = A7~ is principle, proving the proposition. We have
that (a)A® = (8)BA! and hence (a/B)A* C A’. Therefore, a/8 € Ok. Since (a/B)A" = BA?,
it follows from Proposition 3.19 that B = («/3) is principal. ]

As promised, we put a group structure on the set of ideal classes of Ok. Since we will neither
need this in the rest of this chapter nor in any applications of algebraic number theory later on,
we will be brief. Let A denote the ideal class of an ideal A of Q. Then we define the product
of A and B by AB. One can easily check that this operation is well-defined and associative.
The identity element of the group is Ox and Proposition 3.18 shows that the inverse of A is
Ak-L

The following two propositions regard ‘division’ of ideals. They will be helpful in showing that
ideals can be factored as the product of prime ideals.

Proposition 3.20. Let A, B,C be ideals in O. If AB = AC, then B = C.

Proof. By Proposition 3.18, there exists k such that A* = («) for some o € Of. Multiplying
both sides of AB = AC by A*~! yields («)B = (a)C and hence B = C. O

Proposition 3.21. Let A, B be ideals in Ok. If B D A, then there is an ideal C' such that
A= BC.

Proof. Again by Proposition 3.18, there exists a positive k such that B* = (3) for some 3 € Of.
Since A C B, we have B¥"1A C B* = () and hence C = (1/8)B* 1A C Ok is an ideal. This
C satisfies BC = (1/B)B*A = (1/B8)(8)A = A, as desired. O

In this sense, if an ideal contains another ideal, it divides it. We can now prove the following.
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Proposition 3.22. Fvery ideal in Ok can be written as a product of prime ideals.

Proof. Let A be a proper ideal in Og. Then, it is contained in a maximal ideal p;. This is
proved using Zorn’s lemma, see for example corollary IV.3.4 in [24]. By Lemma 3.21, there
exists an ideal By in Ok such that A = p;By. If By is a proper ideal, then it is contained in
an maximal ideal p, and there exists By such that A = pi1psBs. If we continue in this way
we obtain the proper inclusions A C By C By---. By Proposition 3.12, Ok /A is finite, so A
is contained in finitely many ideals. Therefore, there exists g such that B, = O and hence
A =9pipy---p,. Since maximal ideals are prime, this proves the proposition. O

For a prime ideal p, the chain of inclusions p D p? D p®- - - is proper, because if p* = p*™! = pp?,
then p = Ok by Lemma 3.20. The following definition relies on this fact.

Definition 3.23. Let A be an ideal in Ok and let p be a prime ideal. We define ord, A to be
the nonnegative integer ¢ satisfying p’ D A and p'*! 2 A.

Note the analogy with the integers here. For a nonzero integer n there is also a unique nonneg-
ative integer ¢ such that pf|n but p'™! { n. With this analogy in mind, the following properties
will also seem familiar.

Proposition 3.24. Let A, B be ideals in Ok and let p,p’ be unequal prime ideals. Then, the
following properties hold.

(1) ordyp =1
(i1) ord, p’ =0
(111) ordy, AB = ord, A + ord, B.

In the proof of this proposition we will use that prime ideals of O are maximal. This follows
from the fact that, for a prime ideal p, Ok /p is a finite integral domain by Proposition 3.12.
It is an exercise in ring theory to show that a finite integral domain R is a field. Since it is a
bit off-topic, we will not provide all the details, but it follows from the fact that the map from
R to itself given by x — rx is a bijection for nonzero r € R. Namely, then there exists s € R
such that rs = 1 and hence each r in the commutative ring R is a unit, i.e. R is a field.

Proof. Part (i) follows immediately from the definition. To see that (ii) holds, suppose that
ord, p’ > 0. Then, p’ C p. Since prime ideals of Ok are maximal, p’ = p which contradicts
our assumption that p,p’ are unequal. For part (iii), let ¢ = ord, A and s = ord, A. By
Proposition 3.21, we have A = p‘A;, B=p*B; and p p Ay, p J B1. We have AB = p*t' A By,
so p*™ O AB and we will show that p*™**' % AB, proving the proposition. Suppose for
contradiction that we do have p*™**1 % AB. Then, AB = p****1(C and hence Proposition 3.20
implies that pC' = A;B;. Therefore p D A;B; and since p is prime it follows that p O A; or
p D By, which gives us a contradiction, as required. O

Theorem 3.25. Let A be an ideal in Og. Then, A = [[p®®), where the product is over the
distinct prime ideals of Ok, and the a(p) are nonnegative integers of which at most finitely
many are nonzero. Moreover, the a(p) are uniquely determined by a(p) = ord, A.
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Proof. The first part follows from Proposition 3.22. Suppose A = [[p®® as in the theorem.
Suppose p’ is a prime ideal in O and we apply ord,s to both sides. Then, by Proposition 3.24,
ordy A =) a(p)ordy p = a(p’), as desired. O

Now that we have established unique ideal factorisation in O, we might wonder how we can
explicitly factorise an ideal. The following important result by Kummer and Dedekind gives us
the answer for ideals of the form (p), where p is a prime number. Note that the ring considered
in the following theorem is not necessarily the ring of integers, but a ring of the form Za],
where o € C is an algebraic integer. Such a ring is the ring of integers precisely when all prime
ideals in there are invertible, see [19, chapter 3]. An ideal A is invertible if there exists an ideal
B such that AB is a nonzero principal ideal. It is singular if it is not invertible.

Theorem 3.26. Let « € C be a root of a monic irreducible polynomial f € Z[x], and let p be a
prime number. Let the ring R = Z[a] = Z[z]/(f), and let g; € Z[x] be monic polynomials such
that the factorisation of f modulo p is f = [[;_, g in F,lz]. Here, the e; are positive integers
and the irreducible g, are pairwise distinct. Then,

(i) The prime ideals of R that lie above p (that is, that divide (p)) are p; = pR + g;(«)R.
(i) pR = []p5" if and only if every p; is invertible.

(iii) If r; € Z[x] is the remainder of f upon division by g;, then p; is nonsingular if and only
if e; > 1 and p?|r;.

We will use this theorem to compute prime ideals above certain primes in section 6.3.

3.4 Ramification and degree

For a prime ideal p of Ok, the ideal p N 7Z is nonzero by Lemma 3.11. Since this is a prime
ideal of Z, it is generated by a prime number p. We define the numbers e and f as follows.

Definition 3.27. The ramification indez e of a prime ideal p is defined to e = ord, (p). Since
O /p is a finite field containing I, the number of elements of Ok /p is p/ for some positive
integer f. We define the residue class degree of p to be this number f.

Let p be a prime number and let py,...,p, be the prime ideals dividing (p). If e;, f; are the
ramification index and residue class degree of p;, respectively, then we have (p) = p§* - - pg’.
We will show that there is a beautiful relation between the numbers e;, f; and n = [K : Q)],
namely > 7, e;fi = n. First, we need the following result.

Lemma 3.28. Let P be a prime ideal in Ok and let p/ be the number of elements of Ok /P.
Then, the number of elements in Oy /P is p*/.

Proof. See proposition 12.3.2 in [13]. H

Theorem 3.29. With notations as before, the following relation between e;, f; andn = [K : Q]
holds:

g

Zeifi = n.

i=1
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Proof. If we write (p) = p{* - - - py” as before, then it follows from Proposition 3.24 that p§ —|—p§j =
Ok for i # j. By the Chinese Remainder Theorem,

Ok/(p) = Ok /p7' @ - ® Ok /py’.

In the proof of Proposition 3.12, we have seen that Ok /(p) contains p" elements. Therefore,

by Lemma 3.28,
P = pe1f1 .. ‘pegfg’

and the result follows. O

3.5 Units

Although the aim of this project is to solve the geometric problem from the introduction by
leaving as few black boxes as possible, we will state the following vital result without proof. It
is known as the Dirichlet’s unit theorem. For a proof, we refer to chapter 5 of [19].

Theorem 3.30. Let K be a number field with ring of integers Ok . Suppose that K admits r
real and 2s complex embeddings. Then, the group of units of D is a finitely generated abelian
group of rank r + s — 1.

Finding r and s can be done as follows. If K = Q(«), then the minimal polynomial of o over Q
has r real roots and 2s complex roots. In this thesis, we will only need that Theorem 3.30 holds
for r = s = 1. This is shown in chapter 7 of the bachelor’s thesis [22] by Van Timmeren. In
the proof he uses Minkowski’s theorem, which can be found in chapter 5 of [19]. This theorem
asserts the existence of a nonzero lattice point in a certain subset of euclidean space, and Van
Timmeren uses this lattice point to construct a u € O such that any v € O can be written
as v = uf for some k. This implies that O = 7 x Z/27, as desired.
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4 p-adic numbers

In this chapter we will consider the p-adic numbers. They will be very useful in what is to
come and considering them will be key to solving the main problem of this thesis. First we will
define what they are, then we will give some insight by displaying which p-adics are squares
and afterwards we will explain how they are used in the study of hyperelliptic curves. We end
the chapter with some theory on extensions of the p-adics, because we will need this later on.

4.1 The field Q, and the ring Z,

As seen in various undergraduate courses, the real numbers R can be constructed from the
rational numbers Q as follows. Consider the metric on @ induced by the standard absolute
value, that is d(a,b) = |a — b|. Then, R is the ring of Cauchy sequences in Q modulo the
maximal ideal of sequences converging to 0. For an arbitrary field k£ with an absolute value we
can do the same procedure and the result is the completion of k with respect to the absolute
value. It is shown in, for example, a first course in metric spaces that this yields a complete
metric space containing k£ as a dense subset. In this way, we will construct the p-adic numbers
as the completion of @ with respect to some absolute value. To this end, we first define the
notion absolute value more generally and then present the so-called p-adic absolute value with
which we will do the construction.

Definition 4.1. Let k be a field. An absolute value on k is a map |- | : K — R>o, such that for
all a,b € k the following hold:

(i) la| =0 a=0  (positive-definiteness)
(ii) |ab| = |al| - |b| (multiplicativity)
(ili) |a+ 0| <|a| +|b| (triangle inequality)

Example 4.2. Clearly, the standard absolute value on @ is an absolute value in the sense of
the definition above.

Example 4.3. Let p be a prime number. We can write a € Q uniquely as a = £ p" for some
r,s,n € Z with p 1 rs. We define the p-adic valuation v, by v,(a) = n. It is readily verified
that the map |- |, : Q — R defined by

1l 0 if a =0,
a =
i p~ () if q £ 0

is an absolute value. It is called the p-adic absolute value. In particular, it satisfies a stronger
version of the triangle inequality, given by

|a + b < max{lal, [b]}.
Absolute values satisfying this ultrametric triangle inequality are called non-archimedean.

Remark. In some sense, Examples 4.2 and 4.3 give all possible absolute values on . More
precisely, two absolute values | - |1,] - |2 on a field k are said to be equivalent if there exists
a > 0 such that |z|s = |z|¢ for all z € k. It is the content of Ostrowski’s Theorem that every
nontrivial absolute value on @) is equivalent to either the standard absolute value or the p-adic
absolute value for some prime number p. For a proof of this theorem, see section 2.2 in [3].
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Now we move on to the definition of the p-adic numbers, as anticipated at the start of this
section.

Definition 4.4. The field Q, of p-adic numbers is the completion of @ with respect to the
p-adic absolute value. The ring Z, of p-adic integers is the topological closure® of Z in Q,.

Remark. By extending v, and |- |, to Q,, we could have also defined the ring Z, as the elements
of Q, with nonnegative valuation (or absolute value at most one). Usually, this is how we think
of Z, in practice.

Ever since we have learned how to count, we have used the decimal expansion of numbers. A
number such as 1998 is understood to mean 8-10° +9-10' +9-102 +1-103. Instead of 10, we
can of course use any positive integer; the choice of 2, for example, yields the binary expansion
of a number. For a prime p, then, we can write any x € Z as © = Zivzo a,p"™ for some N and
where the a,, € {0,1,...,p — 1}. Truncation of this sum after n — 1 terms gives the residue
class z mod p". The p-adic integers Z, can, in some sense, be reduced mod p" for all n and they
can be written in the form ) >  a,p”, where the a, € {0,1,...,p — 1}. Elements of Q, also
have such a ‘series expansion’, but they also allow negative exponents, that is, an element of
Q, can be written as Ezosz a,p™ for some k > 0. This is made more precise in Theorem 3.4
of [9]. If we write an a € Z, as ) .~ , a,p", then sending a — @, € I, gives a homomorphism
Z, — F,, usually denoted by a — @. Its kernel is pZ,, so we find that Z,/pZ, = F,. In the
next section we will see Hensel’s Lemma, which allows us to answer questions about Q, and
Z,, using information from I,

4.2 Hensel’s Lemma and squares in ),

Lemma 4.5. Let h € Zp[ai] be a polynomial and suppose that a € IF, is such that a is a simple
root of h € F,|x], where h is obtained by reducing the coefficients modulo p. Then, h has a
unique root o € Z, with @ = a.

Proof. The strategy for this proof resembles Newton’s method, and can be found under theorem
3.8 in [21]. [

As an application of Hensel’s Lemma, we find the squares in @, for primes the odd primes.

Corollary 4.6. Let p > 2 be prime and let a = p"u € Q,, where uw € Z,;. Then, o is a square
in Q, if and only if n is even and w is a square in I).

Note that in the result above it is implicitly claimed that any o € Q, can be written as p"u,
where n € Z and u € Z,;. This follows from writing o = oo . a;p', see the previous section,
and observing that there is precisely one m € Z such that p"a = Z;io a;p’ with ay # 0. That
is, such that p™a is a unit. For n = —m we thus have a = p"u for some unit u. More generally,
an element 7 which takes the role of p is this discussion is called a uniformiser; we come back
to this in the section 4.4.

*Where the topology is induced by the metric d(z,y) = |z — yl,.
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Proof. Suppose that a as above is a square. Then, there exists 8 = p™v € Q,, with v € Z,
such that 32 = «. It follows that n = 2m, so n is even. Moreover, u = 72, so U is a square in
F,. Conversely, if & = p™u as above is such that n is even and % is a square in I, then clearly
p™ is a square, so it suffices to show that u is a square. Consider the polynomial h defined by
h(z) = 2? — u. By assumption, h has a root. The root is simple, because p > 2 and hence 4
are distinct. Therefore, Hensel’s Lemma implies that A has a root in Z,, meaning that u is a
square. ]

For the prime p = 2 the condition is that n is even and that « = 1 mod 8. This is proved,
for instance, in section 4 of the notes by Keith Conrad [7], using a stronger version of Hensel’s
lemma. We will see this result later as a corollary of an algorithm by Stoll, see section 3 of [20].

4.3 Applications to (hyper)elliptic curves

Definition 4.7. Let C : y? = F(z,2) be a (hyper)elliptic curve over Q, such that F has
coefficients in Z,. Then, by reducing the coefficients modulo p we obtain a homogeneous
polynomial F € Fylz,z]. If F is squarefree, then we say that C has good reduction. If C is
defined over Q, then we say that C' has good reduction at p if it has good reduction as a curve
over Q,. Otherwise, C' is said to have bad reduction at p.

Having good reduction at p is equivalent to p not dividing the discriminant of the polynomial
F (since p dividing the discriminant means that F' has discriminant zero and is hence not
squarefree). An important consequence of having good reduction is the following.

Theorem 4.8. Let E be an elliptic curve over Q. If E has good reduction at a prime p, then
the reduction map E(Q) — E(IF,) restricts to an injective group homomorphism on E(Q)ors-

Proof. The proof can be found above theorem 4.4 in [18]. O

In other words, if F has good reduction at a prime p, then we can embed the torsion subgroup of
E(Q) into E(F,). The latter is easy to find, because we only need to check p? pairs (z,y) € F.
This will be very useful to us in section 6.2, where we find the torsion subgroup in a concrete
example.

4.4 Extensions of Q),

In the solution presented in chapter 6, we also consider extensions L, of Q,. In particular,
we will encounter totally ramified extensions. In the language of Definition 3.27, this means®,
e=[L,:Q,) and f = 1. A uniformiser for L, is an element 7 € L, such that any other o € L,
can be written as o = 7"u, where n is an integer and w is a unit in the ring of integers of L,, see
section 2.2 of [8]. If o = m™u as above, then a normalised valuation vy, is given by vy (o) = n.
For the trivial extension Q,/Q,, we thus have that p is a uniformiser and vq, is the standard
p-adic valuation from section 4.1. The following proposition is based on proposition 12.1 from

the lecture notes by Dokchitser [8]. We will apply it in section 6.4.

SWhere we assume that the theory from chapter 3 on the extension K/Q can also be developed for extensions
of p-adic fields. This is true, see chapters 9 and 10 of [8].
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Proposition 4.9. Suppose that L,/Q, is totally ramified of degree e, that m is a uniformiser
for L, and that vy, is a normalised valuation. Then,

(i) 7 satisfies an Fisenstein polynomial of degree e over Z,.
(ii) O, = Zy[r].

Conversely, if g € Zy[z] is Eisenstein, then L, = Q,[z]/(g) is totally ramified over Q, and if
g(a) = 0 then a is a uniformiser for L, with vy, (a) = 1.

Proof. The proof of (a slight generalisation of) this proposition can be found under proposition
12.1 in [8]. m

In the next chapter we will see that for an extension L, of Q, we would like to understand the
group L)/ (L;)? Suppose L, = Q,[z]/(f) for some polynomial f € Qp[z]. Then, if f splits as
f=fi-- fm in Q,[x], where the f; are irreducible, and if L,; denotes Q,[z]/f;, we have

m

Ly /(L) = [ Lo/ (L)

=1

These groups are briefly explained in section 3 of an article by Stoll [20]. For odd p this situation
is relatively straightforward. In this case, each L), /(L,;)? is a two-dimensional F,-vector space

V. The image of a € L, in V is obtained by writing a = 7"u for some uniformiser 7 and

unit u. The first coordinate of its image in V' is determined by the parity of n, and the second
by whether u is a square in the residue field, cf. Corollary 4.6. For p = oo, it depends on
whether Ly ; is real or complex. If it is complex, then LY /(L% ,)? is trivial; if Ly is real,
then LY /(L% ;)? is a one-dimensional Fy-vector space and the image of o € L ; in it is

determined by the sign. For p = 2 it is more complicated. Suppose K is an extension of Q2.
Then, as a vector space V over Fy, K*/(K*)? has dimension d = [K : Q] + 2. We identify
V with IF4. The following algorithm by Stoll, presented in section 3 of [20], gives us the image
of « € K* in Iy under this identification. Here, 7 is a uniformiser in K, v is a normalised
valuation, ey, fi are as before, k is the residue field, B C O is a lifting of an Fy-basis for k.

Input: a€ K~
Qutput: se€V =F{, where d= [K:Q)+2

mod_squares 2(a, K) :
va := v(a); s[1] := vamod 2; i := 2;
u := /7" mod 47 (€ O/470); u := w2t
for j := 1 to eg:
// Here, u=1mod 7% !
r = (u-1)/73"mod 7 (€k);
for h := 1 to fg:
s[i] := coefficient(r, h); i := i+l;
if coefficient(r, h) # 0 then
u:=u (1 + B[h] 75°);
// Here, u=1mod 7%
if j < ek then
r:= (u-1/m% mod m (€k); T := /T (€k);
R : Z;",l coefficient(r,h) B[h] mod x2ox+1-21;
u:=u (1 +R 7)?;
else
r := (u-1)/4 mod 7 (€k);
s[i] := traceym, (r);
return s.

Figure 3: Stoll’s algorithm, taken from section 3 of [20]

24



We now give two small applications of the algorithm to explain how it works. In order to
keep things simple we consider the trivial extension K = Q2 of Qg (so Ox = Z,, 7 = 2,
ex = fx = 1). For a more involved example, see Proposition 6.8.

Corollary 4.10. The group Q5 /(Q))? is generated by the images of 2,3 and —1.

Proof. As seen in the discussion above, we can regard Q; /(Q,)? as a three-dimensional vector
space V over IFy. Therefore, it suffices to show that the images of 2,3 and —1 are linearly
independent, given the identification of V' with I3 implied by the algorithm. We first input
2 into the algorithm. Since 2 is the uniformiser in this case, the first step of the algorithm
gives s[1] = 1 and u = 1. Applying the other steps to u = 1 quickly yields s[2] = s[3] = 0,
so the image of 2 in Q5 /(Q3)? is identified with the vector (1,0,0). Now we take 3 as input.
Since 2 and 3 are coprime, s[1] = 0. Before starting the second step for u = 3, we see that
indeed v = 3 = 1 mod 227!, The second step yields s[2] = 1 and hence we redefine u as
u=3(1+2) =9 and we see indeed that u = 9 =1 mod 2%. The final step yields s[3] = 0.
Finally, for an input of —1 we also see that s[1] = 0 and s[2] = 1. However, now we redefine u
as u = —1(1 + 2) = —3. Then the final step yields s[3] = 1. Since (1,0,0),(0,1,0),(0,1,1) are
linearly independent, the desired statement follows. O

Corollary 4.11. Let a = 2"u € Qq, where u € Zs . Then, « is a square in Qs if and only if n
15 even and uw =1 mod 8.

Proof. The part concerning the parity of n is clear, cf. the proof of Corollary 4.6. It suffices
to show that u € ZJ is a square if and only if u = 1 mod 8. We apply the algorithm with
K = @Q,. Being a square is equivalent to getting (0,0,0) as output upon inputting u in the

algorithm. We have s[1] = 0, because u is a unit. From the algorithm, we further observe
that s[2] = 0 and s[3] = 0 if and only if (v — 1)/4 mod 2 = 0, which is equivalent to u = 1
mod 8. O
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5 The 2-Selmer group

In chapter 2 we have seen Mordell’s theorem, stating that the group of rational points on an
elliptic curve is a finitely generated abelian group. This is usually proved in two parts: the first
part, known as the Weak Mordell theorem, states that F(Q)/2FE(Q) is finite. The second part
involves applying the theory of heights to the generators of E(Q)/2E(Q) to show that F(Q) is
finitely generated. Many introductory texts on elliptic curve such as [13],[18] and [4], contain
the proof of Mordell’s theorem. These texts were studied by the author and were very useful
in getting an intuitive idea of how the theorem is proved. In particular, the proof of the Weak
Mordell theorem turned out be important in solving the central problem of this thesis. The
introductory texts mentioned before helped reduce the problem to a big computational one,
potentially requiring very clever substitutions, which the author was unable to carry out by
hand, see for instance the second example in chapter 15 of the book by Cassels [4]. A rather
more general perspective, as presented in Stoll’s lecture notes [21], which concerned Jacobians
of hyperelliptic curves, helped the author understand the underlying theory a bit better, which
eventually lead to the solution of the central problem of this thesis. This section will therefore
include a proof of the Weak Mordell theorem, but from a more general point of view than in
most introductory texts on elliptic curves. The theory will be developed as in [21], but sim-
plified to elliptic curves. Particularly in the first section the proofs are specifically for elliptic
curves. The proofs in the first section will mostly follow [13].

Our goal will be to embed F(Q)/2E(Q) into a finite group which we can compute, the so-called
2-Selmer group. In particular, this will prove the Weak Mordell theorem, but it also gives a
bound on the size of E(Q)/2E(Q). In some cases, it will even allow us to find F(Q)/2F(Q)
explicitly. For instance, in chapter 6 we will show that that for some elliptic curve the 2-Selmer
group is trivial, in which case it follows that E(Q)/2E(Q) is trivial as well. In order to define
this finite and computable 2-Selmer group, we first define a homomorphism ¢ from F(Q) to
some group G, and show that ¢ has kernel 2E(Q), showing that F(Q)/2E(Q) = imd. We will
then cut down the group G until we are left with a finite and computable subgroup of GG, which
contains im ¢, and that subgroup will be called the 2-Selmer group.

5.1 The map o

In this section, E : y* = f(x) will be an elliptic curve in Wierstrass form, so f is monic cubic
polynomial without repeated roots. As announced at the start of chapter 3, we will have to
consider the ring defined by A = Q[z]/(f). Let 6 be the image of x in A, so that A = Q[f]. If
f = fi--- fnis a product of monic irreducibles, then the f; are distinct because E' is an elliptic
curve. By the Chinese remainder theorem,

A= @@[w}/(ﬁ-)-

In our case, n is either 1,2 or 3 depending on whether f is irreducible, a product of a linear and
an irreducible quadratic polynomial or product of three linear polynomials over @, respectively.
We now define a map § : F(Q) — AX/(A*)% First of all, we let 6(c0) = 1 (A*)2. If
P = (&,n) € E(Q) is not a point of order 2, so  # 0, then we define §(P) = (£ — 6) (A%)%
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Finally, if P = (£,0) € E(Q) is a point of order two, then we write f(z) = (z — £)g(z), where
g is not necessarily irreducible. We have

A= Qle]/(x— &) @ Qlx]/(9) = Q@ Qlx]/(9), (3)

[

where the isomorphism Q[z]/(x — &) = @ is given by 6 — £. Since f has no double roots,
(f'(€),(x — &) mod g) € Q@ Qx]/(g9) is a unit. It corresponds to some h(f) € A. We
then define 6(P) = h(f) (A*)?. Sometimes we denote an element of A*/(A*)? simply by a
representative in A*. In these cases it is understood that we mean the image of the element
under the canonical homomorphism to A* /(A*)%.

Lemma 5.1. The map ¢ : E(Q) — A*/(A*)? is a homomorphism.

Proof. We have to show that for P,Q € E(Q), it holds that (P + Q) = J(P)o(Q). For any
P = (&,m) € E(Q), the map ¢ defined above is independent of 7, so 6(P) = §(—P). Since we
are working modulo squares, §(P + Q) = 6(P)J(Q) is equivalent to

0(P+@Q)(=P)(-Q) = 6(P+Q)3(P)(Q) = (P + Q)* =1

in A*/(A*)2. That is, to show that § is a homomorphism it suffices to show that P+Q+ R = oo
in F(Q) implies

6(P)6(Q)o(R) =1 (4)
in AX/(A*)2. By the geometric group law on elliptic curves, P+Q+ R = oo means that P, Q, R
are colinear. Let P = (&1, m), Q = (&, 1m2) and R = (&3,n3) be distinct points on E. If & = &,
then these points are P, —P and oo and the result follows from §(P) = 6(—P). Now, suppose
that & # & and that P, @, R do not have order 2. Then, P,Q, R lie on a line y = lx +m as
well as on y* = f(x). Therefore,

f@) = (z+m)’ = (z - &)(z - &)( — &) (5)

and hence
S(P)S(Q)I(R) = (& — 0) (& — 0) (& — 0) = (10 +m)* — f(0) =1 (6)

in AX/(A*)?, as desired. Now suppose that exactly one of the points has order 2. Without loss
of generality assume that P = (£1,0). Asin (3), we write A = Q @ Q[z]/(g) and we check 4 in
each component separately. It holds in the second component, because g|f and hence the result
follows as in (6). As for the first component, it follows from (5) that f/(&) = (& — &) (& — &3).
Therefore, the first component of §(P)d(Q)d(R) reads

F&)& - &)(& — &) = (&)

as required. Finally, suppose that P = (£,0), @ = (£,0) and R = (&;,0). Similar to the
previous, we find that, under the canonical identification A = Q3 the three components of

0(P)o(Q)O(R) are f'(&1)%, f'(&2)* and f'(&5)*. O
Lemma 5.2. The homomorphism § : E(Q) — A*/(A*)? has kernel 2E(Q).
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Proof. The inclusion 2E(Q) C kerd is easy, since §(2P) = §(P)? = 1 in A*/(A*)% We will
prove kerd C 2E(Q). We have oo € kerd and oo = 200 € 2FE(Q), so we only have to consider
points in the kernel different from oo. Let P = (£, n) € ker ¢ be different from co. Then, £ — 0
is a square in A = Q[6], so

£ —0=(c0* + 10+ c)? (7)

for some ¢; € Q. Note that E is defined in Weierstrass form (y? = z® + ax + b =: f(x)), so we
can write
d19 + do = (6292 + 010 + Co)(—Cge + Cl) (8)

for some dy,dy € Q. Since 1,0,6% are linearly independent, we see from (7) that ¢y # 0.
Therefore, by squaring (8) and substituting (7), we get

(dO +d)? = (£ —0)(e—0)?

for some d,d’, e € Q. Therefore, (dr + d')> — (£ — x)(e — x)? is a multiple of f(z). Since both
polynomials are monic, we even have

f(@) = (dv+d)* = (§ — z)(e — )",

This means that the line y = dx + d’ intersects E at either (£, £n) and it intersects Q) = (e, €’)
twice, where €/ = £(de + d'). By the geometric group law on E, we have

+P +2Q = oo,

which implies that P € 2FE(Q). O

5.2 The group H

As announced in the introduction of this chapter, our course of action is to cut down the group
AX/(AX)? until we are left with a finite and computable subgroup which contains the image
of 9. In this section we perform the first step in this process: we show that the image of
0 is contained in a certain group H which, roughly speaking, is already much smaller than
A*/(AX)% Tt is the kernel of the norm map defined in section 3.1. Note that Definition 3.1
still makes sense for a product of field extensions over Q (or over another field k). The proof
of the following lemma is a specialised version of the proof of lemma 5.6 in [21] and uses some
insight from section 1.0 in [2].

Lemma 5.3. Let E: y* =23 +ax+b=: f(x) be an elliptic curve in Weierstrass form over a
field k of characteristic zero. Define A = k[x]/(f) and § : E(k) — A*/(A*)? as before.” Then,
the image of 6 is contained in the kernel of N : AX/(A*)? — k> /(k*)2.

Proof. We will show that for any P € E(Q), the norm of §(P) is a square in k. For P = oo
this is clear. Now assume that P = (&,7) is not of order 2. We have (( —0) -1 = £ — 0,
(E—0)-0=¢60—0%and (£ —0) 02 =¢E07—0°=b+al + £0?, so

"Technically, we should justify why, over any field k, the map ¢ as defined earlier is still a homomorphism.
This is true, and in the proofs from the previous section we may replace Q with any field k of characteristic
zero and they still work. Since we will later set £ = Q and k& = Q,, this is enough for us.
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£ 0 b
NO(P) = N(E—0) =det -1 € a = (€)= )

0 —1 ¢
If P =(£,0) is of order 2, then we write f(z) = (x — §)g(z) and identify A = Q ® Q[z]/(g) in
the natural way, cf. (3). We defined 6(P) to be the image in A*/(A*)? of the element of A
corresponding to (f'(§), (£ — x) mod g). The norm of £ — 0 from Qz]/(g) is g(§), as in (9).

Since f'(£) = g(£), we see that N(6(P)) = f'(§)g(&) = 9(&)*. 0

In fact, the reason we defined ¢ this way for points of order 2 is that we want Lemma 5.3 to
hold. See for example section 1.0 of the paper by Cassels [2]. We define the group H to be the
kernel of N : A*/(A*)? — Q*/(Q*)%.

5.3 The group H’

From here on, we will restrict to the case where F is an elliptic curve over @ defined by an
irreducible cubic polynomial f, such that A = Q[z]/(f) is a number field with class number 1.
We do this because we will deal with such a case in chapter 6. However, the following results
also hold more generally. If f splits, then A is a product of number fields and we have to do
the following argument in each of the components separately. If the number field does not
have class number 1, the argument becomes a bit more involved, but can be fixed due to the
finiteness of the class number. Now to the argument. Recall that we were in the process of
cutting down A*/(A*)? to a finite and computable group containing the image of §. In the
previous section, we did the first step in this process by introducing the group H. We can do
even better: define the subgroup U of A*/(A*)? by

U=1(e1,. sy qn),

where €1, ..., &, generate the unit group of O 4, cf. Theorem 3.30, and ¢, ..., g, are the gener-
ators of the prime ideals pq, ..., p, that lie above the prime numbers dividing the discriminant.
Here we use the assumption that A has class number 1. If it did not, we would also need
representatives of generators of the class group in the definition of U.

Proposition 5.4. The image of § is contained in U.

In order to prove this proposition we will specialise the argument in section 19.4 of [13] to our
specific case. For P = (a/f,n) € E(Q), where ged(a, 5) = 1, we define a principal ideal (yp)
as follows. Write A = Qlf] as before, so that f(z) = (x — 0)g(z) for some quadratic polynomial
g. Then, a — 30, g(a/B)B* € O4. Since we have assumed that A has class number 1, the ideal
(a — B6,g(a/B)B?) can be generated by one element, which we call vp.

Lemma 5.5. An ideal of the form ~vp lies above a prime dividing the discriminant.

Proof. The quadratic polynomial g(x)—g(6) has 6 as aroot, so g(z)—g(0) = (z—0)t(x) for some
linear polynomial ¢ € Z[f][z]. Substituting x = a/f gives g(a/B) — g(0) = (a/5 — 0)t(a/B);

hence, ¢(0)5% = g(a/B)3? — (a — BO)t(a/B)B. Therefore, g(0)5% € (vp). Similarly, see page
lemma 1 on page 328 of [13] for details, g(f)a® € (yp). We conclude that (yp) divides the
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ideal (g(0)a?, g(0)3?) and since a, B are coprime, (yp) divides the ideal (g(6)). Therefore,
modulo yp, 6 is a double root of f, meaning that the ideal (vp) lies above a prime dividing the
discriminant. O

It is easy to see that 8 must be a square if P € F(Q), see for instance page 328 in [13]. On the
same page, it is also shown that this implies that the ideal (aw — ) = (yp)C? for some ideal
C. We use this in our proof that 6(P) € U.

Proof. Since the class number of A is assumed to be 1, there exist o, 7 € O 4 such that cC' = (1),
where C'is as in the lemma above. Then, (o(a — 360)) = (vp)o*C? = (yp7?). We find that the
element o?(a — 360) = wypt? for some unit u. As mentioned before, the integer 3 is a square,
so by the lemma

o 2

5(P) = (5 - e) (A = T (A% = (A% €U

as required. N

If we recall that we work modulo squares, it is clear that the group U is finite. This already
implies the Weak Mordell theorem, because Lemma 5.2 and the first isomorphism theorem from
group theory imply that

E(Q)/2E(Q) = 46(EQ)) C U.

Hence E(Q)/2E(Q) is finite.

By Proposition 5.4 above, we can cut down H further by defining the group H' = HNU, which
still contains the image of §. In the next section, we will cut down H’ to the so-called 2-Selmer
group. The main advantages of this group are that it gives a rather tight upper bound on the
size of E(Q)/2E(Q) (which is apparent from the amount of cutting down we will have done)
and there is a finite procedure which guarantees that we can compute the 2-Selmer group.

5.4 The group Sel?(E)

Let £ : y*> = f(z) be an elliptic curve over Q. For a prime p we define A, = Q,[z]/(f) and H,
as the corresponding kernel of N @ AX/(AX)* — Q) /(Qx)?. This also includes p = oo, where
we have Q» = R. The inclusion Q — @, yields a homomorphism p, : H — H,. Let J, be the
map E(Q,) — H,, that is, the map § defined for the field k = Q,. Then, the following diagram
commutes.

EQ) —— H

[ b

B(Q,) —2 H,

We can now cut down the group H to a finite group which we can always compute, called the
2-Selmer group.
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Definition 5.6. With notations as before, we define the 2-Selmer group of E to be
Sel?(E) = {a € H'|VYp: py(a) €im,}.

Proposition 5.7. The image of § is contained in the 2-Selmer group and the 2-Selmer group
s finite.

Proof. From the commutativity of the diagram above it follows that for P € E(Q), we have
po(6(P)) = 6,(P) € imd,. Since we already know that 6(P) € H', we find §(P) € Sel®(E)'.
The finiteness of Sel® (E)’ is clear from the finiteness of H'. O

In the remainder of this section, we will state a few facts without proof, because their proofs
require rather advanced theory which the author was not able to fully grasp within the given
time for this thesis. They are (at least partly) justified in chapter 5 of [21]. First of all, the
2-Selmer group is usually defined as

Sel?(E) = {a € H|Yp: py(a) € imd,}.

However, it turns out that Sel®(E) € H’ and hence the two definitions coincide. From now
on, we will simply write Sel®(E) for the 2-Selmer group. The main advantage of Sel®(E)
as compared to 6(E(Q)) is that it is always possible to compute it. Namely, for the primes p
that do not divide the discriminant, « € H' already implies that p,(a) € imd,; hence, there
are only finitely many primes p (2, oo and the p that do divide the discriminant) for which we
must find the o € H' that satisfy p,(o) € im§,. The following formula, proved in chapter 5 of
[21], allows us to do this.

g iftp=2,
dimp, 6,(E(Qy)) = dimp, 6,(E(Qp))[2] + { —g if p = oo, (10)
0 otherwise.

Namely, we can compute dimp, §,(E(Q,))[2] from the factorisation of f, cf. lemma 5.2 in [21],
and then we can compute images of randomly chosen points in E(Q) until they generate a
subspace of the right dimension. This yields the image of §,. We then find the image under p,
of H' and see how it intersects the image of ¢, using linear algebra. Doing this for p = 2, 0o and
all primes p dividing the discriminant then yields the 2-Selmer group. In these computations,
the kernel of p, will also play a role, because clearly ker p, C p, '(im 4,). The computation of
the 2-Selmer group is illustrated in the next section.

5.5 Examples

In this section we will see examples of how the theory can be applied. First, we will do a simple
example of an elliptic curve whose defining polynomial splits completely over Q. Afterwards,
we will turn our attention to a maybe even more intriguing geometric problem than the one we
focus on in this thesis.

Example 5.8. Consider the elliptic curve E defined by
E: y=z(-1)(z+3) = f(x).

31



We will determine the group F(Q) using the theory we have introduced so far. The primes
dividing the discriminant (which is 144) are 2 and 3. Since the defining polynomial splits
completely over QQ, we have

A=Qlz]/(x) ® Qlz]/(x — 1) & Qz]/(x +3) = Q°.
We first treat the 2-torsion points. By the definition of §, we have

5(0,0) = (f(0),0— 1,0+ 3) = (=3, —1,3)
§(1,0) = (1—0, f/(1),1+3) = (1,4,4) = (1,1,1)
5(=3,0) = (=3—0,-3—1, f/(—3)) = (=3, —4,12) = (-3, -1,3)

in AX/(A*)2. Therefore, §(E(Q)[2]) in H' is generated by (—3,—1,3). By (10), the image of
doo has dimension 1; we see that it is generated by (—1, —1,1). Using +1, £3 as representatives
of QF /(QX)?, the image of F(Q)[2] under 3 is generated by (—3, —1,3). From (10), we see that
im 3 has dimension 2, and hence we need another generator. Since f(3) = 36, we have that
P = (3,6) € E(Q). Then, §(P) = (3,2,6) and hence d3(P) = p3(0(P)) = (3, —1,—3). It follows
that im § is mapped onto im d3 under p3. Therefore, any element of Sel(Q)(E) must be of the
form af, where a € ((—=3,—1,3),(3,2,6)) and 8 € ker ps. Moreover, such an a8 € Sel® (E) if
and only if p,(8) € imd, for p =2 and p = 0.

We show that Sel(Q)(E) N ker p3 is trivial. To that end, suppose § € Sel(Q)(E) N ker p3. Then,
B € H' and hence it can be represented by squarefree integers only divisible by the primes
2 and 3, that is, 8 can be represented by a triple consisting of elements of {1, £2,+3, +6}.
The fact that 5 € ker p3 then implies that each of the triple is either 1 or —2. The fact that
Poo(f) € imdy implies that the only possibilities are (1,1,1) and (=2, —2,1). We show that
the latter is not possible by showing that its image under ps is not in the image of do. By (10),
im d5 has dimension 3 and by Stoll’s algorithm, we can take +1, 42, 3, £6 as representatives
of Q) /(Q5)? (together they cover all outputs in I3). Therefore, two of the generators of im d,
are given by

(—=3,—1,3) and (3,2,6).
By trying a bit, we find (—1,2) € E(Q). Unfortunately, its image under J, does not give a
point independent from the ones above. By Corollary 4.11, however, we find that f(11) =
11-10-14 = 1540 = (8- 48 + 1) - 22 is a square in Q. Suppose 1 € Q, satisfies n? = 1540, then
(11,n) € E(Q2). By applying Stolls algorithm, we find that

8,(11,m) = (11,10, 14) = (3, —6, —2)

in AS/(A5)?. This one is independent from the subspace we found before. Therefore, im dy is
generated by
(=3,-1,3), (3,2,6) and (3, —6, —2).
We conclude that po(—2,—2,1) = (=2, —2,1) ¢ im J5 and hence, indeed, that Sel(Q)(E) Nker p3
is trivial. Therefore,
Sel®(E) = ((=3,-1,3),(3,2,6))

is generated by 0(E(Q)[2]) and 6(P). By the geometric group law, 2P = (1,0) and hence
4P = oo and hence P is a torsion point, so F(Q) has rank zero. We find #E(F5) = 8 by
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checking the 25 options separately. It follows from Theorem 4.8 that E(Q) is generated, for
instance, by the element P of order 4 and the element (—3,0) of order 2. So

E(Q)=7/27 x 7.]4Z,
and using the geometric group law we can find all the points:
E(Q) = {0, (—3,0),(—1,£2),(0,0),(1,0),(3,£6)}.

Example 5.9. In this example we will consider another problem of the type described in the
introduction of this thesis. We ask the question: Up to similarity, how many pairs of a rational
right triangle and a rational isosceles triangle exist such that they have a common perimeter
and a common area? Remarkably, the answer is ‘one’. This was shown earlier this year (2019)
by the Japanese mathematicians Hirakawa and Matsumura in their paper [12]. The result even
got some media attention here in the Netherlands: Dutch matematics enthusiast Alex van den
Brandhof wrote an article about it in the national newspaper NRC Handelsblad [1]. In the
honest opinion of the author, this result by Hirakawa and Matsumura is more interesting and
beautiful than the one by Zhang and Peng which we consider in this thesis, and for this reason
we devote some time to it here. The reason that the ‘triangle-triangle problem’ is not the
central problem of this thesis is that the computations that would be necessary to get a fully
explicit solution (as we have set out to do for the triangle-rhombus problem) are much more
involved and require a bit more general theory. In the remainder of this section, we will look
at how the triangle-triangle problem is solved, without diving into the details.

Qi

] o2

Figure 4: A unique pair of triangles, taken from [1]

In Figure 4 above, we see that there exist a rational right triangle and a rational isoscles triangle
with the same are and the same perimeter. Let us see why this is the only such pair, up to
similarity of course. Following a method similar to the one in the introduction of this thesis,
we first label the sides of the shapes in a clever way and find out that any such triangle-triangle
pair would yield rational numbers x, k satisfying

20k + (—=32% — 22° + 62 — 4)k +2° = 0.

Again very similar to the method from the introduction, we observe that this can be seen as
a quadratic equation in k, and if it is to have a rational solution, its discriminant should be
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the square of some rational number y. We see that pair of triangles satisfying the discription
induces a rational point on the curve

C: o= (2" =2)(a" +122° — 302% + 242 — 8) =: f(x).

The polynomial f splits into a quadratic and quartic polynomial; they are irreducible over Q
and have no repeated roots over C, so C defines a hyperelliptic curve of genus 2. This was
also the case in the introduction. However, as we will see in the next chapter, we will be able
to make a great simplification (to an elliptic curve) in that case, but unfortunately that is not
possible in the present example. The strategy to solving this problem is similar: we find all the
points on C' and show that only one of them can possibly come from a triangle-triangle pair.
This can be done using the following powerful result, which is due to Robert Coleman. The
proof can be found in chapter 6 of [21].

Theorem 5.10. Let C' be a hyperelliptic curve of genus g over Q with Jacobian J. Assume
that the rank r of the Mordell-Weil group J(Q) is strictly less than g. Let p be a prime of good
reduction for C' such that p > 2g. Then,

#C(Q) < #C(F)) +29 — 2.

We can easily check that C' has good reduction at p = 5 and that C(F,) = 8. If we can show
that the rank r of J(Q) is at most 1, then the bound above tells us that C'(Q) < 10. Now
another remarkable feature of this example comes in: we can find 10 rational points on C'! They
are given by

{0041, (0, £4), (1,£1), (2, £8), (12, £868)}.

Therefore, solving the problem eventually boils down to showing that the rank of J(Q) is at
most 1. Hirakawa and Matsumura use Magma for this, see [12]. The way to (in principle)
to it explicitly is to use the theory developed in this chapter to compute the 2-Selmer group,
which is defined similarly for Jacobians of hyperelliptic curves. The computations, however,
become rather involved for two main reasons. First, the ring A is given by the product of a
(real) quadratic- and a quartic number field. The difficulty comes from the quartic number
field. Luckily, you could say, it has class number 1, which simplifies the computations, but the
unit group of its ring of integers has rank 2. For this reason, we cannot use a trick which we
will apply in the proof of Lemma 6.9. Moreover, by Formula (10), the dimension of the image
of 85, which we will need in order to calculate Sel®(J), is 4. Hence we need to find genuine
2-adic points on C to fill up this image, and they are rather difficult to manipulate. These
computations are possible, in principle, but the case treated in the next chapter still illustrates
a lot of the theory discussed and is more insightful as the computations are more manageable.
Hopefully, the following chapter, which contains an explicit solution to the triangle-rhombus
problem, will provide the reader with a lot of joy and entertainment, as it has done for the
author.
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6 Application to the triangle-rhombus problem

In this chapter we will use the theory from the previous chapters to solve the geometric prob-
lem from the introduction. That is, we will show that it is not possible for a rational isosceles
triangle and a #-rational rhombus to have the same area and the same perimeter. As opposed
to the original paper [26], all computations® have been done by hand, yielding a complete “pen
and paper”-solution to the problem.

As shown in the introduction of this thesis, a triangle-rhombus pair would give rise to a rational
point on the hyperelliptic curve of genus 2 given by

C: =242+ 822 — 4.

The goal of this chapter is to show that there are only finitely many points on this curve, and
that none of them can possibly correspond to a triangle-rhombus pair. We will do this by
breaking the problem up into pieces. In each subsection, we deal with one such piece, and in
the end we put it all together to solve the problem.

6.1 The curve E : y* = 23 + 82% + 16z + 16 =: f(x)

We start with a trivial observation, which can be found in [16], for instance. If we have
two curves C, D over a field k& and a non-constant morphism, see [16], ¢ : C' — D, then
#(C(k)) € D(k). If we determine D(k) to be finite, then we can find C(k). In our case, the
curve C over QQ has a particular form, and the observant reader may have already noticed that
the morphism defined by (z,y) + (2?,y) maps C to an the elliptic curve defined by

y? = a® — 42 + 8z — 4.

This looks promising, for in chapter 2 we have seen that it is easier to deal with elliptic
curves than with hyperelliptic curves. Unfortunately, this elliptic curve has rank 1 and hence
its group of rational points is infinite, which can be seen by using the command ‘Rank(F)’
in Magma. There is, however, a different morphism which is more fruitful: ¢ defined by
d(x,y) = (—4/z% 4y/2*) maps C to the elliptic curve

E: oy =2°4+82" + 16z + 16 =: f(x).

We will show that E(Q) is finite, from which it will follow that C'(Q) is finite as well.

8 All computations that directly lead to the solution, that is. With the help of his supervisor, a computer
was used to guide the author along the way, and in particular to avoid dead ends, see for instance section 6.1.
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6.2 The group T = E(Q)tors

By the Mordell-Weil Theorem, E(Q) is finitely generated and hence E(Q) = Z" x T, where
r € Zso and T = E(Q)tors is the finite torsion subgroup. In this section, we will determine 7.
First of all, the discriminant of f is given by —2816 = —28 - 11, so E has good reduction at
p = 3, as seen in section 4.3.

Lemma 6.1. The group T is isomorphic to Z./5Z..

Proof. Since E has good reduction at 3, we get from Theorem 4.8 that the reduction map
E(Q) — E(IF3) restricts to an injective group homomorphism on 7. That is,

T — E(Fs).

By simply considering the 9 values for (z,y) over I3 (3 for z, 3 for y), and adding the point at
infinity, we find that
E(]F?)) - {007 (07 1)7 (Oa 2)7 (27 1)7 (27 2)}7

and hence #7T'|5. We can show that 7" is not trivial by considering P = (—4,4) € E(Q). Namely,
by the geometric group law, 2P = (0, —4), 3P = (0,4), 4P = (—4,—4) and 5P = o0,s0 P € T.
We conclude that #7 = 5 and since there is only one group of order 5, T' = Z/5Z. O

Figure 5: The curve E : * = 23 + 822 + 162 + 16

By Lemma 3.1, E(Q) = Z" x Z/5Z for some r € Z>q. Our goal is to show that r = 0, for then
indeed E(Q) would be finite. Since 2 and 5 are coprime, E(Q)/2E(Q) = (Z/27Z)". Therefore,
if we can show that E(Q)/2E(Q) has only one element, then » = 0 and we are done. Before we
continue our main line of reasoning, however, we take some time to study the field Q[z]/(f) in
which our computations will take place.
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6.3 The field 4 = Q[z]/(f)

As an important intermezzo, we use some algebraic number theory from chapter 3 to analyse
A = Q[z]/(f). Since f is irreducible over @, A is a cubic number field. If # is the image of «
in A, we may write the field as A = Q[f]. In this section, we will determine its ring of integers,
its class number and the prime ideals above 2 and 11 in this ring of integers. Finally, we will
show that 1 + a is a unit which is not a square, since we will need such an element later.

Proposition 6.2. The ring of integers of A is Z|a], where a = 0/2.

Proof. Let R be the ring of integers of A. First of all, we see that a € R, because it satisfies
the monic polynomial with integer coefficients g given by

g(x) = 2® +42* + 4z + 2.

This follows from g(a) = ¢g(0/2) = f(6)/8 = 0. Incidentally, g is the minimal polynomial of a,
because it is an Eisenstein polynomial and hence irreducible.

We will show that there are no singular prime ideals in Z[a] using the Kummer-Dedekind
Theorem 3.26 (for readability purposes, it would be useful to take a look at this theorem while
reading this proof). To that end, take g to be the monic irreducible polynomial in Theorem
3.26 with a as a zero and suppose for contradiction that p is singular. Then, p lies above a
rational prime p for which g = Ei hy modulo p for some polynomials hy, hy € Z[z]. Therefore,
p divides the discriminant of g, which is —44 = —22 . 11.

Suppose p = 2. We can take hy(x) = ha(z) = z; the remainder of g upon division by x is 2,
which is not divisible by 22 = 4, contradicting the singularity of p.

Suppose p = 11. We can take hy(z) = z + 8 and hy(z) = x + 10. Note that 23 + 42 + 4z +2 =
(22 — 4 + 36) — 286, so the remainder of g upon division by z + 8 is —286 = —2 - 11 - 13,
which is not divisible by 112 = 121, again contradicting the singularity of p. Therefore, we may
conclude that there are no singular prime ideals in Z[a]. Since there are no singular primes in
Z[a], it follows that R = Z[a]. O

Corollary 6.3. A has class number 1.

Proof. By Proposition 6.2, the ring of integers of A is Z[a]. We show that Z|a] is a principal
ideal domain. By theorem 4.10 in [19], the discrimant of A is Ay = A(g) = —44. Since f has
only one real root, A has one real embedding and hence 2 complex embeddings. Therefore, by
Theorem 3.17 the Minkowski bound is

4 3!
MA:\/44—§<2

™

and hence Z[a] is a principal ideal domain. O
Proposition 6.4. The prime ideal above 2 is (a).

Proof. Again we use the Kummer-Dedekind Theorem with the monic irreducible polynomial g
with zero a. Reducing modulo p = 2, the polynomial g factors as § = Z°> and hence the ideal
p = 2Z]a] + aZ]a] lies above 2. By Proposition 3.2, p is not singular, so 2Z[a] = p3. Finally,
since 2 = a(—a® — 4a — 4), we have that p = aZ[a], proving the result. O
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Proposition 6.5. The prime ideals above 11 are (2a*> + Ta +5) and (a — 1).

Proof. We use the Kummer-Dedekind Theorem once more with the polynomial g with a as a
zero. Reducing modulo p = 11, the polynomial g factors as § = Ef ha, where hy(z) = z + 8
and hy(z) = 2 — 1. By Theorem 3.26 the ideals p; = 11Z[a] + (a + 8)Z[a] and py = 11Z]a] +
(a —1)Zla] lie above 11 and by Proposition 6.2 they are not singular. Therefore 11Z[a] = p3p,.
Since 11 = (a — 1)(—a® — 5a — 9), we have that ps = (a — 1)Z[a]. As for p;, note that
20> +Ta+5=7-11+ (2a — 9)(a + 8), so (2a*> + 7a + 5)Z[a] C p;. Moreover, we have that
11 = (—a? — Ta — 3)(2a* + 7a + 5) and that a + 8 = (—a® — 5a — 2)(2a® + Ta + 5). This yields
p1 = (24> + Ta + 5)Z][a], as desired. O

Proposition 6.6. 1+ a is a unit which is not a square.

In the proof of this result, we will use that an element of Ok with norm equal to +1 is a unit. To
see this, let v € O and suppose that Nk /q(a) = £1. Then, the characteristic polynomial of o
is 2" +c, 12"+ -+ eyr 1, for some ¢; € Z. Therefore, F(a" 1 +¢, 10" 2+ +c;) € Ok
is the inverse of «a, so a € O.

Proof. Note that 1,6, 6? is a basis for A/Q. We have (1+a)-1=1+16, (1+a) -0 =0+ 36?

and (1+a)0? = 6%+ % = —8 — 80 — 30%. Recall that the norm of an element is the determinant
of the multiplication map and so we compute

1 0 -8
N(l+a)=det|1/2 1 —-8|=-1
0 1/2 -3
Therefore, 1 4 a is a unit. It is not a square, because the norm map is multiplicative. O
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6.4 The group A;/(A;)*

We continue our journey to show that £(Q)/2E(Q) is trivial. In section 5.3, we have seen that
it suffices to show that Sel®(E) = {a € H|Vp : p,(a) € imd,} is trivial. It is a known result,
see for instance Corollary 4.7 in [20], that we only have to look at the primes 2, oo and the p
for which p? divides the discriminant. Since the discriminant in our case is —2% - 11, this leaves
us only with 2 and oco. However, since the theory required to prove this result is a bit beyond
the author’s level at this stage, and since we would like to leave as few black boxes as possible,
we will not make explicit use of this fact. We can, however, simply start working with p = 2
and see whether this gives us enough information to show that Sel®” (E) has but one element.
Since we have to work in H, for this, and since H, itself is a subgroup of A /(A5)?, we need
to study the group A /(A5)? more closely. In section 4.4, we have seen that A5 /(A))? can be
identified with an Fy-vector space of dimension [Ay : Q2] + 2 = 5. We will find, using Stoll’s
algorithm, the representatives of A5 /(AJ)? that correspond to the five standard basis vectors
under this identification (in fact, any five independent vectors would do). These representatives
generate A /(AX)? and they will help us to compute Sel®(E) in the next section. First, we
need to know the following about A, in order to apply Stoll’s algorithm.

Lemma 6.7. A uniformiser for As is given by a, the ring of integers of Ay is Zis[a] and the
residue field is IFs.

Proof. This follows from Proposition 4.9 and the fact that the polynomial g is Eisenstein. [
Proposition 6.8. The images of a,14+a, —1,1+42a, —3 € A in A /(AF)? generate AY J(AS)?.

Proof. As announced, we use Stoll’s algorithm to compute the representation in 5 of the
images of the proposed elements. In the algorithm, we take K = A, with uniformiser 7 = «a
and ring of integers O = Zs[a]. The residue field is k£ = Iy and hence we can take B = {1}.

Applying Stoll’s algorithm to a yields the vector (1,0,0,0,0). Inspired by the fact that 2,
—1 and 3 generate Q5 /(Q5)?, see Corollary 4.10, we apply the algorithm to —1 and 3. This
yields new vectors (0,0,1,0,0) and (0,0,1,0,1). For aesthetic purposes, we use —3 instead
of 3, because —3 gives (0,0,1,0,0) + (0,0,1,0,1) = (0,0,0,0,1). As seen in Proposition 6.6,
1 + a is a unit, so v(1 +a) = 0. Carrying out the rest of the algorithm for 1 + a yields
another new vector: (0,1,0,0,0). This leaves us with the task of finding an element that gives
a nonzero fourth component after applying the algorithm. After trying many different ones, it
turns out that 1+ 2a works. It is a unit, for if it would have positive valuation, then so would
(1 +2a) —a = 1+ a, which we know is not the case. Carrying out the rest of the steps is
straightforward and yields (0,0,0,1,0). In summary, the group A5 /(A5)? is generated by the
images of the proposed elements. O
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It may seem that finding these generators by hand is a rather trivial and unnecessary exercise.
Recall, however, that the goal of this project is to have a complete “pen and paper”-solution and
computing the generators as above, while taking some effort and many tedious computations,
turns out to be absolutely key to the solution. Namely, we now have the following identification
of AS/(A5)?* with F3.
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Table 1: Identification of Ay /(Ay)? with IF5

Showing that two subgroups of AS/(A5)? intersect trivially hence amounts to finding their
corresponding subspaces in 5 and showing that they are linearly independent.

6.5 The group Sel?(E)

In this section we will use what we have done so far to show that the 2-Selmer group is trivial.
It will read a bit like a detective story: we start with a rather long list of suspects that can
potentially be in the 2-Selmer group. By making several deductions, we keep reducing this list
until only one element is left.

Lemma 6.9. We have the following inclusion:
Sel?(E) C (=1,1+4 a,a,2a* + Ta+ 5,1 — a).

Proof. The proof of Theorem 5.7 tells us that Sel(2)(E) is contained in the subgroup generated
by the units and the primes above the rational primes dividing the discriminant. It follows
from Theorem 3.30 that the group of units has rank 1 and the presence of a real root ensures
that that the torsion part of the unit group is simply {£1}. By Proposition 6.6, 1+ a is a unit
which is not a square, so if n generates the free part of the unit group, then 1 4+ a must be an
odd power of n. Modulo squares, then, we can take 1 + a as the generator for the free part
of the unit group®. By applying Propositions 6.4 and 6.5, we find that the suggested inclusion
holds. O]

Since the 2-Selmer group consists of elements of H which are in the kernel of the norm map,
we can get more information by considering the norms.

9In fact, 1 + a is a generator of the free part of the unit group of the ring of integers of A, but this takes
some effort to show and as mentioned we do not need it.
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Lemma 6.10. We have the following inclusion:
Sel?(E) € (=1 — a,3a* 4 10a + 9).

Proof. As in the proof of Proposition 6.6, we can compute

For a product of these elements to be in H, the norm needs to be a square. Since we are working
modulo squares, this leaves —1-(1+a) = —1—a and (2¢*+7a+5)(1—a) = 3a*+10a+9. O

We can get more information on the 2-Selmer group by simply using the following easy fact:
Sel®(F) = {a € H|Vp: py(a) €imd,} C {a € H|pa(a) € imd,}.
Lemma 6.11. We have the following inclusion:
Sel?(E) C (3a® 4 10a + 9).
Proof. The previous Lemma 6.10 implies that any o € Sel(2)(E) can be represented as
a=(—1—a)*(3a®>+ 10a + 9)%,

where ¢; = 0, 1. Applying Stoll’s algorithm and the identification displayed in Table 1, we find
that pa(—1—a) = (0,1,1,0,0) and ps(3a® + 10a + 9) = (0,0,0, 1,0), so

p2(a) =¢1(0,1,1,0,0) 4+ £2(0,0,0,1,0).

A necessary condition for « to be in the 2-Selmer group is that ps(a) € imdy. In order
to compute the image of J, we use formula (10) from section 5.4. Since there is no 2-adic 2-
torsion, the dimension of the image of d, as an IFo-vector space is 1. We can compute this image
in Ay /(A5)? under our usual identification by simply exhibiting a point in E(Q,) that has a
nontrivial image under ds. Note that f(1) = 41. By Corollary 4.11, 41 is a square in Q. Let
n € Qg be such that n? = 41. Then, (1,7) € E(Q2) and d2(1,1) = (1-0) (AS)* = (1—2a) (A5)>
Applying Stoll’s algorithm shows that

imdy = ((0,0,0,1,0)).
Therefore, £ = 0 and the assertion follows. n

At this point we have pretty much exhausted the information coming from the prime p = 2. If
we want to bound the 2-Selmer group even further, we will have to look at other primes as well.
It follows from formula (10) that the image of 0, is trivial, so considering the infinite prime
will not give us any additional information. For the last step we will hence consider p = 11.
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Proposition 6.12. The group Sel®(E) is trivial.

Proof. Using Lemma 6.11 we only have to show that the coset represented by 3a® + 10a + 9 is
not in the 2-Selmer group. For this, we consider the prime p = 11. Note that f(3) = 163 € ZJ
is a square in Qq1, because 163 =9 mod 11 is a square in IFyy, cf. Corollary 4.6. If n € Qq; is
such that n? = 163, then (3,7) € E(Qq1). Its image under d;; will turn out to be nontrivial and
therefore, by formula (10), generates im d;;. In order to show that 3a® + 10a + 9 ¢ Sel®(E), it
suffices to show that py1(3a® + 10a +9) ¢ imdy;. We will do this by showing that §1,(3,7) =
(3 — 2a) (A}})? is linearly independent from (3a® 4+ 10a + 9) (A47})?, under some identification
with an Fy-vector space. In order to get such an identification, we note that, by the proof of
Proposition 6.5,
A AR 2 K /(K0 © Ko/ (K )°

for some fields K7 ;, where K311 = Q;; and Ky, 5 is a quadratic extension of (Q;;. By the p-adic
version of Theorem 3.29, the extension K17 2/Q1; is totally ramified. Let ¢; denote the natural
maps from Ay; to Kq1;. Then, a uniformiser for Ky, o is given by mp = ©2(2a% + Ta +5), which
follows from the isomorphism asserted in proposition 4.3 from [15]. By section 3 of Stoll’s paper
20], K7$ 5/ (K[ 5)? is a two-dimensional Fj-vector space V, and the image of v € K7{, in V is
found by writing a = 7 u, where u is a unit. The first coordinate in V' is determined by the
parity of n, and the second by whether or not the image of u in the residue field is a square. Since
Ki12/Q11 is totally ramified, the residue field is simply F;;. We will show that the images in V/
of ©9(3 —2a) and @o(3a® + 10a + 9) are linearly independent, proving the desired result. First,
note that that 3a? +10a +9 = (2a*+ 7a+5)(1 — a) and hence ps(3a®+ 10a+9) = mp2(1 —a),
so (using the proof of Proposition 6.5) vy, (p2(3a? 4+ 10a+9)) = 1. Thus the first component of
the image of p3(3a®+10a+9) in V is 1. On the other hand, we claim that v, (p2(3 —2a)) = 0.
To see this, suppose for contradiction that vy, (2(3 —2a)) # 0. Then, since 3 — 2a € Ok, ,, it
follows that v, (v2(3 — 2a)) > 0. However, this cannot be, because then the equality

9=(2a>+7a+5)— 11+ (3 —2a)(5+ a)

implies that v,,(9) > 0, which is not true since v11(9) = 0. So for, we have shown that the
images in V' of ¢3(3 — 2a) and ¢3(3a® 4+ 10a + 9) differ in the first coordinate. In order to
establish linear independence, it therefore suffices to show that (,(3 — 2a) is not a square. We
have shown that it is a unit, so what is left is to show that its image in the residue field Fy; is
not a square. This is seen by writing

3—2a =28+ (2¢* +7a+5)(a®>+3a+1),

S0
©(3 —2a) =8+ mp(a®+3a+1).

Hence the image of ¢(3 — 2a) in the residue field O, ,/m2O0k,,, = Fi; is 8, which is indeed
not a square in IFy;. Therefore, the images in V' of 3(3 — 2a) and ¢3(3a® + 10a + 9) are
linearly independent, which implies that d11(3,7) = (3 —2a) (A])? is linearly independent from
(3a?+10a+9) (A}))?, under the identification of Aj}/(A})? with the four-dimensional Fy-vector
space presented in section 3 of [20]; hence, the coset in A*/(A*)? represented by 3a? + 10a + 9
is not in the 2-Selmer group. It follows that Sel(Q)(E) is trivial, as desired.

O]
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Corollary 6.13. The group E(Q) is isomorphic to Z./57Z.

Proof. By the Mordell-Weil theorem and Lemma 6.1, we already know that F(Q) = Z" X Z/5Z.
for some nonnegative integer r. Therefore, by Lemma 5.2,

I(E(Q)) = E(Q)/2E(Q) = (2/22)",

cf. the discussion following Lemma 6.1. The image d(E(Q) is contained in the 2-Selmer group
by Theorem 5.7. From Proposition 6.12 it follows that §(E(Q) is trivial and hence that r = 0,
as desired. []

6.6 The solution

We return to the triangle-rhombus problem. We now have everything we need to prove the
following.

Theorem 1.1. There do not exist a rational isosceles triangle and a 6-rational rhombus with
the same area and the same perimeter.

Proof. Recall that a rational isosceles triangle and a @-rational rhombus with equal area and
equal perimeter would give rise to positive rational numbers u, v, t satisfying

v(u? — ) =t +o(u? —0v*) =0 (11)

and that, hence, when viewing this as a quadratic equation in ¢, its discriminant must be the
square of some rational number w, that is,

u® — dutv? + Sutvt — 4® = w?. (12)

By substituting z = u/v and y = w/v3, we noticed that such a triangle-rhombus pair necessarily
corresponds to a rational point on the hyperelliptic curve

C: y?=25—4z" + 8% — 4.

We are now in a position to determine C'(Q) and thus whether any such triangle-rhombus pairs
exist. In the start of this chapter we have seen that the morphism ¢ defined by ¢(x,y) =
(—4/2% 4y/2*) maps C to the elliptic curve E which has been the main topic of this chapter.
We thus have ¢(C(Q)) C E(Q) and hence C(Q) C ¢ (4(C(Q))) C ¢~ (E(Q)). At the end of
the previous section we managed to show that E(Q) = Z/5Z and by Lemma 6.1 the rational
points on E are given by

E(Q) = {0, (0,£4), (—4,+4)}.
This tells us that the following inclusion holds:

C(Q) C o7 H(E(Q)) = {oows, (1, £1)},

so the finite rational points on C' have both x- and y-coordinate equal to +1. Since we made
the substitutions # = u/v and y = w/v3, we find that any solution u, v, w € Q of (12) satisfies
u = 4v, w = +v3. Together with (11), this implies that u®t = 0, so (11) has no solutions in the
positive rationals. Therefore, there exist no rational isosceles triangle and a f-rational rhombus
with the same area and the same perimeter. O
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7 Discussion and conclusion

In conclusion, the fields of (hyper)elliptic curves, algebraic number theory and p-adic numbers
were studied to solve a geometric problem first solved by Zhang and Peng. In the end, chapter
6 contains a fully explicit solution to the problem, leaving only a few results as black boxes.
The goal set in the introduction was thus achieved.

In the process there were some ups and downs. Particularly, the initial objective was to focus
on the problem outlined in Example 5.9, but for the reasons given there it did not seem feasible
to carry out all computations by hand within the time set for this thesis (if at all). The problem
of Zhang and Peng, however, is also beautiful and since we have succesfully been able to solve
it, the author is happy with the result. In addition, it has been a pleasure to study so much
theory that is usually treated in master’s courses. This will certainly help the author in his
future studies.
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