w - - )
3:._ &, HHIVGI'SItY of faculty of science
fﬁﬁ / gro nin gen / and engineering

Highly Distributed
In-Browser Computing

Bachelor’s Thesis

July 2019

Authors
George Argyrousis
Tolga Parlan

Primary Supervisor
Alexander Lazovik

Secondary Supervisor
Frank Blaauw



CONTENTS

M INTRODUCTION| 4
(1.1 Highly Distributed In-Browser Computing| . . . . . . . 5
[1.2  Paper Structure| . . . .. ... ... 0oL 5

2 RELATED WORK]| 7
2.1 Similar Projects| . . .. .... ... . ... ... . ... . 7
[2.2  Good Practices|. . . . ... ... ..o oL 9
[2.3 Common Problems| . . . . .. ............... 11

[2.3.1  User Retention| . . ... ... ... ....... 11
[2.3.2 Adaptability|. . ... ... oo 11
[2.3.3 Performance|. . . ... ............... 12
2.4 Gray Computing| . .. ................... 12

B ARCHITECTURE] 14

3.1 Terminology| . . . . ... .. ...... .. ... ..... 14
3.1.1 User| . ... ... ... 14
[3.1.2 Creator|. .. .............. .. .. ... 14
......................... 14
[3.1.4 Load Functionl|. . . . ... ... .......... 15
[3.1.5 Work Function| . . ... ... ... .. ... ... 15
[3.1.6  Distribution Function| . . .. ... ... ... .. 15

3.2 Principles|. . .. ... ... oo oo oL 15

3.3 Concepts| . . . . .. ... 16
[3.3.1 Streams| . .............. . 000 16
[3.3.2  Fault Tolerance| . . . . . ... ... ... ..... 16
[3.3.3 Load-Balancer|. . ... ............... 18
[3.3.4 Multi-Threading| . . . ... ............ 19

3.4 Implementation| . . ... ... ..... .. ... .. ... 20
......................... 20
[3.42 WebWorkers|. . . .. ... ... 00 22
........................ 23
[3.4.4 WebSockets| . ... ... ... .. L. 23
[3.4.5 Duplex Stream| . .. ... ....... .. ..., 24
[3.4.6 Redundancy|. .. .................. 25
[3.4.7 Interaction Between Modules| . . . . . . ... .. 26

4 EVALUATION| 28
l4.1  Web-Worker Performancel . . . . ... ... ....... 28
l4.2  Distributed System Performance| . . . .. ... ... .. 31

l4.2.1  Distributed System Bench-marking Methodology| 32
l4.2.2  Hashing Algorithm|. . . . ... ... ... .. .. 33
l4.2.3 Matrix Factorisation Algorithm|. . . . . . .. .. 34
[F5 CONCLUSION]| 37
|6 FUTURE WORK| 38




ABSTRACT

Browser based distributed systems constitute a promising field which
has been subject to exploration for scientific and commercial usage.
We inspect an array of such projects and identify a lack of successful
and popular projects, in stark contrast to a large group of volunteer
computing projects such as BOINC which can attract significant user-
bases. This paper reasons about the social and technical problems
commonly encountered in previous projects, why they fail to tap into
broad computing resources of the internet community and discusses
solutions which are implemented into a novel framework for browser
based distributed computing.

We created an easy to use Javascript based Distributed System
which runs on any Browser. We discuss how it can be integrated
with any available JavaScript codebase and algorithm in order to shift
heavy computations to volunteer and commercial users. Features
which can play an important role for an internet facing system such
as Fault Tolerance, Load-Balancing, Multi-Threading and Streams are
explained and the implementations are discussed in detail.

We gather data to evaluate the scalability of the system and show
our evaluation findings in terms of how our system scales accord-
ing to various loads of computational intensity as well as different
volumes of data being distributed. The findings suggest that our
system can scale successfully under certain assumptions and condi-
tions but faces limitations as the connected clients increase. Further
research is warranted for a full understanding of the current limita-
tions and for a path to future development.



INTRODUCTION

Distributing a large pool of computing tasks to many computers
across the internet and letting them run the calculations is an idea
which goes back to successful projects such as BOINC [2] from 2002,
distributed.nef|from 1997 and Great Internet Mersenne Prime Search?|
from 1996. Such projects have been usually termed Volunteer Com-
puting since the participants would actively volunteer to run tasks on
their machines, usually via signing up on a website and downloading
a purpose-made program. Later sections present the volunteer struc-
tures of such projects, the incentive structures they employ, and their
limitations.

The modern web relies increasingly on Javascript, which is used
almost ubiquitously in the client-side of any website and often has
the purpose of making websites more reactive to user actions by of-
floading some application logic to the client’s browser. This approach
is increasingly popular due to user computing devices getting ever
more powerful, and serious innovations in Javascript engines such
as Chrome V8 Enginé’| and related technologies making it ever more
sensible to invest development time into shifting computational tasks
to the client-side. This shift to running more computations on the
browsers and developing efficient Javascript environments has been
exposing a considerable amount of computing power to the website
owners in the form of their users” devices since all the users visiting
a page run code served to their browsers, and the exposed comput-
ing power can grow to serious proportions for a relatively popular
website. Javascript code running on modern browsers are broadly
considered safer than ever due to extensive sandboxing and form-
ally there is no limitation on what tasks client-side scripts can work
on, opening up the opportunity to use client devices for large calcu-
lations which would normally require a large grid setup.

In the past, multiple distributed systems with the aim to utilize
the exposed computing power from browsers with diverse aims have
been proposed and implemented. Such systems were typically Browser
Based Volunteer Computing projects [11], attempting to harness com-
puting cycles from volunteer devices who would browse on a particu-
lar website to run the served code and support a large computational
task. However none of the proposed distributed systems, some of
which will be discussed in detail as well, has achieved wide-spread
popularity. Later in the paper, we discuss possible causes for the lack
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1.1 HIGHLY DISTRIBUTED IN-BROWSER COMPUTING

of general use of distributed systems working over browsers, and in-
troduce our improvements in the form of an open source Javascript
package to build browser distributed computing architectures upon.

1.1 HIGHLY DISTRIBUTED IN-BROWSER COMPUTING

Our project aims to develop a powerful, simple and highly custom-
izable open-source tool which can be used as a basis for Browser
Based Volunteer Computing as well Gray Computing projects to un-
earth the aforementioned underused computing potential of billions
of devices that access the internet via web browsers. Our solution
intends to be more easily adaptable to different use cases than the
existing projects and therefore be a better choice for the unpredict-
able and shifting use cases of real life agents, while being scalable
enough for real life applications. We envision that harnessing this
processing power, with the right tools, can create a serious alternat-
ive revenue stream for many websites, nullifying or decreasing the
need for internet advertisement, while serving useful scientific, social
and commercial purposes.

We have implemented an npm package| which has an easy to use
and highly customizable interface for programmers. The package is
intended for trivial integration with any Node]ﬂﬂ based server, and
work beside any other server implementation. We believe that our un-
opinionated approach which allows other implementers to run their
own tasks in their own way with little need to adapt the architecture
or logic of their codebase to accommodate our package is a serious
advantage over other similar projects, and can help to resolve the re-
lative lack of real life popularity of past browser based distributed
computing projects. A detailed discussion of our principles can be
found in the Architecture chapter.

The source code for the in-browser computation platform is re-
leased as open source software/|and licensed under the MIT license.

1.2 PAPER STRUCTURE

The remainder of the document will be structured as follows. In
Chapter 2 we give a summary of related work, explaining how we
build upon the design and technology choices of projects similar to
ours. The chapter further discusses survey papers which have ex-
amined many past projects, and goes on to explain in which ways we
have attempted to differ in our project in order to produce a solution
that can be adopted easily by people for diverse tasks. In Chapter 3
we summarise our code architecture, and talk about the main com-
ponents of our program in more detail. Chapter 4 focuses on evalu-
ating different types of tasks and their performance on our system.
Finally in Chapter 5 we present our conclusions and in Chapter 6
we present ideas that can be considered to improve the project in the
future.

5 https://www.npmjs.com/
6 https://nodejs.org/
7 https://github.com/rug-ds-lab/bsc-2019-in-browser-computing
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1.2 PAPER STRUCTURE

GROUP WORK

This project is a collaboration between Tolga Parlan and George Argyrousis.
The group members worked jointly on chapters Introduction, Archi-
tecture, Conclusion and Future Work as well as the Abstract. Related
Work chapter belongs to Tolga Parlan and the Evaluation belongs

to George Argyrousis. The presented program is coded together

and most of the benchmarking is also completed as a group effort.

The metrics about Web-Worker Performance is the work of George
Argyrousis.
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RELATED WORK

The concept of a distributed system that uses previously unknown
computers as components through running code on their web browsers
and communicates with them over internet is not new. There have
been many attempts at creating such distributed networks, applying
different approaches, architectures and aims. Here we give a quick
breakdown of the past projects that this project has directly or indir-
ectly benefited from. We also attempt an analysis over why browser
based distributed computing projects have not caught on popularity-
wise, and speculate about solutions our architecture may provide.
We follow the three generation paradigm proposed in Fabisiak and
Danilecki (2017)[11] while surveying the existing Browser Based Vol-
untary Computing systems. They describe the first generation as the
Java applets, which used to be a common solution when Javascript
performance deficit was extreme, being at around 10 to 100 times
slower according to the authors. However Java applets provide an
unsatisfactory user experience, since they function similarly to an ad-
ditional program running on the volunteer’s computer, with slow
initialization times and disturbing pop-up windows. The second gen-
eration has mostly used Javascript to overcome such problems, albeit
still suffering from performance deficits and lack of multi-threading
support on browsers. We concern ourselves mainly with what they
define as the Third Generation. The third generation is distinct from
the previous ones because of the new Javascript features it can be-
nefit from such as a fast compiler, thread support (via WebWorkers)
and WebSockets. These technologies significantly increase the feasib-
ility of such projects due to improvements in performance and user
experience. We have used a similar technology stack to the Third
Generation projects with similar aims, thus they are the most relev-
ant examples we can use to examine how to improve current systems.

2.1 SIMILAR PROJECTS

This section aims to provide a summary of similar projects which has
given us inspiration for our architecture. Therefore we present three
distinct projects, and argue about the successful and unsuccessful
design choices they have made, and how we have tried to design our
project accordingly.

MRJS [17]

MRJS sets to discover the feasibility of implementing Google’s popu-
lar and influential Map-Reduce architecture[7] while using web browsers



2.1 SIMILAR PROJECTS

as the worker components. The Map-Reduce paradigm is useful in a
broad range of computational tasks, and has the side advantage that
the it presents a very high level and intuitive interface for the pro-
grammers to interact with, hiding away details that would require
experience with distributed systems. The system breaks down given
work into chunks before distributing it to clients, which includes the
Javascript code to run, starting and ending indices, and a data URL.
They have a Job Server which schedules the chunks and organizes the
results. They also use simple majority voting to detect possibly rogue
clients. The communications with the workers rely on plain HTTP re-
quests. They have implemented a proxy server for data transfers and
their clients use WebWorkers for moving computations to the back-
ground. The authors find that implementing a Map-Reduce platform
over the internet does not always have the same performance capa-
city as the original system, especially in jobs that require too much
data transfer. The authors conclude, after their benchmarks, more
computationally intensive jobs could take better advantage of such a
system and classic examples of Map-Reduce, such as counting words
in a large text, are not suitable for MRJS.

QMachine [19]

QMachine is another system targeting scientific applications. It con-
sists of three different components: browsers which do the actual
computations and submit new computations, an API Server which re-
ceives computation requests from the browsers and distributes these
computations to other available browsers and a Web Server, which is
needed to serve the initial code to the browser clients. The API Server
should be installed and run individually by the user who wants to cre-
ate a network for their own purposes, and it can use only a given set
of databases. The authors assume that QM will be used by closed sci-
entific groups who will then invite only trusted volunteers, thus the
only security feature involved is verifying that the participants are in-
deed the registered trusted volunteers. The communication between
the API server and the browsers use plain AJAX requests to submit
jobs to the server, and to poll the server for new jobs. This polling ap-
proach inherently has worse scalability than WebSockets. Lastly, The
QM class written by the authors can be used outside of a browser as
well, using Node]JS.

Unfortunately QMachine has not become a popular platform. The
authors report that their system received more than 2.2 million API
calls from 87 countries during the initial 12 months period it was
made public. However, this number is less impressive when one
looks at the number of distinct users, which is reported to be 2100
separate IP addresses. We suspect that this outcome was effected by
an array of reasons. Firstly, it is not clear how this system would
generalize to open internet, given its lack of any sabotage-tolerance
features. In an environment where not everyone is a trusted volunteer
as assumed by the system, sending wrongly calculated results back
would easily sabotage the computation. Distributing computational
tasks makes sense practical only if there is an abundance of comput-
ing nodes. However a system in which only trusted volunteers can
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participate is severely limited in scalability. Furthermore, the system
design allows decentralized job submissions, giving the any connec-
ted rouge browser to opportunity to eat up system resources by sub-
mitting very large jobs. Also the system has little flexibility in how
the computed data is later on stored or handled. The computed data
has to be stored on a database, and the API Server owner needs to
use one of the database systems already supported by the QMachine.
This imposes an unnecessary limitation for what sort of use cases this
system can support.

MLitB [14]

MLLtiB, Machine Learning in the Browser, is a prototype Machine
Learning system that is intended to provide an easy platform for
researchers to run their machine learning jobs, using the computing
power provided by volunteers. When users connect to the system,
they interact with a User Interface on which they can create workers
(which are implemented as WebWorkers) to perform various tasks.
The system relies on the assumption that the contributors will vol-
untarily go to a web page intended for machine learning and cre-
ate these workers, meanwhile understanding what they are doing
and trusting the system. After the initial transfer of data (which is
compressed to speed up the transfer), all communication happens
through WebSockets. They have two servers, one for distributing
data and another master server for coordinating the process. Both of
them are written in NodeJS, and the authors justify this design de-
cision with the event-driven and lightweight architecture of Node]S
servers: “Since the main computational load is carried by the clients,
and not the server, a light-weight server that can handle many cli-
ents concurrently is all that is required by MLitB.” They have been
influenced by the Map-Reduce paradigm and use it for their machine
learning algorithms.

Since the project was merely a prototype, it is not possible to talk
about its popularity in certain terms. However one can point out sev-
eral project characteristics which would create user retention prob-
lems. Having a dedicated user interface assumes that the users are
willing and competent enough to create WebWorkers on their browsers
for specific machine learning tasks. This could be a severe limitation
on the user base, comparable to the demographics limitations on the
projects such as BOINC, which required users to install a program
on their computer. According to their own survey, about , 63% of
BOINC users describe themselves as advanced, and 35% as interme-
diate computer users [6]. We advocate that an approach that runs
the computing in the background without needing any user action
is much more preferable if Browser Based Volunteer Computing sys-
tems want to tap into broader computing resources.

2.2 GOOD PRACTICES

From the inspected projects, we have adopted practices with the po-
tential to improve our system. A discussion of such technological and
architectural components is presented in this section.



2.2 GOOD PRACTICES

Amongst the Third Generation projects, the use of WebWorkers is
ubiquitous. WebWorkers allow multi-threading support in Browser
environments, which is important for user experience. If the calcu-
lations were ran in the default Javascript thread, rest of the webpage
would lose its responsiveness and running a distributed system would
be much less desirable for websites with high user engagement. As
a result our system mandates the use of WebWorkers. The heavy
calculations are ran in a separate thread and does not damage page
responsiveness. The concept of multi-threading in browsers is dis-
cussed in detail in the Multi-Threading section, while our implement-
ation is presented in the Web-Workers section.

WebSockets are intended for fast bi-directional communication between
a client and a server. MLtiB, amongst many projects, recognizes that
data transfer can become a serious bottleneck in the system due to
bandwidth and latency limitations and uses WebSockets as a solu-
tion. We have also opted to use WebSockets as the main commu-
nication channel, after an initial HTTP call loads the web page. The
implementation in our system is discussed in the WebSockets section.

MRJS aims to give programmers control over parameters that might
affect the overall system performance. The idea of hiding the distri-
bution details from the programmer who is using the system, while
giving optional access to parameters related to performance is a prin-
ciple we have tried to follow in our program as well.

A great deal of distributed computing projects support Map-Reduce.
It is notable for its ease of use even for programmers without any dis-
tributed computing experience since it hides low-level details of the
system and allows for configuration through simple intuitive inter-
faces. It has successfully been deployed in large scales and many al-
gorithms which inherently allow for parallelization can be expressed
in terms of Map-Reduce[8]. Our system is also inspired by this
paradigm, and as such we abstract away the mapping step, distrib-
uting the data pieces across workers who send back the results. We
additionally expose an easy interface to reduce the mapped data.

The QMachine project presents useful ideas such as having a separ-
ate server running the distributed system independently of the web
server. We think that this modularity is very important for easy in-
tegration into other projects and allows creative architectures such as
one distributed network running the same jobs through several web-
sites. We have designed our project with the same possibility of de-
coupling the web server serving the web pages, from the distributed
system server serving the tasks.

Packaging the client code so that it can simply be a part of any web
page is another useful idea from the QMachine authors which we
have implemented. Serving javascript files as independent packages
eases the process of embedding our system to an existing web page
which may originally have been created without accounting for it.

MLitB authors provide arguments in favor of using NodeJS as the
server in a distributed computing application where the server is
mainly concerned with coordinating the clients and distributing tasks.
The server in such a system ideally would not be busy with processor-
bound tasks but I0-bound tasks to support communications. The
event-driven asynchronous model which can serve many clients con-

10



2.3 COMMON PROBLEMS

currently is a strength of NodeJS and we have adopted the technology
in our project.

2.3 COMMON PROBLEMS
2.3.1 User Retention

A common problem that is introduced by using browsers as the com-
putation medium for a distributed network is to convince the users
to visit a website and stay there. This is a problem which earlier pro-
jects such as SETIRQHOME or the GIMPS did not face, since in these
projects volunteers download and install a program which then runs
in the background. In contrast, in a browser the computation stops
when a tab is closed and it is safe to assume that the common work-
flow of many casual web surfers does not include keeping a tab which
does not serve a function open for hours. This section discusses ideas
about how to solve this major problem.

According to the survey by Fabisiak & Danilecki (2017) [11] “the
problem of recruiting the users is the most important challenge faced
by browser-based platforms”. One common theme amongst all the
projects they have inspected is either a very low number of volunteers,
or the numbers not being reported at all. In the paper the authors sug-
gest that incentive systems employed by older generations of volun-
tary computing systems, such as reputation systems, virtual credits
or real monetary awards based on computing power contributions
could to some degree be adapted to the newer systems. However this
suggestion in our opinion ignores one of the most important proper-
ties of browser based systems. Browser tabs are designed to be easily
disposable and many users open and close plenty of tabs routinely.
Convincing a user to keep a tab open for meaningful amounts of time
and routinely come back is difficult and we suspect most projects fail
at this, even when they have successfully attract a decent number of
contributors initially such as QMachine.

Gray computing practices which rely on running computing tasks
on websites without explicit user consent can be a solution to the
aforementioned user retention problem. It has proven difficult to
attract volunteers, who would spend meaningful amounts of time on
a web page and come back frequently. A possible solution would be
to embed such systems in already popular websites with which users
engage for a long time. Thus we have striven to make our system
easily adaptable into any existing website with adding only a small
script to the client-side code and keeping the server implementation
as simple as possible. (Gray Computing|section discusses this topic in
detail.

2.3.2 Adaptability

We have observed that many projects in the field of Browser Based
Volunteer Computing are done with one sort of calculation in mind.
Apart from MLitB examined before, most other projects we have ex-
amined such as Zorrilla et al. (2013) [20] focus on social networking,
Krupa et al. (2012) [12] limits their investigation only to web search,

11



2.4 GRAY COMPUTING

Duda & Dlubcaz (2012) [10] target only evaluationary algorithms and
so forth. While the investigative value of these papers is indisputable,
they are not really adaptable to many other purposes.

A similar problem that arises from this problem-centric approach
is that the program architectures are not built with much modularity.
This is a common theme that might be harming the adaptability of the
projects to different technological environments. Trying to provide a
Swiss army knife solution, which attempts to be very simple to use by
providing as many as features as possible, is not necessarily the best
software development approach. These decisions are understandable
since many projects target scientists working in diverse fields who
might need computing power to run their calculations on but not the
understanding of the programming issues, and therefore the projects
try to come up with an architecture that is as simple to use as possible.
However, in the end, this often leads to systems that are rather com-
plicated to adapt. For example a user of the QMachine system who
does not want to store their processed data in one of the presented
database options does not have a choice. Someone who would like to
use their own servers cannot run the MLitB system since it requires
its own data and machine learning servers to be used. As a solution
we have designed our project as a package which is as agnostic as
possible as far as the types of algorithms it can implement and the
server architecture it can cohabit.

2.3.3 Performance

Langhans et al. (2013) [13], embed their Map-Reduce solution doing
large calculations in the background while the user is busy playing a
short browser game, and then survey the users. In their survey, “no
user reported effects of the massive calculations in the background on
the game application in the foreground. (...) Concerning allowing ad-
ditional calculations in the background only 15% of the users raised
doubts but none rejected the idea”. They explain this by WebWorkers
moving the calculations to a separate thread. Indeed we agree that
the WebWorker technology makes running computational tasks much
more feasible for websites which do not want the user experience to
take a hit. A detailed discussion of multi-threading in browsers can
be found in the Multi-Threading section while our implementation
details can be read in the WebWorkers section.

2.4 GRAY COMPUTING

Pan et al. (2015) [16] set to investigate the economic feasibility of
running background Javascript computations on browsers from the
perspective of a website owner, taking into consideration the issues
that arise with high heterogeneity in devices, non-uniform page view
times, high computing tool volatility as well as the Byzantine nature
of the distributed environment and harm that can be caused by mali-
cious users. Their paper comments that the “line between what com-
putational tasks should or should not be offloaded to the visitor’s
browser is not clear cut and creates a blurred boundary” which they
name Gray Computing, referring to the possible ethical implications

12



2.4 GRAY COMPUTING

of running the said computing without explicit user consent. But
aside from the ethical implications, they engage in a thorough invest-
igation into whether running such tasks even makes sense over using
more conventional services such as cloud computing providers. The
findings are very optimistic, especially for a subset of tasks, and their
paper lists empirical results on important issues such as handling
malicious users, effectively allocating tasks to clients with unknown
page view times, gray computing’s possible impact on website per-
formance and Javascript performance. We provide a summary below.

o The use of WebWorker technology makes sure that background
gray computing tasks would not be easily discernible by the
users, due to effective multi-threading. However they find that
even without the WebWorkers the effect on the page perform-
ance is negligible, however in this case much less CPU power is
used for the computations.

e They compute the security provided by a simple task duplic-
ation and majority voting scheme against malicious users and
find that for large enough websites where it would be difficult
to take over most of the computations, even duplicating tasks
twice offers substantial protection. We expand on this concept
in the Fault-Tolerance section and present the implementation
of an improved algorithm in the Redundancy section.

o Cost effectiveness largely depends on the algorithm and how
it is implemented. Algorithms that need to be fed large data
chunks are typically not cost effective, due to the slow nature of
data transfer and the costs associated with downloading data.
However the authors point out that most cloud computing pro-
viders have a price model which charges for data downloads
from the cloud, but not for data uploads to the cloud. This
gives a substantial cost effectiveness benefit to algorithms that
does not need much input but produces large outputs. Simil-
arly, scenarios where the data would be served to the clients
anyway, such as Face detection in a social network site which
already serves the photos to the users, can be made distributed
very effectively. However the paper comments that some popu-
lar Map-Reduce use cases such as counting words in large texts
are not cost effective due to the large data transfers needed.

e Gray computing clients cannot be relied on to stay connected
to the system for the whole duration of a large computation,
therefore how the work has been divided into chunks becomes
important. “Reducing the single task size assigned to the clients
will increase the task completion ratio, but result in more task
units. More task units means more cost on the requests to fetch
data and return results. Therefore, there is a trade-off between
using smaller tasks and larger tasks.” The authors propose that
an adaptive scheduler would achieve a higher task completion
rate compared to uniformly sized chunks. We describe our own
system of adaptive load balancing in the Architecture Chapter.

13



ARCHITECTURE

As part of the project, we have created a Javascript system which util-
izes the good practices identified in the Related Works chapter and
implements solutions for the common problems. Rest of the chapter
introduces important terminology used in the system, touches the
principles upon which the system was built, introduces technological
concepts on a high level and lastly details the implementation of the
actual program.

3.1 TERMINOLOGY
3.1.1  User

The User is defined as the person whose browser is being used as the
computation component of a Distributed System built on top of our
system. A client-side script will be executed by their browser when
they visit a URL with an implementation of our framework. Upon
having the script load, the user will automatically be registered in
the server, thus donating resources to the system for as long as they
remain connected.

3.1.2  Creator

A Creator is the person building their application on top of our sys-
tem, interacting with it through the programming interface we have
defined, by implementing the work function for the client-side and by
defining two streams for providing raw data to the server and acting
on the processed data from the server.

3.1.3 Task

A Task is characterised as one singular entry in the data set being
provided to the server. A singular Task can be any JavaScript data
type and it is defined by the Creator. The system was designed with
Distributed Computation applications which consists of a large multi-
tude of Tasks in mind. Each Task should be calculable independently
from any other Task using the same Work Function and ideally each
Task should take a similar amount of time to compute on the same
computing environment. It is desirable to have Tasks which do not
take more than a reasonable amount of time on an average computer
in order to make sure disconnecting Users cause as little computation
loss as possible.

14



3.2 PRINCIPLES

3.1.4 Load Function

The Load Function is responsible for generating Tasks or supplying
the already generated Tasks to the system. It needs to take the form of
a Stream, which is discussed in Streams and Duplex Stream sections
in detail.

3.1.5 Work Function

The Work Function is defined as the function that performs algorithmic
steps on the Tasks created by the Load Function. It is called once on

each piece of data generated by the load function. Since the compu-

tations are performed by the Users, the Work Function resides on the

client-side, in a Web-Worker file. Multi-threading issues and Web-

Workers are discussed in their respective sections.

3.1.6 Distribution Function

The distribution function is responsible for determining how many
Tasks should be transferred to a User at any given time. It can take
multiple forms depending on the needs of the application. Different
kinds of Distribution Functions present in our system are discussed
in the Load-Balancer section.

3.2 PRINCIPLES

The Principles section analyses all the assumptions and principles
which lead to the architecture choices in the system.

Extensibility & Adaptability

Many algorithms implementing some sort of concurrent operation
can be implemented with our system. Such algorithms would typic-
ally have a data-set that needs the same operation to be performed on
each individual data piece. Existence of a broad range of algorithms
that can use the system inevitably makes it less sensible to focus on
the peculiarities of one algorithm. Instead a general solution which
can be extended for any algorithm carries the potential to have more
utility. Therefore the system aims to take care of the distribution of
data and coordination of clients, while giving the Creators the ability
to implement how to provide input and how to process the output,
as well as how the data is processed by the clients. On the tech-
nology side, the system follows common and recognizable patterns
used by other Node]S packages such as synchronicity, event-based
architecture and data piping through streams. Therefore the system
can be relatively easily integrated into Node]S server code-bases. If
the Creator’s server uses another programming language, a separate
server with a different domain for the distributed computation can
be implemented with ease. The client-side code can be part of most
websites by adding the necessary scripts and Multi-Threading should
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allow the websites with a need for performant User Interface to also
partake.

Scalability

A distributed system will naturally perform better with more compu-
tation nodes, barring the overhead. Therefore such a system should
be able to effectively scale up to handle large numbers of worker
nodes with minimum overhead. We design the system with as min-
imal general overhead and minimal computational load added by
each additional client. The scalability of the system for different type
of tasks is further discussed in the Evaluation chapter.

Maintainability

Our project culminates in an open source package and therefore in
the future if enough interest is generated, outside parties may want
to contribute to the development as well. Contribution from anyone
would be most welcome. It is expected that using our package in real
life would unearth many problems, potential performance improve-
ments and useful features, and the contributions of willing outside
parties can be an important asset to perfecting the code. Therefore we
adhere to good software development practices with clearly defined
modules, comment our code and architecture and implement ad-
equate testing and continuous integration. These practices are meant
to ease the maintenance for the authors, and also lower the barrier of
entry for anyone who might wish to develop the project further.

3.3 CONCEPTS
3.3.1 Streams

Streams are a useful Computer Science concept which can provide an
analogy for large data flows, such as reading a large file, processing
it and outputting the processed data. Stream components can be
added together to create a pipeline where data flows between each
component, and the components do not need to know about pipeline
step before or after them. An important use case of Streams is with
handling data which would be too large to keep in the memory at
once. If the data is instead processed through a Stream, only a small
portion of it needs to be kept in the memory at any given time. [15]
Distributed Computing systems such as this one can be designed as
a Stream component which stands in between inputted raw data and
outputted processed data.

3.3.2 Fault Tolerance

A great challenge for distributed computing applications is Byzantine
Fault Tolerance. Even a system such as SETI@home which requires
registration has in the past experienced users cheating on the results
[1]. Manipulating the client-side code and sabotaging the distributed
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algorithms would be a relatively easy task for any malicious Client.
One attacker can coordinate many clients and produce large amounts
of invalid results for a calculation. This could be especially damaging
since in a system open to public, it is not easy to blacklist users. Even
banning specific IP addresses suspected of sabotage could easily be
circumvented. In theory, it is impossible to achieve completely trus-
ted results using this mode of calculation, unless a completely trusted
machine was checking all the calculations. But obviously, a separate
trusted machine running all the calculations makes distributing the
calculations pointless. However, for a system with a relatively large
client base adding redundancy to the calculations and making differ-
ent users vote on a piece of result severely limits the error rates. Such
a majority voting algorithm has already been in use by many of the
most popular distributed computation architectures, such as BOINC
and Hadoop [4].

We have inspected the Spot Checking idea examined by Sarmenta
(2001) [18]. Spot Checking is introduced as an alternative for systems
where the acceptable error rate is not too small. Unlike traditional ma-
jority voting, spot checking does not redo all the work objects several
times, “but instead randomly gives a worker a spotter work object
whose correct result is already known or will be known by checking
it in some manner afterwards”. The author demonstrates that while
spot-checking combined with blacklisting of caught cheaters is effect-
ive, if blacklisting is not possible, it is not very difficult for an attacker
to increase the error rate significantly. Therefore this technique would
not be useful in our system.

Some researchers approach the problem in a totally different man-
ner, and instead try to establish the trustworthiness of a user. Domin-
gues et al. (2007) [9] devise a reputation system that calculates the
reputation of users through invitations, in which users invite other
users to participate in a volunteer computing project, and each user
receives a reputation depending on the reputation of other users in
their network. Such a system however is not suitable for a gray com-
puting project, where the aim is not to limit the users to a small clique
of people who are already interested in distributed computing pro-
jects by themselves, but instead to benefit from the computing power
of the general public.

Brun et al. (2011) [4] introduces an improved idea, which is based
on majority voting but provides an improved theoretical error rate,
called Iterative Redundancy. The authors demonstrate that the iter-
ative redundancy is more efficient than traditional majority voting,
and it can achieve a desired system reliability by distributing fewer
jobs than similar methods. Intuitively the idea comes down to copy-
ing the same task until the difference between the most popular result
and all the other results are larger than a set number. This is distinct
from the idea behind traditional majority voting, which sends a set
number of copies and then accepts the majority vote. We have im-
plemented this algorithm in our system to benefit from the slightly
lower theoretical error rates, with the option to turn it off or set the re-
dundancy requirement relatively low since many algorithms can still
function even in the presence of erroneous results. The implementa-
tion details are explained in the Implementation Section.
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3.3.3 Load-Balancer

The Load-Balancer is responsible for the size of tasks that end up
being fetched for a User. Since a user’s performance cannot be guar-
anteed to be constant, we need to constantly be computing the ap-
propriate size of tasks that needs to be delivered to each independent
User. Events such a user browsing away to a more computationally
intensive tab or having a worse Wi-Fi connection than before can lead
to slower task processing, thus ideally the Load Balancer should try to
adapt and maintain a consistent processing time per chunk of tasks.

The task size is not in any way limited with our current implement-
ation, allowing the User’s computational performance and network
speed to be the source of measurement. We intentionally decided to
avoid having the latency being computed on the User’s side. By do-
ing so we could potentially be exposing a flaw in the system where a
User could alter the latency manually and provide inaccurate results.

The latency of each User will be computed as a result of the time
ts of sending the load to the Client, the time to compute the result of
the Work Function tc and the time to receive the response back to the
Server tr.

latency = ts 4 tc + tr

Adaptive Load

We will define all accessory information that needs to be computed
in accordance to the Adaptive load. Below we will define the math-
ematical formulae that define the adaptive load at any given time. A
client ¢ has three internal attributes, the client’s previous amount of
tasks computed c./d, the client’s response time c./t and the client’s
send time c.Is where latency = c.It — c.Is.

First we will need to compute the average response time f(c) of
each connected client ¢ per task. Then we will find the collective
response time art for all c. Finally we will compute the average col-
lective response time ava.

_clr—cls

) =—1z

c.length

art = ;) flc)

art
avq = —
c

Based on the available information, we can now compute the amount
of tasks g(c) that can be added to make the load match our system’s
average response time ava.

2(c) = (ava —££Z)) xc.ld v eld
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For example let’s say that we have a client c with a response time of
c.lr — c.Is = 8669ms while computing c.Id = 95 tasks. Let’s consider
the system’s ava = 521ms.

8666
£le) = o

 (512-91) %95
g(c) = 515 +95

=78+95

=173

For this client, the distribution function deemed him fast enough to
be able to compute an additional 78 tasks in order to meet the sys-
tem’s average ava metric. However, there is the possibility for the
system to give a negative value in terms of how many additional
tasks that need to be computed. For example a client with response
time of c.Ir — c.Is = 7930ms while computing c.Id = 13 tasks. The
system’s ava = 512ms as before.

7930

fle) =5 =660

(512 — 660) * 13

g(c) = 510 +13

If the overall outcome of g(c) < 0, the User is deemed incredibly
slow compared to the system’s ava. It is therefore beneficial to assign
the same c.Id as before since decrements would not yield a better
performance.

3.3.4 Multi-Threading

Javascript is a single-threaded programming language. The language
itself offers no native way to implement concurrent programming
and a common concern for JavaScript programmers is to avoid block-
ing the single thread. Not blocking the thread is important because
browsers render pages by creating render events in intervals. How-
ever JavaScript event-loop model runs events only when the call stack
is empty. A computationally intensive task which is occupying the
call stack for long amounts of time can constitute a serious problem
for the user experience because the page would not get rendered and
thus it would become unresponsive to user actions. Some projects
such as 3] tried to solve this issue by engineering non-blocking loops
which would hand back the control of the thread after every iteration,
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thus allowing rendering. However Web-Workerg|have mostly solved
this problem, as they introduce proper multi-threading support for
JavaScript written for browsers. Our implementation of Web-Workers
is discussed in detail in the Implementation Section.

3.4 IMPLEMENTATION
3.4.1 Client

Upon visiting the URL being hosted on the Server, the browser will
fetch and render the available HTML file that contains our Client
package. Uncompressed JavaScript files can lead to an increase in
loading times of the visited web page. Thus we decided to use
WebPackP| to make the Client file as small as possible.

The Client in our architecture is defined as the script responsible
for retrieving chunks of steps fetched from the server that need to be
executed. The client can be treated as a naive component in program-
ming terms, and takes care of connecting to the server and passing
on data provided from the server to the Work Function. The Client
should be provided by the name of the Web-Worker file which will
later on perform all the processing on the data sent by the server. The
Client also needs to be provided a working socket to run the commu-
nications on.

Below is a simple example client.
new Client ({

/* Socket io instance with host:port x*/
socket: io("localhost:3000"),

/* WebWorker file location */
workFile: "./work.js",

»;

Leader Election

We have additionally implemented the option to block several tabs of
the same website from opening their own separate connections and
performing computations in their own instance of Web-Workers. A
common internet surfing pattern with many modern browsers is to
open many tabs while following links, and this may lead to a situ-
ation where a typical user opens many tabs all trying to perform the
distributed calculation. This was due to performance concerns about
running the same program in multiple tabs, which in our experience
led to worse overall performance. The performance concerns about
running the same program in multiple tabs is investigated further in
the Evaluation Section.

Running the distributed calculation only in one of the tabs is equi-
valent to the Leader Election problem in the distributed computing
tield. The leader in this case would be the tab which got chosen to
perform the calculations. Since tabs would not have a considerable ad-
vantage over each other, their priority is chosen randomly. Tabs con-
stitute a dynamic environment because they can be closed or opened

1 https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_
web_workers
2 https://webpack. js.org/

20


https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://webpack.js.org/

3.4 IMPLEMENTATION

unpredictably. This can also technically be considered a Byzantine
environment since tabs do not have to follow the code written by us,
however this was not a concern since there is no harm to be inflicted
on the overall distributed system by manipulating the leader election
process in a browser. It is possible for tabs to communicate with each
other via broadcasting. BroadcastChannel APIP|allows Javascript in
one tab to broadcast messages to all other tabs.

We have based our leader election on the algorithm described by
Brunekreef et al (1993) [5]. They depict a protocol for dynamic leader
election in broadcast networks, which describes our intention per-
fectly. In their protocol, the agents involved in the process can be in
one of five distinct states, as Leader, Candidate, Dead, Start and Defeated.
We have ignored Dead and Start since a dead tab is already closed thus
irrelevant and a starting tab can immediately be appointed as a can-
didate. Their protocol is described as a Finite State Machine in the
graph below, taken from their paper.

- ¥ 1id) & id < my_id
MI(id) & id > my_id - N\ Mimy_id

_—»{Candidate |—
-l s

| start j Dead
\ | )
n NgER e - 2
| [&id<my_id N % \
"l(my_id);
! | start_timer !
~ ™ Ve ~\
‘ Defeated Leader
- _ - — /
N 7,/ 71(id) & id > my_id . ﬁ,’/

Intuitively, each tab becomes a Candidate at its inception. Tabs be-
come Candidates by broadcasting their ids and starting a timer which
checks for a leader timeout. Upon receiving an id broadcast, all other
tabs with larger ids broadcast theirs. If a Candidate or a Leader re-
ceives an id larger than its own, it becomes Defeated. If a Defeated tab
receives an id smaller than its own, it announces candidacy. If the
Leader times out (crashes), the Candidate which has defeated all the
other tabs will become the new leader.

There is also another state transition from Defeated to Candidate, de-
picted without a guard for simplicity purposes. It is intended for
a leader timeout. The need for this transition can be explained by
an example. It is easy to postulate a situation with one Leader, one
Candidate and several Defeated tabs. Suppose the Candidate tab is
closed, followed by the Leader tab. Now without the timeout trans-
ition from Defeated to Candidate, there would never be a state change
unless a new tab is opened.

We had faced practical issues while implementing the algorithm,
which required several changes. The algorithm runs on the premise
that constantly changing the leader is acceptable. However constantly
changing the worker tab when another Candidate with a larger id
connects is unacceptable due to the performance hit caused by re-
connections and repeating calculations. This would be unnecessary

3 https://developer.mozilla.org/en-US/docs/Web/API/BroadcastChannel
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in our system since tabs do not have a tangible performance differ-
ence, and the ids are assigned randomly. We added the additional
state Worker to solve this issue. In the case where there is no Worker
(which is detected by timeouts), the current Leader assumes the role
of Worker. Worker tab is different in the sense that it does not particip-
ate in the leader election algorithm anymore but instead undertakes
the actual calculations. The absence of a Leader triggers the Defeated
to announce candidacy even if there were no Candidates, thus the rest
of the algorithm functions similarly to the situation where a Leader
disconnects.

Another problem we encountered in our environment was that the
system, in rare cases, produces two simultaneous worker tabs. This
is due to the practically impossible assumption made by the authors,
namely that “messages that are sent are received instantaneously by
all processes, except the sending process”. Unfortunately the Javas-
cript event-loop architecture dictates that the messages sent between
tabs are never instantly delivered, but the browser will wait until the
current stack is empty until interrupting with the message. This has
caused us to experiment with timeout intervals to find a time which is
sufficiently long so that accidental timeouts caused by late delivered
messages are rare enough while it does not take too long to choose a
leader.

3.4.2  WebWorkers

WebWorker are a part of the client-side code, and require the Cre-
ator to create a separate file with the code which would run in the
separate thread. The Creator should also provide the file’s URL as
an option to the client-side code while initializing the class. The im-
plementation permits the creation of a single extra thread and com-
municates the data it receives from the Server with the thread. Pro-
cessing the data is the responsibility of the code provided by the Cre-
ator. When the results are sent back to the main thread, the main
thread communicates them to the Server. The data communication
between the main and the worker thread is being facilitated utilising
the Web-Worker APL Both sides can send messages using the postMes-
sage() method and handle incoming messages with the onMessage()
event handler method. Below is an example of a simple Web-Worker
file which receives an array of data, runs the work function and posts
the results back.

self .onmessage = (e) => {

postMessage (e.data.map (workFunction)) ;

}

The implementation does not communicate individual data pieces,
but instead always an array, thus the need for using the map() function
on the received data on the thread file. This was a result of experi-
mentation we have run on the communication overhead between the
threads, and is explained further in the Evaluation Chapter. It should

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_
web_workers
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be mentioned that WebWorkers are currently supported in every ma-
jor desktop or mobile browserf|

3.4.3 Server

The Server is responsible for connection events related to the clients,
as well as handling the data communications. The Server commu-
nicates with the connected Clients via the Socket.IO package, which
is described in detail in the WebSockets Section. A connected client
triggers the connection event in the Server, which adds it to the list
of available clients and sends the initial data load if the Creator spe-
cified any. The Server also saves useful information which is later
used by the Load-Balancer to calculate how many data pieces should
be sent to a specific client. When instructed to send data to a Client,
the Server saves the time. Similarly, when a result is received the
response time and the count of data pieces is is saved.

3.4.4 WebSockets

Socket communications between the Server and the Client rely on
the WebSocket technologyﬂ WebSockets API however is low-level
and not intended for direct use by most programmers. We have in-
stead opted for the popular Socket.IO library?} Socket.IO provides
an easy interface for WebSockets, and requires the inclusion of an
extra file in the client-side code as well as a package on the server-
side code. It has already implemented support for bidirectional dis-
connection support. Therefore both the Server and the User know
whether each other are unresponsive since the library takes care of
pinging. Furthermore, it supports fall-backs in case the user is using
a browser which doesn’t support WebSockets, providing communica-
tion via more traditional AJAX methods such as polling, through the
same programming interface.

On the client side, the socket communications happen on the main
thread and therefore it is important to avoid blocking the main thread
any longer than what is necessary for data transfer. Socket.IO lib-
rary is based on events and therefore avoids blocking the thread,
due to the JavaScripT event-loop architecture detailed in the Multi-
Threading Section.

The sockets listen for messages that can be sent either to the User
or to the Server using the socket.emit("tag”, message) method with
the appropriate tag. In order to react upon receiving a message,
socket.JO provides the socket.on("tag”, message) method which is fired
for messages with the appropriate tag. Upon a new connection the
socket.on('connection’, ...) event is fired and a disconnection is handled
through socket.on(’disconnect’).

Our system as a whole aims for modularity, and does not include
the socket.IO class itself in either of the Client-side and Server-side
packages. Instead the constructors expect that the Creator will supply
the socket object. Since there can be multiple channels communicat-

5 https://caniuse.com/#search=webworker
6 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
7 https://socket.io/
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ing over the same socket for different purposes, our package uses the
tag data-distributedstream for normal data communication, and the tag
initial-data-distributedstream for the initial data load.

3.4.5 Duplex Stream

Streamﬂ are one of the core parts of the NodeJS AP]I, and they are in-
tended for working with large data. Node]S Streams come with build-
in functionalities for piping data between different in a chain, and sig-
naling to separate Streams in the pipe chain to stop or continue data
production depending on the overall data processing speed, in order
to prevent a module from working too fast and filling the memory.
The process of stopping data production along the pipe chain if a
later part of the chain is not consuming data fast enough in order to
keep memory consumption low is called Back-pressure] and it is a
fundamental part of the Node]S Stream architecture. Since the main
class in our system inherits a Duplex Stream, which is a Stream that
can be read from and be written into, we followed the requirements
of implementing a Stream class which should take Back-pressure into
account when producing data, thus distributing tasks to clients. If the
data is being processed too fast for the next step in the piping chain
to consume and therefore the buffer in between is full, the Stream
architecture signals the Duplex Stream to temporarily stop producing
and outputting data, by returning a false value from the function
which pushes data into the output buffer. Our package in this case
temporarily stops outputting data to the buffers and also sending jobs
to the clients in order to prevent an accumulation of processed data
which would increase memory consumption. When the piping chain
can continue, Stream architecture signals this by invoking the _read
function and causes our system to continue sending data to clients.
Piping data into our distributed stream and piping it out is the
Creator’s responsibility, and makes the system adaptable to many
use cases. This also allows for a programming interface easily under-
standable for programmers already accustomed to NodeJS. Code for
a simple use case in which the creator provides data from a stream,
and then writes the processed results into a file would look like this:
dataStream // A Readable stream that inputs raw data
.pipe(distributedStream)

.pipe(eventstream.stringify()) // Stringify the results
.pipe(fs.createWriteStream(’results.txt’));

On the other hand, in a project where the results are used to modify
the inputted data such as some machine learning applications where
the results could be used to modify the model constantly, the Creator
can provide their own duplex stream which creates data and absorbs
the results to act accordingly:
mlModel // A Duplex Stream

.pipe(distributedStream)
.pipe (m1Model) ;

The Stream pipes out the results in the same order the input was
piped in. This was made complicated by the fact that clients often dis-

8 https://nodejs.org/api/stream.html
9 https://nodejs.org/es/docs/guides/backpressuring-in-streams/
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connect at random times and data they were supposed to process may
end up being sent again to another client and be processed at a later
time than data which was inputted after. As a time efficient solution,
two buffers are implemented to store the order number for (1) data
which are waiting to be processed, or (2) are processed and waiting to
be piped out the Stream. These buffers are Red-black Trees since the
data order in the buffers should be preserved while a great deal of
insertion, removal and search operations are ran and Red-black Trees
provide O(log(n)) time complexity for each of these operations. The
buffers store only the data order instead of the entire data object, in
order to speed up the comparisons inside the Red-black Tree. The
data itself is kept in a Map[™| where the key is the input order.

3.4.6 Redundancy

We have implemented the Iterative Redundancy algorithm discussed
in the Concepts Section to combat cheating as well as any technical
problem which might cause false calculated results to be sent to the
Server by Clients. When a Creator is initializing our DistributedStream
class, they can choose to specify their redundancy factor as any number
r >= 1. The redundancy factor is the difference the system is going
to establish between the highest voted result and all the other results
before accepting a data piece as reliably processed. So for instance
if r = 3, and two malicious hosts returned some incorrect result, at
least 5 votes should be cast that produces the correct result before it
is accepted by the system.

A major deficiency of our redundancy system is the lack of pro-
tection against the same computer connecting through different Web-
Socket instances (which could be opening multiple tabs in practice),
and banning clients that voted for losing results. While in theory im-
plementing such barriers is not particularly useful because changing
IP addresses is not a difficult process for a determined attacker, in
practice it would make any attack relatively more difficult and con-
tribute to security. We discuss possible extensions in this direction in
the Future Work Chapter.

We have implemented a separate Data class to take care of the
redundancy operations for each piece of data. When the data is ini-
tially sent to a client for processing (which is usually done in a batch
with many other data pieces to minimize the network latency), the
addVoter() function is called and the client is saved as a voter for the
data. This is necessary to make sure the same data is not sent to the
same client again in the future.

The system functions with the assumption that the vast majority of
the clients will be honest, and thus data should initially be duplicated
only as many times as it would minimally need. If r = 3, this would
be 3 times. The function shouldBeSent() which determines whether a
data piece currently needs to be sent to more clients, thus works with
the assumption that all the current voters for a data piece will return
the same result, even if they haven’t responded with the results yet.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Map
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The class function doneWithProcessing() returns true when the ma-
jority vote result is more popular than all the other results by at least
the redundancy factor. When a data piece is done with processing,
it’s result is written into stream for the next part of the pipe to con-
sume. As mentioned previously, the output is always in the same
order as the input.

3.4.7 Interaction Between Modules

In order to further understand the Architecture we will explain the
communication between our key components as they can be seen be-
low in Figure |1} We will focus on explaining the interactions between
the Load-Balancer, Server and Client as these components have the
greatest impact and can directly alter the behaviour of our system.

Load-Balancer

(2)
(3)

(4)

Client Server

\/

(1)

Figure 1: Architectural Interaction Model

Upon having the Client connect to the System the Server adds it to
the list of all available Clients (1). The List of Clients contains relevant
information about the current status of each Client. If a Client is not
executing a task or is done executing a task the Server will assign a
task to it.

Before assigning a task, the server will determine the amount a of
tasks to send utilising the Load-Balancer (2)(3). Now that the correct
size of tasks has been determined the Load Function will be send a
tasks to the Connected Client).

The Client will receive (4) the assigned a tasks and perform the
Work Function on that specific data-set. When the Client is done
executing all assigned tasks, it will send a response to the Server at
which point the Server will deem the Client free again.

The interaction will continue perpetually as long as the Load Func-
tion is generating data and there are connected Clients in the net-
work. Below we have given a system sequence diagram that depicts
the above mentioned procedure in greater detail.
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send load
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Figure 2: Architectural Sequence Diagram
In order to have our server support as many concurrent connec-
tions as possible with minimal system resources, we have implemen-
ted the aforementioned interaction sequence primarily using NodeJS
events. The majority of the interaction takes place in a relative small
code and simple section in which our modules listen to each other’s
events and react accordingly:

this.server = new Server ({ socket, port, initialDatal})
.on("connection",
this.loadBalancer.initializeClient.bind(this.
loadBalancer)
).on("connection",
this.clientManager.addClient.bind(this.clientManager)
).on("result",
this.dataHandler .handleResult.bind(this.dataHandler)
).on("client-available",
this._sendJob.bind(this)
);
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EVALUATION

We performed two separate types of evaluation in our final imple-
mentation of our System. The first evaluation type is focused on
testing the performance of one web-worker being spawned and com-
municating with the main-thread. The goal of this experiment is to
show whether sending an Object from the Client to the Web-Worker
and receiving it back should be considered as an additional compu-
tational cost in terms of time (ms) that we need to consider in our
System.

The second type of evaluation is focused specifically in showing
whether algorithms scale as more clients connect to the System. For
this experiment we want to evaluate algorithms that are computa-
tionally heavy and algorithms that are not, along with various sizes
of data being sent between the Server and the connected Clients. This
experiment will show results that can indicate a specific configuration
of the System in order for an algorithm to scale.

Finally we will test the performance of an algorithm being written
in JavaScript and compare it to the C++ equivalent of that algorithm.
By performing this experiment we can see if we can recommend al-
ternative programmable languages that can be used and whether the
alternate language gives better results overall.

4.1 WEB-WORKER PERFORMANCE

A critical aspect of running Web Workers is having fast communica-
tion between the Main thread and the Workers themselves. By having
fast communication we can eliminate the additional variable of time
that it takes to send information between the worker and the main
thread.

In our implementation we use a Dedicated Worker to perform all
the client side computations before sending them back to the server.
However since there has been no previous research on the latency of
sending and receiving a message from the main thread to the worker
and back (e.g. Cycle), we decided to run performance tests that will
give us the average Latency of a cycle.

Web-Worker Bench-marking Methodology

All tests were performed on a Mac-Book Air (13-inch, Early 2014)
with 1.4 GHz Intel Core i5 and 8 GB 1600 MHz ram, using the Firefox
66.0.5 (64-bit) browser. We decided to use the Mozilla Firefox browser
since it allows for serving the Web Workers directly from the file
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4.1 WEB-WORKER PERFORMANCE

System, instead of having the JavaScript files being fetched from the
server.

Our focus is strictly on the latency. Therefore the worker script is
simple and it does not have to compute any algorithmic operations.

/* The worker file ’./ worker.js’ x*/

self .onmessage = ({ data }) => {
postMessage (data.trips === 0 7
/* If data.trips is O send termination request */
’terminate’

/* Send the data back */
data
);
3
The benchmark script is responsible for calculating the total elapsed
time of a Cycle.

/* Initialise worker */

const worker = new Worker(’./worker.js’);
let totalTime = O,
trips = 99;

/* Send first message to worker */
worker .postMessage ({
time: Date.now(),
/* The Cycles we want to test the latency (e.g. 99) x*/

trips,
P
/* Handler for receiving messages from worker x/
worker .onmessage = ({ data }) => {
const endingTimeMilis = Date.now();
if (data === ’terminate’) {
worker .terminate () ;
/* Latency (totalTime / data.trips) */
} else {
/* Elapsed time added to total time */
totalTime += endingTimeMilis - data.time;
worker .postMessage ({
time: Date.now(),
trips: data.trips - 1,
15
}
}

Web-Worker Findings

We measured the average latency for performing a cycle with send-
ing an object with two keys (i.e time, trips). We performed five 10x
increments of cycles starting from 100:

n € {100, 1000, 10000, 100000, 1000000 }

cycle tests to validate the average latency of a cycle
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4.1 WEB-WORKER PERFORMANCE

Web Worker Latency
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Figure 3: Average Latency to compute n cycles

The results indicate the average round trip to be dependent on the
size of the trips performed. This is due to the initialisation of the
thread having a range of values from 23ms — 233ms along with the
seemingly random interference of a cycle taking 6ms — 32ms instead
of the usual Oms — 1ms. From the data points plotted we can clearly
see that as the size of the round trips increases the Latency decreases.
While running the tests we expected the overall time to perform n
cycles to grow proportionally as n grows larger.

30



4.2 DISTRIBUTED SYSTEM PERFORMANCE

Web Worker Total Time
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Figure 4: Total time to complete all n cycles

We can clearly see that there is an inverse relationship between Fig-
ure 3| and Figure 4. For Figure 3, as the amount of cycles are increas-
ing the latency (ms) is decreasing. For Figurelq} as the cycles increase
by 10 times, the time it takes to complete all of them, takes 10 times
longer. Thus we can conclude that the communication latency of a
Web Worker is fast 0.12ms and it can be treated as an invariant when
measuring the performance of our client side script. If we choose to
have multiple cycles between the workers and the main script, 10000
cycles or more would yield the best results in terms of average latency.

While running the tests with logging enabled, the results of each
cycle severely impacted the performance of the computer overall. The
browser threw errors referencing the immense load that we were put-
ting it under just for the print statements, rendering it unusable until
the task was fully completed (e.g. n > 50000 cycles). We have given
clear instructions to not implement any printing in the worker file as
it can be potentially dangerous for any Client connected.

4.2 DISTRIBUTED SYSTEM PERFORMANCE

It is crucial to measure if different computational intensities can scale
as the our System grows with more connected browsers. We have
successfully tested the SHA-256 hashing algorithm along with the
Matrix Factorisation Algorithm. Each of the two algorithms that we
are bench-marking has a different computational load as well as dif-
ferent amounts of data being distributed on the connected clients.
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4.2 DISTRIBUTED SYSTEM PERFORMANCE

4.2.1  Distributed System Bench-marking Methodology

We used the Google Cloud platform[f|utilising the kubernetes clusters
for all of our testing. Google cloud allows us to easily perform our ex-
periments obtaining results that we would otherwise have to perform
manually over physical computers. Each algorithm was executed on
multiple connected browsers b on the Google Cloud platform:

be {1,248}

For each of our connected browsers on the cloud platform we were
using a vVCPU (3.75 GB Memory) and a 30 GB total allocation of disc
space.

In order to make the testing as concrete as possible we decided to
eliminate aspects of the system that can introduce variance. Therefore
we only performed the tests using the Chunk Distribution Type that
is set to constantly distribute 400 Tasks. Additionally we made a
small alteration to the core System functionality in order to only sent
tasks after a specific amount of connected browsers has been reached.
By doing so, we are able to have the correct total time of completion
(ms) for all Distributed Tasks that were given by the Load-Function.

Environment difference

Since we are using the cloud platform we wanted to find if there is
a big difference between running each algorithm on a local machine

and on the Cloud.
Hashing Algorithm Environment Difference

T
212

210
2051
Q
2
[¢P]
g
=200

195 -

193
Local Cloud

Environments

Figure 5: Completion of all Tasks for one connected client per
environment

1 https://cloud.google.com
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Matrix Factorization Environment Difference
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Figure 6: Completion of all Tasks for one connected client per
environment

By running the Hashing Algorithm Figure [5| we see that there
is a 19ms difference between the Cloud and the local environment
whereas the Matrix Factorisation Algorithm Figure [ has a difference
of only 7ms. Our obtained results for the scalability of each algorithm
will have this additional difference of 19ms and 7ms respectively that
we could otherwise avoid by running the tests locally.

4.2.2 Hashing Algorithm

The first algorithm that we have implemented is the SHA-256 [{ hash-
ing algorithm. Our entire data-set is comprised of 10000 strings with
a ranging length from zero to ten characters long. We will make this
algorithm computationally intensive by performing it 2000 times on
each of the 400 Tasks that have been distributed as a Chunk from our
Load-Balancer.

2 https://www.movable-type.co.uk/scripts/sha256.html
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4.2 DISTRIBUTED SYSTEM PERFORMANCE

Hashing Algorithm Scalability
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Figure 7: Total time to compute all results with 2000 hashings

As we can see from Figure [7, the hashing algorithm scales very
well. As the number of connected cloud browsers increases the total
time to complete the entire data-set decreases. We observer that for
one connected client the completion time is 212ms which is almost
four times higher than 56ms with eight connected browsers.

We observe almost 50% decrease going from one connected client
to two and from two connected clients to four. However we can
also see diminishing returns as the number of connected browsers
increases from four connected browsers to five, with only 8ms of dif-
ference.

4.2.3 Matrix Factorisation Algorithm

The second algorithm that we have implemented is the Matrix factor-
isation. This algorithm has been converted from the programming
language of C++ to WebAssembly P} The Matrix Factorisation differs
from the Hashing algorithm in terms of data being sent over the net-
work. There is a lot more data being distributed in one Task ?? and
the computational complexity of the algorithm is far less intensive.
Just by comparing the completion times on the Cloud environment
we see that it takes 212ms for the hashing algorithm Figure [5| whereas
the matrix factorisation algorithm Figure [7] only takes 49ms to com-
plete.

3 https://webassembly.org
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Matrix Factorisation Scalability
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Figure 8: Total time to complete the algorithm with 400 iterations

The Matrix factorisation algorithm does not scale very well. Figure
6| shows very little performance increase by having two connected
browsers where we gain a difference of just 2ms from having once
connected browser. Where we see the most amount of improvement
is with the four connected browsers where the performance improve-
ment is 8ms compared to one browser. We see a performance decrease
when there are 8 connected browsers. Surprisingly the total compu-
tational time is higher than just having one connected browser where
the performance loss is 15ms. This performance loss can be attributed
to a network “bottleneck”. The computational time of the algorithm
is less than the time it takes to complete the tasks given to one client.

Matrix Factorisation Programming language

In our final benchmark we decided to compare the performance of the
Matrix Factorisation Algorithm on different programming languages.
We have two implementations of the same algorithm. One written in
C++ and converted to WebAssembly and the second written in JavaS-
cript. Since we saw that the Matrix Factorisation algorithm seems to
have the best performance Figure |8 when four clients are connected,
we decided to only compare the results between one connected client
and four.
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Matrix Factorisation Programming Language
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Figure 9: Total time to complete the algorithm with different pro-
gramming languages
We can see on figure [g] that there is a performance increase with
both algorithms when the number of connected browsers grows from
one to four. WebAssembly seems to has the most performance in-
crease of 8ms. JavaScript has a performance increase of only 3ms.
Although WebAssembly seems to be having the worst performance
49ms with one connected client compared to JavaScript’s 47ms, WebAssembly
scaled better when four browsers were connected.
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CONCLUSION

This paper has examined the concept of browser based distributed
systems. It investigated multiple distinct browser based systems and
put forth arguments for their lack of popularity and possible improve-
ments. The ideas which were put forth as improvements, as well as re-
cent technological advancements in browser JavaScript environments
culminated in a new system built by the authors. The end result is a
JavaScript package designed for distributed computing over browsers
in a server-client topology.

In order to test the effectiveness of our system, multiple bench-
marks were carried out. It was observed that computational load has
a big impact on how an algorithm scales with the system. However,
computational intensity alone, is not the only aspect introducing vari-
ance. Both of our benchmarks have a different base computational
complexities after being executed on one browser. Furthermore, the
total execution time includes the latency of sending and receiving the
Tasks, which were not isolated. Since the less computationally intens-
ive algorithm was sending significantly more data we expect copious
amounts of latency to be introduced. Therefore we cannot concretely
say that the System was performing optimally given the conditions
of that specific benchmark.

Moreover we observed diminishing returns for both of our algorithmic
scalability tests. The results indicate that after a specific amount
of connected browsers, the performance gain is rendered to a min-
imum. After seeing consistent marginal increments in performance,
the system will eventually reach its maximum amount of connected
browsers that can achieve performance improvements. Therefore we
can say that there is an indicative amount of maximum connected
browsers that the System can have before yielding performance loss.

We do have promising results, however further benchmarks are
needed before it can be ultimately concluded that our system is in-
deed scalable. We have not included a scenario where the same base
computational intensity is introduced along with isolated latency. Fur-
ther explorations about the relationship between distribution sizes
and computational load would suggest how to provide ideal circum-
stances for an algorithm to reach its maximum distributed capabilit-
ies. To conclude, our research has shown that an algorithm can scale
up to a specific number of connected browsers and yield an increase
in performance.
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FUTURE WORK

It is clear from the results that there is a possible limit on how many
connected browsers can yield overall better performance with a server
with fixed resources. Both of the algorithms we have tested reached a
point of diminishing returns and even decrease in performance after
a certain number of clients. Therefore a main focus point for future
work can be in investigating solutions in this area. Increasing the
overall efficiency of the system architecture should always be an aim,
since it would lead to a decrease in the overhead introduced by each
client and increase the maximum number of browsers which can ef-
ficiently contribute. However another solution can be investigating
algorithms for detecting the maximum number of browsers which
still brings an increase in the system performance. Future work can
focus on dynamic detection of this number, since we do not know it
before exceeding it, and therefore reaching an overall worse perform-
ance and limiting the connections to stay below that number in order
to avoid a performance decrease.

Our project was limited to a single server architecture. However
a practical way to improve scalability drastically, or even to achieve
almost perfect scalability, can lie in the ability to run the task distri-
bution on multiple servers. A major focus for future work can be
an architecture with multiple server components, where new server
components can be added or removed on demand to meet scalabil-
ity needs. Such a system would benefit from devising an algorithm
for detecting for peak scalability, as mentioned in the previous para-
graph. Modern cloud computing platforms provide support for load
balancing between multiple servers as well as dynamically starting
and killing server instances. In order to automatize the server scalab-
ility this way, an interface can also be added through which the Server
would communicate reaching peak scalability and demand more serv-
ers to be added.

The fault-tolerance system currently does not act on it if a User was
found to be sending faulty results. This simplification was deemed
acceptable because in theory any sort of banning can be circumvented
by the User. The User can open a new socket connection or even
change their IP address in order to change their identity in the eyes of
the system. However banning users on the basis of such information
would still introduce a practical barrier to cheating and can be useful
in making it less feasible. Therefore an area of future work can be on
investigating systems for banning cheating users.

WebGL["is a browser API for moving graphics calculations in browsers
to the graphics card, similar to systems like OpenGL. We have not in-

1 https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
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FUTURE WORK

vestigated the use of GPUs, which are inherently designed to have
a high number of cores and can be suitable for parallel applications,
mostly due to time constraints. Discovering the practical aspects of
moving calculations to the GPU can be valuable.
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