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Abstract

Adaptive proton therapy refers to the possibility to adjust treatment plans
during the course of fractionated treatment to compensate for changes in patient
anatomy. This insures sufficient treatment of the tumor while minimizing damage
to surrounding organs at risk (OARs). In current clinical practice, adaptive proton
therapy relies on computed tomography (CT) images. CT images are linked to
imaging dose and thus the imaging frequency has to be well balanced. Cone beam
computed tomography (CBCT) and magnetic resonance (MR) imaging are an al-
ternative to CT imaging and can give a daily representation of the patient anatomy.
However these images are not directly suited for proton dose calculations.

In this work, a Deep Convolutional Neural Network was trained and used to
create synthetic CT (sCT) images based on CBCT and MR images. The aim of
this research is to evaluate and compare the accuracy of proton dose distributions
calculated on sCT images based on CBCT and MR images by a Deep Convolutional
Neural Network (DCNN), for the use of adaptive proton therapy in head and neck
cancer patients.

The quality of the sCT images was assessed by calculating mean absolute error
(MAE) values for the sCT images, with respect to corresponding CT images. Geo-
metric accuracy of the reconstruction of bony structures is assessed using the Dice
similarity coefficient (DSC).

Dose distributions were calculated on sCT images and corresponding CT images
using clinical treatment plans for 9 head and neck cancer patients. The accuracy of
the proton dose calculations on sCT and corresponding CT images is compared and
evaluated using gamma analysis and evaluation of the dose in clinically delineated
organs at risk (OARs).

Average MAE values were found of 37 £ 4 HU and 58 + 4 HU respectively for
sCT images based on CBCT and MR images respectively. The Gamma analysis
resulted in average pass rates of 98.6 + 1% and 97.5 + 1% for dose distributions
calculated on sCT images created from CBCT and MR images, respectively. Fur-
thermore, evaluation of dose volume histograms for the planning treatment volume
(PTV) and OARs, showed that sCT images based on CBCT as well as on MR im-
ages are suitable for proton dose calculations, with avarage dose differences of less
than 1%. From the results of this research we conclude that both sCT images based
on CBCT and MR images could be suitable for the use in adaptive proton therapy
for head and neck patients.

The use of sCT images for adaptive proton therapy enables daily evaluation
of the impact of anatomical changes on the treatment. Furthermore, it simplifies
workflows making the acquisition of repeated CTs (rCTs) along the treatment re-
dundant.
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1 Introduction

1.1 Radiotherapy

Every year approximately 110.000 Dutch citizens are diagnosed with a invasive tumor.
About 3100 of these patients are head and neck cancer patients [1]. Treatment for these pa-
tients can involve surgery, chemotherapy, hormonal therapy and radiotherapy. In curative
radiotherapy, the aim is to administer a high dose to a target volume, while maintaining
the dose to surrounding healthy tissue as low as possible. By doing so, the goal is to kill
the tumor cells and cure the disease, while keeping the side effects of the therapy to a
minimum.

In this study we look at head and neck cancer patients. The head and neck cancer
patient group is a group which is expected to benefit from proton therapy [2, 3]. And
the head and neck patients were among the first patients treated at the proton treatment
facility in Groningen. An important side effect in radiotherapy for head and neck can-
cer patients is dry mouth called xerostomia, caused by deterioration of the function of
salivary glands [4]. Patients who suffer from xerostomia are prone to develop dental prob-
lems such as xerostomia related caries and demineralization of teeth [5, 6]. Furthermore,
xerostomia can cause a burning sensation in the mouth and make swallowing and talking
difficult [7, 5]. These side effects have a big influence on the quality of life of head and
neck patients after radiotherapy, therefore efforts to reduce these side effects need to be
made [4].

1.2 Treatment modalities

Radiotherapy can be performed using multiple modalities. A radiation dose can be ad-
ministered by introducing a radiation source into the body of the patients at the site of
the tumor, which is done in brachytherapy and molecular radiotherapy. Brachytherapy
makes use of radioactive seeds or objects, which are placed inside or near the tumor and is
used in for example the treatment of prostate and cervix tumors [8]. Molecular radiother-
apy uses radiopharmaceuticals, which are introduced to the patients body by means of
injection or ingestion. Tumors are targeted by using the chemical and biological proper-
ties of the radiopharmaceuticals [9]. Iodine-131 is a commonly used radiopharmaceutical
for the treatment of thyroid cancer [10].

Another way of administering a radiation dose to a target is by the use of radiation
beams in what is called external beam radiotherapy. Different radiation types are used
within external beam radiotherapy. Photon beams with photon energies in the range of
50-500 keV are used to treat superficial tumors with a depth of upto 6 cm and photon
energies in the range of 4-25 MeV are used to irradiate targets located deeper within the
patients body [12, 11]. As individual photons travel trough the body, they only undergo a
low amount of interactions and they might even pass trough without interacting entirely.
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This is a consequence of the relatively low interaction probability of high energy photons
with tissue. A photon beam is attenuated as it passes trough the tissue of the patient.
This results in the deposition of a radiation dose along the path of the beam both in front
of and behind the target volume [14].

Electron beams with energies in the range of 4-18 MeV are used to treat superficially
located tumors with depths of up to 5 cm [13]. The interaction probability for electrons
in tissue is much higher than for photons. Electrons undergo many scatter interactions
over large angles as they travel trough tissue, creating a tortuous 'zig-zaggy’ path and a
more superficial deposition of the dose [14, 15].

A modality which has seen large innovation in resent years is to use particle radiation
beams of ionized atomic nuclei, such as protons or carbon ions to irradiate a target volume
[16, 17, 18]. Similar to electrons, the interaction probability for these charged particles
is high, which causes many interactions along the path of the particles. The mass of the
particles is much greater, for protons about 1833 times, compared with the mass of the
electron. When colliding with the electrons in tissue, because of this large mass difference,
the high energetic particles are scattered over small angles.

The large amount of interactions with small scattering angles, cause the high ener-
getic particles to gradually deposit their energy along a roughly straight path in the tissue.
When the particles have lost almost all their energy, the interaction probability increases
and a higher amount of energy per unit length is deposited, which creates the charac-
teristic bragg peak [14, 19]. If the particles are given the right amount of energy at the
start, they will have lost all their energy after arriving at the planned spot in the target
volume, and almost no dose is deposited behind this position. A graph of dose deposition
as a function of depth for the different external beam radiotherapy modalities is shown
in Figure 1 [20].

1.3 Adaptive proton therapy

Proton therapy enables the administration of highly conformal dose distributions to clin-
ical targets, spearing the surrounding healthy tissue, and therewith reducing side effects
[21, 22]. Highly conformal dose distributions however do impose problems, as treatment
plans can become more sensitive to uncertainties, such as motion and changes in the pa-
tients anatomy. These changes affect the range of the protons and thereby the location
at which they deposit their energy. When these effects are not sufficiently taken into
account, they can result in under dosage of the target volume, and/or high dose to organs
at risk (OAR) near the target volume.

Different strategies to mitigate the effects of changes in anatomy and target motion ex-
ist. Robust treatment planning can be employed to ensure sufficient treatment of the tar-
get volume [23, 24]. respiratory-gating or breath-hold strategies can be used to minimize
motion effects [25, 26]. Dose calculations based on images taken throughout the treatment
course can be used to trigger plan adaptations accounting for anatomical changes in what
is called adaptive proton therapy (APT) [27, 28].
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Figure 1: Dose depth curves for different external beam radiotherapy modalities [20].
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During the course of radiotherapy treatment multiple imaging modalities can be used
to get a representation of the patient anatomy. In current clinical practice, MR and
planning CT (pCT) images are acquired before the start of the treatment, CBCT images
are typically acquired before each treatment fraction, and the acquisition of repeat CT
(rCT) images are scheduled about once a week. Examples of MR, CBCT and CT images
are shown in Figure 2. MR images provide superior soft tissue contrast allowing optimal
delineation of relevant targets and OARs [29]. The pCT yields information on the electron
density, used for proton dose calculations. CBCT and rCT images are used for patient
positioning verification and to evaluate anatomical changes.

The use of multiple imaging modalities does come with disadvantages. Extra imaging
raises the costs of treatment and increases the clinical workload [30]. Inaccuracies in
co-registration of MR to pCT images results in the need for increased planning margins
[31, 32]. Acquiring CBCT, pCT and rCT images comes at the cost of a imaging dose for
the patient [33, 34, 35].

Figure 2: Examples of from left to right CT, MR and CBCT images of the same patient.

Currently, when significant changes in anatomy are observed in the CBCT image a rCT
image has to be taken for recalculation and evaluation of the dose distribution, which
can eventually lead to plan adaptation. This workflow is complicated and often prohibits
the implementation of adaptive workflows. Clinical implementation of adaptive proton
therapy would be much more realistic, if daily acquired CBCT images could be used for
dose re-calculations, and if the treatment evaluation steps could be more automatized.
In photon radiotherapy an alternative to daily CBCT imaging is daily MR imaging as
available at combined MR-linac systems [36, 37]. In the future, also combined MR-proton
systems might be realized [38, 39]. For these combined MR-proton machines, adaptive
proton therapy workflows would be the ideal use case.

In addition to enabling smoother adaptive workflows, benefits of using CBCT images
for sCT generation are the readily availability of the images, as they are made before each
treatment fraction for various indications and the absence of geometric distortions, which
can be present in MR images [40]. Benefits of using MR-images for sCT generation for
adaptive workflow include, the high soft tissue contrast, which allows more accurate eval-
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uation of OARs[41] and the lack of imaging dose received by the patient in the acquisition
of MR images.

1.4 Synthetic CT used for APT

However, neither MR nor CBCT images by themselves are suitable for proton dose cal-
culations. CBCT images have to low image quality [42, 43, 44] and the MR signal is not
directly related to electron density information needed for proton dose calculation [45].
To overcome these issues multiple efforts have been made, to create artificial or synthetic
CT (sCT) images based on CBCT and MR images suitable for proton dose calculations.
Examples of different sCT creation methods are density override approaches, [46, 47, 48|
atlas-based [48, 49, 50, 51] and voxel-based methods [52, 53].

In density override approaches, structures such as bone, soft tissue and air in the
original images are segmented, and average CT values are assigned to the structures.
Disadvantages of the density override approaches are that they are less accurate than
other methods, as a single C'T HU value is assigned to the whole structure, while CT HU
values vary in structures and delineation of structures is not straight forward [48].

Atlas based methods use a database of CBCT or MR images with corresponding
CT images. The atlas CBCT or MR images are registered and parts are matched onto
the patients CBCT or MR image, the same transformations are performed on the atlas
CT images and from this the sCT image is formed [49]. A disadvantage of atlas based
methods is that they are quite computationally expensive with sCT generation times
varying between minutes and hours,[54] and they typically deal worse with patients with
large anatomical abnormalities [55].

Voxel based methods use statistical methods and fitting of models to predict voxel
values on a local scale [54]. Voxel based methods often need multiple MR sequences
which increases acquisition time [56]. An overview of methods for sCT generation from
MR images has recently been made by Johnstone et al. [54].

Resent developments in deep learning have created new possibilities in image process-
ing. One of the possibilities is to train a Deep Convolutional Neural Network (DCNN)
to make the translation of a certain medical image type into an artificial different image
type [58]. Using a DCNN sCT images can be generated from CBCT or MR images.

In this work a DCNN is used to generate sCT images based on CBCT and MR images
(see Figure 3) The suitability of CBCT- and MR-based sCT's for adaptive proton therapy
is tested in a head and neck patient cohort. The suitability for adaptive proton therapy is
tested by recalculating a clinical proton plan on the sCT images and compare the result-
ing dose distributions with the original dose distribution, by using gamma analysis and
evaluating of dose volume histogram (DVH) points in relevant OARs. To our knowledge,
this is the first work comparing the feasibility of CBCT based and MR based adaptive
proton therapy for the same cohort of patients.
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CBCT DCNN sCT

MR DCNN sCT

Figure 3: Flow chart of two pathways of generation of sCT images based on CBCT and MR images using a
DCNN.

2 Methods

2.1 Neural network

The sCT images were created using a DCNN, a network architecture first used by X. Han
for this task [58]. The DCNN which was used in this work was developed at the medical
engineering group of Italian University Magna Graecia in Catanzaro [59]. Convolution
filters can be represented by a three by three matrix containing numbers called weights
in it. The weights indicate how the pixel values in a image which is convoluted are
multiplied and added up. If the right weights for the convolution filter are chosen, the
filter can detect features in the image. In the Laplace filter, the center pixel is multiplied
by eight and the eight surrounding pixels are subtracted.

When an image is convolved with the Laplace filter, the output contains higher inten-
sity pixels at locations where there was intensity change in the original image. The higher
intensity pixels in the output image therefore effectively show edges in the original image.
An example of the application of a Laplace convolution filter is shown in Figure 4 [57].
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Figure 4: From left to right: input image, Laplace convolution filter, Output feature map [57].

The network consists of a encoding path, in which features at decreasing resolution are
detected by means of an increasing number of three by three convolution filters. Features
are identified at each resolution level in the encoding path and are reported to the same
resolution level in the decoding path. In the decoding path the features from different
resolutions are combined and a sCT image is gradually reconstructed to in the end get a
high resolution sCT image as output. Figure 5 shows a graphical representation of the
DCNN architecture used by X. Han [58].

The DCNN we used contained 27 convolution layers, four downsampling "Max Pool-
ing’ layers, and four up-sampling 'Unpooling’ layers. Similar to the network proposed by
X. Han, our DCNN is a 2D DCNN, in the sense that it converts individual 2D CBCT or
MR image slices to sCT image slices and stacks the converted slices afterwards to get the
3D sCT image volume.

At the start of the training, the network contains 32 million randomly initialized pa-
rameters or weights. The weights are optimized in a training procedure using MR- or
CBCT- with their corresponding CT images. A loss function computes the difference
between the sCT image generated by the network and the corresponding CT image. The
weights are changed in small steps by gradient decent of the loss function, in a process
called back propagation. As loss function, the mean absolute error (MAE) within the
external contour of the patient was calculated using formula (1):

N
1
MAE = — > (IsCTijp — CTijl) (1)

in which N are the number of voxels within the external contour of the patient, sCT};,
and C7Tjj;, are the voxel values at the same position in the image matrix within the sCT
and corresponding CT image respectively.

The amount of data available for the training was artificially increased by using data
augmentation in the form of small translations and mirroring of the image pairs. The
batch size for the training was one, corresponding to individual 2D image slice pairs.
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Figure 5: Graphical representation of U-net DCNN architecture proposed by Xiao Han for converting MR
images into sCT images [58].
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To enhance performance, three networks were trained to convert images of 3 orthogonal
views, by using only either axial, sagittal or coronal slice pairs to train the network. The
generated 2D sCT slices are stacked to get the 3D sCT image volume for each view. Sub-
sequently, the resulting 3D sCT image volumes generated for each view were combined
and averaged to get the final sCT image. By doing so context from different directions in
the images is used to estimate sCT voxel values.

The patient population was divided into a training subset of 16 patients, validation
of training subset of 2 patients and a testing subset 9 patients. Training of the networks
was stopped when the loss for the validation subset did not decrease for five successive
epochs. The optimized weights resulting in the lowest validation loss were then used to
convert CBCT and MR images from the testing subset into sCT images.

MEA values between sCT created from MR images and corresponding CT images
for the head and neck region calculated inside an external contour have recently been
reported of 200.2 £ 23 HU and 90.7 £ 12.1 HU for a bulk density override and atlas-based
method respectively [60]. For sCT’s based on CBCT and MR images created using deep
learning Generative Adversarial Networks, MEA values have been reported of 29 +5 and
47 + 11 HU for brain radiotherapy patients, respectively [61, 62].

2.2 Data

Images of 27 head and neck proton therapy patients were used. The average age of the
27 patients was 62 years, with the oldest patient being 79 and the youngest 27 years old.
19 of the patients were male and 8 female. The MR and corresponding pCT image and
the CBCT and corresponding rCT image of the patients were all made within 48 and 24
hours respectively, all in treatment position using a treatment mask.

The close-in-time acquisition of imaging pairs is required to assure a minimal amount
of anatomical variations. A minimal amount of anatomical variations in the image pairs
is a prerequisite for a successful DCNN training. The CBCT with rCT image pairs and
MR with pCT images pairs were used for training the DCNN. To be able to compare the
sCT images created based on CBCT with ones based on MR to the same corresponding
CT image, both the CBCT and MR images were registered to the pCT images before
they were converted to sCT images. An overview of which images are used for each part
of this research is shown in Figure 6.

The pCT and rCT images were acquired using a Siemens SOMATOM Definition AS
at 120 kV with a voxel size of 2X0.98X0.98mm. The CBCT images were acquired for
position verification in a IBA proton treatment room at 100 kV with a voxel size of
2.5X0.51X0.51mm. CBCT imaging systems for proton therapy have only recently become
available in 2014. The geometry of a CBCT setup for proton therapy is different from
CBCT-setups used for photon therapy in CBCT linac combinations. The source to imager
distance (SID) and source to axis distance (SAD) for proton therapy CBCT setups are
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MR and pCT aquired +/- 10 Days 5 CBCTand rCT aquired
within 48 hours within 24 hours

DCNN training DCNN training

CBCT & MR registered

to pCT |
MR © ptlimage CBCT

DCNN create sCT DCNN create sCT

sCT images based on MR and
CBCT compared with pCT

Figure 6: Overview of images used in the different parts of the research.
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usually larger.

For our system the SID and SAD were 3470 mm and 2875 mm respectively. In CBCT
linac systems typical values for SID and SAD are 1500 mm and 1000 respectively. An
advantage of these higher distances is a decrease in the fraction of scattered photons
reaching the detector. Disadvantages of the higher distances are, the need of a higher
tube current to reach the same photon flux at the detector. Furthermore, maintaining
correct alignment with respect to the isocenter could be more difficult, which is important
for the image quality [63].

Acquisition of the MR images was performed after a single dose of gadoterate meg-
lumine (0.2 ml /kg). A 3D dual-echo spoiled gradient recalled (SPGR) sequence was
acquired on a 3T Siemens Skyra system to obtain two series of both out-phase (OP) and
in-phase (IP) images with echo times of 2.38 and 4.76 ms respectively and TR 5.5 ms; FA
9 degree; voxel size 0.9 mm isotrope and bandwidth 455 Hz per pixel of which only the
in-phase image was available.

2.3 Data preparation

To train the DCNN, deformable co-registration of CBCT with corresponding rCT im-
ages and MR with corresponding pCT images is necessary to get as close to voxel wise
alignment as possible. First the co-registration process of the CBCT with rCT and sub-
sequently the co-registration process of MR with corresponding pCT images will be dis-
cussed.

2.3.1 CBCT training data

Training data preparation for the CBCT images was performed by Adrian Thummerer,
PhD student at the department of Radiotherapy at UMCG. External masks were cre-
ated for the CBCT and rCT images. Automatic segmentation involving thresholding and
closing image operations in the software tool Plastimatch were used to create the masks.
Every mask was checked and residual holes were manually filled. The treatment couch
and mask were cropped from the CBCT image, by keeping the data within the external
mask, and setting the voxels outside the external mask to -1000 HU, corresponding to the
CT HU value of air. The same steps were also performed to crop the treatment couch
and mask from the rCT image.

Rigid registration of the masked CBCT to rCT images was performed in Plastimatch.
After the initial registration, masks from CBCT and rCT were combined and used to only
preserve overlapping data. Furthermore, CBCTs and corresponding rCTs were cropped
at the shoulders, because of the limited field of view(FoV) and poor image quality of
CBCTs in the area below (see Figure 7).

A diffeomorphic Morphons deformable image registration algorithm, implemented in
openREGGUI, an open source registration toolbox for Matlab, was utilized to register

13
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the cropped CBCT to the cropped rCT images. This algorithm was previously used and
tested for deformable image registration of CBCT to CT images in the head and neck
area. The image pairs of registered CBCTs and rCT's were subsequently used to train the
DCNN.

To allow a comparison of MR- and CBCT-based sCTs above steps were repeated to
register the original CBCT also to the pCT, which were subsequently converted to sCT
by the trained DCNN.

Figure 7: Example of a CBCT image. The part of CBCT image used for
training of the network is coloured green.

2.3.2 MR training data

External masks were made for the MR and pCT images using thresholding followed by
closing image operations in Plastimatch. Manual filling of residual cavities in the masks
was performed in 3D Slicer. The MR and pCT images were masked using the external
masks, by doing so, the immobilization mask and treatment table are cropped from the
images to only leave the patient volume. The voxel values in the volume outside the
external masks were set to -1000 HU and 0 corresponding to the value for air in the pCT
and MR images respectively.

The MR images were corrected for magnetic field bias, reducing the low frequency
noise in the images using plastimatch. The MR and pCT images only had a small over-
lapping volume at the start of the co-registration process. To initialize the co-registration,
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the center of gravity of external masks of the MRI and pCT image were matched and the
transformation was applied to the MR images using Plastimatch.

A rigid registration was used to further align the images, and deformable registra-
tion was used to correct for residual small differences in patient posture and positioning
using Elastix software [64, 66, 67]. A visualization of a deformation vector field for the
deformable registration can be seen in Figure 8.

Because of the multi-modal nature of the data, mutual information was used as met-
ric for the co-registration [68]. The deformable registration was based on parameter file
par0002 from the Elastix database and included a bending energy penalty, to decrease
unrealistic deformations of the image [64]. The deformable registration parameter file can
be found in appendix B.

The co-registered MR and pCT images were re-sampled to the average size of the pCT
images to get a consistent matrix size for the whole dataset. Finally the re-sampled MR
and pCT images were masked using the Boolean intersection of the external masks of the
MR and pCT images, this was done to only keep overlapping data, while again setting
the voxel values outside the combined mask to the value of air. The data preparation
steps for MR can be seen in Figures 9 and 10 The scripts used for processing of the MR
data for training of the network can be found in appendix Al and A2.

Figure 8: Visualization of deformable registration vector field on top of MR-
and inverted pCT image overlay. Length of deformation vectors was
multiplied by two, to improve visibility.
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Training data preparation MR

CT and MR image -Apply centre of gravity transformation of
-Not aligned @ masks on images for rough alignment
-Treament couch in CT image -Perform rigid & deformable registration of
-Different matrix size & field of view images
-Create external mask CT and MR image
-Match center of gravity of -Aligned images
masks and save transformation -Different matrix size & field of view

-Apply transformation of rigid and
deformable registration on masks
-Create combined mask using Boolean
intersection of registered masks

CT and MR image
-Aligned images
-Different matrix size & field of view
-Combined mask

-Resample images and combined mask

-Mask both images, put value of air to consistent matrix size
outside -Mask both images using combined
@ -Magnetic field bias correction for MR mask, put value of air outside
CT and MR image Data ready for training
-Not aligned -Aligned images
-Different matrix size & field of view -Same martix size & field of view
-Ready for registration -Combined mask same matrix size

Figure 9: Training data preparation steps MR.

Mask CT & MR image Magnetic field bias correction MR Mask using combined mask &
Register images and masks resample to consistent matrix size

Figure 10: Training data preparation steps MR. From left to right: overlay of external masks on CT
and MR image, overlay of registered CT (red) and MR (green) images, overlay of registered CT
(red) and MR (green) images masked with combined mask and re-sampled to same matrix size.
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2.3.3 Creating fused sCTpCT images

Original clinical treatment plans were based on the pCT images. To be able to make a
comparison of dose distributions calculated on the pCT images with those calculated on
sCT images based on MR and CBCT images, the sCT images had to be all aligned to
the pCT. The CBCT and MR images were rigid and deformable co-registered to the pCT
image before they were converted to sCT images by the trained DCNNs.

The CBCT and MR images had a limited FoV compared with the pCT image. Hence,
this limitation was still present in the sCT images created from the CBCT and MR images.
To decrease the effects of the limited FoV on the dose distribution calculations, the sCT
data for the overlapping FoV of the CBCT and MR images was cropped from the sCT
images and pasted into the pCT image by performing the following steps.

A mask was made covering the overlapping FoV of the CBCT and MR images. Next,
the regions outside the mask in the sCT images and inside the mask in the pCT images
were set to zero. Summation of these images was performed to obtain a fused sCTpCT
images, an example of fused sCTpCT images is shown in Figure 11. The script used for
creating the fused sCTpCT images can be found in appendix A3.

The immobilization mask and patient couch were not taken into account. The couch
and immobilization mask were cropped from all images, by setting the voxel values out-
side an external mask for the pCT to -1000 HU corresponding with the value for air.

To evaluate the precision and accuracy of the fused sCTpCT images used for the
dosimetric evaluation, both the MAE and the mean error (ME) were calculated within
the overlapping FoV for CBCT and MR images. The ME was calculated using formula (2):

1 N

ME = > (sCTyj — CTij) (2)

in which N is the number of evaluated voxels, sCT;j; and CTjj;;, are the voxel values
at the same position in the image matrix within the sCT and corresponding CT image
respectively.
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Fused sCTpCT
from CBCT

Figure 11: From left to right, pCT, fused sCTpCT image created using sCT based on CBCT image
and fused sCTpCT image created using sCT based on MR image. The sCT part of the sCTpCT
images can be seen within the ochreous yellow line.

2.4 Dice similarity coefficient

Dice similarity Coefficient (DSC) can be used to asses the geometric similarity of two
structures. The DSC is used here to evaluate the geometric accuracy of the reconstruction
of bony structures by the DCNN. The DSC is calculated using Formula (3) [65]:

2ANB)
bSC == 3)

In which A and B are the volume of the bony structures in the sCT and pCT images
and A B is the overlapping volume of the bony structures. DSC values lie between 0
and 1, with 0 indicating no overlap of the strucures and 1 indicating perfect overlap of
the structures. A visualization of the DSC can be seen in Figure 12.

The bony structures were segmented from the images by thresholding. Thresholding
was done at multiple HU levels of 100 - 1000 HU in steps of 100 HU.
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Spatial Overlap of Target Segmetations A and B DSC=2(AmB)(A4+B)
No Overlap: DSC=0

B

% Partial Overlap: 0<DSC<1

Complete Overlap: DSC=1

Figure 12: Visualization of DSC [65].

2.5 Dose distribution evaluation

Clinical treatment plans and delineations of target volumes and OARs made by experi-
enced radiotherapy employees were available. Clinical treatment plans had been previ-
ously made based on the pCT. Delineations of the planning target volume (PTV), brain
stem, parotid glands, mandible and oral cavity were rigidly copied onto the sCT images.

Using the clinical plans, dose distributions were recalculated on the sCT images in
RayStation TPS with a dose grid of 0.30X0.30X0.30 cm3. Images of recalculated dose
distributions and delineations of OARs can be seen in Figure 13 and 14.

Evaluation of the dose distributions was done using a gamma analysis, using 3% dose
difference (DD) and 3 mm distance to agreement (DTA); 2% DD, 2 mm DTA; 1% DD
and 1 mm DTA criteria. The gamma analysis was performed using a local 3D gamma
analysis algorithm in Plastimatch.

The gamma analysis was performed for the voxels containing sCT data only, in which
the dose was above a threshold of 10% of the reference dose. Results of the gamma anal-
ysis are reported as the percentage voxels which passed the gamma criteria i.e. gamma
index v(rg) < 1. The gamma index is calculated with formula 4:[69, 70]

Y(rr) = min{l(rg,7e)}V{re} (4)

in which rz and rg are points in the reference and evaluated distribution respectively
and I'(rg,rg) is calculated using formula 5:
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Figure 13: Dose distribution recalculated on pCT image
using a clinical proton therapy plan.

Figure 14: Delineations of OARs, brainstem (yellow),
oral cavity (green), PTV (red) and mandible (pink).
Left and right parotid glands are not visible in this
image slice, but were included in the evaluation.

20



Dosimetric validation of CBCT based and MR based synthetic CT images created by a
DCNN for the use of adaptive proton therapy in head and neck cancer patients.

Ar?(rg, AD?(rg,
[(rr,rE) = \/ : E;Z s) + 5(17;1; ') (5)

in which Ar is distance between the reference and the evaluated point, AD is the dose
difference between the reference and evaluated point and ér and éD are the DTA and
DD criteria. A graphical visualization of the gamma analysis of a single point is shown
in Figure 15. When a evaluated point falls within the circle drawn in the graph of Figure
15, the gamma criteria are fulfilled with respect to the reference point and the point can
be marked as passing the gamma criteria [70].
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Figure 15: Visualization of gamma analysis [70].

For evaluation of the dose in the OARs, dose volume histograms (DVHs) were con-
structed for the OARs and certain DVH points were chosen. Some of the by ICRU report
83 recommended DVH points for dose distribution evaluation were chosen [71]. The DVH
points which were used, were the maximum dose in 2% of the volume of the OARs (Dag)
and the mean dose in the OARS (D,,eqn). Comparing Doy, and Diyeqn evaluated for the
dose distributions calculated on the sCT images with those evaluated on a corresponding
CT images gives an measure of the accuracy of the calculation of the maximum and mean
dose in the OARs.

These chosen DVH points are metrics used in the evaluation and comparison of treat-
ment plans during the treatment planning phase in clinical practice. Furthermore, the
minimum dose in 2% (Dggy) of PTV was calculated, which gives an impression of the
minimum dose planned for a section of the target volume, which is an important DVH
point for evaluation of tumor control. The decision to create an adapted plan could for
example be triggered, when the clinical target volume, which lies inside the PTV | receives
less than 95 % of the planned dose [72].
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3 Results

3.1 DCNN training & synthetic CT

Training of the DCNN took 2.5 days on a Nvidia GeForce GTX 1080 Graphics card for
a single view. The minimum validation loss was found on average after 18 epochs. Con-
verting CBCT and MR images to sCT images with the trained DCNN took about one
minute per patient volume per view. The MAE between the sCT images and pCT images
was reduced by combining and averaging the images created for three orthogonal views.
A reduction in MAE of about 3 HU and 5 HU for sCT¢cger an sCT )y r respectively was
achieved, which is about a 10% reduction in MAE for both branches.

The average MAE calculated for nine patients for the CBCT and MR image branch
were 37 + 4 and 58 £+ 4 HU respectively. More results of the MAE and ME evaluation
of the sCT images can be seen in table 1. A transverse slice of a sCT image and the
difference of the sCT with respect to the pCT image for both branches can be seen in
Figure 16. In the difference images, a white area can be seen in the brain, representing a
low amount of difference between the sCT and pCT images for this area. At the interfaces
of structures, more difference can be seen, and these differences are smaller for the images
in the CBCT branch than those in the MR branch.

Table 1: MAE and ME results calculated between sCT¢per, SCT g and pCT data of nine patients for
the CBCT and MR conversion branch.

Average [HU] | STDEV. [HU] Range [HU]
sCTeper MAE 37 4 [31.493 - 42.064]
ME 1 6 -8.132 - 10.613]
sCTyvr MAE 58 4 [50.894 - 61.485]
ME 1 8 [17.716 - 10.616]
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Figure 16: Left column from top to bottom: CBCT, sCT created
from CBCT, pCT and difference between sCT created from
CBCT and pCT image. Right column from top to bottom: MR,
sCT created from MR, pCT and difference between sCT created
from MR and pCT image.
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The geometric accuracy of the reconstruction of bony structures by the DCNN was
evaluated using the DSC. The DSC was calculated for bony structures created by thresh-
olding the sCT and pCT images at multiple HU value thresholds. The sCT an pCT
images were thresholded at HU levels of 100 - 1000 HU in steps of 100 HU. The results of
the DSC evaluation can be seen in Figure 17. DSC values for bony structures in sCTagor
images were consistently higher than DSC vales found for the sCTj;r images.
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Figure 17: DSC scores as function of the HU value at which the sCT¢ger, sCT g and pCT
images were thresholded.
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Scatter plots of MR VS pCT, MR VS sCT, sCT VS pCT and difference between
sCT and pCT VS pCT voxel values which occupied the same location in their specific
matrix can be seen in Figure 18. Voxels which were within the the external of the patient
volume were used, and the amount of data points was decreased by 1/50 to be able to
differentiate the data points better. The pearson correlation coefficient (r) for the MR VS
pCT was -0.24 indicating a non-linear relationship. Low CT HU values and MR signal is
measured for voxels containing air, for which values in the MR VS pCT plot are found
at around -1000 HU. High CT HU values and low MR signal are measured for voxels
containing bone, for which data points in the MR VS pCT plot are found at around 1000
HU. A pearson correlation coefficient of 0.92 was found between the sCTj;z and pCT
data, indicating a strong linear relationship between the sCT and pCT data.
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Figure 18: Scatter plots of voxel wise comparison of MR VS pCT top left, MR VS sCT top right, sCT VS pCT bottom left and Difference pCT-sCT
VS pCT bottom right.
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3.2 Dosimetric evaluation - line dose

A 1D evaluation of the dose distributions was done by plotting the HU and dose values
along a line trough the images and dose distributions. The lines were drawn along the
coronal and sagittal plain trough the isocenter of the treatment plan for three patients.
The used lines can be seen in Figure 19. Plots of the HU and dose values along the lines
for the first patient can be seen in Figures 20 and 21. Plots for the second and third
patient can be found in appendix C. The dose values along the lines in the sCT dose
distributions images closely follow the dose values for the pCT dose distribution.

Figure 19: CT images slices of three patients. The isocenter of the treatment plan is at the intersections
of the coronal line (green) and sagittal line (yellow). The HU and dose values were evaluated along the
coronal and sagittal lines for the patients.
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Figure 21: HU and dose values along the sagittal line trough the isocenter for pCT, sCTcpor, SCT g and corresponding dose distributions of patient 1.
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3.3 Dosimetric evaluation - gamma analysis

A gamma analysis was performed of dose distributions calculated on the fused sCTpCT
images compared with original dose distributions calculated on pCT images. The average,
standard deviation in the average, maximum and minimum gamma pass rate for 9 patients
for 3% DD , 3 mm DTA; 2% DD, 2 mm DTA; 1% DD and 1 mm DTA criteria are reported
in table 2. Gamma pass rates determined for all analysed criteria and all patients are
reported in table 3.

Table 2: The average, standard deviation in the average, maximum and minimum gamma pass rate for
dose distributions calculated on the sCTcpor and sCT s images of nine patients for 3% DD , 3 mm
DTA; 2% DD, 2 mm DTA; 1% DD and 1 mm DTA criteria.

Criteria  Image Average (%] STDEV. [%] Range [%)]
3mm 3% sCTopor | 98.6 1.0 [97.3 - 99.7]
sCTarg 97.5 1.0 [96.1 - 98.9]
2mm 2% sCTopor 7.2 15 [94.9-99.2]
sCTarg 95.1 1.5 [93.0 - 97.5]
Tmm 1% sCTepor | 927 2.9 87.3 - 96.8]
sCT oy n 88.1 2.8 [84.8 - 92.8]

Table 3: Gamma pass rates for dose distributions calculated on the sCTopeor and sCTy,r images of
nine patients for 3% DD , 3 mm DTA; 2% DD, 2 mm DTA; 1% DD and 1 mm DTA criteria.

Criteria Image \Patient # | 1[%]| 2[%] 3[%] 4[%] b5[%] 6[%] 7[%] 8[%] 9[%)]
3mm 3% sCTeoer 98 99 99 100 97 98 98 100 98
sCTyr 97 97 99 98 96 98 97 98 98
2mm 2% sCTeper 96 98 98 99 95 96 97 99 96
sCTyr 94 95 97 97 93 96 93 95 96
Imm 1% sCTeger 90 94 95 97 87 91 93 95 92
sCTyr 86 89 93 91 85 89 85 86 89

3.4 Dosimetric evaluation of dose in the target and OARs

Table 4 shows the average D,,cq, for the 9 patients for each OAR. The lowest average
Djnean with a value of 4.26 Gy was found for the brainstem. Average relative differences
in the mean, minimum and maximum dose evaluated in the PTV were less than 0.3% for
both the CBCT and MR branch. Average relative differences in the mean and maximum
dose in all OARs were less than 1.5% for both the CBCT and MR branch (Table 5).
Relative differences in dose at DVH points for target and OARs for the nine separate test
patients can be found in appendix D.
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Table 4: Avarage D,,cqn calculated on the pCT image, evaluated in OARs for nine head and neck
patients.

OAR Average Diean [GY]
PTV 71.12
Right Parotid 20.70
Left Parotid 26.43
Brainstem 4.26
Mandible 27.15
Oral Cavity 31.34

Table 5: Avarage, standardeviation in the avarage and range of relative % differences in Dyyean, Doy
and Dggy, evaluated in OARs on for nine head and neck patients.

OAR Image DVH Point | Average (%] STDEV. [%] Range [%)]
PTV sCTceer  Diean 0.037 0.06 [0.00-0.13]
Dogy; 0.135 0.16 [0.04-0.26]

Doy, 0.083 0.10 [0.00-0.20]

SCTur  Dinean 0.080 0.10 [0.01-0.21]

Dossr 0.220 0.22 [0.09-0.38]

Doy, 0.107 0.19 [0.00-0.54]

right parotid  sCTopor  Doean 0.502 0.7 [0.00-1.60]
Dy, 0.138 0.20 [0.00-0.47]

sCTyr D.nean 0.567 0.80 [0.00-1.94]

Doy, 0.229 0.33 [0.00-0.82]

left parotid  sCTeper  Dinean 0.423 0.76 [0.00-2.93]
Doy, 0.124 0.17 [0.00-0.40]

SCTark Diean 0.669 1.10 [0.00-2.92]

Doy, 0.227 0.28 [0.02-0.49]

Brain stem  sCTcoger  Dimean 0.702 0.94 [0.00-2.72]
Doy, 1.472 1.76 [0.00-3.91]

sCT g D.nean 0.549 0.63 [0.00-1.86]

Doy, 0.559 0.75 [0.00-2.14]

Mandible sCTcer  Dimean 0.430 0.57 [0.04-2.72]
Doy, 0.099 0.09 [0.01-0.17]

sCTyr D.nean 0.662 0.90 [0.00-2.15]

Doy, 0.256 0.33 [0.00-0.77]

Oral cavity  sCTeaer  Dinean 0.927 1.17 [0.19-2.83]
Do, 0.119 0.15 0.03-0.32]

SCTarz Diean 1.223 1.49 [0.11-2.43]

Dy, 0.204 0.28 [0.00-0.50]

All above sCTcer  Dimean 0.504 [0.00-2.83]
Doy, 0.339 [0.00-3.91]

SCTMR Dmean 0.625 [000—292]

Doy 0.339 (0.00-2.14]
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4 Discussion

In this research the accuracy of proton dose calculations on sCT images created from
CBCT and MR images for the use in adaptive proton therapy for head and neck patients
is evaluated and compared. The sCT images generated from CBCT and MR images vi-
sually resembled their corresponding CT images quite well. Average MEA values of 37
HU and 58 HU for sCT images created from CBCT and MR images respectively are com-
petitive with MAE values found in literature. During this research a paper of researchers
from the University Medical Centre Utrecht was published in, which they found a MAE
values of 75 + 9 HU for head and neck patients, using a 3D patch based DCNN approach
to generate sCT images based on MR images [73]. For sCT images created using a gen-
erative Adversarial Neural Network MAE values for brain radiotherapy patients of 29 +5
and 47 + 11 HU for sCT images based on CBCT and MR respectively [61, 62].

Differences between the sCT images and their corresponding CT images were mainly
seen at the interfaces of anatomical structures (see Figurel6). The accuracy and precision
of converting CBCT and MR images to sCT images using our trained DCNNs, were better
for the CBCT branch than for the MR branch. The range in ME and the average in MAE
was smaller for the CBCT branch. The worse performance of the DCNN at the interfaces
of structures, could have been caused by multiple factors. Imperfections in registration
of the training data could have caused the differences at the interfaces. When the images
in the training dataset are not perfectly voxel-wise aligned to their corresponding images,
voxels at the interface of a tissue air interface, can contain tissue in the CBCT or MR
image and air in the corresponding voxel of the CT image. This results in a bad ground
truth for the DCNN to learn form at the interfaces of structures.

In Figure 20 the HU values along a line are plotted. It can be noticed that the HU
values plotted for the sCT images seem to vary less than HU values of the pCT image.
The variation in HU values in the pC'T images have been partly caused by image noise.
The added contribution of noise for each voxel can not be accurately predicted, since the
contribution of noise is random. Because the contribution of noise can not be predicted,
it can possibly also not be predicted by the DCNN. Therefore, the absence of the con-
tribution of noise could explain the lower amount of variation in HU values in the sCT
images.

During optimization of the registration steps, it was noticed that the performance of
the network was strongly dependent on the quality of the registration. If the alignment
between the images is off by a few mm the MAE results increased to above 100 HU.
Furthermore, The registration of MR images to their corresponding CT images was more
challenging than the registration of CBCT images to CT images, which was probably
caused by the larger difference in the nature of the signal in MR and CT imaging.

The difference in registration quality of the training data, could have caused difference
in performance of the trained DCNNs in creating sCT images based on CBCT and MR
images. Another reason for the worse performance of the DCNN at interfaces of struc-
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tures could be, that the DCNN is not able to reconstruct structure interfaces with a high
enough spatial resolution to capture the large changes in CT HU over small distances at
the interfaces. Experiments using a phantom with structures of different sizes could be
used to evaluate the spatial resolution of the reconstruction of sCT images by the DCNN.

Differences between the sCT and CT could also be seen at the air cavities in the inner
ear, especially in the sCTyr images (see Figure 16). The small structures with bone air
interfaces in the inner ear were not well reconstructed. A cause of the poor reconstruction
of the inner ear from MR images could be that the MR signal for bone and air is both
low and therefore hard to differentiate (see Figure 18). The inaccuracy of the sCT in the
inner ear could be taken into account in treatment planning, by not planning beam paths
through these poorly reconstructed areas, to reduce the effects these inaccuracies might
have on the calculation of the dose distribution.

Deformable registration between the CBCT and MR image and their corresponding
CT image was performed for preparation of the data for network training and testing. In
deformable registration, information on a local level is matched between the images to
generate deformation of the images to get an optimal alignment of the anatomy between
the images. It is important to note, that matching of the information between the images
does not, per se, mean matching of the anatomy in the images. Especially, this could not
be the case in MR to corresponding CT registration, because of the different nature of the
MR signal and CT HU measurement and the fact that they do not have a simple linear
relationship.

It can be argued that the use of deformable registration, could influence the evaluation
of the performance of the DCNN. The sCT images based on the CBCT and MR images
are compared with the CT images to which the CBCT and MR images were previously
deformable registered. Information had already been matched between the CBCT and
MR images and their corresponding CT images in the deformable registration.

In this research we performed visual inspection of all deformable registered images,
to make sure the deformation of the images were anatomically realistic and evaluate the
alignment of anatomy between the images. To study the performance of the DCNN
without the effect of information matching, one could create an experiment in which
no deformable registration is necessary by keeping the anatomy and positioning of the
anatomy which is scanned in the different imaging modalities constant. Rigid registration
based on fiducial markers should then suffice to get sufficient alignment of the anatomy
in the images.

When sCT images created by a DCNN are used in a automated adaptive workflow,
our data preparation for image conversion needs to be more automated. In our workflow
we used external masks by thresholding and performing closing operation on the original
image, after which manual filling of residual holes was necessary. To automate the step of
creating an external for the patient, a DCNN trained for this image segmentation tasks
could possibly be used [74].
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Dose distributions were calculated using original clinical plans with multiple beam
angles on the sCT¢per and sCTj g images and their corresponding CT images. Compar-
ison of the dose distributions was done using a gamma analysis and evaluation of the dose
in OARs. High gamma pass rates with an average of 98.6% and 97.6% for 3 mm DTA
3% DD criteria, 97.2% and 95.1% for 2 mm DTA 2% DD criteria and 92.7% and 88.1%
for 1 mm DTA 1% DD criteria were found for sCTcpor and sCT ),z images respectively.
The gamma pass rates we found are comparable with pass rates found by the researchers
from Utrecht calculated for photon therapy plans [73].

The high gamma pass rates indicate a good correspondence between the dose distri-
butions calculated on the sCT images compared with dose distributions calculated on the
corresponding CT images. The gamma pass rates for each criteria level were higher for
dose distributions calculated on the sCTspger images than on the sCTy g images, indi-
cating more accurate dose calculations on the sCT¢opor images. This is also which was
expected from the better results of sCT generation based on CBCT images.

The average difference between the values of D,,eqn, Doy and Dggy in the PTV cal-
culated on the sCT images compared with values calculated on the corresponding CT
images were less than 0.3% both for sCT images based on CBCT and MR images. The
decision to adapt a treatment plan at our department is made based on the dose coverage
of the clinical target volume (CTV), which is inside the PTV. The decision to create an
adapted plan could for example be triggered by the CTV receiving a less dose than 95%
of the planned dose [72]. The small relative dose difference we found for the PTV will not
have an significant influence on this decision.

The average difference in mean and maximum dose in most of the other evaluated
OARs were below 1%. The dose differences arising from the use of sCT data for dose
calculations are smaller than dose differences arising from uncertainties in CT-to-density
calibration and the choice of model which is used for dose calculations [75, 76]. Therefore,
we conclude that sCT images created by a DCNN from CBCT and MR images are of
sufficient quality for the use in adaptive proton therapy for head and neck patients.

In Figure 25 HU and dose values are plotted along a line in the sagittal plane for
patient three. A large difference between the HU values in the sCT¢por compared with
HU values of the pCT image can be seen around voxel 230. The line was drawn trough
the throat at the hight of the mandible. The large difference could have been caused
by a different position of the anatomy in the throat during the acquisition of the CBCT
image compared with the position in the pCT image. Also a difference in the dose values
around voxels 220 - 230 can be seen for the sCTcpcr dose distribution. The difference in
dose could have been caused by the difference of position of the anatomy, which was not
aligned by the deformable registration.

The use of sCT images based on CBCT and MR images can make daily evaluation of
treatment plans possible for head and neck patients, without a added imaging radiation
dose for the patient. Adaptation of the treatment plans for head and neck patients for
anatomical changes which occur on the time scale of days does then become feasible.
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For the brain stem and the oral cavity larger average relative differences in DVH
points were found. The average difference in Doy of 1.47% was found for the brain
stem for sCTcper and D,eqn of 1.22% was found for the oral cavity for sCT ;. The
larger relative differences found for the DVH points evaluated in the brain stem, could
be explained by the relative lower dose received by the brain stem (see Table4). A lower
dose in the brain stem causes that the same difference in dose amounts to a larger relative
difference in dose.

The larger relative differences found for the DVH points evaluated in the oral cavity,
could have been caused by differences in positioning of the tongue, during the acquisition
of the CBCT and MR images and with respect to the CT images. By visual inspection,
it was noticed that differences in positioning of the tongue was often not completely cor-
rected by deformable registration.

The CBCT and MR images had a limited FoV, hence the sCT images created based
on these images inherited the limited FoV. To perform a fair comparison between the
performance of the DCNN for converting CBCT and MR images, sCT data was used only
of the overlapping FoV of the CBCT and MR images for evaluation. The effect of the
limited FoV of the sCT images on the calculation of the dose distributions was minimized
by combining the pCT data with the sCT data. This way a full FoV of the upper body
was mimicked. The influence of combining the sCT data with data from the pCT im-
ages on the evaluation of the dose distributions was minimized by only performing the
gamma analysis within the sCT data. Furthermore, it was made sure that the OARs se-
lected for DVH point evaluation were within the sCT FoV. In the future, radiologists could
enlarge the field of view of the MR images, when they are to be used for dose calculations.

The ability to perform daily adaptive treatment planning without the burden of an
additional radiation dose for the patient could especially be valuable for pediatric patients.
pediatric patients have a longer life ahead of them during which they could develop
secondary cancers from exposure to radiation [77]. MRI-only workflows using sCT images
created from MR images for planning, positioning and treatment plan adaption would be
preferred to minimize the imaging dose burden.

Different from adults, children undergo anatomical changes like hardening of the bones
[78]. Research should be performed to evaluate if sCT images created from CBCT and MR
images for pediatric patients are also of enough quality to perform sufficiently accurate
dose calculations.

More research is needed for different regions of the body to evaluate the dosimetric
accuracy of the use of sCT images created by a DCNN for the use of adaptive proton
therapy. CBCT and MR with corresponding CT data is also available at the department
of radiotherapy of the UMCG for low grade glioma patients, breast cancer patients and a
limited cohort of paediatric patients. Data for Abdominal pediatric patients could become
available in Utrecht.

35



Dosimetric validation of CBCT based and MR based synthetic CT images created by a
DCNN for the use of adaptive proton therapy in head and neck cancer patients.

5 Conclusions

The goal of this research was to evaluate and compare the dosimetric accuracy of the use
of sCT images based on CBCT and MR images created by a DCNN for the use of adaptive
proton therapy for head and neck cancer patients. From our results it can be concluded
that sCT images based on CBCT images were more accurate than than sCT images based
on MR images. Dose distributions calculated on sCT images based on CBCT images were
more accurate than dose distributions calculated on sCT images based on MR images.
Both sCT images based on CBCT and MR images appear to be suitable for the use in
adaptive proton therapy for head and neck patients.

6 Research Ethics

6.1 Patient privacy, informed consent and data management.

The use of patient data in research brings up the issues of maintaining privacy of the
patients and approval of the patient to use their data is necessary. Image data of previously
treated proton therapy patients was used in this research. Patients who get proton therapy
are asked if their data can be used for research by use of informed consent forms.

Privacy of the patients was insured by anonymizing the data when the data was down-
loaded from the radiotherapy patient database [79]. Random patient numbers were given
to the patients, only a securely stored excel file contained the information to couple the
random numbers to the patients. Furthermore, the data was stored on a drive within the
UMCG, the data could not leave the UMCG.

6.2 Collaboration

This research was performed in collaboration with Italian University Magna Gracia. The
DCNN which was used for this research was programmed by researchers of Magna Gra-
cia. Paolo Zaffino, Post-doctoral researcher at Magna Gracia, came to Groningen for
three weeks to teach us how to train the DCNN and help with data preparation for the
DCNN. Furthermore, data preparation of the CBCT images for DCNN training was done
by Adrian Thummerer, a PhD student at the department of radiotherapy, a lot of the
details of the research were discussed with him. In return, the contribution of Paolo and
Adrian to the research will be mentioned, and they will become co-authors if we publish a
paper with the results. These arrangements were discussed before the start of the research
to give everyone the right expectations.

6.3 Dual use

Use of the results of this research in fields outside the field of adaptive proton therapy
could be imagined. For instance, attenuation correction of positron emission tomography
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(PET) scans using sCT images derived from MR images using a DCNN could possibly
be performed. Conventionally the attenuation correction for PET-scans is done using CT
images of the patient [80]. Acquisition of CT scans comes with a dose burden for the
patient. The dose burden of the acquisition of CT scans ranges from about 2.1 mSv for
head CT scans to about 31 mSv for multiphase abdomen and pelvic CT scans. Estimated
is that 1 in 8100 women, who had a routine head CT scan at age 40, will develop cancer
from the radiation dose [81].

Integrated PET-MR systems already exist, and the search for accurate PET atten-
uation correction from MR images is a active field of research [82]. When sCT images
derived from MR images are used for attenuation correction, the imaging dose of the
acquisition of the CT scan is eliminated. In the former case the dual use of the outcomes
of the research would be beneficial.

6.4 Societal impact

The goal of this research was to verify and compare the use of sCT images created from
CBCT or MR images by a DCNN for dose calculations for adaptive proton therapy. When
sCT images created from CBCT images made for position verification purposes are used
for adaptive proton therapy, no rCT images have to be made to evaluate the changes of
the patient anatomy. Adaptive proton therapy workflows become more feasible and less
expensive, as the workflow with rCT images is more complicated to plan and no rCT im-
age acquisition costs are made. The benefits for society are possibly more frequent use of
improved treatment of cancer, using adaptive proton therapy compared with non-adaptive
proton therapy. And a reduction of the cost of adaptive proton therapy workflows.

Evaluating the changes in patient anatomy on daily made CBCT or MR images for
adaptive proton therapy could reduce the uncertainties in changes in the patient anatomy.
Decreasing the uncertainties in changes in the anatomy can lead to the use of smaller
planning margins which are needed to account for these uncertainties. The use of smaller
planning margins, reduces the dose delivered to healthy tissues surrounding the tumor
and thereby, a reduction in side effects of the treatment. Reduced side effects, could
decrease the costs of treatment of side effects and the quality of life of the patients after
proton therapy is increased.

During conventional adaptive proton therapy, about four rCT images are acquired
during the treatment process. Acquisition of these images results in a imaging dose for
the patient. Reduction of the imaging dose for the patient is achieved when sCT im-
ages created from MR images are used for adaptive proton therapy. The imaging dose
might be small compared to the dose received from the therapy, but especially for pedi-
atric patients it is always good to try to reduce dose to healthy tissue on all fronts, as
they have a longer life still ahead of them in which they can develop secondary tumors [77].
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A Data processing scripts
A.1 Training data preparation MR script 1

center of gravity matching of the masks followed by a rigid registration
+ This transformation can subsequently be used as rough alignment of images

29

1
2 This script creates masks for CT and MR images and performs a
3
1

7 import os

s #define function to create a list of paths to patient folders

o def list_folder (folder):

10 return [os.path.abspath(i) for i in [f.path for f in os.scandir(folder)
if f.is_dir ()] if 'Mijn’ not in i]

12 #create a list of paths to patient folders
15 patients_folder = list_folder (r’C:\ Users\JongBA\3DMR’)

15 #define the parameters for parmeter file for registration of masks

16 def generate_init_par_file (path):

17 global _section = ’’’ [GLOBAL]

1s MOVIing=7s

19 fixed=%s

20 moving_roi=%s

21 fixed _roi=%s

22 img_out=%s

25 xform_out=%s '’ % (os.path.join (path, ’'mask 3DMR_in.nrrd’), os.path.join (
path, ’mask pCT.nrrd’), os.path.join(path, ’mask 3DMR_in.nrrd’), os.path
.join (path, ’mask pCT.nrrd’), os.path.join (path, ’
mask_3DMR _in_tomask_pCT_INIT .nrrd’), os.path.join (path, ’3
DMR_in_topCT_INIT . txt ’))

5 stages_section="""

. [STAGE]

s xform=align_center_of_gravity

30 [STAGE]

31 xform=translation

32 impl=plastimatch

33 Tres=2 2 1

34 gridsearch _min_overlap=0.95 0.95 0.95
35 metric=mse

36 num_substages=2"""

38 with open(os.path.join (path, ’par_INIT_reg 3DMR_in.txt’), ’w’) as f:
39 f.write(global_section)
40 f.write(stages_section)

41

12 #for every patient in list of patients create masks for MR and CT image
13 #for every patient in list of patients perform regisration of masks

1 for ii, patient_folder in enumerate(patients_folder):
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45 print (patient_folder)

17 #generate registration parameter file within patient folder
48 generate_init_par_file(patient_folder)

50 Fget paths to images in patient folder

51 MR3D = [i for i in list_folder (patient_folder) if ’Gd.in’ in i][0]

52 pCT _folder = [i for i in list_folder (os.path.join(patient_folder , 'CT’)
) if ’pCT’ in i][0]

54 #Convert MR image from .DCM to .nrrd format

55 MR _conversion_.command = ’plastimatch convert —input %s —output—img %s
" % (MR3D, os.path.join(patient_folder , ’3DMR_in.nrrd’))

56 #print (MR _conversion_command )

57 os .system (MR_conversion_command )

59 #Convert pCT image from .DCM to .nrrd format

60 pCT _conversion_command = ’plastimatch convert —input %s —output—img %
s’ % (pCT_folder, os.path.join(patient_folder , ’pCT.nrrd’))

61 #print (pCT_conversion_command )

62 os .system (pCT_conversion_command )

63

64 #Create mask pCT

65 segment_command = ’plastimatch segment —input %s —fill —holes —output

—img %s’ % (os.path.join(patient_folder , ’pCT.nrrd’), os.path.join (
patient_folder , 'mask pCT.nrrd’))
66 #print (segment_command)
67 o0s . system (segment_command )
68
69 #Create mask MR
70 segment_command = ’plastimatch segment —input %s —fill —holes —fill —
options 76 3 1 2 5 17 —lower—threshold 20 —output—img %s’ % (os.path.
join (patient_folder , ’3DMR_in.nrrd’), os.path.join(patient_folder , ’
mask 3DMR_in. nrrd "))
#print (segment_command)

~

72 0s.system (segment_command )

73

74 #Crop CT couch from CT image

75 mask_command = ’plastimatch mask —input %s —mask %s —mask—value
—1000 —output %s’ % (os.path.join(patient_folder , 'pCT.nrrd’), os.path.
join (patient_folder , 'mask pCT.nrrd’), os.path.join(patient_folder , ’
pCT_masked . nrrd ’))

76 #print (mask_command)

77 os . system (mask_command )

79 #register masks to get an initial transformation

80 init_register _.command = ’plastimatch register %s’ % (os.path.join (
patient_folder , ’par_ INIT_reg 3DMR_in.txt "))

81 #print (register .command )

82 os.system (init_register command)

Listing 1: Python example
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A.2 Training data preparation MR (bash) script 2
#!/bin /bash

This script corrects the MR image for magnetic field bias.
Applies initial transformation on MR image

Performs rigid and deformable deformable registration on CT and MR image
Applies the transforms form registration on the masks and combines them

Resamples the images and mask to the same matrix size

Crops the regions outside the combined mask from the images
PR

#Define patients for which the steps schould be performed
root_folder="/home/bas/3DMR _elastix_7”

patients=(P_002 P_003 P_004 P_010 P_011 P_012 P_013 P_014 P_015 P_016 P_017
P_018 P_019 P_.020 P_021 P_024 P_026 P_028 P_029 P_030 P_031 P_032 P_033

P_034 P_035 P_037 P_039 P_040 P_043)
slicer_path="/usr/local /share/Slicer —4.10.1—1linux —amd64”

for patient in ${patients [x]};

do
echo "PATIENT ${patient}”
#define variable containing patient folder path
patient _folder=${root_folder}/${patient}

# Corrrect for magnetic field bias
${slicer_path}/Slicer —launch ”${slicer_path}/lib/Slicer —4.10/cli—

modules/N4ITKBiasFieldCorrection” ${patient_folder}/3DMR.in.nrrd ${

patient_folder } /3DMR_in BIASCORR . nrrd

# Apply INIT transformation on MR image to get rough alignment

plastimatch warp —input ${patient_folder }/3DMR._in BIASCORR.nrrd —

fixed ${patient_folder}/pCT _masked.nrrd —xf ${patient_folder}/3
DMR_in_topCT_INIT . tfm —output—img ${patient_folder}/3
DMR_in_ BIASCORR_topCT_INIT . nrrd

# Apply INIT transformation on manually corrected mask MR

plastimatch warp —input ${patient_folder}/mask 3DMR_in.nrrd —

fixed ${patient_folder}/pCT _masked.nrrd —xf ${patient_folder}/3
DMR_in_topCT_INIT . tfm —output—img ${patient_folder}/
mask_3DMR _in_tomask_pCT_INIT . nrrd

# Run Elastix rigid registration & copy and rename result from

output folder into patient folder
mkdir ${patient_folder}/elastix_files_rigid

elastix —f ${patient_folder}/pCT _masked.nrrd —m ${patient_folder}/3

DMR_in_.BIASCORR _topCT_INIT . nrrd —out ${patient_folder}/
elastix_files_rigid —p elastix_rigid_par.txt

cp "${patient_folder}/elastix_files_rigid/result.0.nrrd” ${
patient_folder } /3DMR_in BCORR_topCT_RIGID. nrrd
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# Apply rigid transformations on mask MR
cp "${patient_folder}/elastix _files_rigid/TransformParameters.0. txt
7 7${patient_folder}/elastix_files_rigid /TransformParameters.0_NN. txt”
sed —i ’s/FinalBSplinelnterpolationOrder 3/
FinalBSplineInterpolationOrder 0/g’ "${patient_folder}/
elastix_files_rigid /TransformParameters.0 NN. txt”

mkdir ${patient_folder}/transformix_files_rigid

transformix —in ${patient_folder}/mask-3DMR_in_tomask_pCT_INIT .nrrd
—out ${patient_folder}/transformix_files_rigid —tp "${patient_folder}/
elastix_files_rigid /TransformParameters.0 NN. txt”

cp ${patient_folder}/transformix_files_rigid/result.nrrd ${
patient_folder }/mask_.3DMR_in_topCT_RIGID . nrrd

# Run Elastix deformable registration , copy and rename result from output
folder into patient folder

mkdir ${patient_folder}/elastix _files_def

elastix —f ${patient_folder}/pCT _masked.nrrd —fMask ${

patient_folder } /mask pCT.nrrd —m ${patient_folder}/3
DMR._in_. BCORR_topCT_RIGID . nrrd —mMask ${patient_folder}/
mask_3DMR_in_topCT_RIGID.nrrd —out ${patient_folder}/elastix_files_def —
p elastix_def_par_7.txt —threads 1

cp "${patient_folder}/elastix_files_def/result.0.nrrd” ${patient_folder
}/3DMR_in_ BCORR_topCT_DEF . nrrd

# Apply deformable transformations on rigid mask MR
cp "${patient_folder}/elastix_files_def/TransformParameters.0.txt” ”${
patient _folder}/elastix_files_def/TransformParameters.0 NN. txt”
sed —1 ’s/FinalBSplinelnterpolationOrder 3/
FinalBSplineInterpolationOrder 0/g’ "${patient_folder}/elastix_files_def
/TransformParameters.0 NN. txt”

mkdir ${patient_folder}/transformix_files_def

transformix —in ${patient_folder}/mask 3DMR_in_topCT_RIGID.nrrd —out ${
patient_folder}/transformix_files_def —tp "${patient_folder}/
elastix_files_def/TransformParameters.0 NN. txt”

cp ${patient_folder}/transformix_files_def/result.nrrd ${patient_folder}/
mask_3DMR_in_topCT_DEF . nrrd

# Combine masks

“/python_venv/bin/python ~/combine mask.py ${patient_folder }/mask pCT.
nrrd ${patient_folder}/mask_ 3DMR_in_topCT_DEF .nrrd ${patient_folder}/
mask_combined . nrrd

# Resample images

plastimatch resample —input ${patient_folder}/pCT_masked.nrrd —dim 7512
512 216” —output ${patient_folder}/pCT_masked_resampled.nrrd

plastimatch resample —input ${patient_folder }/3DMR_in BCORR_topCT_DEF .
nrrd —dim 7512 512 216”7 —output ${patient_folder}/3
DMR_in BCORR _topCT _DEF resampled . nrrd

plastimatch resample —input ${patient_folder }/mask_combined.nrrd ——dim
512 512 216”7 —interpolation nn —output ${patient_folder}/

”
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mask_combined_resampled . nrrd

# Mask images by applying combined mask

plastimatch mask —input ${patient_folder}/pCT_masked _resampled.nrrd —
mask ${patient_folder}/mask_combined_resampled.nrrd —mask—value —1000
—output ${patient_folder}/pCT _masked_resampled_fullymasked.nrrd
plastimatch mask —input ${patient_folder}/3
DMR_in BCORR_topCT_DEF resampled . nrrd —mask ${patient_folder}/
mask_combined_resampled . nrrd —mask—value 0 —output ${patient_folder}/3
DMR_in_.BCORR_topCT_DEF _resampled_fullymasked . nrrd

done

echo ”"DONE!”
Listing 2: Python example

A.3 Fused sCTpCT generation script
import os

This script resamples the CBCT mask

Combines the CBCT mask with a MR mask

Pastes the sCT images into the pCT image for the overlapping field of view
for MR and CBCT

Gets image data from original CT image and converts fused sCTpCT image from
.DCM to .nrrd format

def list_folder (folder):
return [os.path.abspath(i) for i in [f.path for f in os.scandir(folder)
if f.is_dir()] if PO’ in i]

patients_folder = list_folder (r’Z:\ testtest’)
for patient_folder in patients_folder:

#resample CBCT mask to size of MR mask
Resample_mask_CBCT _command= ’plastimatch resample —input %s —dim 7512
512 216” —interpolation nn —output %s’ % (os.path.join(patient_folder ,
"mask_CBCT_cropped_registered .nrrd’), os.path.join(patient_folder , ’
mask _CBCT _cropped_registered_resampled .nrrd ’))
#print (Resample_mask CBCT _command)
os . system (Resample_mask_CBCT _command )

#Combine masks using boolean intersection

Combine_masks_command= ’plastimatch mask —input %s —mask %s ——mask—
value 0 —output %s’ % (os.path.join(patient_folder , ~’
mask_combined_resampled . nrrd ’), os.path.join (patient_folder ,
mask _CBCT _cropped _registered_resampled.nrrd’), os.path.join (
patient_folder , 'mask_combined._-resampled_3masks.nrrd’))

#print (Combine_masks_command )

os . system (Combine_masks_command )

)
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#Set values outside of combined mask to 0 to prepare for fusion of sCT
from MR and pCT images

Mask_sCTfromMR _command= ’plastimatch mask —input %s —mask %s —mask—
value 0 —output %s’ % (os.path.join(patient_folder ,
sCT_ax16_sagl7_cor25_voted.nrrd’), os.path.join(patient_folder , ~’
mask_combined_resampled _3masks.nrrd’), os.path.join(patient_folder ,
sCT _fromMR _3masked . nrrd ’))

#print (Mask sCTfromMR_command)

os . system (Mask_sCTfromMR_command )

)

#Set values outside of combined mask to 0 to prepare for fusion of sCT
from CBCT and pCT images

Mask_sCTfromCBCT_command= ’plastimatch mask —input %s ——mask %s ——mask—
value 0 —output %s’ % (os.path.join(patient_folder , ’
sCTCBCT_ax26_sagl3_corl9_voted.nrrd’), os.path.join(patient_folder , ’
mask_combined_resampled_3masks.nrrd’), os.path.join(patient_folder , ’
sCT_fromCBCT_3masked . nrrd "))

#print (Mask sCTfromCBCT _command )

os . system (Mask_sCTfromCBCT _command )

#resample sCT from CBCT image to size of mask
Resample_sCTfromCBCT _command= ’plastimatch resample —input %s —dim 7512
512 2167 —output %s’ % (os.path.join(patient_folder , ’
sCT _fromCBCT 3masked . nrrd '), os.path.join(patient_folder , ~’
sCT_fromCBCT_3masked_resampled . nrrd ’) )
#print (Mask_sCTfromCBCT _command)
os . system (Resample_sCT{fromCBCT_command )

#Set values at location of combined mask to 0 to prepare for fusion of
sCT and pCT images

Prepare_pCT _command= ’plastimatch fill —input %s —mask %s —mask—value
0 —output %s’ % (os.path.join(patient_folder , ’pCT_masked_resampled .
nrrd’), os.path.join(patient_folder , ’mask_combined_resampled_3masks.

nrrd’), os.path.join(patient_folder , ’pCT_masked resampled_3masks.nrrd )
)

#print (Prepare_.pCT_command )

os . system (Prepare_pCT_command )

#Add prepared sCT from MR and pCT images to end up with fused sCTpCT
images

fuse_sCTfromMR_pCT_command= ’plastimatch add —output %s %s %s’ % (os.
path.join (patient_folder , ’sCTpCT_fromMR.nrrd’), os.path.join (
patient_folder , 'pCT_masked_resampled_3masks.nrrd’), os.path.join (
patient_folder , ’sCT_fromMR_3masked.nrrd’))

#print (fuse_sCTfromMR _pCT_command)

os . system (fuse_sCTfromMR_pCT_command )

#Add prepared sCT from CBCT and pCT images to end up with fused sCTpCT
images

fuse_sCTfromCBCT_pCT_command= ’plastimatch add —output %s %s %s’ % (os.
path.join (patient_folder , ’sCTpCT_fromCBCT.nrrd’), os.path.join (
patient_folder , 'pCT_masked_resampled_3masks.nrrd’), os.path.join (
patient_folder , ’sCT_fromCBCT_3masked_resampled.nrrd’))
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52 #print (fuse_sCTiromCBCT _pCT_command)
55 os.system (fuse_sCTfromCBCT_pCT _command )

55 Fconvert sCTpCT fused images to DICOM with original pCT as reference CT
for resampling and image information

57 #get path to original pCT image
ss  #print(os.listdir (patient_folder))
59 first_folder= [os.path.join(patient_folder , os.path.normpath(d)) for d in
os.listdir (patient_folder) if os.path.isdir (os.path.join(patient_folder
; d))]
60  #print (” first folder path: 7 first_folder |
61 second_folder= os.path.join(first_folder [0
first_folder [0]) [0]))
62  F#print(second_folder)
65 list_second_folder= os.listdir (second_folder)
6« #print (list _second_folder)
65  pCT_path = os.path.join (second_folder ,[i for i in list_second_folder if
pCT’ in i][0])
66 strl1="\"”
67 pCT_path_string= strl + pCT_path + strl
6s  #print (pCT _path_string)
69
70 sCTpCT_fromMR_toDICOM _command= ’plastimatch convert —input %s —fixed %s
—referenced —ct %s —output—dicom %s’ % (os.path.join(patient_folder ,
sCTpCT_fromMR.nrrd’), os.path.join(patient_folder , ’pCT_masked.nrrd’),
pCT _path_string , os.path.join(patient_folder , ’sCTpCT_fromMR-DICOM’))
#print (sCTpCT_toDICOM _command )
os . system (sCTpCT_fromMR_toDICOM _command )

0])
I

os.path.normpath (os.listdir (

b

)

RN

AW N =

sCTpCT_fromCBCT_toDICOM _command= ’plastimatch convert ——input %s —fixed
%s —referenced —ct %s —output—dicom %s’ % (os.path.join(patient_folder ,
'sCTpCT_fromCBCT .nrrd’), os.path.join(patient_folder , ’pCT_masked.nrrd’
), pCT_path_string, os.path.join(patient_folder , ’sCTpCT_fromCBCT_DICOM’
))
75 #print (sCTpCT_toDICOM_command )
¢ os.system (sCTpCT_fromCBCT_toDICOM_command )

¢ pCT_masked_toDICOM_command= ’plastimatch convert —input %s —referenced —
ct %s —output—dicom %s’ % (os.path.join(patient_folder , 'pCT _masked.
nrrd’), pCT_path_string, os.path.join(patient_folder , ’pCT_masked DICOM’

))

79 #print (pCT_masked toDICOM _command )
so  os.system (pCT_masked toDICOM _command)

Listing 3: Python example
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B Deformable registration MR parameter file Elastix
(FixedInternalImagePixelType "float")

(MovingInternalImagePixelType "float")

(FixedImageDimension 3)

(MovingImageDimension 3)

(UseDirectionCosines "true")

[/ Fxkxkxkrkrckrkrkk Main COMPONENtS kskkkkkkokkokkokkokkokkokkokkok ¥k %

(Registration "MultiMetricMultiResolutionRegistration")
(Interpolator "BSplinelInterpolator")
(ResampleInterpolator "FinalBSplinelInterpolator")
(Resampler "DefaultResampler")

(FixedImagePyramid "FixedSmoothingImagePyramid")

(MovingImagePyramid "MovingSmoothingImagePyramid")

(Optimizer "AdaptiveStochasticGradientDescent")

(Transform "BSplineTransform")

(Metric "AdvancedMattesMutuallnformation" "TransformBendingEnergyPenalty")
(MetricOWeight 1)

(MetriclWeight 600) //

[/ xxkkkokkkkkkkokkkkk TransTormation sk skskskskskskskskokskskk k% ok ok sk ok k% kokk

(GridSpacingSchedule 4 2 1)

(FinalGridSpacingInPhysicalUnits 10)

(HowToCombineTransforms "Compose")

[/ Fkxkkkkokkkkkokkkkkokk Similarity measure skokkskskskokskokskokkskokskokkokskokk
(NumberOfHistogramBins 60) //

[/ FxExkrkkkkkkkkkkkkokk MULTIiresoLlution *kskkskkskkskkokkokkokkokkok Kok %
(NumberOfResolutions 3)

[/ FkEkskskrkkkkkkskokokkkk OpLimizer sokskskokskokskokkskskokskokokokkkokokkkokok ko

(MaximumNumberOfIterations 500) //

[/ FxkExkkxkkkkkkkk Image sampling kxskkskskskskskskkskskkkokkkskkkk
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(NumberOfSpatialSamples 10000) //
(NewSamplesEveryIteration "true")
(ImageSampler "RandomSparseMask")
(SampleRegionSize 40) //
(UseRandomSampleRegion "true")
(MaximumNumberOfSamplingAttempts 5)
(RequiredRatioOfValidSamples 0.05)

// sk >k 3k 3k sk 3k sk ok 5k ok ok sk k Interpo]_ation and Resa_mp]_j_ng >k >k sk sk sk sk sk 5k 5k >k >k >k %k >k >k >k

(BSplinelInterpolationOrder 1)
(FinalBSplineInterpolationOrder 3)

(ShowExactMetricValue "false")
(WriteTransformParametersEachResolution "true")
(WriteResultImageAfterEachResolution "true")
//(WritePyramidImagesAfterEachResolution "true")

(DefaultPixelValue 0)
(WriteResultImage "true")

(ResultImagePixelType "short")
(ResultImageFormat "nrrd")

C Dosimetric evaluation - line dose
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Dosimetric validation of CBCT based and MR based synthetic CT images created by a

DCNN for the use of adaptive proton therapy in head and neck cancer patients.
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Figure 22: HU and dose values along the coronal line trough the isocenter for pCT, sCTcpor, sSCT pr and corresponding dose distributions of patient 2.



Dosimetric validation of CBCT based and MR based synthetic CT images created by a
DCNN for the use of adaptive proton therapy in head and neck cancer patients.
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Figure 23: HU and dose values along the sagittal line trough the isocenter for pCT, sCT¢pcr, sCT pr and corresponding dose distributions of patient
2.
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Dosimetric validation of CBCT based and MR based synthetic CT images created by a

DCNN for the use of adaptive proton therapy in head and neck cancer patients.
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Figure 24: HU and dose values along the coronal line trough the isocenter for pCT, sCTcper, sCTyr and corresponding dose distributions of patient
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Dosimetric validation of CBCT based and MR based synthetic CT images created by a

DCNN for the use of adaptive proton therapy in head and neck cancer patients.
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Dosimetric validation of CBCT based and MR based synthetic CT images created by a
DCNN for the use of adaptive proton therapy in head and neck cancer patients.

D DVH point evaluation

Table 6: Relative difference in dose at DVH points for target and OARs for dose distribution calculated
on sCT¢per for nine patients.

OAR DVH point | 1] 2[%] 3(%] 4% B[ 6[%] 71%] 8% 9[%]
PTV Dogge -02 -02 00 03 -0,1 -01 0,1 00 02
Dinean 00 -0 01 00 01 00 00 00 00
Doy, -0o6 -0014 01 -01 01 -0,2 00 -0,1 0,0
Right parotid D,,ean -14 00 04 01 -0,1 -08 0,0 0,1 1,6
Doy, -03 o1 01 00 01 00 00 00 05
Left parotid  Djean 00 -04 04 00 -24 -03 01 -02 -0,2
Doy 00 01 01 04 -03 00 -0,1 01 -0,
Brainstem Dinean 06 00 -08 02 -10 00 -1,0 -27 00
Doy, 1,1 00 -1,1 01 -34 12 -24 -39 -02
Mandible Diean 01 04 09 -03 -1,3 -02 00 -04 0,2
Doy, 01 -0 02 02 01 02 00 00 00
Oral cavity Dinean -9 10 04 05 -09 -28 -03 -02 04
Doy -03 -01 01 -03 01 01 00 01 0,0%
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Dosimetric validation of CBCT based and MR based synthetic CT images created by a
DCNN for the use of adaptive proton therapy in head and neck cancer patients.

Table 7: Relative difference in dose at DVH points for target and OARs for dose distribution calculated
on sCT i for nine patients.

OAR DVH point | 1[%] 2[%] 3[%] 4% 5% 6% 7% 8% 9%
PTV Dogot 02 02 02 02 -01 -03 02 -03 -04
Dinean 01 00 00 00 02 -01 00 -01 -02
Doy 00 00 01 -01 05 00 -0 00 00
Right Parotid Dipeqn 02 00 05 16 04 03 00 01 19
Doy o0 00 01 -08 01 02 00 04 03
Left Parotid  Dpean 00 00 02 08 29 05 01 11 04
Doy 02 00 -03 05 -04 01 -0 03 00
Brainstem Donean 06 03 03 -0 09 00 -1,0 -1,0 00
Doy 01 03 -05 -02 21 00 -09 05 -03
Mandible Donean 00 03 09 21 -14 02 04 04 02
Doy 04 00 -02 07 -01 08 00 01 00
Oral cavity  Dimean 11 09 24 =23 14 01 21 05 -01
Doo 001 01 00 -04 05 -02 00 -05 00
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