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Abstract: In this paper it is investigated whether machines are able to synthesize human-like
handwriting through deep learning that can be used to augment datasets. For this purpose the
relatively novel generative adversarial networks (GANs) are deployed and experimented with.
GANSs are generative neural networks, consisting of two competing networks, that adversarially
learn through a loss function to generate new, non-existing samples. There exist several poten-
tially useful loss functions such as L1 and L2. By feeding the network images with machine-print
words and simultaneously feeding it images with handwritten words the system learns to mimic
the handwriting. These synthesized handwritten words can be used to supplement datasets used
to train Handwritten Text Recognition (HTR) systems. Several experiments demonstrate what
the optimal settings are in terms of network architecture to achieve machine-print handwriting

resembling human writing.

1 Introduction

Handwritten Text Recognition (HTR) is a domain
in pattern recognition that has been extensively re-
searched over the past decades. The ability to trans-
late physically written text to a digital representa-
tion opened up possibilities in different areas of ex-
pertise. For example, in forensics HTR could serve
as a means of matching evidence to a suspect (Bu-
lacu, 2007). Convolutional neural networks (CNNs)
in combination with Long Short-Term Memory re-
current neural networks (LSTMs) (Hochreiter and
Schmidhuber, 1997) are frequently implemented in
these offline systems that serve the purpose of rec-
ognizing text drawn by pen or pencil.

Correspondence, however, is nowadays shifting
towards being primarily digital while classical tex-
tual communication is in decline. People are more
inclined to convey a message by e-mail or by one of
the several popular cross-messaging platforms. Al-
though these message services provide an increase
in convenience in terms of speed, with respect to
more traditional ways of communication, the per-
sonal aspect of handwritten text is lost.

One way to not entirely shut down the door on
handwritten script is to implement a neural net-

Figure 1.1: Variability in how the character ’p’
is written in the words ’sleep’, ’pull’ and ’spare’.
Meticulous details depend on the neighbours of
characters. A system that mimics these words
should be able to distinguish between such va-
rieties.

work that is able to generate text conform to per-
sonal handwriting. For such a system to work one
would need to represent text in a manner that can
be processed by the network. Various research has
resulted in models suitable for this purpose, such
as the Skip-gram model (Mikolov, Sutskever, Chen,
Corrado, and Dean, 2013). This model creates vec-
tor representations of words and captures syntactic
and semantic relationships between words in a text.
Another frequently used method is the n-grams
model (Brown, Desouza, Mercer, Pietra, and Lai,
1992) by which words are statistically predicted
based on previous words. Handwriting generation



rather focuses on the relationship between individ-
ual characters than on the relation between multi-
ple words. The way characters are written in a word
is often dependent on the relationship with their
neighbouring characters, as shown in Figure 1.1. A
possible solution to this problem is to represent a
word as character bigrams: all two-character com-
binations in a single word. Many words, however,
have predominantly equal bi-gram representations
leading to an impoverished data distribution.

To overcome the restrictions of having a sparse
data distribution in handwriting synthesis image-
to-image translation is used in this study. Image-
to-image translation is referred to as the mapping
of a set of (input) pixels to a set of (output) pix-
els (Isola, Zhu, Zhou, and Efros, 2017). If the set
of input pixels is an image containing a word writ-
ten as machine print and the set of output pixels
is the same word but in handwritten fashion then
the data distribution is richer than the bigram dis-
tribution.

The missing piece of the puzzle is the genera-
tive system itself. Generative Adversarial Networks
(GANs), the recently proposed neural networks
(Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-
Farley, Ozair, Courville, and Bengio, 2014), provide
this remaining piece. GANSs consist of two separate
neural networks, a discriminator and a generator.
The generator aims to fool the discriminator by
synthesizing data which the discriminator classifies
as real (i.e. coming from the training data) or fake
(i.e. produced by the generator). Alongside GANs
there is another theoretical option for implementing
the generative system: Variational Autoencoders
(VAEs) (Kingma and Welling, 2013). VAEs, how-
ever, produce blurry images in contrast to GANs
(Radford, Metz, and Chintala, 2015). Characters
in words are subject to detail which blurring likely
fails to capture, therefore GANs have the upper
hand.

In this study, GANs are researched with the
purpose of generating handwritten words through
image-to-image translation. This specialised type of
GAN will be termed GANdwriter. A succesful im-
plementation of the GANdwriter has the ability to
generate data that can be used to augment training
data sets. Given the fact that such a system is con-
ditioned to synthesize handwriting corresponding
to an input image, the correct labels are automat-
ically included.
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Figure 2.1: Procedure of training the GAN: G
translates the input image x to a fake output im-
age through G(z). D learns to discriminate be-
tween the fake and real images.

2 Methods

The goal of traditional GANs is to learn how to
map a random noise vector, z, to an output im-
age, y, using a generator, G : z — y (Goodfellow
et al., 2014). In these networks the generator G is
adversarially trained with a discriminator D. The
procedure of training GANs is characterized by G
and D playing a minimax two-player game: G is
generating images with the purpose of ’fooling’ D
as D is classifying images as ’fake’ (i.e. produced
by the generator) or ’real’ (i.e. being a sample from
the training data). Classification between fake and
real images is expressed as the probability of an im-
age being fake or real. Successful training implies
that G is able to mimic the images from the train-
ing data distribution while D converges to a proba-
bilistic equilibrium: pgenerated = Pdata (Goodfellow
et al., 2014).

In this study, the input random noise vector z is
replaced by an input image x so that G : z — y.
On each image x a label is placed in machine-print
space, corresponding to the word in sample y of the
training distribution, in handwritten space. This
way G is effectively conditioned to translate the
input word to the same word but in handwritten
manner. Figure 2.1 is the graphical representation
of the training process.

2.1 GANSs objective

The objective of GANs, where GG aims to minimize
the loss function while D aims to maximize it, can



be expressed as

i L D) =
min max can(G, D)

Eyllog D(y)] + Ex[log(l — D(G(2)))]. (2.1)
The task of G is not only to fool D but also to
synthesize images that closely resemble the ground
truth of images in the training distribution. One
way to decrease blurring and thereby facilitate an
increase in precise resemblance is to introduce the
mean absolute error (i.e. L1) (Isola et al., 2017):

L11(G) = Ezylly — G(2)]], (2.2)
leading to the final objective for G:
G(@G) = LGAN(G, D) + /\LLl(G) (2.3)

where 0g are the parameters of G; A is a constant
for controlling the amount of contribution of L1.
In research of (Isola et al., 2017) A = 100 has been
found to be most effective and is therefore adopted.
An alternative to L1 would be the mean squared
error (i.e. L2). According to past research L2 suf-
fers from more blurring with respect to L1 (Zhao,
Gallo, Frosio, and Kautz, 2016). Because the re-
sults preferably have the least amount of blurring
as possible, the focus lies on the L1 variant.

2.2 Network architecture

The settings of the hyperparameters of GANs are
sensitive in a sense that small adjustments to the
architecture of a network may result in drastic dif-
ferences in its final output. (Salimans, Goodfellow,
Zaremba, Cheung, Radford, and Chen, 2016) re-
searched several improvements to (partially) over-
come this sensitivity. One of the proposed solu-
tions is to introduce minibatch discrimination: mul-
tiple images are presented to the discriminator in
a single training step. Minibatch discrimination re-
moves the phenomenon of a GAN collapsing into
a mode where all generated outputs come from a
single point. (Masters and Luschi, 2018) investi-
gated the sweet spot for the size of such a mini-
batch. They have found that a minibatch size m,
where 2 > m < 32, achieves the best results in a
consistent way. In the architecture of the GANd-
writer m = 32 is chosen because the samples in the
dataset show high variability at the character level.

By presenting more samples in a training step the
network better adapts to this variability. Moreover,
the distribution of the number of samples per word
is not normal: some words have significantly more
samples than other words. Therefore, a higher mini-
batch size decreases the chance that a batch con-
tains only samples of a single word, which would
disfavour the training process.

To overcome the well-known problem of overfit-
ting, dropout layers are added to the architecture
of both networks, G and D (Srivastava, Hinton,
Krizhevsky, Sutskever, and Salakhutdinov, 2014;
Wager, Wang, and Liang, 2013). Dropout layers
shut down a random portion of its input units
thereby diminishing the effect of several units be-
coming overly influential in the output of both net-
works.

For optimization purposes, batch normalization
layers are added to each block in both networks,
except for the first block (Toffe and Szegedy, 2015).
Batch normalization is used to reduce time needed
for a network to converge by normalizing the input
distribution of a layer, which diminishes the inter-
nal covariate shift.

Minibatch stochastic gradient descent is used in
the form of the Adam optimizer (Kingma and Ba,
2014). Both the generator and the discriminator
have an individual optimizer with equivalent pa-
rameters: a learning rate of 2 x 1074, 3 = 0.9
and B = 0.999. The gradients are applied alter-
nately: first a step on the discriminator, then a
step on the generator (Goodfellow et al., 2014).
Furthermore, as suggested by (Goodfellow et al.,
2014; Isola et al., 2017) the generator is trained
to maximize log D(G(z)) rather than to minimize
1 —log D(G(x)). Maximizing the former loss func-
tion provides stronger gradients in the early stages
of learning where the discriminator can quickly be-
come too powerful. In this early stage the generated
images can be confidently classified as false by the
discriminator because they do not resemble the real
images yet.

Architecture details are included in Appendix A.

2.2.1 PatchGAN

An important feature of the traditional GAN is
that the traditional discriminator outputs a single
scalar p, where —1 > p < 1. This represents the
probability of the output being real (i.e. p = 1)
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Figure 2.2: PatchGAN discriminator. Each cell
in the 5x5 grid (output of the discriminator)
classifies whether a patch of 9x9 on the original
image is real or fake. This is merely an illus-
trative example, as patch size and output grid
depend on the details of the convolutional layers
used in the discriminator.

or fake (i.e. p = —1). Such a classification fails to
penalize local features in the output of the gener-
ator, because the generator only receives feedback
from the discriminator on the difference between
the entire images. An improvement to this problem
is the PatchGAN (Isola et al., 2017). This type of
discriminator outputs an NxN grid of which each
cell classifies an MxM patch of its input images. A
cell in this NxN grid has a receptive field (i.e. the
MxM patch) (Dumoulin and Visin, 2016), which is
averaged through convolution. In this way the at-
tention is focused on local features rather than on
global features. Figure 2.2 depicts this patch clas-
sification.

The patch-size is the result of the recursive ap-
plication of the formula that calculates a network’s
layer local receptive field, which finally yields the
global receptive field. To calculate the global recep-
tive field (i.e. the patch size)

RFyu = RFyy + (k—1) % s (2.4)

is recursively used, where RF' is the receptive field,
k is the kernel size and s is the cumulative stride.
At each recursive step s is multiplied by the current
layer’s stride. Initially, the values of RF}, and s are
equal to 1.

3 Experiments

To test what the optimal network-settings of the
GANdwriter are, several experiments have been
performed. All of the following results are gener-
ated by networks trained on the same dataset. This
dataset contains images of varying dimensions with
single words in English, labelled, in handwriting
space. The images were all resized to a uniform size
(256 x 64) respecting original character shapes and
character dimensions as well as possible. Originally,
the dataset contained 60,719 images with a great
variability in word length which leads to great vari-
ability in the dimensions of the images. To speed up
the training process by restricting images to have
maximum dimensions, the dataset was reduced to
words of word length w to 1 > w < 5, resulting
in a dataset size of 25,110 images. Furthermore, all
images were normalized to [—1, 1] to optimize pro-
cessing: the goniometric formulae used benefit from
this interval of values. Results were gathered after
training the models for 20 epochs on a Tesla K80
GPU (Google Colab), which took approximately
2 hours. The models were implemented using the
TensorFlow framework.

Because the input images in this study are not
square but rather rectangular, the actual discrimi-
nator output grid is also rectangular. The receptive
field, however, is square as in figure 2.2 due to the
properties of convolution.

3.1 Evaluation

It is well known that evaluating GANs is a difficult
problem for which no consensual solution has been
constituted (Borji, 2019; Salimans et al., 2016). In
HTR, for example, a system is scored on accuracy
in terms of how well words or characters are clas-
sified. Accuracy is calculated with respect to the
training dataset: it is known when a word is classi-
fied correctly or incorrectly. In handwriting genera-
tion, however, novel samples are synthesized. These
new samples are different from samples in the train-
ing data distribution and can therefore not easily
be compared to the training samples as is done in
HTR.

There do exist evaluation metrics for handwrit-
ing generation systems, both qualitative as well
as quantitative. A qualitative analysis can be per-
formed through human classification: persons are
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Figure 3.1: Performance comparison between different loss functions. Each column shows the
results using L1, L2 or traditional loss compared to the ground truth.

presented words which they have to classify as real
or fake. The percentage of people classifying the
generated words as real then serves as an indi-
cation of how well the system is able to mimic
handwriting. There is a drawback to this method
of evaluation, however. The problem is that the
used loss functions in a system do not necessar-
ily predict human classification. L1 might converge
to some global optimum that is an average of the
variability in a dataset. This does not mean that
this global optimum corresponds with what we hu-
mans would perceive as believable handwriting. In
contrast, an HTR system is a direct solution for
this problem. Generated words can be presented to
an existing, pretrained model that recognizes and
classifies handwritten text. If this model is able
to recognize the synthesized words then the gen-
erative model can be regarded as successful. This
pseudo-metric has been proposed in earlier work
(Isola et al., 2017; Salimans et al., 2016) and is a
way of quantitative evaluation. Random examples
generated by the GANdwriter are shown in figure
4.1.

3.2 Analysis of the objective

Figure 3.1 shows the qualitative results that are
obtained using the GANdwriter with different loss
functions. The resulting words synthesized by us-
ing only the traditional GAN loss (Equation 2.1)
are all more or less equivalent. This is an exam-
ple of a GAN collapsing into a single mode where
all outputs are similar. L.2 in combination with the
GAN loss produces more believable results with re-
spect to the traditional objective but with the pre-
dicted blurring. Moreover, the background contains
a slight amount of noise. The best results, in terms
of crispness, are achieved by L1 in combination with
the traditional loss function.

3.3 Analysis of the PatchGAN

Some tests were performed to investigate the influ-
ence of the receptive field size in the discriminator
output. The results are shown in figure 3.2. Using
an 18x18 patch achieves the most structured out-
put: most characters resemble the characters in the
ground truth. Furthermore, relative to the 38x38
patch, characters are more fluently connected with
a fewer amount of seemingly random lines. The
78x78 patch example shows that using a greater
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Figure 3.2: Effect of the patch size on output quality. The 18x18 patch achieves the most similar
results. A patch size greater than the input image height causes the GAN to collapse into a single

mode.

height in the patch than the input image height re-
sults in a single mode collapse. A reason for this
is that the words on the images are placed on the
left center side and are padded with white space on
the right and equally on top and bottom. Therefore,
most of the images contain significantly more white
space than handwriting pixels. Larger patch sizes
capture less features in this case as larger recep-
tive fields correspond with a smaller discriminator
output grid.

3.4 Future work

The current GANdwriter focuses on the general
structure of words as a whole because most indi-
vidual characters are conjoined cursively and there-
fore there is no clear separation between them. A
drawback of this method is that there is no explicit
structural attention to individual characters while
language and handwriting is per definition struc-
tured. Most characters in a certain position in a
word are often written identically: the 'n’ in ’and’,
for example, is written similarly every time it oc-
curs in that configuration of neighbouring charac-
ters. Therefore, it would be interesting to investi-
gate the possibility of focusing on individual char-
acters in cursive handwriting. Block letter hand-
writing is less intricate with respect to cursive writ-
ing and could also serve as a starting point for fu-
ture research.

Conditional GANs (cGANS) are a subclass of tra-
ditional GANs (Isola et al., 2017). cGANs extend
vanilla GANs by adding a desired condition to the
output. In the case of handwriting generation this
could mean that an output word can be conditioned
to be written in regular, bold or italic style. Adding
this functionality to the GANdwriter would further
increase the richness of data augmentation.

4 Conclusion

This paper shows great promise in the possibil-
ity to augment handwriting datasets using GANSs.
However, script produced by cursive handwriting
is a temporal 2D-trajectory in which ink at posi-
tion (z¢,y:) is continually connected to preceding,
(x¢—i, y1—i), and succeeding, (T¢4i,Yrt:), ink posi-
tions in time. The GANdwriter approach is not en-
tirely able to emulate this process as the patch-
implementation is a solution too general for this
specific problem.
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Figure 4.1: Random examples of synthesized words compared to the ground truth. Some examples
resemble the ground truth more than other examples. Most examples show that general character

shapes are often approximated.



A Architecture details

The convolution and transposed convolution lay-
ers are filters with square filters of 4x4 with a
stride of 2. An uneven kernel size is used because of
the checkerboard problem (Odena, Dumoulin, and
Olah, 2016): if the kernel size is not divisible by
the stride in transposed convolution, used in the
up-sampling blocks of the generator, there will be
overlap in the combination of transposed convolu-
tion operations. This overlap produces pixels in the
output layers that have more strength than non-
overlapping pixels, as they are used in the convo-
lution operations more frequently. An even kernel-
size diminishes this effect. To manifest uniformity
in the overall network architecture, all used kernels
implement even-sized kernels.

All (transposed) convolutions  upsam-
ple/downsample with a factor 2. Dropout layers
shut down a 20% portion of their input neurons.
LeakyReLU layers use a slope of 0.3.

The down-sampling blocks of the generator and
discriminator consist of

Convolution

Batch Normalization
Dropout

LeakyReLU

while the up-sampling blocks of the generator con-
sist of

Transposed Convolution

Batch Normalization

Dropout

ReLU

(adopted from (Isola et al., 2017)).

A.1 Generator architecture

Downsampling in the generator:

# filters block
64 Conv, LeakyReLU
128 Conv, Norm, LeakyReLU
256 Conv, Norm, LeakyReLLU
512 Conv, Norm, LeakyReLLU
512 Conv, Norm, LeakyReLLU

Upsampling in the generator:

# filters ‘ block
512 Transp. Conv, Norm, Drop, ReLU
512 Transp. Conv, Norm, Drop, ReLU
256 Transp. Conv, Norm, ReLU
128 Transp. Conv, Norm, ReLLU

After the last up-sampling layer a final layer
is added which maps the number of filters to the
colour channel (1 for black and white). This final
layer contains a hyperbolic tangent function and
has a filter size of 3x3.

A.2 Discriminator architecture

Downsampling in the 18x18 discriminator:

# filters ‘ block
64 Conv, Norm, LeakyReLLU
128 Conv, Norm, Drop, LeakyReLLU
After the last down-sampling layer a final

layer is added with the same purpose as in the
generator architecture: to map the output to the
colour-channel dimension. This final layer has a
filter size of 3x3.

Discriminator architectures for other patch sizes
are excluded because they differ only in the amount
of layers: larger patch sizes have more layers while
smaller patch sizes have fewer layers.



