faculty of science
and engineering

university of
groningen

IMPLEMENTING MAEHARA’S METHOD FOR STAR-FREE
PROPOSITIONAL DyNnAMIC LOGIC.

Bachelor’s Project Thesis

Francesca Perin, s2865300, f.perin@student.rug.nl
Supervisors: B.R.M. Gattinger

Abstract: Craig’s interpolation theorem has been proven for different logics such as first-order
logic, propositional and basic modal logic. However, it is still an open debate whether Propositional
Dynamic Logic (PDL) has said property. This research does not aim to close such debate. Our
goal is to implement an interpolation prover for propositional logic, basic modal logic, some of its
extensions, up to star-free PDL. Our program randomly generates an implication and then the
prover determines its validity by using sequent calculus. The prover then, given the valid sentence,
also finds an interpolant using Maehara’s partition interpolation method. The prover then outputs
the sequent calculus proof and the computed interpolant. For propositional logic, all rules of
inference and the computation of the interpolant are fully deterministic. For modal logic and star-
free PDL, some of the rules are non-deterministic in which case the prover uses depth-first search
to find one of the valid proofs. The prover is tested with 450.000 randomly generated formulas and
also a specific set of formulas for all logics. For each randomly generated formula tested that was
found valid a final interpolant which respected the definition was found. This was also the case for
the specific set, only one formula was supposed to be non-valid but was found to be valid. We argue
that this was due to a mistake as the proof for that formula is correct. The code for this project
can be found in the GitHub repository: https://github.com/FrancescaPerin/BScProject

Introduction

Interpolation properties have long been of inter-
est for logicians but more recently applications of
interpolation have also been studied in formal verifi-
cation (McMillan, 2018), computational complexity
(Cook and Reckhow, 1979), and knowledge repre-
sentation (Lutz and Wolter, 2011; ten Cate, Fran-
coni, and Seylan, 2013), among others (Bafcenas,
Lavalle-Martiriez, Molero-Castillo, and Velazquez-
Mena). Craig interpolation (CI) states that given
a logic A, as set of valid formulas, and given the
language L(y) as the set of propositional atoms
(and atomic programs for PDL) of formula ¢, the
logic A has Craig interpolation if and only if for
any formula of the type ¢ — 1 € A there exists at
least one formula g such that:

p—>peENand p—1peA

L(p) € L(p) N L(¥)

Formula p is then called an interpolant for the
implication ¢ — . One or more interpolants that
respect the property might be found.

(1.1)
(1.2)

Craig interpolation was first proven for first-
order logic by William Craig in 1957. Later it was
shown that the property also holds for many other

logics such as propositional logic, basic modal logic
(D’ Agostino, 2008), multi-modal logic (Madardsz,
1995) and intuitionistic logic (D’ Agostino, 2008).

With regard to Propositional Dynamic Logic
(PDL) there have been several attempts to prove
the CI property.

Daniel Leivant (1981) in his paper and Manfred
Borzechowski (1988) in his thesis, aim for a
proof-theoretic argument using respectively
sequent calculus and tableaux (Leivant, 1981;
Borzechowski, 1988). However both of their proofs
have been criticized, in particular, Kracht argues
that Leivant with his method only proves Craig
interpolation for finitary variants of PDL (Kracht,
1999). Furthermore, Tomasz Kowalski (2002)
tried to prove the theorem for PDL using duality
results about free dynamic algebras, but a flaw
was pointed out by Yde Venema, which lead to
Kowalski retracting the paper (Kowalski, 2002,
2004).

PDL is a propositional variant of Dynamic Logic
(DL) that does not use terms, predicates, and func-
tions but only uses two syntactic categories: propo-
sitions (¢) and programs («).

https://github.com/FrancescaPerin/BScProject

The syntactic definition of PDL is the following:

pu=pl-dloVolond|ld— o[l] T L
(1.3)

at=a|laalaUal|d?|a” (1.4)

where p belongs to the set of propositional letters.
Furthermore a is an atomic program and the
remaining, such as «; « are complex programs. We
also define the (a) operator in terms of necessity
as follows (a)¢ = —[a]—¢.

We notice that PDL extends propositional logic.
Furthermore, if we do not take in consideration the
complex programs and only consider one modality
[a] for a single atomic program a, then PDL
becomes basic modal logic. In other words, we
can start from the definition of propositional logic,
then we extend it by adding the operators for
modality resulting in modal logic, then we extend
it further by adding programs (). To understand
the concept of programs easily we consider the
semantics of modal logic. In modal logic, we first
define a frame as a pair (W, R) where W is a set
of worlds, and R is a binary relation over W. This
binary relation is also called accessibility relation.
So given w,w’ € W, the notation wRw' is used
to represent that the world w’ is accessible from
world w.

1.1 PDL semantics

The semantic definition of PDL is not used in
this project, however, it is important to under-
stand why it has been difficult to prove CI for PDL.

PDL semantics uses Labeled Transition Systems
(LTS) which is a generalization of Kripke models.
An LTS consists of worlds (or states) as mentioned
for modal logic, but the accessibility relations (also
called transitions) between worlds are labeled with
the name of the atomic programs. A labelled tran-
sition a from world w € W, to w’ € W, noted
as wR,w', or (w,w’) € R, indicates that starting
from world w, we can execute program a to reach
world w’ € W. The formula [a]p therefore is true
if, starting from a word w € W, p is true in all
worlds w’ € W that are reachable with a labeled
transition a. Formally:

M,w = [a]p iff for all w',wRw' = M, W' = ¢
(1.5)

The complex programs can be easily understood
at this stage by their intuitive meanings: the
program «; 3 is a sequential composition, first,
we perform transition « and then transition
B, program a U f is a non-deterministic choice

between performing the transition o or 8. Tests
¢? check if the formula ¢ is true in the current
state (or world). Finally, a* is repeating « any
finite number of times.

The ax program is challenging when trying to
prove the CI property due to being infinitary.
To find an interpolant of an implication such as
© — 1 (using tableaux or sequent calculus) the
full proof of its validity is needed. Leivant in his
system introduces a [ax] introduction rule which
needs infinitely many premises leading to a proof
that is not finite (Leivant, 1981). This is hard to
use in computation and is also difficult to find an
interpolant because it is not clear how to combine
the previous interpolants if there is an infinite
number of them.

In this paper we do not consider the a* program,
thus treating only star-free PDL. We are also
not going to take into account tests, because it
has been proven that PDL without tests has the
CI property if and only if PDL with test does.
(Gattinger, 2014; Kracht, 1999, Theorem 10.6.2
p.495)

1.2 Sequent calculus and Maehara’s
method

The aim of this project is not to prove that PDL
has the CI property but instead to create a theorem
prover that shows the CI property for propositional
logic, modal logic up to star-free PDL by imple-
menting Maehara’s method. The implemented pro-
gram generates randomly a formula of the type
@ — 1, which is then given to the prover which
determines its validity and if it is valid generates
an interpolant and checks whether it respects the
definition.

Given the three different logics taken into
consideration in this project and the definition of
interpolants we need to find a method to compute
interpolants. We use Machara’s partition inter-
polation method (Takeuti, 1975) in combination
with sequent calculus. The latter is very similar
and was chosen instead of analytic tableaux due to
this project being heavily influenced by Leivant’s
paper, which as previously mentioned used sequent
calculus.

Sequent calculus is a type of proof calculus,
in which every line is a conditional tautology
(also called sequent). The starting implication
@ — 1 is transformed into the entailment ¢ - 1.
This formula in the sequent calculus proof is
placed at the bottom of the proof and the proof is
read starting from the bottom moving upwards.
Furthermore, on the left and right of the turnstile

symbol (F) the sequent can contain more than one
formula:

@17<P2a-~-a§0n"¢1»¢27~-~7¢k (16)

In sequents the @; are called the antecedents (or
as called in this paper premises) and ; are are
called the consequents (or referred in this paper as
conclusions). In sequent calculus notation the com-
mas to the left of the turnstile can be interpreted as
conjunctions (A), and to the right as disjunctions
(V). The sequent in 1.6 can thus be rewritten as:

FoirApa Ao Aoy = 01 Vba VooV g (17)

A sequent calculus proof is a reduction tree
(removing connectives) where as mentioned we
have at the bottom the starting sentence and at
the top, there are (one or more) sequents with
fully reduced formulas (also called leaves). If one
or more of the formulas in the premises can also
be found in the conclusions, then the leaf is called
axiom. A sentence is valid only if all the leaves of
the proof are axioms.

After deriving the proof for a valid sentence we
then use Maheara’s partition interpolation method
to compute an interpolant. We will discuss the
method in more detail in the next section, but as
a general idea, the method involves finding the
interpolant for each axiom in the proof and given
these interpolants compute the interpolant for the
next sequent. How the interpolants are combined
or modified depends on the rules applied in the
sequent calculus proof. A valid sentence can have
more than one interpolant as there are many possi-
ble proofs. Given a proof of a sentence the inter-
polant found is always the same.

2 Methods

In this section, we are going to first rewrite the
definition of interpolant and sequent (for sequent
calculus) to follow Maheara’s method. Secondly,
we are going to explain the sequent calculus
rules and the rules for computing interpolants
and how they were derived according to the new
definition. We are going to start from the rules for
propositional logic, then the rules for modal logic
and finally for star-free PDL.

2.1 Maehara’s method

Maehara’s method is called partition interpolation.
To use this method we need to give our definition
of sequent in which the premises and conclusions
are partitioned:

FffEXT X (2.1)

A partition of a set f of formulas is a pair f—,
fT such that f~ U f* = fand f~ N fT =0. This
is denoted as f7; fT. The conclusions are also
partitioned, thus X TUX~ = X and XTNX~ = 0.

We rewrite the definiton of interpolant (1.1,1.2)
according to the partitions as given in the sequent
definition in formula 2.1. We say that © is an
interpolant of 2.1 iff:

ffEFX ,0and ffr,oFX* (2.2)

LO)=L(f~, X)NL(fr, X" (2.3)

When starting a proof with an entailment of the
type ¢ F 9 the premise ¢ is placed into f~ and
the conclusion v is placed into X T, resulting in
the following entailment ; F 1; , where thus
both premise and conclusion are on the left side
of the semicolons. In this case ft and X~ are
empty.

The definition of interpolant in 2.2 and 2.3
is related to the definition in 1.1 and 1.2. Any
formula of the type ¢ — % can be rewritten in
sequent calculus notation as ¢;F ;. Furthermore,
if we prove that © is an interpolant for the sequent
©; F 1; (thus respecting the definitions 2.2 and 2.3)
it also holds that © is an interpolant for ¢ —
and respects the definitions in 1.1 and 1.2.

The partitions are necessary to compute the in-
terpolants. As mentioned in Section 1, an axiom is
a sequent in which there is at least one formula that
is common between the premises and the conclu-
sions. To find the interpolant for an axiom we look
in which partition the formula is in the premises
and the conclusions. If there is more than one
such formula we select one arbitrarily. Assuming
that a is the common formula, we then have four
possibilities:

o fraftHXT,a; X then©®:=a
o f7;fT ak XT;: X~ athen © = —a
e fr,a;fTHX*; X ,athen ©:= L
o fiffak Xt a; X~ then© =T

where O is the interpolant of the axiom. Starting
from the interpolants of the axioms in the proof we
can then compute the interpolant for the sequent.
Every rule used in the sequent calculus proof has
a one to one relation with an interpolant rule.
The latter specifies how to combine or modify
the previous interpolant(s) such that the new one
respects the definition for the next sequent. When
the root sequent of the proof is reached the final
interpolant is obtained.

There are also a few cases where an axiom does
not contain a common formula but is neverthe-
less an axiom. If we have a sentence of the type
L F 9y, 109, ..., ¢, (where k is a positive integer),
the sentence is always valid because L F T is
valid but also L F 1. The same is also valid
for ¢1,p9,...,0k F T. When we encounter such
axioms, to find the interpolant we look in which
partition T or | are. We have the following cases:

o [T, L;fTHXT: X" then©® = L
o f7,L;ffFXT; X" then© =1
fff LFX T X" then® =T

fiff,L-XT ;X" then© =T

fftEXT T: X then® =T
FfTEXT, T; X" then® =T

fff,THXT, X, T then® = L
o fifTHFXT; X", T then ©® = L

This is the case only if there is no common for-
mula between premises and conclusions. Here
f=,fT,XT and X~ cold be empty or contain one
or more formulas. For the case in which we have
L then a formula is chosen from the conclusions,
otherwise for T the formula is chosen from the
premises.

2.2 Rules for Propositional logic

After rewriting the definition of sequent, we need
to derive the rules of inference for sequent calculus
accordingly to this definition (2.1).

We start with the rules for propositional logic.
In this paper, we only show the derivation of
two rules for the implication, but the rules were
derived for all the connectives =, A, V,— and can
be found in Appendix A. One can decide to only
define the rules for the connectives = and —, and
define the remaining connectives in terms of the
ones for which the rules are defined. Leivant (1981)
uses this approach in his sequent calculus system D.

For each connective, there are two inference rules,
due to the rules changing when applied in the
premises or the conclusions. Additionally, in our
sequent definition both premises and conclusions
are partitioned. For each connective we have four
rules, depending on if it is applied in the premise
or conclusion, but also depending on which side of
the partition, i.e. of the semicolon, the connective
is found. The rules in the proof are labeled with
a letter L if applied in the premises or R if in the
conclusions, the connective, and a '+’ symbol if

applied to the left of the partition or -’ if applied to
the right side of the partition for both the premises
and conclusions (this is not kinked to the symbol
- and '+ in, for example f~orX™).

2.2.1 The L—_ rule

In this section, we are going to derive the sequent
calculus rule and the interpolant rule for the
sequent in 2.6. The same is going to be performed
for sequent 2.5 in Section 2.2.2.

We start from Leivant’s rule for the left implica-
tion:

fHEAX fiBFX
ffLA—=>BFX

(L =) (2.4)

Take our definition of partitioned sequent in 2.1.
We can add formula A — B in the left partition in
one case and in the other in the right, obtaining
the sequents:

A= B ffEXT X~ (2.5)

fiff A BFXT X~ (2.6)
We look at the rule in formula 2.4. In the rule,
removing the implication symbol in A — B
results in two new sequents, one which keeps
formula A, which is moved from the premise
to the conclusion, and the other which keeps
formula B in the conclusions. This is true also for
our rule of inference but we need to make sure
that formulas A and B are in the correct partitions.

Now we choose that formula A moves to the left
partition (in the conclusions) and formula B to the
right partition (in the premises). When the formula
is applied we obtain the following sequents:

[t EXT AN [t BEXhXC
fffA—-BFX X

(L)
2.7)

Now we assume that we have interpolants ©; for
the left child and ©5 for the right child. Now we
apply the definition of interpolant in 2.2 and we
write the resulting sequents for the two children
and the original root sequent in 2.6.

From the left child in rule 2.7 we get:

ffHFX",0; (2.8)
ffreiEXt A (2.9)

From the right child in rule 2.7 we get:
fTFHFX,0, (2.10)
fH, B0 Xt (2.11)

For the root sequent in rule 2.7 we want to find
a O such that:

ffHFX",0 (2.12)

fr A= BOkF Xt (2.13)

If formula 2.7 is correct then it is the case that
we can apply rule 2.4 to sequent 2.13 and obtain
the sequents from 2.9 and 2.11 :

+ + + +
ff,o0F X+ A ff,B,6:F X (L—)
ff,A—-BOFXT

(2.14)

We can define © as the conjunction of ©; and
Os (0 = ©1 A O3). Now we rewrite the definitions

of 2.12 and 2.13 as following;:

fTEX7,0:1N0, (2.15)

[T A= B,61 A FXT (2.16)

Now we can also rewrite formula 2.14 using the
above definitions:

f+.,®1/\®2}_X+7A er,B7@1/\@2)—)(+
[FAS B O AO F X+

(2.17)

Rule 2.17 is an instance of rule 2.4 applied to

sequent in 2.16 which further proves that the
inference rule is correct.

We just defined © as being ©1 A O2, but we can
show that this is the case. Starting from axioms in
2.9 and in 2.11 we want to be able to construct a
proof that reaches the sequent 2.16 as such:

O F Xt A f+.B,0,F X+
1,015,060, F X+, A fT.B,01,0,F X T
T (A— B),0,,0, F X+)
fT (A= B), (01 A0y F X+

(WEAK L)

(L—)

(2.18)

Starting from the axioms we work backward,
we apply the weakening rule (which is used to
add one or more formulas to the premises or
conclusions) so that in both sequents we have both
interpolants ©; and ©5. Then the left implication
rule is applied to A and B to obtain A — B
in the premises, finally, we need to find a rule
which combines ©7 and Oy with one (or more)
connective. The rule is applied to combine the
two interpolants and thus defines © in terms of
O; and O3. In the proof the only rule that can be
used to combine the two interpolants is the con-
junction rule, leading to © being defined as ©1 AOs.

Proof in 2.18 only uses one of the two sequents in
the definition of interpolant (2.2). A proof is also
required for the second sequent and can be used
to double check that the definition of © in terms
of ©1 and O, is correct. We start the proof from
the two axioms which are the formulas in 2.8 and

(L =+, LAy)

(WEAK L)

2.10. We then check if ©; and ©5 can be combined
with the connective found in the other proof, in
this case A.

fTHFX",6, fTHFX,6,
fTE X7, (01N 6,)

(RA)

(2.19)

As shown in 2.19 it is the case, as found in the
other proof, that the LA is used to join the two
sequents in one formula, thus the definition is still
valid. We also know that every time the rule L —_
(formula in 2.7) is applied in the sequent calculus
proof, the interpolant of the next sequent is the
conjunction of the interpolants found for the two
children.

Now we showed that the inference rule is correct
and that the definition of the interpolant © in 2.2
holds, however, it is also necessary to show that
language condition in 2.3 also holds.

Regarding the language of the left sequent we
know that:

L©) CL(f~, X)NL(f* X+, A) (2.20)

for the language of the right sequent we know that:

L(©) CL(f~, X)NL(f*,B,X*") (2.21)

for the language of the root sequent we know that

LO)=L(f7,X7)N L(f+,A — B, XT) (2.22)
and for our definiton of © then:

L(@) = L(@l A\ @2) (2.23)

L(©) = L(©1) UL(©,)
C(L(f, XT)NL(f",XT, A))
U(L(f~, X)) NL(f", B, X))
= (LU XD A UL, B, X)) NL(f,X7)
=L(fT, Xt A= B)NL(f,X")
(2.24)
Therefore the language condition also holds.

We fully derived the rule L —_ and showed how
to derive the correspondent rule for computing the
new interpolant.

2.2.2 The L— rule

The way of deriving the partition rules for sequent
calculus always follows the same principles shown
in the previous section 2.2.1. However, there are
two rules in which a switch in the partition is
required. These rules are the L — rule and
the L—, rule (both applied to the premises and
left side of the partition). In this section we
are only going to show the derivation of the

rule L —; and corresponding interpolant rule.
This because it is a slightly more complex rule
since it involves a binary operator. Because
the process to derive the second rule is the
same it will not be discussed in details. The full
proof for the L— rule can be found in Appendix A.

In the case of a switch in partition the notation

of the sequent becomes the following:

fhfEXx Xt (2.25)

We note that this notation is never used in

the starting sequent of a proof as a switch in the

partition can occur only when either the L— rule
or the L— rule is applied.

To find an interpolant © for this specific case the
two definitions given in 2.2 and 2.3 are also changed,
consistent with the changes in the partition:

FTEXT ©and f-,0F X~ (2.26)

L(©)=L(f" X)NL(f~,X")

As shown previously we start from the implica-
tion rule 2.4 and we try different possibilities.
The inference rule that is derived is the following:

(2.27)

fHf EX A XT foB ffEXT X I
FAS B ffEXT X *
(2.28)
It is important to notice that in 2.28 the left child
is the only sequent in which there is the switch
in partition that we explained before, hence the
definition of interpolant with the switch in partition
is only used when working with that sequent, and
for the other ones we use the normal definition.
Looking at the root sequent of 2.28 (or 2.5) we
use the first sequent in 2.2 to derive the sequent
for the right child and we use the first sequent in
2.26 to derive the sequent for the left child, these
are the axioms of 2.29.

f_7@17'_A7X_ f_7BJ_X_762 (LH)
f7,(A—=B),01F X7,0,
- - (R —)
f a(A_>B)|_X ?(61%92)
(2.29)

In the proof, by looking from top to bottom, we
can notice that formulas A and B are unified to
form one formula with the implication connective
which is correct as we are applying the L —
rule, but also the two interpolants ©; and ©4 are
unified to form the next interpolant using the
implication connective. The interpolant for the
root sequent is thus ©; — ©3. One important
thing to notice is that we take the interpolant ©4
from the sequent which contains formula A and
we take the interpolant ©9 from the sequent which
contains formula B.

We perform the same procedure looking at the
root sequent of 2.28 (or 2.5) and using the second
sequent in 2.2 for the right child and the second
sequent in 2.26 for the left child. As before, we
derive the two new sequents which are the axioms
in the following proof:

f+}_X+761 f+7®2}_X+
fT,(01 -0 F Xt

(L =)

(2.30)
Considering 2.29 this suggests that when the
rule L —, is applied, we should combine the
interpolants by 6 := 6, — 65.

Finally, we confirm that this way of combining
interpolants respects the language condition:

LO) CL(ff" XHNL(f~,X,A) (2.31)

L(®2) - L(f_7X_aB) N L(f+aX+)
L(@l — 92) = L(@l) U L(@z)
C (LU XT)NL(f7, X, 4))
U(L(f~, X7, B)NL(f*,X7))
= (L(f~, X", 4)
UL(f~, X", B))NL(f*,X7)
=L(f". X ,A=> B)nL(f",X")
(2.33)
These are only two of the 16 logical rules of
inference for propositional logic that were derived
for our system. The full set of rules can be found

in Appendix A. For propositional logic, all rules of
inference are fully deterministic.

(2.32)

2.3 Rules for Modal logic and star-
free PDL

For modal logic, we add two rules: weakening and
the modality rule. For star-free PDL we add the
semicolon rules and the union rules.

2.3.1 Modality and weakening rules

The weakening rule is used to add formulas in the
premises or conclusions (if we consider the rule
going from top to bottom, if we consider it going
from bottom to top we are removing them). The
formal definition of the rule can be seen in 2.34
where, f~ C f~/, f© C f¥/, Xt C XV and
X CX.

S XX
JTE XX
This rule is the only non-deterministic rule used
in the prover. The prover always checks if the

deterministic rules can be applied first, and only if
no other rule can be applied then the weakening

(2.34)

Weak

rule is used. When the rule is applied the prover
uses a depth-first search approach to find one
application of the rule which leads to a valid proof.
It is possible to implement this rule such that
the prover removes one or more formulas (and
try all possible combinations) from the premises
and/or conclusions in the sequent and try to
prove the resulting sequents. However, we decided
to implement the weakening rule by trying all
combinations where only one formula is removed.
If necessary the rule can be applied multiple times
in succession, which allows all possibilities to be
tested. This implementation deviates from the
original rule as in the proofs we have, for instance,
n weakening rules applied consecutively, instead of
only one rule which removes n formulas. We used
this implementation as it resulted in overall faster
performance of the prover.

For this rule we don’t have four cases as for
the rules for propositional logic since the rule
is not applied to a formula in the sequent but
to the sequent itself. When this rule is applied
the interpolant does not change because if we
have the sequent f~;f* - XT; X~ and O is
an interpolant then © is also an interpolant
for f7,A;f*,B + XT,C;X~,D where A,B,C
and D could be empty or contain multiple formulas.

The second rule is the modality rule:

fEX

[alf F [gx Mod

(2.35)
it has an important restriction that it can only
be applied if the sequent has conclusions either
empty or with one formula with modality. The
rule is used to add (or remove depending on how
we read it) the [a] modality to all formulas in
the premises and if present the formula in the
conclusion. When this rule is applied the modality
[a] is also added to the interpolant, thus the new
interpolant becomes [a]O. If it’s the case that the

interpolant is T the interpolant remains unchanged.

This is because [a] T is the same as T. For this rule,
we have only one case (not L/R or +/-) because
as the weakening rule we can consider the rule
being applied to the entire sequent rather than to
a formula in the sequent.

2.3.2 Semicolon and union rules

For PDL we use six more rules (also present in
Leivant’s system D) the ; (semicolon) rules (shown
in 2.36 and 2.37) and the U (union) rules (shown
in 2.38, 2.39, 2.40 and in 2.41). These rules are
mainly used to change the notation of a sequent
from star-free PDL notation to multi-modal logic
notation.

The two semicolon rules are essentially the same
if applied in the premises or conclusions and also
when applied in the left or right partition. We
could give the rules using the partitioned sequent
but this would result in 4 essentially equal rules so
we decided to use the sequent definition without
partitions :

frlo][BlAF X

flafArx (2.36)
fEXBA
—f X [a; ﬁ]A R; (2.37)

When any of the semicolon rules is used the
interpolant does not change.

The union rules can be interpreted as a conjunc-
tion of programs so the rule changes if applied to
premises or the conclusions. When applied to the
premises it is not sensitive to partitions, however,
when applied to the conclusions it is, the rule for
the sequent calculus remains the same but the rule
for computing the interpolants changes (see also
Appendix A).

[[aA [BlA; fHE X X
[T leUBJA; fTE Xt X

LU, (2.38)

For the above rule the interpolant does not change.

ST oA [BlAE X X
[@UBJA, f7 fTEXT X

LU_ (2.39)

For the above rule the interpolant does not change.

St EX e X f X [BlA X
fo TR X JaUBlA; X

(2.40)
SR XX [alA, JfPEXT X [BlA RU

PR XT X [aUBA
(2.41)

For the remaining rules, however, the interpolant
changes. As mentioned before, the union of two
programs can be interpreted as the conjunction
of the two. In fact [a U f]A < [a]A A [B]A (Gat-
tinger, 2014). To know how to combine the inter-
polants one can simply look at how interpolants
are combined in the AL, and AL_ rules (shown
in Appendix A).

For UR, rule 2.40 the interpolant © of the root
sequent is the conjunction of the interpolants ©4
and O of the left and right child. Instead for UR_
rule 2.41 the interpolant © is the disjunction of the
interpolants ©; and ©s.

2.4 Implementation in Python

The prover using sequent calculus as proof
system and Maehara’s partition interpolation
method for computing the interpolant was built

on python 3.7.3. The full code of this project
can be found in the GitHub repository: https:
//github.com/FrancescaPerin/BScProject

Python was chosen as programming language
because it is higher level, this allowed us not to
take into account various aspects, such as memory
management or algorithms to store arrays which
deviate from the scope of implementing sequent
calculus and Maechara’s Method. Another aspect
of Python which was useful in this project is
that the code is more readable, this is a good
advantage especially for the rules because by
looking at them one can easily understand how
the rule is being executed. This choice has an
impact on the overall performance of the program.
Another possible choice of language was Prolog,
we chose Python instead as we could build our
own architecture. The prover was implemented
first only for propositional logic then extended to
modal logic and then further extended to star-free
PDL. This language enabled us to create an
architecture and then modifying it to allow for
the various extensions required to reach star-free
PDL starting from propositional logic. This also
enabled us to keep one program which can deal
with all three logics.

The main file of the prover is sequentCalc.py
in this file we define all inference rules for all log-
ics and also all rules for computing the interpolants.

For propositional rules we define, for each con-
nective and for left and right, a class which contains
four main functions: the function canApply (), the
functions stepRight (), stepLeft(), and finally
the function interpolate().

Function canApply() receives as input a set
of formulas and checks if a connective (specific
for the rule) is present in one of the formulas. If
the connective is present and can be simplified
the function returns a list with True only at the
position of the formula in which the connective was
found. This function is called with the right and
left premises or with the right and left conclusions.

Functions stepLeft() and stepRight() take
the formula that was found by canApply() and a
sequent and applies the actual inference rule, in
general removing the formula from the sequent,
obtaining the left and right operands and inserting
them back in the sequent in the correct partitions.
Function stepLeft () is used for the left partition
and function stepRight() is used for the right
partition.

Finally function interpolate() takes as input

the previous interpolant(s) and a boolean. The
boolean is to know which function was called
either stepLeft () or stepRight (). This enables
the interpolate() function to know given the
previous interpolant(s) which rule to apply to
compute the next one.

For modal logic and star-free PDL rules, the idea
is the same we always have a function canApply ()
that checks if a inference rule can be applied to a
sequent, a function step() that actually applies
the rule, and function interpolate() which given
one or two interpolants computes the next.

The function responsible for determining the
validity of a sentence is the recursive function
solve(). This function takes the starting se-
quent that we want to prove and checks if any
canApply () function returns a list with one index
being 'True’. To have a more compact proof the
function first checks all rules with branching factor
of one between the propositional rules, then the
propositional rules with branching factor two, then
the modality, semicolon and union rules and lastly
weakening. Weakening is checked last because we
want the prover to apply the weakening rule only
if no other rule can be applied.

If canApply() returns a list with one index
being 'True’ then the corresponding function of
the type step() is called and the new child or
children sequents are stored. Furthermore, we
also store in self.__rule the interpolate()
function that has to be called in relation to the
specific rule applied and a boolean value which
is also going to be needed for interpolate() as
previously mentioned.

If all canApply() return an empty list, it’s
the case that no rule can be applied and the
program has reached a leaf (fully reduced formula),
thus the function returns true if all leaves are
axioms otherwise false. The output of the solve()
function is the validity of the tested sequent.

If solve() returns True then the recursive
function calcInterpolant() is called. The rule
takes the original sequent and is called recursively
on the children. It checks if the sequent is an
axiom with the function isAxiom(), if it’s not
then it moves to the next sequent, if it is then
it calls the function axiomInterpolant() which
computes the interpolant of the axiom as explained
in Section 2.1 plus a few more cases. As mentioned,
in self.__rule we store all interpolant rules
to be used and in the correct order. Once the
interpolants of the axioms are computed recursion
starts moving backward. Recall that we compute

https://github.com/FrancescaPerin/BScProject
https://github.com/FrancescaPerin/BScProject

the interpolants moving down the proof. We call
each function interpolate() stored giving it the
old computed interpolant such that it will compute
the next, until all rules are applied, thus reaching
the final interpolant.

Once the final interpolant is reached, the two
new entailments of the definition are generated and
checked using the same solve() function.

The program generates a .tex file with the BTEX
code of the proof and a PDF image. This must be
manually saved by the user because if the program
is run a second time the files get overwritten with
the new proof. This is why the prover only gen-
erates the PDF image when formulas are tested
manually and not randomly. For more information
on how to test the code see the README.md file
in the GitHub repository.

3 Results

The aim of this project is to show that Craig
interpolation holds for propositional logic, modal
logic up to star-free PDL, by implementing a
theorem prover (based on Maehara’s method) that
generates interpolants and checks their correctness.

The prover was tested with 3 sets of 150.000
randomly generated formulas, one set for each
logic: propositional logic, basic modal logic, and
star-free PDL logic. For propositional logic 44.120
were found to be valid and in all cases, the final
computed interpolant was correct and respected
the definition and constraints. For basic modal
logic and for star-free PDL the valid sentences
found were respectively 23.815 and 23.503. For
all valid formulas, the final computed interpolant
was correct and respected the definition and
constraints.

Because modal logic extends propositional logic
and the formulas are generated randomly it is the
case that, when testing formulas for modal logic,
several propositional sentences are also tested.
This is also the case for star-free PDL, which can
generate and test formulas for propositional logic
and basic modal logic.

The prover was further manually tested with the
sets of sentences below. For this sets of sentences,
the validity was already known so we used them
to test that the prover would indeed give the same
output.

3.1 Test set for propositional logic

Provable:

8. (pAg) = (qgVr)

9. (pAgAT) = (gVTrVs)
10. (pAgAT)—= (rVsVi)
1. (p—=q) = (~g = —p)
12. ((pvit) = (gVr)) = ((-r As) = (mg = —p))
13. ((pvi) = (gvr)) = (=r = (~g = —p))
Not provable:

1. p—q

2. q— ¢q

3. T—=qV(rAs)

4. (pVqVr)—= (rAsAt)

5. ((pAt) = (gAr)) = (-r = (-g = —p))
The prover gave the correct output and found a
valid interpolant for all sentences. Below we show
the sequent calculus proof for formula 13 (of the

provable set) and the interpolant computed for each
sequent in the proof.

P q T
p;FPJ;T,(I RV, GpEng (quT;)pFT-,q; Ly,
piE(pVi)irq (@vryip F re o

(r—(avr) *
(pvt)=(gvr)p F 1ng
(p—(avr)
((pVvt) = (gVvr);—(g),p LI
(= (qvr) -
((pvt) = (gvr))i=(r),~(@hp F 5 o
(p—(qVr)) +
((pvt) = (gvr))ia(r),~(@ F =) 5,
(- (qvr)) T
(pVvt) = (qgVr));—(r) (=(g) = =(®)); R
(p—(qvr)) *
((pvt)=(gvr); F (=) = (=(@) = =)
(3.1)

The final interpolant for the formula ((p V t) —
(qVr)) = (=r = (=g = —p))isp—= (¢ V).

3.2 Test set for modal logic

Provable:

L [al(p A q) = ([a]p A [a]q)

2. [a](p = q) — ([a]p — [a]q)

3. =la](p Vv q) = (Hlalp Vv ~[a]r)

4. —fa]=(pV q) = (=la]-p Vv —[a]q)

5. (nlal=p v —lal—g) = —la]=(pV q)

6. [a](p A [a]q) — [a][alq

7. la](q = r) = (=lalr — —[alq)
Not provable:

L [al(pV q) = ([alp V [a]q)

2. [a]lalp — p

3. lalp —q

4. =[al=p — [a](p A p)

The prover gave the correct output for all sentences
and also found a correct interpolant for all valid
sentences.

3.3 Test set for star-free PDL

Provable:

1. [aUblg — [bUdlq

2. [a]b](pAq) = [a; bl(gVr)

3. [(asb;)Ulas;d;o)lp—la; (bUd);cp
4. [aUbl(pAg) = ([L = [bUCc(gVr))

5. (pAg) = [a]T

6. (pVs)—la;bl(g——q))—
(=[a; b]l=g — =(pV s))

Not provable:

L ((pVvs)—=la;bl(qg— —q) —
(—fa; blg = =(pVr))

2. (pAq) = la][al(g V)
3. [a;blp—[b;al(pVvr)
4. (p—[a;blg) — (la; blp — q)

The prover gave the correct output for all sentences
and also found a correct interpolant for all valid
sentences.

3.4 Example

We tested our prover with the formula (in basic
modal logic):

[al((g = 7)) = (=([a](r)) = =(al(9))) (3:2)

The formula is rewritten in sequent notation and
is the root sequent of the proof.

G aqr riq T [
(q—7) *
(g=r)qg o Modld]
(al ((4—7)
[a]((q = 7)); [al(q) [a] (r);
[a]((4—7) -
[al(tg = r))i~(lal(r);[al(a) F 5
[a]((4—7)) *
[al(tg = r);=(al(r) = ~(el(@)
[a]((q—7) *
lal((g—=7); F (=(al(r) = ~([al(2)));
(3.3)

For this example the prover computed as final inter-
polant of the root sequent the formula [a](q — 7).
After computing the interpolant the prover checks
that the sequents

[a)(q — r);F [a](qg — 7); (3.4)

[a](q = r);F (=([a](r)) = —lal(q)); (3.5)
are also valid. This is the case thus the interpolant

is valid for the original formula in 3.2 and it holds
that the two entailments are valid:

[a]((g = 7)) = [al(g = 7) (3.6)
lal(g =) = (=([a](r)) = ~([al(¢))) (3.7)

and that the language constrain is also valid:

L([al(g = 7)) € L([al(g — 7))
N L(=([al(r)) = =([al(4)))

The proof above (3.3) was taken directly from our
prover, which in case of a valid sentence, generates
the proof in BTEX code and also a pdf version.

A second example of proof for star-free PDL can
be found in Appendix B.

(3.8)

4 Discussion

The prover was manually tested with a small set
of formulas for which the validity was known. This
was done to ensure that the prover would give
the same results. The results were promising as
the prover provided the same results for all cases,
with one exception (see Section 3.1), and the
interpolants computed were all valid. With regard
to the 450.000 formulas generated randomly and
then tested the results were also positive.

10

One of the limitations of this project is that the
sets of formulas (for which the validity was known)
were very small. Therefore, it was not possible
to test in depth the reliability of the prover, thus
further testing is required. One possibility would
be to compare our prover with a different one
(that could use a different system such as analytic
tableaux). Given a sentence, the two provers
would determine the validity independently and
then the results compared. If our prover is fully
reliable we should find the same set of valid and
non-valid formulas.

It would also be interesting to compare our

prover with one which also computes interpolants.

However, this could be more challenging because
as mentioned there could be more than one
interpolant for a sentence, as the final interpolant
depends on the proof of validity. Thus the two
provers could both find an interpolant that is valid,
but they might result in two different formulas
and might not be comparable.

Some of the undesired cases that could arise are
those in which the prover is wrong in determining
the validity of the sentence, but also if the prover
finds a valid sentence but the interpolant found
does not satisfy its constraints. For example, it
does not satisfy one or both of the implications
in 2.2 or the language constraint in 2.3. If this
happens when further testing the code, in our
opinion is more likely to be a mistake in terms of
implementation of the rules in the code or a case
that was not foreseen and thus not implemented,
rather than the derived rules being wrong or the
method used not suitable. This opinion is based on
the fact that all inference rules and most related
interpolant rules were also proven. The rules were
also double-checked by rewriting a connective in
terms of different ones. For instance, rewriting
A — B as -A V B, thus applying the rule for
implication or in the other case the negation and
disjunction rules results in the same sequents. The
same can be also performed for the interpolant
rules. This is another way to ensure that all rules
are congruent as a whole and as a system.

One of the interpolant rules which was not fully
derived and proven is the modality rule. In our
rule, we mentioned that the inference rule and
the related interpolant rule are not sensitive to
partitions. However, the case that modality is
not added if the interpolant is 1, but it is if the
interpolant is T, suggests that it might be the case
that where the formulas with modality are found in
the premises and/or conclusion (possibly even with
respect to partitions) plays a role in determining
the rule for modifying the interpolant, where either

modality is added or the interpolant remains the
same.

5 Conclusions

Star-free PDL logic can be seen as a notation
variant of multi-modal logic, for which Craig’s
interpolation property has been proven. In this
project, we wanted to implement Maehara’s
partition interpolation method to compute the
interpolants and use sequent calculus as proof
system.

The results were promising as, for both the tests
sets and the randomly generated sentences, if the
formula was found to be valid the final interpolant
was correct and respected the definition. However,
because the prover was not tested heavily it is not
possible to determine if it is fully reliable in deter-
mining the validity of a sentence and computing the
interpolants. For this reason, we cannot exclude
the possibility of our prover proving a sentence
correct when its not, the opposite case or finding
a non correct interpolant. In which case, as we
argued in Section 4, it is more likely to be a prob-
lem of implementing the rules in the program or
as we discussed a problem in the interpolant rule
for the modality rule which could possibly depend
on partitions.

References

E. Bafcenas, J. Lavalle-Martinnez, G. Molero-
Castillo, and A. Velazquez-Mena. Craig interpo-
lation on the logic of knowledge. Unpublished.
URL http://ceur-ws.org/Vol-2264/paper2.
pdf.

M. Borzechowski. Tableaukalkiil fiir PDL und in-
terpolation. Diplomarbeit, Department of Math-
ematics, FU Berlin. Unpublished, 1988.

S.A. Cook and R.A Reckhow. The relative ef-
ficiency of propositional proof systems. The
Journal of Symbolic Logic, 44(1):36-50, 1979.
doi:10.2307/2273702.

G. D’ Agostino. Interpolation in non-classical
logics. Synthese, 164(3):421-435, 2008.
doi:10.1007/s11229-008-9359-x.

M. Gattinger. Craig interpolation of PDL. A
report on the proof by Daniel Leivant (1981).,

2014. URL https://wleg.de/malvin/illc/
pdl.pdf.
T. Kowalski. PDL has interpolation. Journal

of Symbolic Logic, 67(3):933-946, 2002. URL
https://www.jstor.org/stable/3648548.

11

http://ceur-ws.org/Vol-2264/paper2.pdf
http://ceur-ws.org/Vol-2264/paper2.pdf
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.1007/s11229-008-9359-x
https://w4eg.de/malvin/illc/pdl.pdf
https://w4eg.de/malvin/illc/pdl.pdf
https://www.jstor.org/stable/3648548

T. Kowalski. Retraction note for PDL has inter-
polation. Journal of Symbolic Logic, 69(3):935,
2004. doi:10.2178/js1/1096901777.

M. Kracht. Tools and techniques in modal
logic., volume 142. Springer Berlin, 1999.
URL https://wwwhomes.uni-bielefeld.de/
mkracht/html/tools/book.pdf.

D. Leivant. Proof theoretic methodology for propo-
sitional dynamic logic. In J. Diaz and I. Ramos,
editors, Formalization of Programming Con-
cepts, pages 356-373, Berlin, Heidelberg, 1981.
Springer Berlin Heidelberg. doi:10.1007/3-540-
10699-5_111.

C. Lutz and F. Wolter. Foundations for uniform
interpolation and forgetting in expressive de-
scription logics. In Proceedings of the Twenty-
Second International Joint Conference on Ar-
tificial Intelligence, volume 2, pages 989-995.

AAAT Press, 2011. URL https://www.ijcai.

org/Proceedings/11/Papers/170.pdf.

J. X. Madarasz. The craig interpolation theorem
in multi-modal logics. Bulletin of the Section of
Logic, 3(24):147-151, 1995. doi:10.1007/s11229-

008-9359-x. URL https://www.filozof .uni.

lodz.pl/bulletin/pdf/24_3_5.pdf.

K.L. McMillan. Interpolation and model check-
ing. In E.M. Clarke, T.A. Henzinger, H. Veith,
and R. Bloem, editors, Handbook of Model
Checking., pages 421-446. Springer Berlin, 2018.
doi:10.1007/978-3-319-10575-8_14.

G. Takeuti. Proof Theory. North-Holland

Amsterdam/Oxford, 1975. URL http://wuw.

getcited.org/pub/101589483.

B. ten Cate, E. Franconi, and I Seylan. Beth defin-
ability in expressive description logics. Journal
of Artificial Intelligence Research, 48:347—414,
2013. doi:10.1613/jair.4057.

12

http://dx.doi.org/10.2178/jsl/1096901777
https://wwwhomes.uni-bielefeld.de/mkracht/html/tools/book.pdf
https://wwwhomes.uni-bielefeld.de/mkracht/html/tools/book.pdf
http://dx.doi.org/10.1007/3-540-10699-5_111
http://dx.doi.org/10.1007/3-540-10699-5_111
https://www.ijcai.org/Proceedings/11/Papers/170.pdf
https://www.ijcai.org/Proceedings/11/Papers/170.pdf
http://dx.doi.org/10.1007/s11229-008-9359-x
http://dx.doi.org/10.1007/s11229-008-9359-x
https://www.filozof.uni.lodz.pl/bulletin/pdf/24_3_5.pdf
https://www.filozof.uni.lodz.pl/bulletin/pdf/24_3_5.pdf
http://dx.doi.org/10.1007/978-3-319-10575-8_14
http://www.getcited.org/pub/101589483
http://www.getcited.org/pub/101589483
http://dx.doi.org/10.1613/jair.4057

A Appendix
A.1 LEFT IMPLICATION RULE

e Left partition: (note partition have changed in one of the children)

SR EXCAXY B X X

FFASB TR XT X~ (L =+)
Interpolant: ©; — O,
Proof:
f_,®17FA’X_ f_,Bil_X_,ez (L—))
f(A—=B),0: F X—,0,
- — (R =)
f v(A_>B)|_X 7(91%@2)
fTFX*, 0, fr, 0. X+
7701 = 0) F XT (=)
L(©1) = L(fH, X*)NL(f~, X, A)
L(©2) = L(f~,X",B)N L(f , X)

(@1 — @2) (9) U L(@Q)
= (L X)L, X7, A)) UL, X7, B)NL(f*, X))
(f, X, A UL, X", B)NL(f".XT)

= (L
=L(f, X, A—=B)nL(f",X")
e Right partition:

ffTEXT AXT f5B fT XX

L —_
A= B ffTEXT X (L=-)
Interpolant: ©; A O,
Proof:
f7|_X777@17 fi}_Xi,@g (L/\)
fTEX7,(01A09)
+ + + +
+f761FX ’+A (WEAK L) f’B’@sz — (WEAK L)
f 7@17®2|7X 7A f 7B,@1,®2|7X (L_>)
f+,(A—>B),@1,@2|_X+ (L/\)
f+7(A_>B)’(@1/\®2)|_X+
LO)=L(f, X)NL(fT, X+ A
LO)=L(f~, X)NL(fT,B,X™)

L(©1 = ©,) = L(©)) UL(®2)
= (L7 XT)NL(fF XA UL, XT)NL(f7, B, XT))
X AL B X LX)

= L(ft, X", A= B)NL(f,X")

13

A.2 LEFT AND RULE

e Left partition:

LA B fTEXT X~
fFLAANB; fTEXT X—

Interpolant: remains the same just rewriting

e Right partition:

A B fTHXT X~
fFAANB, fT X X~

(LA-)
Interpolant: remains the same just rewriting

A.3 LEFT OR RULE

e Left partition:

LA fTEXT X B fTEXT X~ (Lv.)
fo AVB; frE Xt X +

Interpolant: ©V O,
Proof:

AR X7,6; (WEAK R) 7 BFX7,0,
fivAliX77@1a@2 fiaBFXia®17@2
[T, (AVB)F X7,01,0,

ff,(A\/B) |—X7,(@1 \/@2)

(WEAK R)
(LV)

(RV)

fr,01FA B XT fr,0, A B, XT
f+a(@1\/@2)'_AvBaX+ (\/)
f+,(®1 \/@2) - (A\/B),X+

(LV)

e Right partition:

A fTEXT X B fTEXT X~
fAVDB, ffE Xt X

(Zv-)

Interpolant: ©; A O,
Proof:

f_l_X_a(—)l f_l_X_7@2
fﬁ }—Xi,@l/\@g

(RA)

+ + + +
f 3A7®1}_X (WEAKL) f 7B7@2|_X
fr,A,0,60,F X7t fr,B,0:,05,F Xt

ST, (AV B),01,0, Xt

fH(AVB), (01 AOy) - Xt

(WEAK L)
(LV)

(LA)

14

A.4 LEFT NOT RULE

e Left partition: (note change in partition)

[EXT AXT

oA
Interpolant: -0,
Proof:
f_,(‘)l}—X_,A (L_‘)
fiv_‘A)(—)ll_Xi (R)
f_7_‘Aa'_ X_a_‘@1
ffRX*T,0
+—1+ (L—)
ff1FX
e Right partition:
LS EAXSXT
fomA TR XX -
Interpolant: ©; interpolant does not change
Proof:
+ +
kX (L)
erv _‘Aa 61 FXT
f_ + X, (Ch
A.5 RIGHT IMPLICATION RULE
e Left partition:
[LASTEXOBXT L
foftE Xt AS B X~ *
Interpolant: ©; = ©5 no change
Proof:
f+aA7@1FX+7B (R—))
fH,02- X1 (A— B)
fﬁ FX—,0,
f7 F Xﬁa 62
e Right partition:
fLAfTEXT B X (R—.)
fiffFXTA— B X~ B
Interpolant: ©; = ©5 no change
Proof:
f_uAael}_X_aB (R-})
f7,0- X" (A— B)
.f+7 @1 F X+
f+7 @2 F X+

15

A.6 RIGHT AND RULE

e Left partition:

S ftEXT A X [T ftEXT B X

RA
FfTEXT,ANB X (RA+)
Interpolant: ©; A Oy
Proof:
fTFEX,0, fTEX,6, (RA)
f_'_X_7(®1/\®2)
+ + + +
/70 X7, A (WEAK L) /701 X7, B (WEAK L)
f+a®17®2|7X+7A f+7®la®2|7X+aB (R/\)
f+,@1,@2|—X+,(A/\B) (L/\)
f+,(®1/\®2)FX+,(A/\B)
e Right partition:
fffEXHAXS P EXY B X (RA)
fifftEXT AANB, X B
Interpolant: ©, V O,
Proof:
JTEXT AL (wpak) JEXTBO: (wiak R)
f_l_X_7A7@17®2 f_}_X_uBue)h@Q (RA)
“"FX,(AANDB),01,0
f 7()7 1,Y2 (R\/)

f_ I—X_7(A/\B),(@1 \/@2)

f+7®1|_X+ f+762}_X+

fH©O1vey) Xt

A.7 RIGHT OR RULE

e Left partition:

[t XY A B X

FfPEXT AVB; X
Interpolant: remains the same just rewriting

e Right partition:

S fTHEX1T A B X

T fTFXTAVB, X

Interpolant: remains the same just rewriting

(LV)

16

A.8 RIGHT NOT RULE
o Left partition:

fA TR XT X

XA)
Interpolant: ©; = ©5 no change
Proof:
f+7A7@1'_X+ (R)
fr,0F Xt A
f_ [X_,@)l
f7 F Xﬁa 62
e Right partition:
A fTEXT X (R-.)
foftEXT A X -
Interpolant: ©; = ©5 no change
Proof:
AR X6, (R-)
f_ F X_,_‘A,@2
f+7 @1 F X+7 A
f+7 92 F X+7 A
A9 WEAKENING
fEX
W (Weak)

where f C f/ and X C X'

Interpolant: remains the same just rewriting

A.10 MODALITY

fEX

@l F g e

Interpolant:[a]©; where ©; is the interpolants of the child. If © is L the interpolant remains the same.

A.11 LEFT SEMICOLON

[][B]A, fF X

Bl frx ¥

Interpolant: remains the same just rewriting

A.12 RIGHT SEMICOLON

[+ a][]A, X

[Fmaax ¥

Interpolant: remains the same just rewriting

17

A.13 LEFT UNION

(A, [BIA, f F X
[@UBJA, fF X

(UL)

Interpolant: remains the same just rewriting

A.14 RIGHT UNION

fEA X fEIBIA X
frlaUplA X

(UR)

e Left partition: interpolant is ©1 A O where ©1 and O, are the interpolants of the children

e Right partition: interpolant is ©; V ©5 where ©; and ©s are the interpolants of the children

18

B Appendix

Example of sequent calculus proof and computation of interpolant for formula in star-free PDL.

p:Q”ZQ:TQ LA+
(P/\Q);'z%?"; RV,
WAGF gV
B AD): Bl((gv) .

(@) Moda] — LT Ry,
a0 " F ol gV
[a]([b](q)) [c](q)

(Bl A). [@: " F lal(Bl(a v r)); @; Fld(avr); Weakening
[a]([b](q)) [c](q)
W@ A) @ b (@)@ V) Al A). @ F a0y
([a]([b](9))Alcl(q))
A@@A) @ E o (a) (g v r));

LA,
([al([B) (@) Ale] ()

([al([]((p A))) A [cl(0); + [((a;0) U e)l((g v 7));

The code for this project can be found in the GitHub repository: https://github.com/FrancescaPerin/
BScProject

19

https://github.com/FrancescaPerin/BScProject
https://github.com/FrancescaPerin/BScProject

	Introduction
	PDL semantics
	Sequent calculus and Maehara's method

	Methods
	Maehara's method
	Rules for Propositional logic
	The L- rule
	 The L+ rule

	Rules for Modal logic and star-free PDL
	Modality and weakening rules
	Semicolon and union rules

	Implementation in Python

	Results
	Test set for propositional logic
	Test set for modal logic
	Test set for star-free PDL
	Example

	Discussion
	Conclusions
	Appendix
	LEFT IMPLICATION RULE
	LEFT AND RULE
	LEFT OR RULE
	LEFT NOT RULE
	RIGHT IMPLICATION RULE
	RIGHT AND RULE
	RIGHT OR RULE
	RIGHT NOT RULE
	WEAKENING
	MODALITY
	LEFT SEMICOLON
	RIGHT SEMICOLON
	LEFT UNION
	RIGHT UNION

	Appendix

